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Level crossings reveal organized coherent structures in a turbulent time series

Subharthi Chowdhuri * and Tirtha Banerjee
Department of Civil and Environmental Engineering, University of California, Irvine, California 92697, USA

(Received 29 August 2023; accepted 21 December 2023; published 17 January 2024)

In turbulent flows, energy production is associated with highly organized structures,
known as coherent structures. Since these structures are three dimensional, their detection
remains challenging in the most common situation in experiments, when single-point
temporal measurements are considered. While previous research on coherent structure
detection from time series employs a thresholding approach, either in spectral or temporal
domain, the thresholds are ad hoc and vary significantly from one study to another. To
circumvent this issue, we introduce the level-crossing method and show how specific
features of a turbulent time series associated with coherent structures can be objectively
identified, without assigning a priori any arbitrary threshold. By using two wall-bounded
turbulence time-series datasets (at a Reynolds number of 104), we successfully extract
through level-crossing analysis the impacts of coherent structures on turbulent dynamics
and therefore open an alternative avenue in experimental turbulence research. By utilizing
this framework further, we discover a metric, characterized by a statistical asymmetry
between the peaks and troughs of a turbulent signal, to quantify inner-outer interaction
in wall turbulence. Most importantly, through phase-randomized surrogate data model-
ing, we demonstrate that the level-crossing statistics are quite sensitive to the nonlinear
dependencies in a turbulent signal. Physically, this finding implies that the large-scale
coherent structures modulate the near-wall turbulent dynamics through a nonlinear in-
teraction associated with low-speed streaks, a mechanism not identifiable from spectral
analysis alone. Moreover, a connection is established between extreme value statistics and
level-crossing analysis, thereby allowing additional possibilities to study extreme events in
other dynamical systems.

DOI: 10.1103/PhysRevFluids.9.014601

I. INTRODUCTION

According to Hussain [1], coherent structures in turbulent flows are defined as “a connected large-
scale turbulent fluid mass with a phase correlated vorticity over its spatial extent.” However, while
dealing with time-series measurements, this formal definition is not very useful since from temporal
observations alone it is difficult to identify the organized patterns in the flow. Therefore, instead
of rigorously defining the coherent structures, they can be best described by their phenomenology,
such as (a) their characteristic scales are comparable to the integral scales [2–4], (b) they induce
non-Gaussian fluctuations in the turbulent variables [5–7], and (c) they have large contributions to
turbulent fluxes and kinetic energy [1,7,8]. Geometrically, these structures are three dimensional and
can take various shapes based on the types of turbulent flow. Examples include granular patterns in
astrophysical flows [9], hairpin structures in neutral wall-bounded flows [10], and counter-rotating
roll vortices in atmospheric turbulence [11]. In addition to their significance in drag reduction
[12], consideration of coherent structures is also important for weather and climate models since
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disregarding those can cause significant uncertainties in turbulence parametrization [13]. For the
rest of the discussion, we focus our attention on wall-bounded turbulence, since such flows are
ubiquitous in nature and the features of coherent structures in these flows are well established [8].

In practice, the coherent structures can be visually recognized from three-dimensional numerical
simulations, smoke visualization experiments, or particle velocimetry measurements. Apart from
their visual recognition, the coherent structures can also be reconstructed through proper orthogonal
decomposition, a technique often applied to numerical simulations or particle velocimetry measure-
ments [14]. Despite such advances, it remains challenging to detect them from the most common
form of turbulent experiments where the variables are measured at a single point in time. Previous
studies on coherent structure detection from turbulent time series employ a thresholding approach,
where the thresholds are set either in the temporal or spectral domain. Interestingly, thresholding
approach has also been employed to detect coherent structures from spatial measurements [15,16],
although we will not discuss them here.

Regarding the spectral domain, the thresholds are set on the Fourier wave numbers to separate
the coherent structures from small-scale turbulence. This concept mainly originated with the three-
wave-number range model of the spectra of streamwise velocity fluctuations, introduced by Perry
and Abell [17], Perry and Chong [18], and Perry and Li [19] (see Raupach et al. [20] for a review).
These fluctuations were measured at a single point in time and the frequencies were converted
to wave numbers (or, equivalently, the wavelengths) by applying Taylor’s hypothesis. Taylor’s
hypothesis allows the frequencies to be interpreted as the spatial scales of the turbulent structures
(measured by wave numbers) under the assumption that these structures pass over the measurement
location with the local mean velocity [21]. Accordingly, in the three-wave-number range model,
the low wave numbers with the wavelengths of the order of boundary layer height or radius of the
pipe, represented the large-scale coherent structures. In the parlance of wall turbulence [3,22], these
structures are named as large- and very large scale motions (LSMs and VLSMs). At intermediate
wave numbers, the velocity spectra displayed a −1 spectral power law, which Perry and Chong [18]
demonstrated to be related to Townsend’s attached eddies whose sizes scaled with height. Last, the
large wave numbers represented the eddies that populated the inertial subrange and dissipative range
of the spectra.

All these three-wave-number ranges were empirically determined by assigning some cut-off
numbers. Later, to learn more about coherent structures, spectral analysis was undertaken on the
time-series measurements of streamwise velocity at multiple heights. By analyzing the premultiplied
spectra, two distinct peaks were identified [21,23]. One of those peaks was located very close to the
wall, representing the inner-layer structures often associated with bursting events. On the other hand,
the second peak (also known as the outer-spectral peak) was located in the log layer, associated
with the LSMs and VLSMs. A large body of literature on wall turbulence used this scale-separation
information to decipher how the large-scale structures (LSMs and VLSMs) in the logarithmic region
modulate the dynamics occurring in the layers below the log layer (commonly known as inner layer),
a phenomenon referred to as inner-outer interaction [23–25].

The inner-outer interaction is usually quantified in the spectral domain with an amplitude mod-
ulation coefficient. The estimation of this coefficient involves several steps, as outlined by Mathis
et al. [23] and Pathikonda and Christensen [26] and briefly summarized here. First, the large-scale
signatures (representing the LSMs and VLSMs) are computed through filtering the velocity signal
at a fixed point in the logarithmic layer by assigning a spectral cutoff at wavelengths comparable
to the outer-spectral peak. Second, the small scales (representing the inner-layer structures) are
identified as the high-pass-filtered velocity time traces at a point very close to the wall. Third,
an envelope of the small-scale portion of the signal is estimated using a Hilbert transform and
further filtered at a same cut-off scale of the outer-layer structures. Fourth, a correlation coefficient,
otherwise known as the amplitude modulation coefficient, is computed between the filtered envelope
of the small scales and the large-scale portion of the signal. Note that, although there exist a few
studies that use a slightly different method to compute this inner-outer interaction, like performing
a conditional statistical analysis based on the sign of a low-pass Fourier filtered velocity signal [25]
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or using wavelets instead of Fourier analysis [27], the conclusions remain the same. For instance,
while plotting the variations in the amplitude modulation coefficient with height, Mathis et al.
[23] observed an interesting outcome. A high level of correlation was observed for the inner layer,
which progressively decreased as the heights approached the log layer. Mathis et al. [23] interpreted
this behavior as an evidence that the inner-layer turbulence dynamics was strongly modulated by
low-wave-number motions associated with the log region, otherwise known as the outer region.

By contrast, in the temporal domain, thresholds are applied directly on the time series and
historically were chosen in a manner so that the frequency of the detected structures matched with
the smoke visualization experiments [28]. Since then, these temporal thresholds have been used
extensively to deduce the impacts of outer-layer structures on near-wall turbulent bursts [29–31].
However, the thresholds to identify the bursts suffer from subjectivity as their values differ signif-
icantly from one study to another [32]. Additionally, the rationale behind their choices also varies,
since some studies consider the thresholds where the probability density functions (PDFs) of the
time series differ from a Gaussian, some assign arbitrary thresholds to the magnitude of streamwise
velocity fluctuations, while others choose them from a quadrant perspective [33]. Akin to the
temporal domain, the thresholds in the spectral domain too suffer from several pragmatic issues.
First, the spectral thresholds often require information about certain external parameters (such as
boundary layer height or free-stream velocity) whose measurements are not readily available for all
flow types. Second, to achieve proper scale separation observations are needed at multiple heights,
which are hard to obtain. Third, in the absence of external parameters or multipoint observations,
the cut-off wavelengths to separate coherent structures become arbitrary and remain at the mercy
of those conducting the analysis. To eliminate these difficulties, we introduce a level-crossing
technique through which the coherent structures can be detected from time series without assigning
a prior any tunable thresholds or external parameters.

Although a handful of previous research, such as the ones by Tardu and Bauer [34] and Poggi and
Katul [35], have used level-crossing analysis to study the Reynolds stress production and dissipation
of kinetic energy in wall turbulence, we demonstrate that this approach could be generalized further
to detect coherent structures. In a level-crossing method [36], one seeks a statistical description of
timescales tp|α (where the subscript p indicates persistence) up to which a stochastic variable f (t )
remains larger or smaller than f ± (α × σ f ), where t is time, f is the temporal mean, σ f is the
standard deviation, and α is a given threshold. A brief review of level-crossing approach is provided
by Friedrich et al. [37], which, in other words, is a generalization of the zero-crossing or persistence
analysis where α level is set at zero [34,38]. For many different turbulent flows, the PDFs [P(tp|α=0)]
of tp|α=0 are power laws with an exponential cutoff [39–41]. On the one hand, the exponential cutoff
represents a Poisson distribution, associated with tp values larger than the integral scales [42]. For
practical purposes, the integral scales (γx, where x is any turbulent signal) are obtained by integrating
the autocorrelation functions of x up to its first zero crossing and therefore have the units of time
[43]. On the other hand, Blake and Lindsey [36] show that P(tp|α ) becomes a Poisson distribution
when α values are substantially large.

Several points are now considered. First, the Poisson distribution is associated with a stochastic
process for which the autocorrelation function stays zero at all timescales [38]. Second, in a turbu-
lent time series, the measurements become weakly correlated with each other at scales larger than
the integral scales, since the autocorrelation functions drop to zero [42]. Third, the characteristic
scales of coherent structures are comparable to the integral scales [2]. Fourth, in a randomly shuffled
(RS) signal, the autocorrelation functions cease to exist [44]. By combining all these aspects, we
hypothesize that the thresholds to detect coherent structures could be objectively determined as that
particular α for which P(tp|α ) of the original signal matches with its RS counterpart. Intrigued by
this possibility, we ask the following: (1) By changing α what stochastic features of a turbulent
time series are revealed?, (2) Do the detected coherent structures from the critical α value obey the
flow physics?, and (3) Can we identify the organizational aspects of coherent structures through the
level-crossing approach?

014601-3



SUBHARTHI CHOWDHURI AND TIRTHA BANERJEE

To address these research questions, in addition to the level-crossing analysis, we also employ
event-synchronization analysis and surrogate data modeling. Unlike previous research, where the
relationships between the two vertically separated points are studied through cross-correlation and
spectral-coherence techniques [45,46], event-synchronization analysis quantifies how the positive
and negative turbulent events occurring at two distant points (vertically separated) in a flow field
are connected to each other. By doing so, we address the point whether the detected features
from the level-crossing approach comply with the phenomenology of the coherent structures.
On the other hand, surrogate data modeling is often employed to infer about the organizational
aspects of coherent structures in turbulent flows [47–49]. Therefore, we borrow those techniques
to explain the results obtained from level-crossing analysis. For our purposes, we use two hot-wire
temporal datasets, collected from a zero-pressure-gradient turbulent boundary layer generated in the
Melbourne wind tunnel [50]. These datasets have been used before [27,51,52] and are trustworthy.
During our presentation, we arrange the article in three different sections. In Sec. II we provide
brief descriptions of the experimental datasets and methodology, in Sec. III we introduce the results
and discuss them, and, last, in Sec. IV we summarize the key takeaways and provide the scope for
further research.

II. DATASET AND METHODOLOGY

Corresponding to both hot-wire datasets, the friction Reynolds numbers (Re) are of the order of
104, as illustrated in Baars et al. [27]. The wall-normal heights are normalized by friction velocity
(u∗) and kinematic viscosity (ν) and denoted as y+ = yu∗/ν, where + refers to wall scaling. Of
the two datasets, one was sampled at a frequency ( fs) of 20 kHz (T1 dataset) and the other at
44 kHz (T2 dataset). Note that for both datasets, one probe is fixed (reference probe) while the
others traverse across heights (traveling probes) and remain synchronized with the reference probe
at all times [27]. Moreover, for the T1 dataset, the time series of streamwise velocity was collected
over three acquisition cycles, each with 120-s duration. Therefore, the results presented for the T1
dataset are ensemble averaged over these three measurement cycles. However, for the T2 dataset,
only a single cycle of 360-s duration was used. Regarding our purposes, we consider the streamwise
velocity fluctuations (u′) after subtracting the temporal mean (u). The turbulence statistics, such
as the profiles of wall-normalized mean velocity (u/u∗) and velocity variance (σ 2

u /u2
∗), compare

well between the two datasets (see Fig. S1a in Ref. [53]). In accordance with previous findings, the
zero-crossing PDFs [P(tp|α=0)] of T1 and T2 datasets, when normalized with the integral scales of
u′ (γu), follow a power-law distribution with an exponential cutoff (Fig. S1b). In this study γu is the
integral scale of u′, has a unit of time, and is obtained by integrating the autocorrelation function
of u′ up to its first zero crossing. Since the autocorrelation functions converge towards zero, the
estimates of γu are robust. Subsequently, to gather more information on the coherent structures we
apply level-crossing analysis, event-synchronization analysis, and surrogate data modeling whose
rationale are discussed below one by one.

A. Level-crossing analysis

To demonstrate the philosophy behind level-crossing analysis, we use a segment of a u′ time
series (normalized by its standard deviation σu) from the T1 dataset at height y+ = 66.84, whose
timescale axis is scaled by the wall scaling such that t+ = tu2

∗/ν [Fig. 1(a)]. Corresponding to this
time series, one can generate its telegraphic approximations (TA) by denoting the values above
a threshold to be 1 and 0 otherwise [54,55]. In the bottom panels of Fig. 1(a), we show three TA
sequences at threshold levels α = 0, 2,−2. One can clearly see as the threshold levels are increased,
the timescales tp|α of the TA patterns become substantially large. In fact, if tp|α values become
comparable to the integral scales of u′ (γu), then one would expect the TA patterns associated with
those α levels to resemble a random configuration.
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FIG. 1. (a) A segment of u′ time series and its telegraphic approximations (TA) at different threshold levels
(α) are shown from y+ = 66.84 of T1 dataset. The u′ values are scaled by σu while the time axis (t+) is
normalized by the wall units. The level-crossing timescales at different α values are denoted as tp|α . (b) For
the same segment of the u′ time series, the PDFs of t+

p |α are shown for α, αRS = 0, 2, −2, corresponding to
the original and randomly shuffled (RS) signals. Note that αRS values indicate the thresholds for RS signals.
For visual purposes, P(t+

p |α ) of original and its RS counterparts at α, αRS = 2, −2 levels are shifted vertically
upwards. (c) The energy spectrum of the time series at y+ = 66.84 is compared with the TA series at different
α levels in an interval of 0.2. The thick black line with circular markers indicates the TA spectrum at α = 0
level. The power laws −1 and −5/3 are shown in dash-dotted gray lines. The frequencies ( f +) and spectral
energy densities (E+

uu) are normalized by the wall scalings.

This indeed appears to be the case when one compares the PDFs of the level-crossing timescales
for the three α values between the original and RS signals [Fig. 1(b)]. Before plotting their PDFs,
the level-crossing timescales are scaled by the wall scaling and denoted as t+

p |α . The α values
corresponding to the RS signals are denoted as αRS. For the ease of visualization, in Fig. 1(b), the
PDFs [P(t+

p |α )] of original and its RS counterparts at α, αRS = 2,−2 levels are shifted vertically
upwards. As opposed to α = 0, for α = 2,−2, P(t+

p |α ) of u′ signal has an excellent agreement with
its RS counterpart. This can be confirmed through the q-q plots, where the tp|α values between the
original and RS signals follow a straight line with 45◦ slope for α = −2, 2, thereby indicating that
they are both sampled from similar distributions (not shown here).

The apparent randomness in tp|α at large α values can be further investigated by showing how
the energy spectrum of the TA patterns change as α is varied systematically. For both wall-bounded
engineering and atmospheric flows, Sreenivasan and Bershadskii [54] and Cava et al. [42] showed
that the energy spectrum of the TA patterns corresponding to α = 0 level, preserve the information
about the spectral power laws, despite the fact that the TA sequences do not contain any amplitude
information. In Fig. 1(c) we show the energy spectra of the TA patterns with different α values and
compare the same with the original u′ signal at y+ = 66.84 (green line with circular markers). Note
that the frequencies ( f +) and spectral energy densities (E+

uu) in Fig. 1(c) are normalized with the
wall scalings. One can see that at α = 0 level (black line with circles), the energy spectrum shows a
−1 spectral scaling at smaller frequencies similar to the original signal, but at larger frequencies the
−5/3 scaling law appears to be a little different. Since the TA patterns do not contain any amplitude
information, their spectral energies appear attenuated as compared to the original, but the overall
trend remains similar. However, at large-enough α values (indicated by deep red or blue colors
for the positive or negative sides), the scaling laws disappear from the TA energy spectra and they
nearly attain a flat shape as expected for a random signal. This information is utilized in Sec. III A,
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where we show by increasing α a critical value is reached, using which one could study certain flow
features whose characteristic scales are comparable to γu.

B. Event-synchronization analysis

By conducting an event-synchronization analysis, one seeks to describe how the positive and
negative patterns (with respect to α = 0 level) in a turbulent signal are coupled with each other
across different wall-normal heights. This information is important to establish how the nonlocal
influences impact the organization of turbulent events in wall-bounded flows.

For event synchronization analysis, we consider a joint distribution between the positive and
negative patterns corresponding to the velocity signals from the reference probe (u′

ref ) and from a
traveling probe situated at any particular height (u′). For T1 dataset, the reference probe is located
at y+ = 4.3, while for T2 it is at y+ = 474 where the outer peaks appear in the turbulence spectra
[27]. This joint distribution between the positive and negative patterns is studied in terms of a binary
sequence whose values are 1 when u′

ref and u′ are simultaneously positive or negative. On the other
hand, when the signs mismatch between u′

ref and u′, the sequence attains zero. We refer to this as
an overlap binary sequence and compute its lengths (Np) by counting the consecutive occurrences
where it stays at 1 or 0.

To quantify the information content in this binary sequence, Shannon entropies of the overlap
event lengths (Np) are considered and compared with a RS sequence by taking a ratio. Note that since
synchronization is a relative measure, by only comparing the information content of the overlap
event lengths with a RS sequence useful conclusions regarding synchronization can be drawn. This
is because no synchronization or information exchange is expected between the two signals when
they are randomly shuffled. Mathematically, Shannon entropy of the overlap event lengths with
respect to a RS signal is computed as

Hxref ,x
n (Np) =

∑
i P

(
NRS

p,i

)
ln

[
P
(
NRS

p,i

)]
∑

i P(Np,i ) ln[P(Np,i )]
, (1)

where xref is the reference signal, x is the signal from the traveling probe, and the summation is
carried over all the possible consecutive sequences of 1 or 0.

The quantity Hxref ,x
n (Np) is bounded within, 0 � Hxref ,x

n (Np) � 1. Precisely, when Hxref ,x
n (Np) is 1,

no difference exists between the original and RS signals, and therefore there is no synchronization
between the occurrences of positive and negative events in the two signals. On the other hand,
when Hxref ,x

n (Np) approaches zero [or, equivalently, Hxref ,x
n (Np) � 1], the level of synchronization is

quite strong since the arrangements of the overlap event lengths differ considerably from a random
configuration. In Sec. III B we show how by combining the insights from level-crossing and event-
synchronization analyses one can study the phenomenological features of the coherent structures in
wall-bounded flows.

C. Surrogate models

In the context of turbulence research, surrogate models are employed to ascertain whether the
statistical metrics used to measure certain turbulence properties are in fact sensitive to the underlying
structures in the flow field [56]. The most common form of surrogate model is random shuffling,
where the signal’s PDF is preserved (thus its statistical moments) but the temporal structure is
destroyed [44].

On the other hand, rank-surrogate models are used to alter the signal’s PDF while preserving its
temporal structure [57,58]. For instance, let us consider for a non-Gaussian turbulent signal, one
samples the values from an equivalent Gaussian distribution. Thereafter, the newly sampled values
are used to construct the turbulent time series while maintaining the same rank structure as the
original signal. By doing so, the order of the values in the temporal sequence is preserved and hence
the nature of dependencies between the adjacent points. Note that, instead of sampling the values
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from a Gaussian distribution, one could, in fact, use a distribution that is a mixture of the original
and Gaussian distributions.

Last, a more advanced surrogate model is iteratively adjusted amplitude Fourier transform
(IAAFT) model where the signal’s PDF and its autocorrelation functions are exactly preserved
but the nonlinear dependencies between the signal values are destroyed through Fourier phase
randomization. A detailed discussion of this model is presented in the review article by Lancaster
et al. [44]. Therefore, by comparing any suitable statistical measure computed for the original and
IAAFT surrogate model, one can infer about the role of nonlinearity on turbulence organization. In
Sec. III C we demonstrate how these three different surrogate models help to unravel the interactions
associated with coherent structures in our turbulent flow setup.

III. RESULTS AND DISCUSSION

We begin with describing how the information content of a turbulent signal changes when α

is systematically varied. This aspect is utilized further to determine a set of critical α values,
which we show to be related to the phenomenology of the coherent structures. By employing
surrogate data, we identify that the statistical properties of u′ at these critical α values can potentially
serve as a metric to quantify inner-outer interaction in wall-bounded flows. We end our discussion
with exploring a mechanism by which the large-scale coherent structures modulate the near-wall
turbulent dynamics.

A. Level crossings and extreme values

To answer our first research question (see Sec. I), the probability distributions of event lengths
[P(Np|α )] are investigated as α is varied. We consider Np|α since it is a discrete variable and rep-
resented through probability mass functions whose computation is insensitive to binning. Note that
Np|α and tp|α are interchangeable through the relation, tp|α = Np|α/ fs. To characterize the stochastic
variability and information content in Np|α , we consider its Shannon entropy compared with a RS
sequence of u′. The entropy is denoted as Hu′

n (Np|α ), whose mathematical expression is provided
in Eq. (A1) of Appendix A. Furthermore, Hu′

n (Np|α ) is bounded between 0 � Hu′
n (Np|α ) � 1 with 1

indicating a random configuration. From Fig. 2(a), one observes that the effect of changing α either
from positive or negative side on Hu′

n (Np|α ) is asymmetric. The vertical profiles of Hu′
n (Np|α�0) show

an inflection point around y+ ≈ 70, while when α is approached from the negative side an another
inflection point appears at y+ ≈ 12. The position y+ = 70 indicates the location where the outer
layer begins [59]. A recent study by Wang et al. [60] used y+ = 100 instead of 70 to identify where
the outer layer begins, but within the experimental errors we consider both these values to be nearly
identical. On the other hand, at y+ = 12, the inner-layer structures are active [27].

As shown later in Sec. III C, the asymmetrical progression in Hu′
n (Np|α ), depending on whether

α is greater or lesser than zero, is related to inner-outer interaction and nonlinearities in wall
turbulence. However, these inflection points disappear with increasing α. In fact, Hu′

n (Np|α ) tend
towards unity at large α values [Fig. 2(b)]. This apparent randomness in Np is associated with the
fact that with increasing α, tp|α become statistically comparable to the integral scales (γu). This
can be confirmed from Fig. 2(c), where the mean values of tp|α (tp|α) can be seen to exceed γu

considerably as α increases. Since γu is the characteristic scale of the coherent structures [2–4], one
can consider those α values as the critical ones (αth) where the information content of Np exactly
matches with a RS signal. This condition implies Hu′

n (Np|αth ) = 1. But for accuracy purposes, we
compute these critical values when Hu′

n (Np|α ) crosses 0.8 either from the positive or negative side
(see Appendix A). These α values for the positive and negative sides are denoted as αP

th and αN
th

[Fig. 2(b)], respectively, and any difference between them is correlated to the skewness of u′ [S (u′);
Fig. 6(b)].

On considering P(u′), one can see the samples that exceed these critical values reside in the
PDF tails [Fig. 2(d)]. For visualization purposes, before plotting P(u′), we scale the positive and
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FIG. 2. From the T1 dataset, (a) vertical profiles of Shannon entropies [Hu′
n (Np|α )], corresponding to the

event lengths at different α levels (Np|α) are shown; (b) Hu′
n (Np|α ) values are plotted for different y+ values

(see the color bar), and αN
th and αP

th are identified where Hu′
n (Np|α ) = 0.8; and (c) normalized mean timescales

(tp|α/γu) are plotted against α values, where the horizontal blue dash-dotted line indicates tp|α = γu. (d) The
PDFs of u′/(αthσu) are shown, where shaded regions indicate the critical u′ samples satisfying either u′ �
αP

thσu (red-shaded region) or u′ � αN
thσu (blue-shaded region); (e) time fractions (T f ) occupied by the critical u′

samples (u′
th) and their comparison with a Gaussian distribution (T f ,G) are shown; and (f) PDFs of |u′

th|/|u′
th|

are shown, where the absolute values of u′
th are undertaken.

negative u′ values with αP
thσu and αN

thσu, respectively. Under this scaling, the values beyond ±1
in Fig. 2(d), indicate those critical u′ samples (u′

th) exceeding either αP
thσu (red-shaded regions) or

αN
thσu (blue-shaded regions). Specifically, from Fig. 2(e), the time fractions (T f ) associated with

these critical samples (u′
th) are nearly 1–3% of the total sample length (i.e., in the 97 to 99 percentile

range), and their values differ significantly from the ones obtained through a Gaussian distribution
of u′ (T f ,G). Mathematically, T f ,G is computed by integrating the Gaussian distribution between the
limits −∞ and αN

thσu or αP
thσu and +∞. The non-Gaussian tails in u′ are thus quantified through the

ratio T f /T f ,G, and since T f � T f ,G, their values remain substantially larger than unity as evident
from Fig. 2(e). Accordingly, P(|u′

th|/|u′
th|) follow an exponential distribution [Fig. 2(f)], compliant

with the theory of extreme value statistics [61,62]. Note that we consider the absolute values of u′
th

and scale them further with |u′
th|. This is because the PDFs of u′

th remain nearly the same irrespective
of the sign and the scaling with the mean of the absolute values produces the best collapse.

B. Identifying coherent structures

Next, we establish that u′
th carry the signatures of the outer-layer coherent structures. This is

achieved through a two-step process, first by applying event-synchronization analysis and later
classifying the positive and negative u′ events into two distinct categories. Below, we discuss these
steps one by one.

1. Event synchronization

In wall turbulence, the presence of hairpin structures organize the streamwise velocity field into
alternating high- (u′ > 0) and low-speed (u′ < 0) streaks [10]. This, in turn, induces positive and
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FIG. 3. For the T1 dataset, (a) Shannon entropies of the synchronized event lengths [see Eq. (1)] are
plotted against different time lags (�t+), where �u denotes the velocity increments, and (b) the same Shannon
entropies are shown but their values are scaled by the entropies of the synchronized event lengths computed
for the full signal.

negative fluctuations in u′ signals. Through an event synchronization analysis (see Sec. II B), we
identify how well these positive and negative patterns are coupled with each other across y+. To
incorporate the effect of turbulent scales, the analysis is carried on the �uref and �u signals, where
�u denotes velocity increments [u′(t + �t ) − u′(t )] at a time lag �t . Specifically, �uref indicates
the increments computed from the u′

ref signals at y+ = 4.3, while �u represents the ones computed
from the u′ signals at any height other than y+ = 4.3. The time lags are normalized with wall scaling
and denoted as �t+ (�t × u2

∗/ν). Note that H�uref ,�u
n (Np) is bounded between 0 to 1, where 1 (0)

indicates no (complete) synchronization.
From Fig. 3(a), one observes that the positive and negative events across all y+ values are most

strongly coupled at scales �t+ � 1000 (�t+ is the normalized time lag). In fact, if the synchronized
entropy values at any �t+ are scaled with the entropy values for the full signal, then [Hu′

ref ,u
′

n (Np)],

then H�uref ,�u
n (Np) approaches H

u′
ref ,u

′
n (Np) at scales �t+ � 103 [Fig. 3(b)]. The scale �t+ = 103 is

commensurate with the outer spectral peak as estimated from the premultiplied u′ spectra presented
in Baars et al. [27] and Iacobello et al. [52] and therefore physically represents the timescales of the
outer-layer structures. This implies at scales comparable to outer-layer structures the synchronized
entropies of the velocity differences become equal to the full signal values. Thus, one could infer
that the positive and negative patterns in the u′ signals (i.e., u′ > 0 and u′ < 0 events), occurring at
heights deep within the inner layer, preserve information about the outer-layer structures.

2. Conditional event sampling

To extract that information, we conditionally select the events based on whether they contain the
samples satisfying u′ � αP

thσu and u′ � αN
thσu (l-type events) or not (s-type events). The acronyms l

and s represent large and small, respectively, whose justification will become clear as we discuss the
results. The concepts of l- and s-type events are graphically illustrated in Fig. 4(a), where we use a
segment of the u′ time series at y+ = 66.84 for explanatory purposes. In Fig. 4(a), the three dash-
dotted horizontal lines indicate α = 0 (black), αP

th (red), and αN
th (blue) levels. The l-type events are

defined as those positive or negative blocks where at least one of the u′ samples satisfy the relation
u′ � αP

thσu and u′ � αN
thσu. On the other hand, s-type events are those which do not satisfy the above

condition. To distinguish the l-type events from s-type ones, we use red-(blue) shaded regions to
indicate the l-(s)type events. The timescales associated with l-and s-type events are denoted as tp|l
and tp|s respectively, as shown in Fig. 4(a). These timescales are subsequently normalized with γu,
which is the integral scale of the u′ signal.
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FIG. 4. (a) The concept of l- and s-type events are illustrated through a segment of a u′ time series at
y+ = 66.84 from the T1 dataset. Note that u′ is normalized by its standard deviation σu and the time axis (t+) is
scaled by the wall units. The thresholds αP

th and αN
th , identified from the Shannon entropy curves [see Fig. 2(b)],

are shown as horizontal red and blue dash-dotted lines, respectively. The red-colored events (l-type events)
contain at least one of these thresholds, whereas the blue-colored ones (s-type events) do not contain any of
these. The timescales associated with l- and s-type events are denoted as tp|l and tp|s, respectively. (b) The
temporal locations of the samples satisfying u′ � αP

thσu and u′ � αN
thσu are shown for the same segment of

the time series. For identification purposes, an identity function I(t+) is used that takes a value of +1 when the
samples exceed u′ � αP

thσu (red bars), −1 when the samples satisfy u′ � αN
thσu (blue bars), and zero otherwise.

The timescales associated with the positive and negative samples are denoted as tp|αP
th

and tp|αN
th

, respectively.

In the lower panel of Fig. 4 [i.e., Fig. 4(b)], we also show where the samples exceeding u′ � αP
thσu

and u′ � αN
thσu are temporally located. For this purpose, we use an identity function I(t+) that takes

a value of +1 when the samples exceed u′ � αP
thσu (red bars), −1 when the samples are below

u′ � αN
thσu (blue bars), and zero otherwise. It is evident from Fig. 4(b) that the negative samples are

wide apart in time, while the positive samples appear to be more closely connected. The timescales
associated with the positive and negative samples are denoted as tp|αP

th
and tp|αN

th
, respectively. More

evidence on the asymmetry between tp|αP
th

and tp|αN
th

and its physical reason will be presented in
Sec. III C.

The contributions from a particular event (either l- or s- type) to the velocity variance is defined
as

〈Auu|tp〉 = 1

T

∫ t+tp

t
u′2(t ) dt, (2)

where tp could be either tp|l or tp|s and T is the total signal duration. Note that 〈Auu|tp〉 values
are scaled with the friction velocity and further divided by the logarithmic bin width of tp so the
estimations remain nearly independent of the bin choice. For brevity, henceforth, we denote the
wall-normalized quantity 〈A+

uu|tp〉 simply as 〈A+
uu〉. Typically, the number of detected l-type events is

of the order of 103, as compared to 105, for the s-type ones. In Appendix B, we provide an interesting
analysis to explore the effects of α on the statistics of l- and s-type events.

In Figs. 5(a)–5(b), the contributions from l- or s-type events (〈A+
uu〉) against their timescales to

streamwise velocity variance (σ 2
u ) are plotted separately. Notably, most of the contributions from

l-type events to σ 2
u come from the heights in and around y+ = 474, where the influence of the
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FIG. 5. The contours of event amplitudes [〈A+
uu〉, see Eq. (2)] are plotted separately for the (a) l- and

(b) s-type events from T1 dataset. The timescales of these events are denoted as tp|l/γu and tp|s/γu, where
γu is the integral timescale. The two red dash-dotted horizontal lines indicate the positions y+ = 474 and
12, respectively. The horizontal black dash-dotted line denotes y+ = 70, while the vertical red lines indicate
tp/γu = 1. (c) Fractional contributions of l-type events to the variance (V f |l ) and occupation time (T f |l ) are
shown. The PDFs of (d) tp|l/γu and (e) tp|s/γu are shown from T1 dataset. (f) Shannon entropy ratios of Np

corresponding to l- and s-type events are plotted.

outer-layer structures are the strongest [27]. From Fig. 5(a), it is even conspicuous that the timescales
involved with the maximum contributions exceed at least twice the integral scales. In turbulent
boundary layers, γuu ≈ 0.5δ [3], where δ is the boundary layer height. Therefore, the scales of the
active l-type events are comparable to δ, which physically represents the large- and very large scale
motions. Regarding s-type events, they contribute the most at heights y+ = 12 where the inner-layer
structures reside [27], with the timescales being considerably smaller than γu. Thus, in simple words,
the l-type events remain most active in the outer layer, while the s-type ones dominate the inner-layer
dynamics. Quite possibly, the s-type events represent the near-wall bursting phenomenon [31].

To evaluate the total fractional contributions from any event types to the velocity variance (V f ),
one could simply add up all the 〈Auu|tp〉 values and divide by σ 2

u . On the other hand, for the
occupation time fractions (T f ), all the tp|l or tp|s values are summed up and divided by the signal
duration T . These fractions satisfy the additive property, such as x f |l + x f |s = 1, where x is either V
or T , and the subscripts denote the s- and l-type events. At heights y+ > 70, the total contributions
from l-type events to the velocity variance (V f |l ) remain between 40 and 60%, despite occupying
only ≈20–30% of the time [T f |l , see Fig. 5(c)]. Although some variations in V f |l and T f |l are noted
between T1 and T2 datasets, they disappear if one considers an intermittency ratio, (V f |l )/(T f |l ),
whose values are close to 2. Most importantly, the contributions from l-type events towards σ 2

u
compare well with those from LSMs and VLSMs in wall turbulence [22], corroborating our previous
observation [Fig. 5(a)].

Moreover, the PDFs of tp|l/γu and tp|s/γu appear to be quite different [Figs. 5(d)–5(e)]. Specif-
ically, P(tp|l/γu) follows a log-normal distribution (verified with q-q plots), while P(tp|s/γu) is a
power law of exponent −1.6 with an exponential cut off at scales comparable to γu. It is interesting
to note that P(tp|s/γu) agrees reasonably well with the traditional zero-crossing PDFs of tp|α=0, as
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FIG. 6. (a) Wall-normalized velocity (αthσu/u∗) and mean timescales (T +
th ), evaluated at the αth levels, are

shown for the T1 dataset. The green dash-dotted line indicates the growth of T P+
th with height as (y+)1/2.

(b) Scatter plots between xN
th/xP

th (x = α, T ) and S(u′) are plotted. For the T1 dataset, ratios of (c) mean
timescales (T N

th /T P
th ) and (d) their standard deviations (σ N

th /σ P
th ) are compared with Gaussian rank surrogate,

phase-randomized surrogate, and with a Fourier-filtered signal for which the outer-layer influences are re-
moved; (e) the mean level-crossing timescales at different α/αth levels are compared with a phase-randomized
signal, where R|α/αth denotes the ratios between the two; and (f) third-order structure function skewness
[Duuu/(Duu )3/2] are compared between the original (gray shaded lines) and a conditionally shuffled signal
(colored lines).

shown in Fig. S1b of [53]. This indicates, the log-normal distribution of P(tp|l/γu) is only possible to
obtain when the events are separated into these two categories. In the context of turbulence literature,
log-normal distributions are usually employed to describe the statistics of turbulence dissipation
[54,63], while we associate it with the l-type event sizes.

In general, log-normal distributions are associated with multiplicative growth processes [64,65],
and the fact that LSMs and VLSMs are formed by accumulating hairpin eddies [10,66] provides a
compelling argument regarding why we observe such distributions for l-type events. This reasoning
seems even more plausible when one observes that, as opposed to s-type events, P(tp|l/γu) display
a clear dependence on height, with its peaks (modes) being shifted to larger tp|l/γu values as y+
increases. Furthermore, by considering the Shannon entropies of event lengths, l-type events are
more organized than the s-type ones [since Hu′

n (Np|l ) � Hu′
n (Np|s)] as y+ approaches the outer layer

[Fig. 5(f)]. These outcomes confirm that the detected extremes in u′ (u′
th) carry the signatures of

the outer-layer structures and are further utilized to infer about the velocity scales and inner-outer
interaction in wall turbulence. Although in Figs. 5(a) and 5(b) and Figs. 5(d) and 5(e), T1 dataset is
considered, similar findings are obtained for T2 dataset also (see Fig. S2 in Ref. [53]).

C. Connections to the turbulent dynamics

We construct a velocity scale (αthσu) for the outer-layer structures and plot their profiles against
y+ in Fig. 6(a). For 70 < y+ < 103 (i.e., the log layer), this scale attains a near-constant value of
≈5u∗. This is consistent with the observation that the vertical profiles of αP

th and αN
th are invariant

in the log layer, such that αP
th ≈ 2 and αN

th ≈ 2.2 (not shown). It remains interesting to see whether
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this velocity scale, as obtained from the critical α values, can better collapse the turbulence statistics
among different experiments. This exercise is out of scope of the present study.

On the other hand, to assess the influence of outer-layer structures on turbulence organization
from u′ time series, we consider the mean timescales at α = αth level (Tth = tp|αth ). In practice, Tth

represents the mean spacing between u′
th values, which are the peaks and troughs of the u′ signal

depending on the sign. The wall-normalized mean timescales for the positive and negative side
are denoted as T P+

th and T N+
th , respectively, with their behaviors being very different [Fig. 6(a)].

For instance, in the inner layer (y+ < 70), the timescales T N+
th exceed T P+

th considerably with both
showing a decreasing trend as y+ increases. In terms of integral scales, T N

th values can exceed γu

by as much as 20 times at heights y+ < 70 [Fig. 9(d) in Appendix C]. However, in the log layer
(70 < y+ < 103), T P+

th increases as (y+)1/2 [see the green dash-dotted line in Fig. 6(a)], while T N+
th

is nearly constant at 103. This increase of T P+
th in the log layer can be explained by considering how

the hairpin structures merge progressively to form LSMs and VLSMs [10], whose characteristic
scales (≈103 wall units [67]) match with T N+

th values. Beyond the outer layer, T P+
th and T N+

th values
almost overlap with each other. This gives a firsthand indication that the inequality between T P

th
and T N

th could possibly be connected to how the energetic structures interact in wall turbulence. We
expand on this point below.

Unlike αN
th/α

P
th, the difference between T P

th and T N
th (quantified through their ratio, T N

th /T P
th ) is

anticorrelated to S (u′) [Fig. 6(b)]. Particularly, for both datasets, the largest values of T N
th /T P

th are
obtained when the skewness of u′ is nearly zero [Fig. 6(b)]. From Fig. 6(c), one could also notice
that T N

th /T P
th values reach a maximum at y+ = 12 and continue to remain larger than 1 up to heights

y+ ≈ 103, beyond which they return to unity. At this point, one may wonder what properties of a
time series cause the nonunity values of T N

th /T P
th . To scrutinize this aspect more carefully, we employ

surrogate data analysis by generating a Fourier phase-randomized (PR) u′ signal that preserves the
Fourier amplitudes but randomizes its phases, thereby keeping the same Fourier spectrum or the
autocorrelation function as the original signal. We use an IAAFT model for PR purposes, which, in
addition to the autocorrelation function, also preserves the signal PDFs [44]. Clearly, from Fig. 6(c),
T N

th /T P
th approaches 1 for a PR time series, thereby nullifying any asymmetry between them (see

red dash-dotted line). This implies, the nonunity values of T N
th /T P

th are uniquely determined by an
underlying order in the Fourier phases, and therefore, are sensitive to how the coherent structures are
organized. This conclusion is supported by the fact that the ordering in Fourier phases is associated
with the organizational aspects of coherent structures in a turbulent flow [68–70]. We carry out some
additional tests to confirm this connection.

To demonstrate how sensitive T N
th /T P

th is to the Fourier phases, if instead of 100%, only 10–
50% of the Fourier phases are randomized that itself has a significant effect on T N

th /T P
th (shown as

dash-dotted lines with lighter red shades). Contrarily, if P(u′) are transformed to Gaussian while
maintaining the temporal structure (otherwise known as Gaussian rank surrogate [57]), then T N

th /T P
th

overlaps with the original [gray dash-dotted line indicates the Gaussian rank surrogate in Fig. 6(c)].
Specifically, if certain rank surrogates are generated whose PDFs are a mixture of Gaussian and
original ones with an identical temporal structure, then no effects on T N

th /T P
th are observed when the

mixture ratios are altered (not shown). Hence, not the PDFs (containing all the statistical moments
of u′) but the temporal organization of the u′ signal sets the values of T N

th /T P
th .

Physically, the passage of coherent structures over a measurement location dictates how the u′
values are temporally arranged, and therefore, should encode information about the outer-layer
structures. Given this premise, if one removes the outer-layer influences by choosing a Fourier cut-
off filter at λ+ = 7000 (where λ is the streamwise wavelength) and apply inverse Fourier transform
[27], then it changes T N

th /T P
th considerably [see blue dash-dotted line in Fig. 6(c)]. In fact, if the

wavelengths corresponding to the inner-layer structures are also removed by choosing λ+ = 1000
[27], then it forces T N

th /T P
th to be nearly 1 across all y+ values. By repeating the analysis on the ratios

of the standard deviations or any other higher-order statistics (for instance, skewness and kurtosis)
of tp|αth , the outcome remains the same. However, for illustration purposes, we only show the results
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in Fig. 6(d) corresponding to the standard deviations of tp|αth (σ N
th /σ P

th). Thus, one can conclude that
the statistical asymmetry between tp|αP

th
and tp|αN

th
signifies the impact of outer-layer structures on

turbulence organization and could be used as a metric to quantify inner-outer interaction in wall
turbulence, as an alternative to the amplitude modulation coefficient proposed by Mathis et al. [23].

Notwithstanding the fact that a large body of literature exists on quantifying the inner-outer
interaction in wall turbulence through amplitude modulation coefficient [26], they are all based
on spectral domain (either Fourier or wavelets) where cut-off wavelengths are used to separate
the contributions from large and small scales. By contrast, our metric (for simplicity purposes we
use only the first-order moment T N

th /T P
th ) quantifies this interaction strictly based on the temporal

domain, where the inner- and outer-scale motions are separated by choosing appropriate thresholds
from the Shannon entropy curves [Fig. 2(b) and Figs. 5(a) and 5(b)]. Also, as demonstrated before,
the nonunity values of T N

th /T P
th are not related to the signal’s PDF or skewness, and therefore, do not

suffer from a drawback associated with amplitude modulation coefficient as outlined in Schlatter
and Örlü [71]. Nevertheless, in spite of their different conceptual origins, the variations in T N

th /T P
th

with y+ are qualitatively similar to the amplitude modulation coefficient, such that for both metrics,
the largest values are obtained within the inner layer. We next establish that the asymmetry between
T N

th and T P
th captures an important physics of wall-bounded flows, not immediately obvious from

spectral analysis.
To do so, we consider the point that a PR procedure destroys nonlinear dependencies in a signal

[44], thereby indicating that the nonunity values of T N
th /T P

th are related to nonlinear dynamics. This
is at odds with persistence or zero-crossing analysis, where the timescale statistics depend only on
the autocorrelation functions (or the Fourier spectrum) accounting for the signal’s linear structure
[38,72]. As one’s intuition might suggest, by increasing α, the statistics of tp|α rely less and less on
the linear correlations [see Fig. 1(c)] but become more sensitive to the nonlinear dependencies in a
time series. Therefore, the level-crossing statistics could unveil hidden nonlinearities in a stochastic
signal and provide more information about coherent structures than from spectral analysis alone.
To establish this feature more convincingly, in Fig. 6(e), we show how the mean timescales (tp|α)
change between the original and PR signal, as α is varied systematically. This is quantified through
a timescale ratio defined as

R|α/αth = tp|(α/αth )

[tp|(α/αth )]PR
, (3)

where αth could be either αP
th or αN

th, depending on whether α is approached from the positive or
negative side. As the ratio R|α/αth deviates from unity, strong nonlinear dependencies regulate the
timescale statistics.

Apparently, for heights within the inner layer, nonlinear dependencies have the strongest effects
on tp|α at αth level [Fig. 6(e)]. More importantly, this nonlinearity influences tp|α the most when the
threshold is approached from the negative side (αN

th). The αN
th (αP

th) values represent the fluctuations
u′ < 0 (u′ > 0), and since these thresholds carry the signatures of the outer layer structures [see
Figs. 5(a) and 5(b)], they physically represent the large-scale low (high) speed streaks. Therefore, as
our results suggest, compared to the outer-layer high-speed streaks, the low-speed ones interact more
nonlinearly with the near-wall turbulent motions. The role of nonlinearity can be reconciled with
previous results where it is established that the scale interactions in turbulent flows are essentially
a nonlinear phenomenon caused by the presence of inertial terms in the governing Navier-Stokes
equations [23,24,73]. However, it is not immediately clear why the effect of this nonlinearity is felt
more strongly when the thresholds are varied from the negative side.

Previous research has shown that at locations very close to the wall, the outer-layer motions have
different effects on the near-wall turbulent dynamics depending on its sign [23,74]. For instance,
for a zero-pressure-gradient turbulent boundary layer flow, Mathis et al. [23] found that the near-
wall turbulent motions were energized when the large-scale streamwise velocity fluctuations were
positive while they appeared to be suppressed when the same were negative. Similar evidence was
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put forth by Guala et al. [75] using observations from a high-Reynolds-number atmospheric flow.
It is thus interesting to ask whether such asymmetrical effects of outer-layer motions on the near-
wall turbulent dynamics are indeed related to the nonlinear terms in the Navier-Stokes equations?
This is out of the scope of present work and further research is needed to understand this aspect.
Nevertheless, such nonlinear effects on tp|α become irrelevant when the absolute values of u′ are
considered (see Appendix C). This outcome confirms that the events detected from the absolute
signals do not obey the turbulent flow physics.

In turbulent flows, the energy is injected at the scales of coherent structures and subsequently
cascades down to smaller and smaller scales, eventually reaching the dissipation scale. To further
investigate the influence of these outer-layer structures on the energy cascading process, we consider
a u′ time series where only the values exceeding αP

thσu and αN
thσu (i.e., the u′

th samples) are randomly
shuffled while the others are kept intact. This operation selectively destroys the turbulence orga-
nization associated with outer-layer structures. We subsequently calculate the third-order structure

function skewness [Duuu/(Duu)3/2, where Duuu = (�u)3 and Duu = (�u)2], as its nonzero values
are related to the turbulence kinetic energy cascading from large to small scales [76]. These
skewness values are negative when the spatial lags (r) are considered, but they remain positive in the
temporal domain since r = −u × �t (Taylor’s hypothesis). If Duuu/(Duu)3/2 are compared between
the original and conditionally shuffled signal, at scales smaller than γu, then Duuu/(Duu)3/2 of the
conditionally shuffled signals decreases significantly with increasing y+ [Fig. 6(f)]. Since within
the inner layer the kinetic energy is also carried by the inner-layer structures, Duuu/(Duu)3/2 values
remain slightly larger for the conditionally shuffled signal. Apart from Duuu/(Duu)3/2 approaching
zero, this conditional-shuffling procedure destroys the inertial subrange scaling in second-order
structure functions (Fig. S3 in Ref. [53]). Therefore, we establish the impact of outer-layer coherent
structures on the energy cascade in wall turbulence. It is important to note that these outcomes from
Fig. 6 remain unchanged whether T1 or T2 datasets are considered (Fig. S4 in Ref. [53]).

IV. CONCLUSION

In this study, we introduce a data-driven coherent structure detection scheme and implement
the same on two well-established wall turbulence time-series datasets. This scheme is based on
the level-crossing properties of a stochastic time series, and the structures being identified from
this scheme comply with the phenomenology of the coherent structures in wall-bounded flows. In
particular, this detection scheme does not require any external inputs or arbitrary thresholds, thereby
making it an attractive choice in experimental turbulence research. This flexibility is advantageous
for atmospheric flows, since most of the field experiments conducted in an atmospheric boundary
layer measure the turbulent variables at only a few specific heights on a tower. Therefore, it is
difficult to ascertain the presence of coherent structures from these measurements alone, but by
conducting a level-crossing analysis it might be possible to get some insights about these structures.
In recent times, the deployment of particle velocimetry setups to study atmospheric turbulence
is becoming increasingly common [77] and thus the findings from level-crossing analysis can be
complemented with the spatial information available from these data.

Moreover, through level-crossing approach, we provide comprehensive evidence that the inner-
outer interaction in wall turbulence can be linked to a statistical asymmetry between the peaks and
troughs of streamwise velocity fluctuations. For simplicity, this asymmetry is quantified by taking
a ratio between the mean timescales associated with the peaks and troughs of the u′ signal. These
extremes are identified from the Shannon entropy curves of event lengths plotted against various
threshold levels. Additionally, by employing phase-randomized surrogate data, we demonstrate that
the level-crossing statistics are quite sensitive to the nonlinear dependencies in the u′ signal. In
physical terms, this finding implies that the outer-layer coherent structures (LSMs and VLSMs)
modulate the near-wall turbulent dynamics through a nonlinear interaction associated with low-
speed streaks, a mechanism not identifiable from spectral analysis alone.
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For future research endeavors, it would be interesting to compare the peak-trough asymmetry
parameter among different experiments in wall-bounded turbulence, spanning both internal and
external flows, a wide range of Reynolds numbers, and different surface conditions (i.e., rough vs.
smooth). Since this asymmetry parameter is sensitive to how the outer-layer coherent structures
nonlinearly interact with the near-wall dynamics, such comparisons would shed more light on the
physics of wall-bounded turbulence. Although through level-crossing framework we successfully
extract the signatures of inner- and outer-layer structures from time-series measurements, due to the
lack of spatial information it is difficult to ascertain their topological features, and therefore, remains
as a future work. Nevertheless, it is prudent to extend the level-crossing approach to momentum
flux time series. By studying the Shannon entropy curves of flux events, it is possible to determine
an appropriate size of a quadrant hole (instead of choosing those arbitrarily) for detecting intense
activities. On the interdisciplinary front, the level-crossing framework can be used to detect extremes
in other dynamical systems (hydrology, stock markets, etc.), or to generate training datasets for
state-of-the-art machine learning models, which often fail to predict the extreme occurrences.
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APPENDIX A: STATISTICAL ROBUSTNESS OF EVENT ENTROPY CURVES

We begin by plotting the scaled Shannon entropies of the event lengths (with respect to a RS
signal) where α values are normalized with either αP

th or αN
th (depending on the sign), denoted

together as αth. Owing to how αth is defined, this normalization ensures that the scaled Shannon
entropy curves collapse at 0.8 for all the y+ values [Fig. 7(a)]. However, it raises a question of why
we consider 0.8 as our choice instead of 1.

To explain the philosophy behind 0.8, first let us recall that in this study, we attempt to extract
the features of time series that are representative of the coherent structures in the flow. To achieve
that objective we exploit two facts: first, the characteristic scale of coherent structures is the integral
scale, and second, since the time-series values are uncorrelated beyond the integral scales the PDFs
of their interarrival times would be analogous to a RS signal. Therefore, in an ideal scenario, one
would have considered αth when Hu′

n (Np|α ) was exactly 1. However, our choice of 0.8 is influenced
by the statistical accuracy associated with Hu′

n (Np|α ) values. If we consider the mathematical
expression of Hu′

n (Np|α ), then

Hu′
n (Np|α ) =

∑Z|α
i=1 P

(
NRS

p,i

)
ln

[
P
(
NRS

p,i

)]
∑Z|αRS

i=1 P(Np,i ) ln[P(Np,i )]
, (A1)

where Z|α (Z|αRS ) is the number of times the signal crosses α level (αRS level), we can clearly
see the estimation of Hu′

n (Np|α ) is dependent on Z . Our intuition suggests that as α increases, the
number of level crossings would decrease given the rareness in the occurrences of large values in
the signal. In Fig. 7(b), we plot the number of level crossings against α/αth values. As one may
note, Z values decrease beyond 1000 when the αth level is crossed. Since 1000 is a large number
to ensure the estimates are statistically robust, we consider the Hu′

n values to be 0.8. This can be
further confirmed by plotting the cumulative distribution functions (CDFs) of event lengths. For
visualization purposes, we only show the results corresponding to the u′ signal at y+ = 66.84. Quite
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FIG. 7. (a) The Shannon entropy curves of event lengths are plotted with respect to the scaled threshold
α/αth. This scaling ensures that the Shannon entropy curves converge towards the 0.8 value. (b) The number
of zero crossings (Z) are plotted against α/αth. The blue horizontal dash-dotted line indicates the number
Z = 103. (c) The cumulative distribution functions of the event lengths are shown for different levels of α/αth.
(d) For y+ = 66.84, the Shannon entropy curve of event lengths (black line) is compared with a randomly
shuffled model of 50 realizations (gray shaded lines). (e) For y+ = 4.3, the Shannon entropy curves are
compared between individual ensembles of the measured time series (gray shaded lines) and the averaged
one (black line). (f) The impacts of sampling frequencies ( fs) and the length of the time series (N) on the
entropy curve are investigated by systematically varying fs and N (see the legend).

clearly, the CDFs display abrupt jumps as α becomes larger than αth, due to the lesser number of
samples being used to compute their distributions [Fig. 7(c)].

It is important to take into account whether the entropy curves when compared with a RS signal
change if different realizations of random sequences are used. We test this by generating 50 different
realizations of RS sequences and compute the entropy curves for each of such realizations. In
Fig. 7(d) we show such comparisons using u′ signal at y+ = 66.84 as the test case. No difference
is noted in the results. Moreover, in the figures discussed in the main text, we show only the
ensemble-averaged results by combining all the three measurement cycles over which the turbulent
time series were collected at each y+ value [27]. In Fig. 7(e), we compare the entropy curves for
each ensemble member with the averaged one. We consider the u′ signal at y+ = 4.3 from the
T1 dataset, since at this height the number of ensemble members remains the largest (120). It can
be seen that the ensemble-averaged and individual entropy curves almost overlap with no major
differences [Fig. 7(e)].

As a last measure, we investigate the influence of the length of the time series (N) and sampling
frequencies ( fs) on the Shannon entropy curves. We artificially change the sampling frequencies by
block averaging the u′ signal values and by doing so we reduce the sampling frequencies as low as
0.05 times the original. Although the entropy curves do change under this operation, their overall
shapes remain the same and therefore only appear as a scaled version of the original [Fig. 7(f)]. This
change mainly occurs since by block averaging we alter the standard deviations of the signal and
thus the α levels. Potentially it is also possible to increase the sampling frequencies by incorporating
an interpolation model, namely piecewise cubic Hermite interpolating polynomial. By utilizing this
model, we increase the sampling frequencies two and four times the original, and study its effects
on the entropy curves. Similar as before, the curves preserve their shapes and scale according to
the fs values (not shown). On the other hand, if we sub-sample the time series at different lengths
compared to the original, then Hu′

n remains nearly the same even when sub-sampling reduces the
original signal length by 95% [Fig. 7(f)]. Hence, we conclude that the estimation of the Shannon
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FIG. 8. For the l- and s-type events, [(a) and (d)] PDFs of timescales (P(tp|x/γu, where x = l, s) and the
event amplitude (〈A+

uu〉) curves [(b) and (e)] are shown, with systematically changing the α/αth values (see the
color bar). The thick black lines denote the curves at α/αth = 1. The pink and green dash-dotted lines indicate
power laws of slope −1 and −1.6, respectively, and the red lines indicate the location where the timescales
(tp|x) equal to γu. (c) Fractional contributions of l-type or s-type events to the variance (V f ) and occupation
time (T f ) are shown for various α/αth values. The vertical and horizontal black lines indicate α/αth = 1 and
T f ,V f = 0.5. (f) The intermittency coefficient (I) corresponding to l- and s-type events are shown against
α/αth.

entropy curves are statistically robust, placing confidence in the computed α values used later to
detect coherent structures.

APPENDIX B: EFFECTS OF α ON EVENT STATISTICS

Although while demarcating between the l- and s-type events we used αth, it is possible to do the
same with any α values. For instance, if the α values are chosen to be very small then nearly all the
positive and negative events satisfy the condition of the l-type events, and therefore, they become
almost indistinguishable from the unconditioned ones (i.e., the original zero-crossing events).
Conversely, if the α values are too large, then the number of l-type events decrease substantially
and overshadowed by the s-type events. It is thus interesting to consider how the statistics of l- and
s-type events change when the α values are varied systematically, since this illustrates how sensitive
the results are in Fig. 5 if one had used a different αth value to separate the events.

Instead of using all the signals from the T1 dataset, we carry out this sensitivity exercise for
one particular u′ signal. Precisely, for the same u′ signal as used in Fig. 4 (i.e., at y+ = 66.84), in
Figs. 8(a) and 8(d), we show how the PDFs of tp|l/γu and tp|s/γu change as α is varied. Note that the
different α values are scaled with respect to αth, which is the original value used in Fig. 4 to separate
the l- and s-type events. Specific to the l-type events, the PDFs at small α values are equivalent to
the zero-crossing PDFs of u′ signal, but as α increases the power-law exponent changes gradually
from −1.6 to −1, with eventually attaining a log-normal distribution. On the other hand, the s-type
events approach the zero-crossing PDFs at larger α values, notwithstanding their evolution remains
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very different from the l-type ones. In particular, the distributions of tp|s/γu differ significantly from
tp|l/γu.

By turning our attention towards event contributions, one can see that with increasing α values
the 〈A+

uu〉 curves of l-type events attain their peaks at scales considerably larger than the integral
scales [Fig. 8(b)]. By contrast, the peaks of the 〈A+

uu〉 curves corresponding to s-type events are
always smaller than the integral scales [Fig. 8(e)]. In fact, for small α values, their peaks occur
at scales significantly lesser than γu. Therefore, it is plausible that by choosing an appropriate α

one might separate the features of small-scale turbulence by conditionally sampling only the s-type
events. This is, however, a topic for further research.

By integrating 〈Auu〉 curves over all the possible timescales and dividing by the velocity variance,
yields fractional contribution to σ 2

u (V f ) for either of the event types. Similarly, by summing up all
the possible timescales and dividing by T , yields the occupation time fractions of l- and s-type events
(T f ). In Fig. 8(c), we show how T f and V f vary for the l-type and s-type events against α/αth. At αth

level, we see that the l-type events nearly contribute 50% to the velocity variance while occupying
20% of the time. On the other hand, s-type events occupy 80% of the time while contributing the
same to σ 2

u . This information can also be studied in terms of an intermittency index (I), defined as
a ratio between V f and T f .

If I values are further scaled with the ones obtained from the unconditioned events (I f ), then
I f → 1 when α is either too large or small, depending on s- or l-type events respectively. When
I f is plotted against α/αth, a clear demarcation is noticed between l- and s-type events in how they
approach the unit values [Fig. 8(f)]. We hypothesize this asymmetrical progression is related to the
time-irreversible dynamics of wall-bounded flows [52]. An important point to note from Fig. 8 is,
the event contribution curves, the timescale PDFs, and the fractional contributions corresponding
to l- and s-type events do not change significantly when α/αth values are in and around unity, for
instance between 0.8 to 1.2. Therefore, this indicates that the observations in Fig. 5 are fairly robust
if the original αth values were changed by around ±20%.

APPENDIX C: SIGN-INDEFINITE VELOCITY SIGNAL

Some earlier studies used thresholds on the time-series values to detect coherent structures and
suggested that the same could be applied interchangeably on either the original or absolute values of
the signal [78]. We, however, show that considering absolute values of the velocity signals instead
of the original affects how the events are organized in the temporal space.

To begin with, we show how the Shannon entropy curves of the event lengths would behave when
the α levels are applied on the absolute values of the u′ signal [Fig. 9(a)]. Note that it is not possible
to set α = 0 in case of absolute values since no crossings would be obtained in that case. Therefore,
the smallest α levels are chosen as slightly larger than 0. By doing so, one observes that up to certain
α values the vertical profiles of H |u′ |

n (Np|α ) behave identically as Hu′
n (Np|α ) in Fig. 2(a), when α is

approached from the positive side. In fact, similar to Hu′
n (Np|α ), an inflection point in H |u′|

n (Np|α ) is
observed at y+ = 70.

A note is necessary here regarding the estimation of the critical α value (αth) for the |u′| signal.
The scaled entropy curves of |u′| signals form an U shape, and because of that the 0.8 value can
be reached either at small or large α levels [Fig. 9(b)]. At small α levels, the events have large
timescales for the absolute signal, since the number of crossings are limited. However, we choose
the critical α levels (αth) from the larger side, in accordance with the original signal.

However, the biggest difference between the original and absolute signal occurs when one
compares the mean timescales with the phase-randomized (PR) surrogates. Unlike u′, for the
absolute signals, R|α/αth stays almost near to unity for any α/αth values [Fig. 9(c)]. This indicates,
contrary to Fig. 6(e), the effect of nonlinear dynamics on the temporal arrangement of the samples
exceeding αth disappears by taking the absolute values. We can further confirm this phenomenon by
comparing the vertical profiles of Tth/γu between u′ and |u′| signals.
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FIG. 9. (a) Vertical profiles of the Shannon entropy curves for the absolute values of the u′ signals (|u′|)
at different α levels are shown for the T1 dataset. (b) H|u′ |

n (Np|α ) values are plotted for different y+ values,
and αth is identified where H|u′ |

n (Np|α ) = 0.8. (c) The mean level-crossing timescales at different α/αth levels
are compared with a phase-randomized signal, where R|α/αth denotes the ratios between the two. (d) The mean
timescale computed at αth level (Tth) are compared between the original and absolute values of the u′ signals.

For |u′|, the mean timescales at αth level remain closer to T P
th instead of T N

th , where T P
th and

T N
th values are obtained from the original u′ signal [Fig. 9(d)]. More importantly, Tth of the

absolute signal is nearly insensitive when the Fourier phases are randomized. Since PR destroys
the organization of coherent structures, this indifference suggests that the events detected from the
absolute signals may not obey the turbulent flow physics.
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