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Abstract: Despite the proliferation of deep learning techniques for accelerated MRI acquisition
and enhanced image reconstruction, the construction of large and diverse MRI datasets continues
to pose a barrier to effective clinical translation of these technologies. One major challenge is in
collecting the MRI raw data (required for image reconstruction) from clinical scanning, as only
magnitude images are typically saved and used for clinical assessment and diagnosis. The image
phase and multi-channel RF coil information are not retained when magnitude-only images are saved
in clinical imaging archives. Additionally, preprocessing used for data in clinical imaging can lead
to biased results. While several groups have begun concerted efforts to collect large amounts of
MRI raw data, current databases are limited in the diversity of anatomy, pathology, annotations,
and acquisition types they contain. To address this, we present a method for synthesizing realistic
MR data from magnitude-only data, allowing for the use of diverse data from clinical imaging
archives in advanced MRI reconstruction development. Our method uses a conditional GAN-based
framework to generate synthetic phase images from input magnitude images. We then applied
ESPIRiT to derive RF coil sensitivity maps from fully sampled real data to generate multi-coil data.
The synthetic data generation method was evaluated by comparing image reconstruction results
from training Variational Networks either with real data or synthetic data. We demonstrate that the
Variational Network trained on synthetic MRI data from our method, consisting of GAN-derived
synthetic phase and multi-coil information, outperformed Variational Networks trained on data with
synthetic phase generated using current state-of-the-art methods. Additionally, we demonstrate that
the Variational Networks trained with synthetic k-space data from our method perform comparably
to image reconstruction networks trained on undersampled real k-space data.

Keywords: synthetic phase; synthetic multi-coil data; deep generative models; GANs; generative
adversarial network; synthetic data; MRI reconstruction; deep learning; unrolled networks

1. Introduction

Deep learning-based MRI reconstruction methods show promise in faithfully recon-
structing MR images from undersampled k-space measurements, but such methods are
usually hampered by a lack of paired and diverse training data, posing a barrier to effec-
tive clinical translation of these technologies. Current deep learning MRI reconstruction
techniques use datasets [1–13] containing paired images and raw k-space MRI data and
have enabled major advances in MRI reconstruction methods. However, they are limited in
several ways. Magnitude images contained in these datasets are sometimes preprocessed
which can lead to biased results for MRI reconstruction [14] and are hard to standardize.
Furthermore, these publicly available datasets are typically limited in anatomy, acquisition
parameters and pathology information. Recent studies have shown that such limitations
can sometimes result in hallucinations of structures or artifacts during deep learning-based
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MRI reconstruction [15,16], limiting the generalization potential of these methods and their
clinical use.

There could be significant advantages to leveraging the diversity of existing clinical
MRI databases as they contain a range of patient populations, anatomy, pathology, image
contrasts, acquisition parameters, and data from different vendors. This would be particu-
larly useful for multi-task networks, e.g., [17], that perform both image reconstruction and
a downstream task such as segmentation or classification. Training on more diverse and
representative datasets can also greatly contribute to improving deep learning reconstruc-
tion models, especially for rare anatomies and pathologies; this could potentially allow for
greater clinical adoption.

However, we cannot simply use clinical datasets for MRI reconstruction algorithm
development because they typically only contain magnitude images while image phase
information is discarded. Furthermore, MRI data are acquired from multi-channel RF coils,
but clinical images show a coil-combined image and, thus, the multi-channel information
is lost. MRI phase data are important because they contain information related to contrast
from chemical shift, magnetic susceptibility differences, inhomogeneities in the main
magnetic field, RF coils used, fat/water separation, tissue interfaces, blood flow, and
temperature change [18–23]. Additionally, recent studies have shown that using complex-
valued neural networks which operate on data that include phase information produce
higher quality reconstructed images [24,25].

Thus, the ability to recover or generate image phase from already completed scans
could increase the utility and applicability of deep learning MRI reconstruction methods.
While a variety of techniques aim to synthesize different MRI contrasts [26–31] or parameter
maps [32,33], relatively few techniques exist to synthesize MR image phase and complex-
valued multi-coil data. Recent studies have included methods to generate synthetic image
phase by emulating very specific physical models [34], generating sinusoidal phase [35], or
have focused on fine tuning training datasets consisting mostly of natural images [36]. To
the best of our knowledge, no methods have attempted to broadly synthesize realistic MRI
phase maps.

To address this, we present a method for synthesizing realistic MRI data, including
image phase and multi-channel information, from magnitude-only images that, for exam-
ple, are found in clinical imaging archives. Our method leverages recent advances in deep
generative modeling [37,38] to generate synthetic MRI phase images from input MRI mag-
nitude images. Corresponding coil sensitivity maps are derived and then used to generate
synthetic multi-channel data. The resulting synthetic multi-coil MRI data, including synthe-
sized image phase, were then evaluated for their ability to be used in image reconstruction
tasks by training a Variational Network [39] and comparing to a network trained on real
multi-coil MRI data. Our results show that the proposed method (i) generates realistic
looking MR phase maps, (ii) outperforms current methods used to generate synthetic phase
data for training reconstruction models and (iii) image reconstruction networks trained on
synthetic multi-coil data perform comparably to the same networks trained on real data.
Our findings suggest that this framework has the potential to address the limitations that
exist in current MRI datasets used for reconstruction tasks where access to raw k-space data
is required.

2. Methods

We first start by defining k-space, magnitude, and phase in mathematical terms. We
then describe generating synthetic phase images from input magnitude-only images using
a conditional generative adversarial network (GAN) framework. Finally, we describe the
evaluation of the synthetic data quality.
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2.1. Preliminaries

The signal acquired from a 2D slice (assuming we can neglect T2 decay) in the spatial
frequency domain, or k-space, can be expressed as:

M(kx, ky) =
∫

X

∫
Y

m(x, y)e−j2π(kx x+kyy)dxdy, (1)

where m(x, y) is the signal generated at the position (x, y). This is a complex quantity
which is equivalent to

m(x, y) = mx(x, y) + jmy(x, y), (2)

where mx(x, y) is the real component of the signal and my(x, y) is the imaginary component
of the signal. The goal of MRI reconstruction is to recover m(x, y) from M(kx, ky).

The MR signal, m(x, y), is generated by the rotation of the transverse components
of the net magnetization. The signal is complex-valued because it is a measurement of
both the x and y components of the net magnetization. The majority of MRI scans are
interpreted based on the magnitude of the signal, |m(x, y)|, which corresponds to the
amplitude of the transverse magnetization. There is also information encoded in the phase
(also known as angle) of the signal, ∠m(x, y), which corresponds to the rotation angle of the
transverse magnetization. This includes chemical shift, magnetic susceptibility differences,
inhomogeneities in the main magnetic field, RF coil profiles, fat/water separation, tissue
interfaces, and blood flow.

2.2. Generative Modeling
2.2.1. Neural Network Architecture

The generator is a 16-layer U-Net [40] with skip connections and the discriminator is a
70 × 70 PatchGAN [38]. In this setup, the discriminator, in a convolutional manner, decides
if a patch is real or fake. We used a PatchGAN discriminator to restrict the network’s
attention to the structure of local image patches. This encourages the discriminator to
penalize the structure at the scale of patches rather than the whole image (as in a typical
binary classifier) in order to effectively capture high-frequencies in the synthetic image. In
a sense, PatchGAN acts as a classifier itself. The main difference is that the output of the
PatchGAN is an N × N array in which each element signifies whether the corresponding
patch in the image is real or fake. We chose a patch size of 70 × 70 based on the results of
previous studies [38], which empirically found that this patch size gives the best tradeoff
between image sharpness and alleviating artifacts in the generated image. Each generative
model was trained with a batch size of 1. We used minibatch stochastic gradient descent
(SGD) with the Adam optimizer [41] using a learning rate of 2 × 10−4 and momentum
parameters β1 = 0.5 and β2 = 0.999. Additional implementation details can be found
in [38].

2.2.2. Synthetic Phase Generation

The conditional GAN uses a hybrid objective consisting of two loss functions: a
conditional adversarial loss function and a regularized `1 distance loss function. In essence,
we trainined the model to generate high-frequency structures in the synthetic image, and we
used the `1 loss to control how many low-frequency structures were present in the image.

G∗ = arg min
G

max
D

Ex,y[logD(x, y)] +Ex,z[log(1− D(x, G(x, z))]︸ ︷︷ ︸
LcGAN

+λEx,y,z[‖y− G(x, z)‖1]︸ ︷︷ ︸
L`1

, (3)

where x is the input magnitude image, y is the generated synthetic phase image that
corresponds to x, and z is the latent vector. In this objective, G tries to minimize the
objective while D tries to maximize it. This setup is suitable for our aim because the
discriminator is conditioned on the input image x, and we have access to the raw ground-
truth data, and thus also to the ground-truth phase data. The network was optimized by
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alternating between gradient descent steps conducted for optimizing the discriminator and
the generator, similar to the approach as described in the original GAN paper [37].

Specifically, we trained a U-Net to predict the phase component from input magnitude-
only images. During training, this synthetic phase component was compared to the ground
truth phase using a hybrid objective (3). This mixed loss function balances realistic looking
phase images via the adversarial loss and encourages less blurring via the `1-norm. Each
GAN model was trained for 50 epochs with a qualitative analysis of realistic synthetic
phase maps being the main stopping criteria. During inference, the trained U-Net was used
to generate synthetic phase from previously unseen magnitude images, resulting in the
creation of realistic synthetic MRI phase data.

2.2.3. Multi-Coil Data Generation

To generate synthetic multi-coil k-space data, we first analytically converted the input
magnitude and generated synthetic phase images to real and imaginary components.
Sensitivity maps were then generated using the ESPIRiT [42] algorithm on corresponding
ground-truth raw data from the training dataset. The resulting sensitivity maps were
multiplied with the real and imaginary components to generate multi-coil synthetic k-space
data. This resulting complex-valued data can be used in place of ground truth k-space data
to train deep learning based MRI reconstruction networks.

2.3. Dataset

Multi-coil k-space data obtained from the fastMRI [1] dataset were used for training the
conditional GAN. The dataset consists of raw complex-valued k-space with both magnitude
and phase information of brain scans at 1.5 T and 3 T. The images were acquired with a
fast spin echo (FSE) pulse sequence with an echo train length (ETL) of 4. For training, we
divided the dataset into two datasets with 16-coil and 20-coil acquisitions. Each dataset
consisted of T1-weighted, T2-weighted, and FLAIR contrast images.

2.4. Experiments
2.4.1. Generative

We trained two generative models: A 16-coil model and a 20-coil model, trained
on 22,691 and 18,519 magnitude-only brain images, respectively. During training, the
U-net generator generated a synthetic phase image and the discriminator compared the
generated image to the corresponding ground truth phase image (obtained from fastMRI)
in a convolutional patch-wise manner. At inference time, magnitude-only images from
the fastMRI test set were run through a forward pass of the trained generative models. In
our experiments, this enabled the generation of 6541 synthetic phase images for the 16-coil
model and 5845 synthetic phase images for the 20-coil model.

2.4.2. Evaluation: Physics-Based Image Reconstruction

To evaluate the utility of complex-valued multi-coil k-space data synthesized from
the generative model, we compared the quality of reconstructed MR images from re-
construction networks trained on ground-truth and synthetic data. Multiple equispaced
undersampling masks of acceleration factors R = {4, 6, 8, 10} with a center fraction of 0.04
were applied to k-space data to be used for training. Two Variational Networks [39] were
then trained for 10 epochs with the 16-coil and 20-coil datasets each. Each Variational
Network was trained separately on synthetic and ground truth multi-coil k-space with a
80/10/10 training/validation/test split for a total of four trained reconstruction networks
per acceleration factor. Each trained reconstruction model (ground-truth and synthetically
trained) was then run on the same ground-truth test set. The quality of reconstructed mag-
nitude images was evaluated using standard quantitative image reconstruction metrics:
PSNR, NMSE, SSIM [43]. We decided to use the Variational Network for evaluation because
of its reliance on undersampled multi-coil k-space and coil sensitivity maps as inputs into
the unrolled network. Please see the Figure 1.
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All models (generative and reconstruction) were implemented in PyTorch and were
trained on NVIDIA (Santa Clara, CA) Titan RTX and Quadro RTX 8000 GPUs.

Figure 1. The proposed synthetic raw data generation and image reconstruction pipeline. The
generative model takes magnitude images as an input seed and produces plausible synthetic phase
images as output, which are trained to match ground truth phase images from the dataset. Synthetic
complex-valued data is obtained by combining the input (ground truth) magnitude image and
synthetic phase image to yield real and imaginary components. Estimated sensitivity maps calculated
with ESPIRiT from the training dataset are then applied to synthetic complex-valued multi-coil data
to compute multi-coil k-space encoded with synthetic phase information. The synthetic raw data
were evaluated by training a Variational Network using undersampled k-space data.

3. Results

Figure 2 shows sample comparisons between synthetic and ground truth phase images.
The synthetic phase images show several expected features, including low spatial-frequency
components, a noisy background, and tissue phase contrast, for example, between the
ventricles and adjacent brain tissue. We do not expect the synthetic phase to exactly match
the ground truth phase because the MRI phase is not deterministic and can vary based on
B0 homogeneity and RF coil induced phase shifts. In some cases, blocking artifacts have
appeared, possibly due to the PatchGAN discriminator.

Figures 3 and 4 show representative images reconstructed with Variational Network
models trained with undersampled ground truth and synthetic k-space data, correspond-
ingly. For R = {4, 8} acceleration factors, the reconstructed images trained on synthetic
data contain slightly more error structures compared to the images trained on ground-truth
data. However, visually, there are no obvious artifacts in the reconstructed images in either
method. For the R = 8 acceleration factor, we can see more errors in high resolution
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features, possibly due to the lack of high frequency details in the synthetic phase images
used to train the reconstruction network.

Figure 2. Representative ground truth magnitude, ground truth phase, and synthetic phase im-
ages generated from the conditional GAN. Synthetic phase images show expected features, in-
cluding appropriate noise patterns, low spatial-frequency components and tissue contrast be-
tween the ventricles and nearby brain tissue, but exhibit some blocking artifacts possibly from
the patchGAN discriminator.

Figure 3. Sample image comparisons at 4× and 8× acceleration factors for the 20-coil dataset.
The columns compare the zero-filled image, reconstructed image, and error maps generated with
2 Variational Networks trained on ground truth and synthetic k-space.

Figure 5 and the tables in the Supplementary Material compare the effect of different
types of phase on Variational Network reconstruction performance at various acceleration
factors. The reconstruction networks were trained on ground truth data, synthetic data
(from our proposed method), sinusoidal phase data, data with random phase and data
with zero phase. From the plots, Variational Networks trained on undersampled synthetic
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data perform comparably to the same networks trained on ground truth undersampled
k-space at R = {4, 6} as measured by PSNR, NMSE and SSIM. At R = {8, 10} acceleration
factors, the performance of networks trained on synthetic data dips, especially the SSIM
curve, but remains relatively comparable to that of the networks trained on ground truth
data. Additionally, the networks trained on synthetic data outperform networks trained
on sinusoidal phase data in all quantitative metrics for the 20-coil dataset. For the 16-coil
dataset, similar results were observed for the PSNR and NMSE measurements, while the
performance in the SSIM metric was comparable to the sinusoidal phase trained network.

Figure 4. Sample image comparisons at 4× and 8× acceleration factors for the 16-coil dataset.
The columns compare the zero-filled image, reconstructed image, and error maps generated with
2 Variational Networks trained on ground truth and synthetic k-space.

Figure 5. Performance of ground truth-trained and synthetically trained Variational Network re-
construction models at different acceleration factors for 16-coil and 20-coil datasets. At up to 10×
acceleration factors, synthetically trained models show comparable performance to ground-truth
trained models. These data are also shown in tables in the Supplementary Material.
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4. Discussion

There is a massive amount of magnitude-only images as this is what is typically stored
in clinical imaging databases (e.g., PACS), which do not usually contain phase and multi-
coil information or raw k-space data. This work proposes a framework to generate synthetic
multi-coil MRI data from magnitude-only MR images, and evaluates its utility by training
a deep learning-based image reconstruction network using the synthesized datasets. The
demonstrated framework aims to allow for the use of these large imaging databases for
developing data-driven methods that require MRI raw data. We chose to evaluate using a
Variational Network image reconstruction model as a proof of concept to demonstrate the
effectiveness of the method. We believe a more significant opportunity for such a synthetic
data pipeline is to train multi-task networks, e.g., networks that perform both image
reconstruction and a downstream task such as image segmentation or classification [17]. In
these methods, the synthetic data pipeline can take advantage of existing clinical images
and annotations for the downstream tasks, enabling the creation of customized datasets for
multi-task machine learning techniques.

Other approaches that generate synthetic MRI training data typically build on natural
image datasets. For example, in [34], the authors simulated signal voids in MR images
by randomly applying masks to natural images to generate synthetic data. Additionally,
in [35,36], the authors used a natural image dataset and a magnitude-only MRI dataset,
respectively, and modulated the training images with a sinusoidal phase at a random
frequency. They demonstrated that training with this synthetic data showed substan-
tially higher levels of aliasing artifacts compared to using real MRI data. The proposed
generative modeling approach shows more realistic image phase maps that include both
the low-frequency features, which these prior methods aimed to incorporate, as well as
contrast based on the underlying tissues and anatomy (Figure 2). Our quantitative results
(Figure 5) suggest that encoding this tissue phase information (not just low-frequency or
sinusoidal phase information) into training data for deep learning models adds more useful
information for the network to learn higher quality image reconstructions.

The authors of [36] observe that deviations in SNR, acquisition type, and aliasing pat-
terns between training and testing times can result in widely varying image reconstruction
quality. With this in mind, future experiments can extend our work to exploit the syn-
thetic data pipeline and large clinical imaging databases to generate custom heterogeneous
datasets to train more robust and generalizable image reconstruction models.

In addition to generating synthetic phase maps, a major aim of this work was to gener-
ate multi-coil data to increase the clinical relevancy of the technique. We take advantage of
the well-established coil sensitivity map algorithm ESPIRiT [42] to estimate coil sensitivities
instead of trying to learn them directly. This approach requires running ESPIRiT on prior
ground truth data from fastMRI and, thus, a paired dataset with magnitude and ground
truth phase information is still required for this part of the method for image generation.

In previous experiments, we tried to generate multi-coil data by adding a two-channel
real and imaginary component to the output of the conditional GAN. This would result
in generated synthetic real and imaginary images for N coils from a single magnitude-
only image input. While this approach produced reasonable phase maps and comparable
reconstructions for generative models trained on data acquired with a small number of coils
(e.g., N = 4), the phase maps resulting from generative models trained on N = {16, 20}
number of coils suffered from large amounts of structure hallucination and blocking
artifacts. We hypothesize that, during training, gradients across multiple individual coil
images are ill-behaved and, thus, GAN models trying to generate a large number of coil
images have difficulty converging.

The advantage of our proposed technique is that it is coil-agnostic; it can be applied to
MR images acquired with any number of coils with the generative model learning a one-to-
one mapping from magnitude to phase. This results in more stable training and gradient
flow, especially for GANs. It is important to note that we do not expect the synthetic
phase maps to be necessarily consistent with the ground truth phase maps. This is because
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MR phase is not deterministic, and can vary due to tissue composition, scan parameters
such as TE, magnetic field homogeneity, and the RF coil configuration and loading. This
inconsistency would be problematic for performing any quantification on the synthetic
maps themselves. However, consistency with ground truth phase for individual datasets
is not required when the synthetic data are used for training, but rather the synthetic
phase should be consistent with population-level phase patterns. Nevertheless, enforcing a
physics-based consistency between the input magnitude image and output phase image
by adding a regularized term in k-space to the training objective could be a useful follow-
up experiment to this work. Such a change could result in even more representative
phase maps. However, GAN stability during training with this new objective remains an
open question and would have to be answered empirically. In lieu of this, a score-based
generative model could be used for this technique due to their improved training stability
compared to GANs [44].

A current limitation of this study is that only fast spin-echo (FSE) images from the
fastMRI database were used to train the generative model. The exclusion of gradient-
recalled echo (GRE) acquisition data in the training dataset makes the trained generative
models and downstream reconstruction models susceptible to distribution shift errors. To
address this limitation, future work could include fine-tuning the generative models trained
on FSE data with GRE data. Additionally, quantifying the uncertainty in distributions not
seen at inference time as proposed in [45] could provide insight into how the generative
model is synthesizing phase images on a pixel-wise basis.

Finally, the evaluation of generative models, especially for synthetic medical imaging
data, is still an open research direction [46]. While this study used an unrolled image
reconstruction network to evaluate the utility of the synthesized complex-valued multi-coil
data, other methods, e.g., the Inception Score [47] or FID score [48], could be used to
characterize the distribution of that data. Incorporating a customized implementation
of these distance metrics based on medical imaging datasets [49] could be more fruitful
in characterizing synthetic MR phase images. This information could also possibly be
used to direct generative model training to synthesize datasets customized for specific
downstream tasks.

5. Conclusions

This work presents a new method for synthesizing realistic, multi-coil MRI data from
magnitude-only images that uses a GAN to generate image phase and ESPIRiT-generated
coil sensitivity maps. The synthetic data were evaluated by comparing the reconstruction
performance of Variational Networks trained on real k-space and synthetic k-space data.
Our results suggest that the proposed method for generating synthetic data (i) outperforms
the current state-of-the-art methods for creating synthetic image phase and (ii) is adequate
for training deep learning MRI reconstruction models at typical acceleration factors (up to
10×), shown by the Variational Networks results. Taken together, our results suggest that
image-to-image translation generative adversarial networks are able to generate MRI phase
images that are both realistic-looking and can also provide a good performance when used
for training an image reconstruction network. This allows for the possibility of using large,
diverse clinical imaging databases that contain magnitude-only images when developing
deep learning MRI reconstruction methods.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10030358/s1, Table S1: PSNR values for VarNet
trained on different types of phase at various acceleration factors for the 16-coil dataset. Bold values
indicate the best performing type of phase (not including ground truth); Table S2: PSNR values for
VarNet trained on different types of phase at various acceleration factors for the 20-coil dataset. Bold
values indicate the best performing type of phase (not including ground truth); Table S3: NMSE
values for VarNet trained on different types of phase at various acceleration factors for the 16-coil
dataset. Bold values indicate the best performing type of phase (not including ground truth); Table S4:
NMSE values for VarNet trained on different types of phase at various acceleration factors for the
20-coil dataset. Bold values indicate the best performing type of phase (not including ground truth);
Table S5: SSIM values for VarNet trained on different types of phase at various acceleration factors
for the 16-coil dataset. Bold values indicate the best performing type of phase (not including ground
truth); Table S6: SSIM values for VarNet trained on different types of phase at various acceleration
factors for the 20-coil dataset. Bold values indicate the best performing type of phase (not including
ground truth).
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