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ABSTRACT OF DISSERTATION 
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Neurophenotypes 

 
by 
 

Yangfeifei Gao 
 
 

Doctor of Philosophy in Clinical Psychology 
 

 
University of California San Diego, 2020 

San Diego State University, 2020 
 
 

Professor Ralph-Axel Müller, Chair 
 
 
 

Autism Spectrum Disorders (ASD) are heterogeneous developmental disorders associated 

with atypical functional connectivity (FC) and neuroanatomy. Language impairments affect 

individuals with ASD, but the neural underpinnings remain elusive, partly due to the 

heterogeneity across the ASD population. The current studies utilized multimodal neuroimaging 

to explore 1) differences in language network intrinsic FC (iFC) between children diagnosed 

with ASD and typically developing (TD) children; 2) whether there are distinguishable ASD 

subgroups based on language network iFC patterns, and 3) how these iFC subgroups relate to 

ASD subgroups derived from anatomical features of the language network. Study 1 (Gao et al., 

2019): Seed-to-whole brain iFC analyses revealed that school-age children with ASD (n= 52) 

had increased iFC of language regions with posterior cingulate cortex and visual regions, in 



 xi 

comparison to TD peers (n=50). Study 2: An expanded sample of 69 children with ASD showed 

atypically increased within-group heterogeneity of language network iFC. Latent profile analysis 

(LPA) of language iFC dimensions revealed three distinct ASD subtypes, each with lower 

language abilities than their TD peers (n= 60): one subgroup that was similar to the TD group in 

iFC, and two subgroups that exhibited broad under- and overconnectivity, respectively. Study 3: 

LPA of anatomical dimensions of combined cortical thickness (CT) and local gyrification index 

(lGI) in a cohort of 104 ASD children uncovered three distinct subgroups (sASD1-3): sASD1 

characterized by increased lGI and lower language scores, sASD2 composed of older ASD 

participants with lower sociocommunicational symptoms, and sASD3 showed greater CT in left 

hemisphere language regions. Subgroup membership based on iFC- and morphology-based LPA 

was not clearly related. Neither subgroup type (iFC or structural) was related to diffusion indices 

of language-related white matter tracts. Overall, our findings expand on previous reports of 

increased heterogeneity and atypical language network iFC in ASD. Language network ASD 

subtypes and membership differed across imaging modalities. The existence of ASD subtypes 

with distinct iFC and anatomical patterns may explain conflicting results in the ASD imaging 

literature. Our findings underscore the need to focus on individual variability in ASD beyond 

conventional group-level analyses. 
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INTRODUCTION OF DISSERTATION 
 

Language abilities in ASDs 

Autism Spectrum Disorders (ASDs) are a group of heterogeneous neurodevelopmental 

disorders first described in the 1940s by Leo Kanner (1943) and Hans Asperger (1944). The 

Austrian researchers separately identified children with insistence on sameness and difficulties 

relating to others. Even in their initial conceptualization of the disorders, Asperger and Kanner 

described affected children who displayed difference of language abilities, intelligence, and 

sensorimotor symptoms. Since then, the diagnostic criteria for ASDs have gone through 

considerable changes, most recently being defined by core symptoms of persistent deficits in 

social communication, and restricted, repetitive patterns of behavior or interests (American 

Psychiatric Association, 2013). The expression of these symptoms varies greatly in frequency 

and severity amongst diagnosed individuals. 

The large variability in language abilities exhibited by individuals on the spectrum is a 

salient example of the overall behavioral heterogeneity that is characteristic of ASDs (Tager-

Flusberg, Paul, & Lord, 2013). Although absence or delay in development of spoken language is 

no longer a criterion for the diagnosis of ASD based on the current Diagnostic Statistical Manual 

of Mental Disorders (American Psychiatric Association, 2013), language impairments are 

pervasive. In fact, a recent naturalistic language study found 3.7% of children diagnosed with an 

ASD to be nonverbal, and 34% of affected children only have minimal verbal abilities at age 3 

(Bacon, Osuna, Courchesne, & Pierce, 2018). Those who develop functional verbal language 

exhibit qualitative differences in spoken language compared to typically developing (TD) 

individuals (Boucher, 2012; Eigsti, de Marchena, Schuh, & Kelley, 2011). Language is a 

particularly important domain of study in ASDs because a delay in language development is one 
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of the best identifiers for the later diagnosis of ASDs in children (Mitchell, Cardy, & 

Zwaigenbaum, 2011; Stone et al., 1999). Language abilities are also among the best predictors of 

outcomes (e.g., adaptive skills) later in life for individuals with ASDs (Mawhood, Howlin, & 

Rutter, 2000; Sallows & Graupner, 2005; Szatmari et al., 2015; Szatmari, Bryson, Boyle, 

Streiner, & Duku, 2003). Better characterization of language impairments and the mechanisms 

underlying these deficits would improve the development of treatments for this highly prevalent 

set of disorders, which is currently estimated to affect 1 in 59 children aged 8 years in the United 

States (Baio et al., 2018). 

Behavioral studies of language show a broad spectrum of abilities in ASDs. Some verbal 

individuals may display echolalia, neologisms, and idiosyncratic or inappropriate use of words 

and phrases (Eigsti et al., 2011). There is also individual variability in the trajectories of 

language development, with a majority showing delay in age of first word utterance by up to 18 

months compared to TD children (Howlin, 2003). However, language onset and rate of language 

acquisition differs widely between ASD children. Across linguistic and functioning levels, all 

individuals with ASDs display difficulties with social aspects of communication including 

pragmatic language skills (e.g., turn-taking), nonverbal communication (e.g., gesturing, eye-

contact, emotional expression), and prosody (Eigsti et al., 2011).  

In a review of structural language in ASDs, Boucher (2012) reported on multiple studies 

supporting a receptive-expressive language profile that is unique to ASDs, with higher 

expressive than receptive abilities. However, other studies have shown mixed or opposite 

patterns (Kjelgaard & Tager-Flusberg, 2001; Luyster, Kadlec, Carter, & Tager-Flusberg, 2008), 

and a recent meta-analysis (Kwok, Brown, Smyth, & Oram Cardy, 2015) found no evidence 

supporting expressive-over-receptive language advantages in ASDs. Instead, this meta-analysis 
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revealed overall reduced levels of both receptive and expressive language in ASDs, with 

negligible differences between production and comprehension.  

Brain organization for language in ASDs 

Functional neuroimaging techniques (e.g., functional magnetic resonance imaging 

(fMRI) and positron-emission topography (PET)) allow for the in-vivo observation of neural 

activity associated with cognitive processes, such as reading and sentence construction. While 

considered to be restricted to left perisylvian regions (Broca’s and Wernicke’s area) in the classic 

neurological model (N. Geschwind, 1970), imaging studies in recent decades have shown a more 

expansive language system that includes regions such as the dorsal striatum, precuneus, inferior 

parietal lobule, and parts of the cerebellum (Berl et al., 2014; Price, 2010; Rodd, Vitello, 

Woollams, & Adank, 2015). Imaging studies have revealed that language function is 

predominantly lateralized to the left hemisphere in typical adults (McAvoy et al., 2016; Nielsen, 

Zielinski, Ferguson, Lainhart, & Anderson, 2013). However, language processing in TD children 

also involves homologous regions in the right hemisphere (Gaillard et al., 2000), with increased 

left hemisphere lateralization with age (Berl et al., 2014). In addition to covering localization of 

cognitive functions in healthy participants, neuroimaging also permits precise comparisons of 

functional neuroanatomy of language between diagnostic groups.  

Imaging research in ASDs has revealed several anomalies in language processing. A first 

set of findings comes from activation studies implementing language tasks. Evidence includes 

atypical activation in visual cortex during language tasks across multiple studies (Gaffrey et al., 

2007; Kana, Keller, Cherkassky, Minshew, & Just, 2006; Knaus, Silver, Lindgren, Hadjikhani, & 

Tager-Flusberg, 2008; Pang et al., 2016). In addition, language comprehension and production 

have been found to be associated with unusual levels of activity in homologous language regions 
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of the right hemisphere in ASDs (Anderson et al., 2010; Eyler, Pierce, & Courchesne, 2012; 

Groen et al., 2010; Herringshaw, Ammons, DeRamus, & Kana, 2016; Kleinhans, Müller, Cohen, 

& Courchesne, 2008; Knaus et al., 2010; Müller et al., 1999; Nielsen et al., 2014; Williams, 

Goldstein, & Minshew, 2006).  

A second set of findings relates to network organization and connectivity. The complex 

range of symptoms observed in ASDs is thought to reflect impairment in multiple, distributed 

neural networks (Geschwind & Levitt, 2007; Müller, 2007; Rippon, Brock, Brown, & Boucher, 

2007). Functional connectivity (FC) MRI examines functional network organization by 

observing low frequency (<0.1Hz) blood-oxygen level dependent (BOLD) signal fluctuations 

that are synchronized between distributed brain regions. These BOLD signal fluctuations can be 

detected not only during task performance, but also during rest. In the latter case of resting state 

fMRI, correlations of slow, spontaneous BOLD signal fluctuations between brain regions, 

interpreted as intrinsic functional connectivity (iFC), are detected while subjects are either awake 

but not performing a tasks or while asleep (Van Dijk et al., 2010). Venkataraman and colleagues 

(2015) employed data-driven functional connectomics on a large dataset from the Autism Brain 

Imaging Data Exchange (ABIDE; Di Martino et al., 2014) and found that two functional 

networks with regions implicated in language function (e.g. left middle temporal gyrus, left 

posterior cingulate, left supramarginal gyrus, left middle superior temporal sulcus) differentiated 

ASD from TD children. However, characterization of FC of the language network in ASDs has 

been disputed, with some studies showing general underconnectivity between language regions 

(Just, Cherkassky, Keller, & Minshew, 2004; Kana et al., 2006; Knaus et al., 2008; Verly et al., 

2014) and others showing mixed effects or overconnectivity (Lee, Park, James, Kim, & Park, 

2017; Shen et al., 2012). The conflicting results have been attributed to methodological 
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differences in ‘co-activation’ FC and iFC MRI, data processing, and differences in sample 

characteristics (e.g., language level of ASD participants; Hull, Jacokes, Torgerson, Irimia, & Van 

Horn, 2017). In addition, previous studies with small sample sizes lacked the power to detect 

reliable effects (Button et al., 2013). Furthermore, results may be affected by outliers or 

overrepresentation of groups of ASD participants (e.g., those with a specific symptom 

presentation) sampled within the small cohorts. 

A third body of evidence supporting atypical language processing in ASDs comes from 

the structural imaging literature. Related to the functional findings of abnormal lateralization, 

structural asymmetry of grey matter volume is also seen in areas of the extended language 

network (e.g., inferior parietal lobule, supramarginal gyrus, primary auditory cortex) in adult 

men with ASDs (Floris et al., 2016). Joseph et al. (2014) found that increased grey matter 

rightward asymmetry of the pars opercularis (a part of Broca’s area; Dronkers, Plaisant, Iba-

Zizen, & Cabanis, 2007) was also associated with greater verbal abilities in a group of ASD 

children aged 4-7 years. Structural connectivity between language regions has also been reported 

to be affected in ASDs (Travers et al., 2012). Diffusion Tensor Imaging (DTI), which maps the 

diffusion of water molecules within and across white matter fibers (Mori & Zhang, 2006), can be 

used to characterize the volume, orientation, and integrity of white matter tracts between brain 

regions. One DTI study (Moseley et al., 2016) found bilaterally decreased volume of the arcuate 

fasciculus (the white matter tract that connects frontal and temporal language regions; 

Geschwind, 1970) in adults with ASDs compared to typical controls, but no group differences in 

fractional anisotropy (FA) and mean diffusivity (MD). Another study found no difference in FA, 

but pronounced increase in MD of the left arcuate fasciculus, compared to TD participants, in 

ASD individuals with language impairments, and less so in those without language impairments 
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(Nagae et al., 2012). Differences in findings further illustrate that certain observed effects may 

be driven by ASD subtypes and differential subtype composition in limited samples.  

Similarly, when describing the variable language abilities in individuals with ASDs, 

Kwok and colleagues (2015) suggested that subgroups are likely to exhibit different expressive 

and receptive language profiles. The authors postulated that studies averaging across large 

heterogeneous samples of individuals with ASDs may not be able to detect such differences. 

Their reasoning was supported by a recent study of language phenotypes, which identified 3 

ASD subgroups that differed in their spontaneous spoken language (Wittke, Mastergeorge, 

Ozonoff, Rogers, & Naigles, 2017).  

Another important aspect of heterogeneity in ASDs is the evolution of symptomatology 

across the lifespan. For example, individuals with severe repetitive, ritualistic behavior in 

childhood may show a reduction in stereotypies in adulthood (Shattuck et al., 2007). However, 

developmental changes in symptom expression also differ between individuals with ASDs 

(Fountain, Winter, & Bearman, 2012; Pelphrey, Shultz, Hudac, & Vander Wyk, 2011; Szatmari 

et al., 2015). In a longitudinal study of expressive language development, Tek and colleagues 

(2014) found two distinct language profiles: a high language ASD group with developmental 

trajectories similar to those seen in typically development, and a lower language ASD group with 

less improvement over time. Similarly, Pickles et al. (2014) combined both expressive and 

receptive language in a latent growth-curve analysis and discovered 7 different developmental 

trajectories. Given the distinct patterns of functional language abilities and language 

development within ASDs, it is plausible that these various groups would also show 

neurobiological differences in language processing.  
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Heterogeneity in ASDs: Etiology and environmental effects 

The vast differences in linguistic abilities and diversity of neuroimaging findings in 

ASDs may, in part, be due to varied etiologies. Twin and family studies have demonstrated the 

high heritability of ASDs, with a monozygotic concordance rate greater than 50% (Constantino 

et al., 2013; Hallmayer et al., 2011; Ronald et al., 2006). Recent reviews of genetic research in 

ASDs, report advances that have led to the identification of hundreds of genetic variants and 

mutations that may contribute to ASDs (Jeste & Geschwind, 2014; Vorstman et al., 2017). The 

reviews noted differences in the penetrance of genotypes, gender ratio, and comorbidities (e.g., 

epilepsy, motor impairments, schizophrenia), all of which suggest diverse underlying biological 

mechanisms that give rise to the ASD phenotype. Some studies have also revealed differences in 

the mode of transmission between simplex autism (one member within a family diagnosed with 

an ASD) and multiplex autism (multiple members within a family diagnosed with ASDs) as well 

as between females and males (Leppa et al., 2016; Sanders et al., 2015; Virkud, Todd, Abbacchi, 

Zhang, & Constantino, 2009). Leppa and colleagues found that even within multiplex families, 

there were differences in ASD risk copy-number variants between affected siblings, further 

supporting the complex etiological heterogeneity of ASDs. In addition to genetic contributions 

toward the risk of ASDs, environmental influences such as perinatal factors, maternal immune 

response, neuroinflammation, and the interaction between genetic and environmental factors 

(e.g., parental age, folate intake) have also been found to affect ASD risk (Garay & McAllister, 

2010; Larsson et al., 2005; Mandy & Lai, 2016; Patel et al., 2017; Vargas, Nascimbene, 

Krishnan, Zimmerman, & Pardo, 2005).  

Individuals with ASDs vary in etiological origin of symptoms and in experiential factors 

such as the age of onset, types, and severity of symptoms, and subsequently, also in the type and 
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length of treatments they have received. The types of interventions sought out by parents and 

caregivers for the treatment of ASD-related symptoms differ widely from dietary restrictions 

(Sathe, Andrews, McPheeters, & Warren, 2017) to highly controversial, non-empirically 

supported therapies such as Chelation (Green et al., 2006; Hess, Morrier, Heflin, & Ivey, 2008). 

Even within the wide range of evidence-based therapies (EBTs) received by individuals 

diagnosed with ASDs, the targeted symptoms or behaviors differ greatly, along with the degree 

of demonstrated efficacy of each EBT (Wong et al., 2015). For example, speech therapy may be 

employed to address specific articulation and structural language concerns,  while Applied 

Behavioral Analytic interventions may be used to build appropriate social behavior (Virués-

Ortega, 2010). In addition, pharmacotherapies are often utilized in conjunction with behavioral 

interventions for the treatment of comorbid conditions such as hyperactivity and anxiety or to 

address difficult behaviors (e.g., risperidone to mitigate irritability and self-harm behavior, 

Broadstock, Doughty, & Eggleston, 2007; Howes et al., 2018; Jesner, Aref-Adib, & Coren, 

2007). The type, start time, and duration of each intervention, and numerous combinations of 

multiple therapies all have differing effects on symptoms and long-term outcome of the ASD 

patient (Bradshaw, Steiner, Gengoux, & Koegel, 2015; Helt et al., 2008; Klintwall, Eldevik, & 

Eikeseth, 2015; Wong et al., 2015). Taken together, the evidence suggests highly heterogeneous 

etiologies that are further compounded by experiential and interventional variability in ASDs, all 

of which impact patterns of aberrant functional and structural connectivity.  

The myriad of possible complex interaction of etiologies, differences in behavioral 

symptoms, developmental trajectories, treatment responses, and conflicting findings have raised 

questions about the validity of ASD as a single neurobiological construct (Waterhouse, London, 

& Gillberg, 2016). As an alternative to the assumption of a singular diagnostic group, researchers 
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have suggested studying more homogeneous subsets within the larger category of ASDs (Haebig 

& Sterling, 2017; Jeste & Geschwind, 2014; Sahin & Sur, 2015; Szatmari et al., 2015; Tager-

Flusberg & Joseph, 2003). This may improve the detection of more nuanced differences within 

ASDs and thus enable the field to move toward better characterization of deficits and the design 

of more targeted treatments.  

Subtype studies of ASDs 

The studies of ASD subtypes has been mostly limited to behavioral data (DeBoth & 

Reynolds, 2017, 2017; Feczko et al., 2018; Haebig & Sterling, 2017; Kjelgaard & Tager-

Flusberg, 2001; Pickles et al., 2014; Szatmari et al., 2015; Tager-Flusberg & Joseph, 2003; Tek 

et al., 2014). In a review of sensory-based subtypes in ASDs, DeBoth and Reynolds (2017) 

reported that studies found 3 to 5 different subtypes of sensory-processing profiles based on 

parent-report questionnaires and one standardized observational assessment (Baranek, Boyd, 

Poe, David, & Watson, 2007). The numbers of subtypes differed between studies depended on 

sensory response style, severity, and whether sensory domains were combined. In pursuit of 

specific cognitive phenotypes of ASDs, Feczko et al. (2018) utilized random forest and 

community detection techniques to identify patterns in neurocognitive profiles in children with 

and without ASDs diagnoses. The group found 3 ASD and 4 TD groups that differed in their 

performance in different cognitive domains, but also exhibited significantly difference in iFC of 

several function networks. Investigating language-related subtypes in ASDs, Tager-Flusberg and 

colleague (2001, 2003, 2006) identified a subgroup of children with ASD that also exhibit 

language impairments (ASD-LI), similar to non-ASD children with the diagnosis of specific 

language impairment (SLI). The authors also observed a shared reverse asymmetry (greater 

cortical volume of homologous frontal language area in the right hemisphere) in both ASD 
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children and SLI children (Tager-Flusberg & Joseph, 2003). Similarly, Lombardo et al. (2015) 

followed the developmental progress of infants and toddlers. They found that groups of children 

that were later diagnosed with ASDs and had poor language development also showed decreased 

left superior temporal activation to speech-language stimuli (around 12 months of age) compared 

to ASD and non-ASD children with good language scores. The results of these studies support 

the existence of stratified groups within ASDs that differ in their basic neurobiology.  

Other groups have attempted to identify ASD phenotypes based on these neurobiological 

characteristics instead of behavioral symptoms. Amaral and colleagues (2017) reported a 

neurophenotype that is defined by disproportional large head-to-body size in boys with ASDs 

(ASD-DM). The team reported that the ASD-DM group is associated with higher rates 

regression, lower expressive language abilities, and slower acquisition of adaptive skills than 

ASD children with normal head size and TD children. 

Recent advances in statistical learning techniques have precipitated a new wave of studies 

that utilize neuroimaging data to identify subgroups in clinical populations including 

schizophrenia, ADHD, and ASDs (Cauda et al., 2017; Costa Dias et al., 2015; Easson, Fatima, & 

McIntosh, 2017; Gates, Molenaar, Iyer, Nigg, & Fair, 2014; Hong, Valk, Di Martino, Milham, & 

Bernhardt, 2017; Sun et al., 2015; Van Dam et al., 2017; Yang et al., 2012). Cauda et al. (2017) 

utilized a combination of meta-analytic and machine learning techniques to differentiate 

schizophrenia spectrum disorders (SCZD), ASDs, and obsessive-compulsive spectrum disorders 

(OCSD) based on grey and white matter morphology across 203 studies. The authors found 2 

clusters: the first was mostly specific to SCZD and consisted of grey matter alterations of frontal, 

insular, and anterior cingulate regions in the cognitive control system, and a second cluster that 

was mostly specific to OCSD and involved alterations in the auditory-visual, premotor, and 



 11 
 

somatic systems. Grey and white matter alteration patterns seen in ASD studies were distributed 

across the two clusters. Hong et al. (2017) used hierarchical clustering of ABIDE participants 

with four neuroanatomical variables for each of 20,484 vertices: cortical thickness, grey and 

white matter boundary contrast, cortical surface area, and geodesic distance. They identified 3 

anatomical ASD subtypes that also differed in iFC and symptom severity. Easson and 

collaborators (2017) identified 2 ASD subtypes using k-means clustering of static and dynamic 

iFC. The 2 groups did not differ in behavioral characteristics (e.g., ASD symptom severity, IQ) 

but both differed from TD participants in their static and dynamic FC of default mode, visual, 

and sensorimotor networks. No neuroimaging study has employed data-driven subtyping 

methods based on the functional connectivity and neuroanatomy of the language network in 

ASDs.  

General aims 

The over-arching goals of this modified staple dissertation are to (1) better characterize 

language network iFC in a large cohort of ASD youths using an extensive set of language 

regions derived from multiple language studies, (2) describe the heterogeneity of language 

network iFC within this sample of ASD participants in comparison to their TD peers, (3) utilize 

data-driven techniques to distinguish ASD subgroups based on their pattern of language network 

iFC, and (4) combine multimodal (functional, diffusion, and anatomical) imaging and behavioral 

measures to better improve the categorization of language subgroups. 
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ABSTRACT 
 

Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders associated with 

atypical brain connectivity. Although language abilities vary widely, they are impaired or 

atypical in most children with ASDs. Underlying brain mechanisms, however, are not fully 

understood. The present study examined intrinsic functional connectivity (iFC) of the extended 

language network in a cohort of 52 children and adolescents with ASDs (ages 8-18 years), using 

resting state functional magnetic resonance imaging. We found that, in comparison to typically 

developing (TD) peers (n=50), children with ASDs showed increased connectivity between some 

language regions. In addition, seed-to-whole brain analyses revealed increased connectivity of 

language regions with posterior cingulate cortex (PCC) and visual regions in the ASD group. 

Post-hoc effective connectivity analyses revealed a mediation effect of PCC on the iFC between 

bilateral inferior frontal and visual regions in an ASD subgroup. This finding qualifies and 

expands on previous reports of recruitment of visual areas in language processing in ASDs. In 

addition, increased iFC between PCC and visual regions was linked to lower language scores in 

this ASD subgroup, suggesting that increased connectivity with visual cortices, mediated by 

default mode regions, may be detrimental to language abilities. 

 

Keywords: Autism spectrum disorders, default mode, language, resting state functional magnetic 

resonance imaging, visual cortex  
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INTRODUCTION 

Autism spectrum disorders (ASDs) are neurodevelopmental disorders with high and 

increasing prevalence, recently estimated at 1 out of 45 children in the United States (Zablotsky, 

Black, Maenner, Schieve, & Blumberg, 2015). Closely related to core symptoms in the 

sociocommunicative domain is language impairment. Linguistic ability serves as one of the best 

predictors for ASD diagnoses and functional outcome (Lombardo et al., 2015; Szatmari et al., 

2015). This highlights the importance of understanding the neurological bases of language 

processing in ASDs and their relation to behavioral symptomatology.  

 Up to 25% of children who receive ASD diagnoses never develop functional verbal 

language skills (Luyster, Kadlec, Carter, & Tager-Flusberg, 2008; Tager-Flusberg, Paul, & Lord, 

2013). Among those who acquire functional language, the age at which first words are spoken is 

on average delayed by 12-18 months compared to typically developing (TD) children (Howlin, 

2003), and a wide range of verbal abilities can be observed later in life. Some individuals exhibit 

severe problems, such as repetitive neologisms and echolalia (speech parroting; Eigsti, de 

Marchena, Schuh, & Kelley, 2011). However, even highly verbal individuals with ASDs may 

find some aspects of communication challenging, such as pragmatic language skills (e.g., turn-

taking), nonverbal communication (e.g., gesturing, facial expression), and prosody (Eigsti et al., 

2011).  In a review of structural language characteristics of ASDs, Boucher (2012) suggested that 

the ASD language profile is highly heterogeneous and that verbal individuals display more 

impairment in receptive than expressive language.  

Early evidence on the neural basis of language came from the study of brain lesions 

(Broca, 1861). This led to the identification of two language areas with gross functional 

characterization: Broca’s area (left inferior frontal gyrus) for speech production, and Wernicke’s 
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area (left posterior superior temporal cortex) for comprehension (Price, 2000). Connected by the 

arcuate fasciculus (Catani, Jones, & ffytche, 2005), these regions constitute the language network 

in the traditional neurological model (N. Geschwind, 1970), although the precise anatomical 

location of these regions has been questioned (Mesulam, Thompson, Weintraub, & Rogalski, 

2015). Recent neuroimaging studies have shed light on a more extensive language system that 

includes the dorsal striatum, insula, precuneus, inferior parietal lobule, and cerebellum in 

addition to the classic language regions (Berl et al., 2014; Price, 2010; Rodd, Vitello, Woollams, 

& Adank, 2015). Concordant with lesion findings, imaging studies have provided further support 

that language function is mostly lateralized to the left hemisphere in right-handed TD individuals 

(McAvoy et al., 2016; Nielsen, Zielinski, Ferguson, Lainhart, & Anderson, 2013).  

Neuroimaging has also contributed to the understanding of biological bases of language 

impairments in ASDs over the past decades. Among anatomical studies, Herbert et al. (2002) 

found atypical asymmetries in frontal and temporal language regions in boys with ASDs. Others 

have reported white matter anomalies including decreased volume of the arcuate fasciculus 

(Moseley et al., 2016) in adults with ASDs. One study reported evidence of potential white 

matter compromise (increased mean diffusion) in the left superior longitudinal fasciculus, 

detected only in ASD individuals with language impairments (Nagae et al., 2012). Another study 

(Peeva et al., 2013) found weaker structural connectivity (number of streamlines) between areas 

involved in speech production (left ventral premotor cortex and left supplementary motor area) 

in ASD adults with average language abilities.  

Functional imaging studies have revealed further anomalies of language processing in 

ASDs, including recruitment of visual regions during language tasks (Gaffrey et al., 2007; Kana, 

Keller, Cherkassky, Minshew, & Just, 2006; Knaus, Silver, Lindgren, Hadjikhani, & Tager-
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Flusberg, 2008; Pang et al., 2016), increased activation in homologous language regions of the 

right hemisphere (Anderson et al., 2010; Eyler, Pierce, & Courchesne, 2012; Groen et al., 2010; 

Herringshaw, Ammons, DeRamus, & Kana, 2016; Kleinhans, Müller, Cohen, & Courchesne, 

2008; Knaus et al., 2010; Müller et al., 1999; Nielsen et al., 2014; Williams, Goldstein, & 

Minshew, 2006), and reduced connectivity of left inferior frontal cortex and right cerebellum 

with other language regions (Verly et al., 2014).  

In the past decade, there has been increasing awareness that symptomatology and 

cognitive-behavioral impairments in ASDs require explanation at the level of distributed neural 

networks (Geschwind & Levitt, 2007; Müller, 2007; Rippon, Brock, Brown, & Boucher, 2007). 

A method of choice in the study of functional network organization is functional connectivity 

MRI. Functional connectivity (FC) is inferred from synchronized low frequency (<0.1Hz) blood-

oxygen level dependent (BOLD) signal fluctuations and can be measured during rest, referred to 

as intrinsic functional connectivity (iFC). IFC has been used to examine the language network in 

healthy adults, using traditional perisylvian regions (Broca’s and Wernicke’s area) as seeds 

(Tomasi & Volkow, 2012; Zhu et al., 2014). Findings from these studies have shown extensive 

short-range left-lateralized FC for both seeds with more long-range bilateral connectivity for 

posterior Wernicke’s area.  

The few available functional connectivity MRI studies of the language network in ASDs 

have generated conflicting findings. Task-based studies reported reduced FC of the language 

network in ASDs (Just, Cherkassky, Keller, & Minshew, 2004; Kana et al., 2006; Knaus et al., 

2008). One small-sample iFC study found decreased language network iFC in ASD children with 

language impairment (Verly et al., 2014), whereas others (using iFC methods) observed mixed 

effects (Lee, Park, James, Kim, & Park, 2017) or even extensive overconnectivity with regions 
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outside canonical language networks, including visual cortices (Shen et al., 2012) in individuals 

with ASD with and without comorbid language impairment. While methodological differences 

between co-activation FC and iFC may account for some inconsistencies (Müller et al., 2011; 

Nair et al., 2014), the evidence from previous, mostly small-sample studies (including ≤20 

participants per group) remains overall inconclusive. 

The present study investigated iFC of a comprehensive language network in children and 

adolescents with ASDs and their TD peers. We hypothesized that in ASD participants 1) iFC of 

the language network would be partially increased (compared to TD peers), within and outside 

the network, including visual cortex; 2) iFC of language regions would be less left lateralized; 

and 3) altered connectivity would be related to language abilities and symptom severity.  

METHODS 

Participants 

A total of 163 participants, ages 8-18 years, were recruited from the community and 

through ongoing collaborations with local clinicians. TD participants had no family history of 

ASDs or any other neurological, developmental, or psychiatric disorder. For the ASD group, 

only individuals with idiopathic ASDs were recruited (i.e., excluding any syndromic forms such 

as Fragile X or Rett syndrome). ASD diagnoses based on DSM-5 (American Psychiatric 

Association, 2013) criteria were confirmed using the Autism Diagnostic Interview-Revised 

(ADI-R; Rutter, Le Couteur, & Lord, 2003), the Autism Diagnostic Observation Schedule 

(ADOS or ADOS-2; Lord, Rutter, DiLavore, & Risi, 2001; Lord et al., 2012), and expert clinical 

judgment (co-author IF). Participants were tested on IQ using the Wechsler Abbreviated Scale of 

Intelligence (WASI; Wechsler, 1999), handedness using the Edinburgh Handedness Inventory 

(Oldfield, 1971), and language abilities using the Clinical Evaluation of Language Fundamentals 
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(CELF-4; Semel, Wiig, & Secord, 2004). Groups were matched on age, nonverbal IQ, head 

motion, handedness, gender, and handedness by gender (Table 1.1). The study protocol was 

approved by the Institutional Review Boards of San Diego State University and University of 

California San Diego. Assent and informed consent were obtained from all participants and their 

caregivers.  

After enrollment, 61 participants were excluded based on demographic or diagnostic 

information, or image quality. Four recruits for the ASD group did not meet full diagnostic 

criteria, while two TD participants were excluded for meeting diagnostic criteria for ADHD. 

Participants were also excluded based on unusual neuroanatomical findings (3 ASD, 1 TD), 

presence of seizures or history of in-utero drug exposure (2 ASD), siblings with neurological 

conditions (2 TD), excessive drowsiness during the scan (1 TD), or excessive motion during 

MRI scanning (26 ASD, 10 TD; see below). Ten subjects (5 ASD, 5 TD) were removed to 

optimally match ASD and TD groups for age, sex, handedness, non-verbal IQ, head motion, and 

handedness by gender (Table 1.1). The final sample included 52 ASD and 50 TD participants. 

Data Acquisition  

Imaging data were acquired on a General Electric 3T Discovery MR750 scanner with an 

8-channel head coil at the University of California San Diego Center for Functional Magnetic 

Resonance Imaging. High-resolution structural images were collected using a standard Fast 

Spoiled Gradient-Echo T1-weighted sequence (172 slices; repetition time [TR] = 8.136; echo 

time [TE] = 3.172ms; field of view [FOV] = 256 x 256mm; flip angle = 8°; 1mm3 resolution). 

Functional T2*-weighted images were obtained using a single-shot gradient-recalled, echo-

planar pulse sequence of 180 whole brain volumes (TR = 2000ms; TE = 30ms; FOV = 220mm; 

flip angle = 90°, 64 x 64 matrix, 3.4mm3 resolution, 42 axial slices covering the whole brain). 
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During the 6-minute resting-state scan, participants were shown a white crosshair centered on a 

black background and instructed: “Keep your eyes on the cross, relax, but please stay as still as 

you can. Do not fall asleep.” In-bore MRI-compatible video monitoring was used to verify 

compliance with instructions and wakefulness. 

Functional Magnetic Resonance Imaging Data Preprocessing 

Functional MRI data were preprocessed and analyzed using Analysis of Functional 

NeuroImages software (AFNI 16.2.13; R. W. Cox, 1996). We used a standard pipeline to 

unwarp, field map correct, slice-timing correct, motion correct, and spatially smooth the image 

using a Gaussian kernel of 6mm FWHM. FMRI software library (FSL; Smith et al. 2004) was 

used to normalize structural images to MNI-152 template space and segment structural images 

into white matter, grey matter, and cerebrospinal fluid. The segmented white matter and CSF 

maps were eroded by 1 voxel. Functional images were co-registered to the preprocessed 

structural image and transformed to 3mm isotropic resolution. Functional time-series were 

bandpass filtered at 0.008-0.08Hz using a Butterworth filter. Root-mean-squared-difference 

(RMSD) was calculated from 6 motion parameters (3 translational and 3 rotational) to estimate 

in-scanner head motion. The 6 motion parameters and time-series from white matter and CSF, as 

well as their first temporal derivatives were equally bandpass filtered (Hallquist, Hwang, & 

Luna, 2013) and used as nuisance regressors in AFNI’s 3dDeconvolve to remove motion and 

noise from the functional signal.  

Primary analyses were performed without global signal regression (GSR), a processing 

step that remains contentious. While GSR is recognized for its strengths in denoising fMRI time 

series (Power, Plitt, Laumann, & Martin, 2017), it is also known to generate anti-correlations that 

may not be biologically meaningful (Schölvinck, Maier, Ye, Duyn, & Leopold, 2010) and has 
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been found to distort group differences in some studies (Abbott et al., 2016; Gotts et al., 2013; 

Saad et al., 2012). However, analyses including GSR are additionally presented in the 

Supplement (Supplementary Figure 3, Supplementary Table 6-7).  

Time-points with frame-wise displacement >0.5mm were censored including two 

subsequent time-points. Blocks of time-series between censored time-points with <10 time-

points remaining were also removed. All included participants retained more than 80% of their 

original time-points. Groups were tightly matched for head motion RMSD (Table 1.1).  

Functional Connectivity Analyses 

The language network was defined by regions adopted from an Activation Likelihood 

Estimation (ALE) analysis of 54 functional neuroimaging studies of language comprehension in 

both spoken and written modalities (Rodd et al., 2015). Statistical maps from the ALE 

combining all 54 studies were obtained from the authors and thresholded to reduce differences in 

cluster volumes (to a range of 32-101 voxels). This produced a total of 14 distinct clusters used 

as regions of interest (ROIs) or seeds (Table 1.2, Supplementary Figure 1). 

To measure within-network connectivity, average time-series data were extracted from 

each of the 14 ROIs in each participant and correlated with time-series from every other ROI, 

using Pearson’s correlation, resulting in a 14 x 14 language network connectivity matrix. The 

resulting coefficients were then normalized using Fisher z-transformation and entered into one-

sample t-tests to examine iFC within ASD and TD groups, separately, and two-tailed t-tests to 

identify group differences. The results were adjusted for multiple comparisons using local FDR-

correction (Efron, 2007). Local FDR was preferred to traditional FDR due to non-uniform 

distribution of the obtained p-values. 
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Laterality of iFC in the extended language network was examined through two separate 

analyses. First, ipsilateral connectivity was computed by averaging each ROI-ROI pair within the 

same hemisphere. Next, laterality indices were calculated for each participant using the 

following equation: (Left – Right)/(Left + Right). Positive laterality indices signified leftward 

asymmetry, negative indices signified rightward asymmetry. The laterality indices were then 

compared between groups. In a second analysis, contralateral iFC was examined by averaging 

between-hemisphere ROI-ROI connections (e.g., left inferior frontal gyrus and right superior 

temporal sulcus) and compared between groups. 

Connectivity outside the language network was examined using whole-brain iFC 

analyses, by correlating average time-series from each ROI with time-series from all other grey 

matter voxels. In an effort to reduce the number of comparisons, only ROIs that showed group 

differences in the within-network analyses were used for whole-brain iFC analyses (Figure 1.1B, 

Figure 1.1C, Table 1.2). The resulting whole-brain iFC maps were directly compared between 

groups and corrected for multiple comparisons using AFNI’s 3dttest++ -Clustsim permutation 

tests (Cox, Chen, Glen, Reynolds, & Taylor, 2017). For each group, mean z-scores extracted 

from significant clusters of between-group effects were correlated with CELF-4 Core Language, 

Receptive Language, and Expressive Language scores, as well as ADI-R Social and 

Communication scores, ADOS Communication and Social Interaction, and ADOS Total scores, 

while controlling for effects of age and in-scanner head motion. Results were corrected using 

false discovery rate (FDR).  
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RESULTS 

Within-network analyses 

One-sample t-tests showed generally high connectivity between language network ROIs 

in both TD and ASD groups (Figure 1.1A). After correcting for multiple corrections, 69 ROI 

pairs in the ASD group and 61 ROI pairs in the TD group showed significant difference from 

zero (qs<0.05).   

Two-sample t-tests for group comparisons of within-network matrices revealed 7 

connectivity differences between language ROIs that survived local FDR adjustment (Cohen’s 

ds>0.44, ps<0.03 uncorrected, qs<0.27; Figure 1B-C). All 7 pairs showed more positive 

correlations between language ROIs in the ASD group compared to the TD group. Such effects 

were seen for connections of both left and right inferior frontal ROIs with parietal ROIs (i.e., 

inferior parietal lobule, angular gyrus, and precuneus/posterior cingulate cortex). Higher 

correlations were also seen in the ASD group between the bilateral dorsal precuneus and left 

supramarginal gyrus, and between right inferior parietal lobule and the left pericentral region. 

Except for one connection between right inferior frontal and inferior parietal ROIs, these effects 

reflected correlations close to or below zero in the TD group and more positive correlations in 

the ASD group (Figure 1.1D).  

Laterality analyses 

We examined between group differences in language network lateralization by 

calculating laterality indices and by examining the average connectivity of between-hemisphere 

language regions. We found that the laterality indices between ASD participants and TD 

participants did not differ significantly (t(100)=0,69, p=0.51). Similarly, we did not find a 
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significant group difference in between-hemisphere language network iFC (t(100)=0.25, 

p=0.80). 

Whole-brain (outside network) analyses 

We selected 5 ROIs that were part of two or more significant connections (indicated by 

asterisks in Table 1.2) as seeds for further exploration in whole-brain connectivity analyses. 

Three of these showed significant whole-brain iFC group differences. For inferior frontal seeds 

bilaterally, there was increased connectivity in the ASD group with PCC (Figure 1.1E). 

Additionally, for the left precuneus/PCC seed, four clusters of greater iFC in the ASD group 

were detected in occipital lobes bilaterally, including middle occipital and lingual gyri 

(Supplementary Table 1). 

Post-hoc analysis of effective connectivity 

Findings of overconnectivity with visual cortex from whole-brain analyses were 

remarkable in view of several previous ASD reports of atypical engagement of visual areas in 

language processing (Gaffrey et al., 2007; Kana et al., 2006; Knaus et al., 2008) and increased 

functional connectivity between inferior frontal gyrus and visual cortices (Shen et al., 2012). 

However, none of these explored the role of PCC. As our findings suggested that PCC might 

mediate connectivity between IFG and visual regions in ASDs, we performed follow-up analyses 

of effective connectivity, using Group Iterative Multiple Models Estimation (GIMME; Gates & 

Molenaar, 2012). GIMME utilizes unified structural equation modeling in a data-driven 

approach. Its ability to model contemporaneous and lagged relationships between regions allows 

for the study of effective FC in resting state MRI (Gates, Molenaar, Iyer, Nigg, & Fair, 2014). 

We conducted four semi-confirmatory GIMME analyses that estimated pre-specified 

directional relationships between variables and added paths as needed for each subject until the 
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best-fit model was found. Analyses were run using the average time-series extracted from the 

three seeds with significant whole-brain group differences (left IFG, right IFS, and left prec/PCC 

ROIs), and from the corresponding significant group-effect clusters in PCC and the occipital 

lobes (Figure 1.1E, Supplementary Table 1). The clusters in PCC (overconnectivity with inferior 

frontal seeds) and the left prec/PCC seed (which also showed significant overconnectivity with 

left IFG and right IFS in the within-network analyses) were in close proximity and were merged. 

The four clusters in occipital cortex (overconnectivity with left prec/PCC seed) were also 

merged. We tested whether connectivity between inferior frontal regions and visual cortex was 

mediated by PCC. In view of atypical language-related asymmetries of IFG reported in several 

ASD studies (Kleinhans et al., 2008; Knaus et al., 2010), right and left inferior frontal ROIs were 

modeled separately. We tested 4 mediation models that varied in directionality of connectivity, 

each containing 4 factors: left IFG, right IFS, PCC, and visual cortex (Supplementary Figure 2). 

Each subject’s iterative path estimates and their fit for the pre-specified model were then used to 

determine whether an indirect, or mediated, relationship exist for each model. Across the 4 

models, we found that 24 out of 52 ASD participants showed significant PCC mediation of 

connectivity between frontal language areas and visual cortex (with 18 of the 24 showing this 

effect for the right inferior frontal ROI). The subgroups did not differ in age, head motion, IQ, or 

language abilities (ps>0.30, uncorrected; Supplementary Table 2). A marginal difference was 

found in parent-reported restricted and repetitive behaviors, as measured by the ADI-R 

(t(43.5)=2.16, puncorrected=0.04). 

Relation between connectivity and behavioral measures 

Next, we explored the relationship between connectivity (mean z) of the 7 within-

network connections with significant group differences (Figure 1.1B-C) and measures of 
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symptom severity and language ability. In the ASD group, iFC between right inferior parietal 

lobule (IPL) and left pericentral region was negatively correlated with scores of the ADI-R 

Social subscale (r=-0.51, q=0.006; Figure 1.2A; Supplementary Table 3), with higher iFC linked 

to lower social symptom severity (controlling for age and head motion). No significant 

correlations between iFC pairs and language measures were found in either group 

(Supplementary Table 4).  

For whole-brain iFC results, we found no significant relationship with behavioral 

language measures or symptomatology in the ASD group. However, in the TD group, there was 

a significant negative correlation for CELF Receptive Language score and iFC between right IFS 

and PCC (red cluster in Figure 1.1D), controlling for age and motion (r=-0.55, qFDR=0.009; 

Supplementary Table 5). Similarly, higher connectivity between the PCC/Precuneus ROI and left 

medial occipital gyrus was linked to lower CELF Core Language scores (r=-0.56, qFDR=0.009) 

and Expressive Language scores (r=-0.59, qFDR=0.008), after correcting for multiple 

comparisons.  

Finally, we examined the relationship between language function and whole-brain iFC in 

the subgroup of ASD participants who showed PCC mediation in GIMME analyses. Similar to 

the TD group, we found that connectivity between the PCC/precuneus ROI and visual cortex 

were all negatively correlated with CELF scores in this ASD subgroup. After controlling for age 

and head motion, and correcting for multiple comparisons, we found a significant relationship 

between iFC of left Precuneus/PCC with right lingual gyrus and CELF Receptive Language (r=-

0.74, qFDR=0.022; Figure 1.2B; Supplementary Table 5). No correlations were observed between 

iFC results and CELF measures in the ASD subgroup without significant PCC mediation. 
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DISCUSSION 

Language deficits are commonly observed in ASDs, but the underlying neurobiology is 

not fully understood. We examined intrinsic functional connectivity of the language network in 

children with ASDs, using resting state fcMRI, and found atypically increased connectivity 

between some language regions, in addition to increased connectivity of language ROIs with 

PCC and visual regions. Although several right-hemisphere ROIs showed overconnectivity in the 

ASD group, quantitative analyses of asymmetry yielded no group differences. Effective 

connectivity analyses revealed a subgroup of ASD youths whose connectivity between inferior 

frontal language regions and visual cortex was mediated by PCC. In this subgroup, increased iFC 

between PCC and visual cortex was also associated with lower language abilities.  

Predominant overconnectivity of the language network in ASDs  

FC within the language network (adopted from a large meta-analysis; Rodd et al., 2015) 

was predominantly greater in the ASD compared to the TD group. While seemingly at odds with 

some previous underconnectivity findings (Just et al., 2004; Kana et al., 2006; Knaus et al., 

2008), inconsistency may be largely explained by methodological differences between co-

activation FC (testing for task-driven BOLD correlations) and iFC (Müller et al., 2011; Nair et 

al., 2014). One recent iFC study of language also reported underconnectivity in ASDs (Verly et 

al., 2014), which was, however, observed in ROIs (including right cerebellum) that largely 

differed from those implemented in the present study. In addition, Verly and colleagues 

specifically selected 19 ASD participants with a history of significant language delay and 

impairment, whereas the present study included 52 ASD participants with a wide range of 

linguistic abilities.  
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 For all but one of the ROI-ROI pairs with increased connectivity in ASDs, group 

differences reflected low levels of iFC in the TD group, contrasting with more positive iFC in the 

ASD group (Figure 1.1C). These connections may represent an extended language network of 

regions that do not consistently co-activate during language processing and therefore show low 

levels of intrinsic synchronization in the TD brain. Only one ROI pairing (right IFS and right 

IPL) showed positive BOLD correlations in the TD group, which were even more pronounced in 

the ASD group. Note, however, that overconnectivity between ROIs of the extended language 

network was mostly only of medium effect size, surviving only a relatively lenient local FDR 

correction. 

For a few ROI pairings, overconnectivity in the ASD group was associated with lower 

sociocommunicative symptom severity (Supplementary Table 3). Specifically, atypically 

increased connectivity between left IFG and angular gyrus in the ASD group was associated with 

lower ADOS Social Communication scores. This reflects a connection between core language 

regions in the dominant hemisphere crucial for semantic processing, lexical selection, and other 

language subprocesses (Price, 2010). However, this medium-sized effect (r=-0.32) did not 

survive FDR correction. More robust was an effect of increased iFC between right IPL and left 

pericentral cortex was associated with decreased ADI-R Social scores. Right IPL, which has 

traditionally been linked to spatial processing and selective attention (Husain & Nachev, 2007), 

has also been noted for its role in distinguishing between self and others (Ruby & Decety, 2004; 

Uddin, Molnar-Szakacs, Zaidel, & Iacoboni, 2006). Left pericentral cortex is important for 

speech production (Price, 2010), but has also been found to activate during speech 

comprehension (Adank, 2012). Findings of overconnectivity between nodes of an extended 

language network in ASDs may be indicative of a history of increased co-activation (Crossley et 
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al., 2013; Lewis, Baldassarre, Committeri, Romani, & Corbetta, 2009). More specifically, 

relatively mild levels of social deficits in ASD could reflect a history of high levels of effortful 

processing in these non-core language regions, with some compensatory effect and associated 

relatively mild symptomatology.  

Connectivity between language, visual, and default mode networks 

Whole-brain analyses revealed overconnectivity in the ASD group bilaterally between 

IFG and PCC. The PCC has been described as a “hub” with dense connectivity for information 

integration (Ray et al., 2014; van den Heuvel & Sporns, 2011). Traditionally associated with the 

default mode network (DMN), PCC is activated during self-reflection, mentalization, and 

episodic memory (Hull, Jacokes, Torgerson, Irimia, & Van Horn, 2017; Washington et al., 

2014). Increased FC between DMN and language-related networks in ASDs has been previously 

reported in an ICA study by Zhao and colleagues (2016), who found right hemisphere 

homologous language regions (e.g., IFG, AG, and supramarginal gyrus) to be overconnected 

with the DMN. This may suggest reduced segregation between the DMN and the language 

network, possibly consistent with findings of atypical crosstalk between DMN and other 

functional networks (Abbott et al., 2016; Fishman, Keown, Lincoln, Pineda, & Müller, 2014; 

Ray et al., 2014; Rudie et al., 2013; Rudie et al., 2012; Yerys et al., 2015).  

 The finding of increased iFC between PCC and visual cortex is consistent with previous 

reports of overconnectivity between the DMN and the visual network in ASDs (Washington et 

al., 2014; Yerys et al., 2015). Yerys and colleagues (2015) found increased PCC connectivity 

with bilateral occipital pole, LG, and fusiform gyri. Together with the overconnectivity of the 

PCC and DMN discussed above, this is of special interest to language function as studies have 
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reported increased activation of visual cortex in ASD participants during language processing 

(Gaffrey et al., 2007; Kana et al., 2006; Knaus et al., 2008; Pang et al., 2016).  

An effective connectivity analysis of the language network in ASDs by Shen et al. (2012) 

detected an atypical path between left IFG and right extrastriate cortex; however, PCC was not 

considered in their model. In the present study, whole-brain iFC analysis revealed PCC to be 

overconnected with both bilateral IFG and visual cortex. Therefore, PCC was tested as a 

potential mediator of iFC between the frontal and visual regions – a mediation that was 

confirmed in almost half of the ASD participants. A negative association of robust effect size 

between CELF-4 scores and brain connectivity as seen in this ASD subgroup with PCC 

mediation suggests that connectivity between PCC and visual regions may be detrimental to 

language functioning. As concordant effects were seen in the TD group, this link may not be 

specific to ASDs. However, whereas PCC-visual connectivity was generally low in TD children, 

it was robust in many children with ASDs, indicating that the detrimental effect on language is 

common in ASDs, but uncommon in TD children. Functionally, it may indicate over-

engagement of internal reflection and mental imagery in early development, contributing to 

increased synchronization between DMN and visual networks (Spreng, Mar, & Kim, 2009). 

Accompanying overconnectivity between DMN and frontal language regions may further be 

associated with a history of reduced vigilance and performance efficiency during language 

processing (Anticevic, Repovs, Shulman, & Barch, 2010; Götting et al., 2017; Hinds et al., 

2013).  

Limitations 

IFC findings were not robustly associated with behavioral language measures of the 

CELF-4. Although commonly used, CELF subtests additionally engage non-language cognitive 
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functions such as working memory (e.g., Recalling Sentences), which may have limited our 

ability to detect links between iFC and language abilities. As with most fMRI studies of ASDs, 

data collection was limited to relatively high-functioning individuals who were able to lie almost 

motionless throughout the scan. While our aim was to include a wide range of linguistic abilities 

to better represent the ASD population, inclusion of children with normal-level language abilities 

may have weakened group-level effects and differences of brain-behavior relationships.  

Conclusions 

We found the intrinsic functional organization of the language network in high-

functioning children and adolescents with ASDs to be characterized by partial overconnectivity, 

mostly involving regions of an extended network that do not show robust signal correlations in 

TD peers. Atypical connectivity was distinct for a triad of inferior frontal, default mode, and 

visual regions. While overconnectivity with DMN (PCC) was seen for the entire ASD cohort, 

mediation of connectivity between inferior frontal and visual regions by PCC was seen only in 

an ASD subgroup, where high level of visual connectivity was associated with relatively low 

language abilities. Findings suggest that atypical connectivity in ASDs may predominantly affect 

regions of an extended network (rather than traditional regions such as Broca’s and Wernicke’s), 

with great heterogeneity even within the fully verbal and high-functioning segment of the 

spectrum. 

Chapter 1, in full, is a reprint of the material as it appears in the Journal of Autism 

Research, 12, 1344 -1355. Gao, Y., Linke, A. C., Jao Keehn, R. J., Punyamurthula, S., Jahedi, 

A., Gates, K., Fishman, I., and Müller, R.-A., Wiley, 2020. The dissertation author was the 

primary investigator and author of this paper.  
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 Table 1.1. Participant information 
 

 ASD (n = 52) TD (n = 50)  

Gender 8 female 8 female 
 

Handedness 7 left (0 female) 7 left (0 female) 
 

 Mean (SD) Range Mean (SD) Range T, p-value 

Age in years 13.7 (2.6) 9.2-18.0 13.6 (2.6) 8.0-17.6  0.29, p=0.77 
Head Motion       

 RMSD pre-censoring 0.065 (0.030) 0.019-0.148 0.064 (0.032) 0.017-0.148 -0.20, p=0.84 
 RMSD after denoising 0.003 (0.002) 0.001-0.008 0.003 (0.003) 0.001-0.014 -0.94, p=0.34 
 Post-censoring TP 178 (4.2) 158-180 177 (3.9) 166-180  0.25, p=0.80 

WASI       

 Verbal IQ 102 (17.1) 70-147 108 (9.1) 87-126 -2.14, p=0.04 
 Nonverbal IQ 106 (17.2) 53-140 105 (13.3) 62-137  0.34, p=0.73 
 Full-scale IQ 104 (16.4) 66-141 107 (11.0) 79-130 -1.12, p=0.26 
CELF-4*         
 Core Language 99 (17.5) 56-120 110 (9.1) 91-126 -3.18, p=0.00 
 Receptive 99 (16.1) 60-131 104 (11.2) 76-127 -1.22, p=0.23 
 Expressive 97 (17.1) 55-120 107 (8.9) 91-124 -2.96, p=0.00 
ADOS-2�           
 Social Affect 10.2 (3.7) 5-20 -- --   
 Repetitive Behavior 3.4 (1.7) 0-8 -- --   
 Total 13.5 (4.2) 5-24 -- --   
 Severity 7.5 (1.9) 3-10 -- --  

ADI-R      

 Social Interaction 18.4 (4.9) 7-28 -- --  
 Communication 13.4 (5.1) 2-24 -- --  

 Repetitive Behavior 6.1 (2.3) 1-12 -- --  
 

TP: Time-points (180 total time-points before censoring). * CELF-4 scores were not available for 11 
ASD and 12 TD participants. � 38 ASD participants were assessed with Module 3 and 14 participants 
were assessed with Module 4 of the ADOS.  
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Table 1.2. Regions of interest 

Cluster Anatomic Label Abbreviation Voxels CM x CM y CM z 

1 Left inferior frontal gyrus* lIFG 101 52 14 17 

2 Left superior temporal sulcus lSTS 100 56 -28 2 

3 Bilateral dorsal precuneus bdPrec 99 0 -67 44 

4 Bilateral supplementary motor 
area 

bSMA 91 2 16 52 

5 Right insula rInsula 82 -37 23 6 

6 Left inferior parietal lobule lIPL 94 38 -50 46 

7 Right inferior frontal sulcus* rIFS 91 -43 17 30 

8 Right Heschl's gyrus rHG 72 -42 -19 6 

9 Right inferior parietal lobule* rIPL 70 -45 -60 37 

10 Left pericentral region* lPC 65 39 -23 54 

11 Right superior temporal sulcus rSTS 57 -55 -28 -1 

12 Left precuneus/ 
posterior cingulate cortex* 

lPrec/PCC 44 5 -64 24 

13 Left angular gyrus lAG 34 47 -64 34 

14 Left supramarginal gyrus lSMarG 32 59 -34 37 
 

Regions of interests (ROI) are derived from statistical maps taken from an Activation Likelihood 
Estimate analysis of 54 language comprehension studies (Rodd et al., 2015).  All coordinates are 
listed in MNI space. CM: Center of mass of each cluster. *ROIs used for whole-brain iFC 
analyses 
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Figure 1.1. Language network iFC 
(A) Matrix showing results from within-group t-test of language network connectivities (warm colors 
represent positive t-values; cool colors represent negative t-values; critical t-value of 1.68 is marked 
by p=0.05). The ASD group (top right) showed 69 connections above this threshold and the TD group 
showed 62 significant connections (bottom left). After multiple comparison corrections (qs<0.05), the TD 
group retained 61 of the 62 significant connections, while the ASD group retained all 69 significant 
connections. (B) Group difference matrix for connectivities between the 14 language ROIs. + symbolizes 
local FDR-corrected significant difference between the groups (Cohen’s ds>0.44, ps<0.03 
uncorrected, qs<0.27). (C) Glass brain rendering of significant between-group differences in language 
network connectivities after local FDR-correction, corresponding to cells labelled + in panel B. (D) 
Between-group differences for ASD (red) and TD (blue) in correlations between language ROIs. Error 
bars signify standard error of the correlations. lIFG: left inferior frontal gyrus; lSTS: left superior 
temporal sulcus; lIPL: left inferior parietal lobule; lPC: left pericentral region; lPrec/PCC: left 
precuneus/posterior cingulate cortex; lAG: left angular gyrus; lSMarG: left supramarginal gyrus; bdPrec: 
bilateral dorsal precuneus; bSMA: bilateral supplementary motor area; rInsula: right insula; rIFS: right 
inferior frontal sulcus; rHG: right Heschl's gyrus; rIPL: right inferior parietal lobule; rSTS: right superior 
temporal sulcus. (E) Clusters of between-group difference from whole-brain iFC analyses for seeds in left 
inferior frontal gyrus (green cluster) and right inferior frontal sulcus (red cluster). Both ROIs show higher 
connectivity with the posterior cingulate cortex (PCC) in the ASD group (voxel-level threshold p=0.001, 
α<0.05). For the left precuneus/PCC seed extensive overconnectivity is found in occipital cortex (purple 
clusters) in the ASD relative to the TD group (voxel-level p=0.001, α<0.01). 
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ABSTRACT 

Autism spectrum disorders (ASD) are a group of highly heterogeneous developmental 

disorders associated with atypical brain connectivity. Closely related to sociocommunicative 

core symptoms is language ability, which varies greatly between affected individuals. However, 

the neural substrates underlying the variability of language abilities in ASD are poorly 

understood. This study explored the heterogeneity as well as distinct patterns of intrinsic 

functional connectivity (iFC) within the language network (using data-driven regions of interest) 

in children with ASD. Resting state fMRI scans from 69 ASD and 60 typically developing (TD) 

youths (ages 7-18) were included. At the whole-group level, no significant group differences in 

language network iFC were found; however, heterogeneity was greater in the ASD than the TD 

group. Latent profile analysis of iFC dimensions revealed three distinct ASD subtypes of 

language network. While the first subtype did not differ significantly from the TD group in iFC 

despite poorer language abilities, the two other subtypes showed broad under- and over-

connectivity of the language network, respectively. Existence of distinct iFC subtypes may 

account for some conflicting results in the ASD connectivity literature. Our findings underscore 

that focus on individual variability in ASD is needed, beyond conventional group-level analyses. 

 
Keywords: Autism spectrum disorder, heterogeneity, subtyping, language, functional 
connectivity.  
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INTRODUCTION 

Autism Spectrum Disorders (ASD) are a set of heterogeneous developmental disorders 

characterized by persistent sociocommunicative deficits and repetitive, restricted behaviors and 

interests (APA; American Psychiatric Association, 2013), currently estimated to affect 1 in 54 

children aged 8 years in the United States (Maenner, 2020). Although absence or delay in 

development of spoken language is no longer a diagnostic criterion (APA, 2013), language 

impairments are common. A recent naturalistic language study found that close to 40% of 

children diagnosed with an ASD are nonverbal or have minimal verbal abilities at age 3 years 

(Bacon et al., 2018). Those who develop functional language exhibit qualitative differences in 

spoken language (e.g., neologisms) compared to typically developing (TD) individuals (Boucher, 

2012; Eigsti et al., 2011). In addition, language abilities are among the best predictors of 

outcomes (e.g., adaptive skills) later in life in ASD (Mawhood et al., 2000; Sallows & Graupner, 

2005; Szatmari et al., 2003, 2015). Improved understanding of atypical language development 

and underlying neurobiology is therefore important.  

In a review of structural language in ASD, Boucher (2012) highlighted multiple studies 

supporting a language profile with higher expressive than receptive abilities considered unique to 

ASD. However, other studies have shown mixed or opposite patterns (Kjelgaard & Tager-

Flusberg, 2001; Luyster et al., 2008), and a meta-analysis (Kwok et al., 2015) revealed overall 

reduced levels of both receptive and expressive language in ASD (with no expressive-over-

receptive advantage). The large variability in language abilities across the autism spectrum 

(Tager-Flusberg et al., 2013) is a salient example of the overall behavioral heterogeneity that 

characterizes ASD (Lombardo et al., 2019). 
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Neuroimaging Studies of Language Processing 

Imaging has indicated potential neural substrates of atypical language processing in ASD. 

Evidence includes atypical activation in visual cortex during language tasks across multiple 

studies (Gaffrey et al., 2007; Kana, Keller, Cherkassky, Minshew, & Just, 2006; Knaus, Silver, 

Lindgren, Hadjikhani, & Tager-Flusberg, 2008; Pang et al., 2016). In addition, language 

comprehension and production have been found to be associated with unusual activity levels in 

right hemisphere regions homologous to canonical left hemisphere language areas (Anderson et 

al., 2010; Eyler, Pierce, & Courchesne, 2012; Groen et al., 2010; Herringshaw, Ammons, 

DeRamus, & Kana, 2016; Kleinhans, Müller, Cohen, & Courchesne, 2008; Knaus et al., 2010; 

Müller et al., 1999; Nielsen et al., 2014; Williams, Goldstein, & Minshew, 2006).  

A second set of findings relates to network organization and connectivity. Functional 

connectivity (FC) MRI examines functional network organization by observing low frequency 

(<0.1Hz) blood-oxygen level dependent (BOLD) signal fluctuations that are synchronized 

between distributed brain regions during task performance and at rest. In resting state fMRI, 

correlations of slow, spontaneous BOLD signal fluctuations between brain regions are 

interpreted as intrinsic functional connectivity (iFC; Van Dijk et al., 2010). Findings on FC of 

the language network in ASD have been diverse, with some studies showing underconnectivity 

between language regions (Just et al., 2004; Kana et al., 2006; Knaus et al., 2008; Verly et al., 

2014) and others showing mixed effects or overconnectivity (Lee et al., 2017; Shen et al., 2012). 

However, small samples may have provided insufficient statistical power to detect reliable 

effects in these previous studies (Button et al., 2013). In addition, conflicting results have been 

attributed to methodological differences in ‘co-activation’ FC during task performance vs. iFC 

MRI (Nair et al., 2014), data processing, and differences in sample characteristics (e.g., language 
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level of ASD participants; Hull, Jacokes, Torgerson, Irimia, & Van Horn, 2017). Furthermore, 

the common practice of group-wise comparisons (ASD vs. TD) in small samples neglects the 

known heterogeneity across the autism spectrum, which may be associated with greater 

interindividual variability of connectivity patterns (Byrge et al., 2015; Nunes et al., 2019). 

Notably, in our recent study (Gao et al., 2019) language network iFC differences at the whole-

group level (TD vs. ASD) were modest and unrelated to language abilities, but a subgroup of 

ASD participants exhibited distinctly atypical connectivity patterns associated with lower 

receptive language scores.   

Heterogeneity  

Variability of linguistic abilities in ASD and inconsistent neuroimaging findings may, in 

part, be due to diversity of etiologies. Recent reviews, for example, suggest that hundreds of 

genetic variants and mutations may be risk factors for ASD (Nakanishi et al., 2019; Vorstman et 

al., 2017). The reviews noted differences in the penetrance of genotypes, gender ratio, and 

comorbidities (e.g., epilepsy, motor impairments, schizophrenia), all of which suggest diverse 

underlying biological mechanisms that give rise to the ASD phenotype. As an alternative to the 

assumption of a singular diagnostic group, some researchers have suggested studying more 

homogeneous subsets within the larger category of ASD (Haebig & Sterling, 2017; Jeste & 

Geschwind, 2014; Sahin & Sur, 2015; Szatmari et al., 2015; Tager-Flusberg & Joseph, 2003) 

while others have emphasized the need to study subgroups of ASD within larger cohorts (Easson 

et al., 2019). 

Language subtypes of ASD 

Kwok and colleagues (2015) suggested that studies averaging across heterogeneous 

samples of individuals with ASD cannot detect differences in subgroups with different 
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expressive and receptive language profiles. This is supported by a recent study of language 

phenotypes, which identified 3 ASD subgroups that differed in their spontaneous spoken 

language (Wittke et al., 2017). In a longitudinal study of expressive language development, Tek 

and colleagues (2014) found two distinct language profiles: a high language ASD group with 

developmental trajectories similar to those seen in typically development, and a lower language 

ASD group with less improvement over time. Pickles et al. (2014) combined both expressive and 

receptive language in a latent growth-curve analysis and discovered 7 different developmental 

trajectories. Given the divergent patterns of functional language abilities and language 

development within ASD, neurofunctional differences in language processing are likely.  

There have been attempts to identify ASD subtypes based on neurobiological 

characteristics instead of behavioral symptoms. Amaral and colleagues (2017) reported a 

neurophenotype with disproportional large head-to-body size in boys with ASD, associated with 

higher rates of regression, lower expressive language abilities, and slower acquisition of adaptive 

skills. Other groups have employed data-driven techniques to explore ASD neurophenotypes 

derived by neuroanatomic (Hong et al., 2017), and fcMRI (Easson et al., 2019; Kernbach et al., 

2018; Tang et al., 2019). While Kernbach and colleagues explored subtypes through FC of the 

default mode network across diagnostic groups, none of the studies to date have used statistical 

learning techniques to distinguish ASD subtypes of language network iFC and to examine how 

these relate to differences in language skills. 

The present study aimed to (1) test the heterogeneity of language network iFC within a 

sample of children and adolescents with ASD in comparison to their TD peers, (2) utilize data-

driven techniques to distinguish ASD subgroups based on their pattern of language network iFC, 
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and (3) use behavioral measures of ASD symptoms and language abilities to characterize 

language network iFC subgroups.  

METHODS 

Participants 

A total of 218 (135 ASD, 83 TD) participants, ages 7-18 years, were recruited from the 

community and through ongoing collaborations with local clinicians. For the ASD group, only 

individuals with idiopathic ASDs were recruited (excluding any syndromic forms of ASDs such 

as Fragile X or Rett syndrome). ASD diagnoses were confirmed using the Autism Diagnostic 

Interview-Revised (ADI-R; Rutter, Le Couteur, & Lord, 2003), the Autism Diagnostic 

Observation Schedule (ADOS or ADOS-2; Lord, Rutter, DiLavore, & Risi, 2001; Lord et al., 

2012), and expert clinical judgment based on DSM-5 diagnostic criteria (APA, 2013). For the 

TD group, participants with no known family history of ASDs or any other developmental, 

neurological, or psychiatric disorder were recruited. Of the 218 recruited participants, a total of 

89 were excluded due to: excessive motion (28 ASD, 8 TD), low data quality (7 ASD, 7 TD), 

incidental neuroanatomical findings (6 ASD, 2 TD), additional clinical information obtained 

after enrollment (6 ASD, 5 TD), and attrition between study sessions (15 ASD), with another 4 

ASD and 1 TD participants were excluded to optimize between-group matching on age, 

nonverbal IQ, in-scanner head motion, handedness, and gender (Table 2.1). The final sample 

included 69 ASD and 60 TD participants. Of the 69 ASD participants, 23 had co-morbid 

diagnoses (i.e., ADHD, depression, anxiety), and 25 were taking psychotropic medications at the 

time of study enrollment (Table 2.4). All participants were given a battery of behavioral tests, 

including Wechsler Abbreviated Scale of Intelligence (WASI-II; Wechsler, 2011) as a measure 

of IQ, Edinburgh Handedness Inventory (Oldfield, 1971) for handedness, Clinical Evaluation of 
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Language Fundamentals (CELF-4; Semel, Wiig, & Secord, 2004) for language abilities. The 

study protocol was approved by the Institutional Review Boards of San Diego State University 

and University of California San Diego. Assent and informed consent were obtained from all 

participants and their caregivers.  

MRI Data Acquisition 

Imaging data were acquired at the University of California San Diego Center for 

Functional MRI using a GE 3 Tesla Discovery MR750 scanner with an 8-channel head coil. A 

standard Fast Spoiled Gradient-Echo T1-weighted sequence (172 slices; repetition time [TR] = 

8.136; echo time [TE] = 3.172ms; field of view [FOV] = 256 x 256mm; flip angle = 8°; 1mm3 

resolution) was used for the collection of high-resolution structural images. Functional T2*-

weighted images were acquired using a single-shot gradient-recalled, echo-planar imaging pulse 

sequence of 180 whole brain volumes (TR = 2000ms; TE = 30ms; FOV = 220mm; flip angle = 

90°, 64 x 64 matrix, 3.4mm3 resolution, 42 axial slices covering the whole brain). During the 6-

minute resting state fMRI scan, participants were shown a white crosshair centered on a black 

screen. They were instructed to fixate on the crosshair, relax, and let their mind wander. 

Participants were video monitored for wakefulness and compliance with instructions.  

fMRI Data Preprocessing 

Functional MRI data were preprocessed using Analysis of Functional NeuroImages 

(AFNI v16.2.13; R. W. Cox, 1996) following a standard pipeline for reconstruction, slice-time-, 

motion-, and field-map-correction. Structural images were normalized to template space from 

Montreal Neurological Institute (MNI-152) and segmented into white matter, grey matter, and 

cerebrospinal fluid using FreeSurfer (v5.3; Dale, Fischl, & Sereno, 1999). The segmented maps 

were then eroded by 1 voxel. Functional images were co-registered to preprocessed structural 
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images then transformed to 3mm isotropic voxels. Functional data were spatially smoothed using 

a Gaussian kernel of 6mm full-width half-maximum. Time-series were high-pass filtered (f > 

0.008Hz) using a Butterworth filter. Six rigid-body motion parameters, white matter, CSF, and 

their first-order temporal derivatives were also high-pass filtered and used as nuisance 

regressors. Root-mean-squared-displacement (RMSD), calculated from the six motion 

parameters, was used as an estimate of in-scanner head motion. Time-points with frame-wise 

displacement greater than 0.5mm and the two subsequent time-points were censored. Blocks of 

time-series with fewer than 10 consecutive time-points were also censored. All included 

participants had at least 80% of remaining time-points. Data were visually assessed for quality at 

each step of preprocessing. 

Language Network Identification 

Several steps were taken to identify data-driven regions of interest (ROIs) related to the 

language network. First, the meta-analysis association map for the term “language” was obtained 

from NeuroSynth.org. Next, to ensure fit with our sample, a group independent component 

analysis (ICA) of preprocessed resting state fMRI data, combining both ASD and TD groups, 

was carried out using FSL’s Multivariate Exploratory Linear Optimized Decomposition into 

Independent Components (MELODIC). MELODIC automatically estimated 36 components 

from the combined resting state data. For ICA components with spatial correlation r > 0.2 with 

the NeuroSynth language map, areas of 100% grey matter overlap between the ICA component 

and NeuroSynth language map were extracted and thresholded to a maximum of 100 voxels. 

This resulted in eight ROIs (Figure 2.1A). Average BOLD time-series were extracted from each 

ROI and Pearson correlated with the time course from each other ROI. Resulting values were 
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transformed to Fisher’s z scores, for a total of 28 ROI-ROI FC estimates reflecting each 

participant’s language network iFC pattern.  

Heterogeneity Analyses 

First, between-group language FC comparisons were carried out using independent-

samples t-tests, with correction for multiple comparisons using false discovery rate (FDR; 

Benjamini & Hochberg, 1995). Next, within-group similarity for ASD and TD groups was 

evaluated by correlating each participant’s full set of iFC estimates with those of every other 

subject. The resulting similarity matrix was averaged across columns, yielding a single measure 

of within-group language network similarity for each participant. Mean similarity scores were 

then compared between groups using independent-samples t-tests.  

Subgroup Analysis 

To conserve power for subgroup analysis, each participant’s language network pattern 

was dimensionally reduced using T-Distributed Stochastic Neighbor Embedding (T-Sne; van der 

Maarten & Hinton, 2008). This method was chosen as it allows for nonlinear dimension 

reduction while preserving local structure. MPlus (version 8; Muthén & Muthén, 1998-2011) 

was then used to conduct a latent profile analysis of the T-Sne transformed language network 

connectivity patterns from each ASD participant to derive ASD language subgroups. The ASD 

group was split into smaller subgroups iteratively until a best fit solution was found. Subgroup 

solutions were evaluated with the following fit indices: Akaike Information Criterion (Akaike, 

1974), Bayesian Information Criterion (Schwarz, 1978), sample size-adjusted BIC (Sclove, 

1987), and entropy (Ramaswamy et al., 1993). In addition, Lo–Mendell–Ruben Adjusted 

Likelihood Ratio Test (Lo et al., 2001) and Bootstrapped Likelihood Ratio Test (Arminger et al., 

1999; McLachlan et al., 2000) were used to compare fit between models (i.e., k subgroups vs k-1 
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subgroups) to ensure parsimony in model solution. Language network iFC matrices of the ASD 

subgroups were then each compared to the TD group using one-way analysis of variance 

(ANOVA) to identify the differences in network organization between ASD subgroups. Finally, 

the subgroups were characterized with respect to intellectual abilities, symptom severity, and 

language abilities. The subgroups and TD group were compared on behavioral measures using 

one-way ANOVA, with multiple comparison adjustment using Tukey's honest significant 

difference test (Tukey’s HSD) and, when appropriate, Games-Howell post-hoc test (GH).  

RESULTS 

Heterogeneity Analysis 

Between-group comparisons of language network iFC did not reveal significant 

differences for any of the 28 ROI-ROI pairings [all pFDR>0.84]. However, the ASD group 

exhibited significantly lower within-group language network similarity than the TD group 

[Figure 2.1B, t(127)=-3.08, p=0.003, Cohen’s d=0.55], meaning that heterogeneity across ASD 

participants was greater than across TD participants.  

Subgroup Classification 

Latent profile analysis of the dimensionally reduced language network iFC resulted in a 

best-fit solution that consisted of three ASD subgroups (Table 2.2). The subgroups (ASD1-3) 

included 20, 30, and 19 participants, respectively. Classification probability for the most likely 

latent class membership within each subgroup varied between 83%-95%. The subgroups did not 

differ on head motion, age, gender, handedness, IQ, or medication status (all ps>0.32; Table 2.3). 

The subgroups displayed different iFC patterns in comparisons between each another and with 

the TD group for 19 out of 28 language ROI pairs [Fs(3, 125)>4.2, ps<0.01]. Post-hoc tests 
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showed that while ASD1 did not differ significantly in iFC pattern from the TD group, after 

correcting for multiple comparisons, ASD2 and ASD3 were characterized by broad patterns of 

underconnectivity and overconnectivity, respectively, compared to the TD group (Figure 2.1C).  

Behavioral Characteristics 

Subgroups differed significantly on CELF Expressive Language scores [F(3, 97)=6.63, 

p<0.001], which were driven mostly by difference between the TD group and ASD1 and ASD3 

[GH p=0.013, p=0.01, respectively, Figure 2.1D]. There were also marginally lower Receptive 

Language scores in ASD3 when compared to TD participants [GH p=0.083]. None of the post-

hoc comparisons between the ASD subgroups yielded significant findings [Fs(2, 66)<1.43, 

ps>0.25; Table 2.3].  

DISCUSSION 

The present study examined language network iFC and heterogeneity using data-driven 

methods. While there were no significant group differences in iFC, the ASD group showed 

atypically increased within-group heterogeneity. Absence of iFC findings at the whole-group 

level was elucidated by latent profile analysis, which revealed three ASD subgroups with distinct 

language network iFC. Two of these subgroups showed robust differences from the TD group, 

characterized by broad under- and over-connectivity, respectively. Language abilities did not 

differ significantly between ASD subgroups, but were overall reduced in comparison with the 

TD group.  

No FC differences at the whole-group level 

Despite significant differences in CELF scores and VIQ, we found no differences in 

language network iFC at the level of whole groups. This contrasts with some previous reports in 
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smaller samples (<20 participants per group; Gaffrey et al., 2007; Knaus et al., 2008; Shen et al., 

2012; Verly et al., 2014). The lack of group findings in the current study may be explained, in 

part, by methodological differences (e.g., in location and size of language network ROIs). For 

instance,  between-group differences were previously observed in connections between language 

regions and areas outside the canonical language network such as visual areas (Gaffrey et al., 

2007; Gao et al., 2019; Kana et al., 2006; Knaus et al., 2008; Shen et al., 2012) and default mode 

regions (Gao et al., 2019; Zhao et al., 2016) that were not included in the current analyses. No 

iFC differences were found between language regions in this study, despite the use of data-

driven ROIs and the larger sample size. While this may be in part related to methodological 

advances, including improved motion control and tight group matching, interindividual 

variability of language network organization in ASD likely contributed to the lack of robust 

findings at the whole-group level. 

Increased heterogeneity of language network FC in ASD 

Language network heterogeneity was significantly greater within the ASD group than 

within the TD group. The severity and nature of presenting symptoms as well as the method and 

timing of interventions vary greatly within the ASD population. There is also growing evidence 

of a diversity of potential genetic and epigenetic causes as well as etiological pathways in ASD 

(Geschwind & State, 2015). It is therefore no surprise to also find neurobiological differences 

within this highly heterogenous population. Some studies have reported that individuals with 

ASD are more likely to exhibit individually unique or ‘idiosyncratic’ connectivity patterns 

(Hahamy et al., 2015; Nunes et al., 2019). Our findings suggest that while the ASD population 

exhibits higher within-group FC heterogeneity and idiosyncrasy than their neurotypical peers, 

there are clusters of relatively homogenous FC patterns that characterize ASD subgroups.  
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Distinct subtypes of language FC 

Some recent studies have pursued FC-derived ASD neurophenotypes (Easson et al., 

2017; Kernbach et al., 2018; Tang et al., 2019; Urchs et al., 2020), using a variety of supervised 

and unsupervised data-driven techniques across a range of functional networks. However, none 

have specifically examined the language network. The present study utilized latent profile 

analysis of language network FC dimensions and revealed three ASD subgroups: one that was 

similar to the TD group, and two that exhibited broad under- and overconnectivity compared to 

each other, as well as in comparison to the TD group. The FC patterns of these latter subgroups 

are reminiscent of the longstanding debate of general underconnectivity vs. overconnectivity in 

the ASD FC literature. While diverse accounts of the inconsistencies have been proposed, 

relating to developmental trajectories (Nomi & Uddin, 2015; Uddin et al., 2013), motion artifact 

(Deen & Pelphrey, 2012), and other methodological differences (Müller et al., 2011; Nair et al., 

2014), our findings suggest that the existence of subgroups with divergent FC patterns may 

further contribute to conflicting results. This may specifically apply to studies with small 

samples that have dominated the ASD literature on language FC, due to chance variations in 

cohort composition. 

ASD subgroups with broad under- vs. over-connectivity 

FC-derived subgroups characterized by under- or overconnectivity have been identified 

by other research groups. Easson and colleagues (2019) identified two ASD subgroups using k-

means clustering of combined static and dynamic FC. They found one subgroup that displayed 

greater within network and lower outside-network static FC with increased temporal stability of 

dynamic FC, while the second subgroup displayed the opposite pattern. Both subgroups showed 

greater within network static FC (i.e. in the occipital network) compared to TD participants. 



 58 
 

However, this study did not focus on language networks. Another group (Urchs et al., 2020) 

utilized hierarchical agglomerative clustering of dissimilarity matrices for FC network maps and 

found 11 FC subtypes that were then divided into “risk” and “protective” with respect to ASD 

diagnosis. The protective subtypes were characterized by overconnectivity in unimodal sensory 

and motor networks (including auditory network) and greater convergence of FC alterations. The 

risk subtypes displayed pervasive underconnectivity and more variability between subtypes. Our 

findings support the existence of subgroups characterized by broad overconnectivity and 

underconnectivity specifically for language networks. However, we found no significant 

differences in diagnostic scores between subgroups that would indicate autism-specific 

protective or risk factors associated with the divergent FC patterns.  

ASD subgroups with distinct FC profiles are similar behaviorally 

Despite distinct language network FC patterns, the three ASD subtypes did not differ in 

symptom severity or behavioral language measures. They did however differ in language 

abilities from the TD group. The lack of differences between ASD subtypes may be attributed to 

insufficient power from small subgroup sample size. Others have also found ASD subgroups 

with distinct FC that did not differ in symptomatology (Easson et al., 2019). This suggests that 

diverse network FC patterns (as identified in our three ASD subgroups) may converge at the 

behavioral level with respect to sociocommunicative core symptomatology and reduced language 

abilities. 

Limitations 

In order to preserve power with a large number of FC variables, we utilized dimensional 

reduction (T-Sne). Although this technique is able to maintain local structure at high 

dimensionality (Maaten, 2009), it may not preserve all relevant information included in full FC 
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matrices. In addition, stringent criteria of data quality and group matching reduced our total 

sample, and relatively small subgroup sample sizes may have prevented detection of clinical and 

language differences. Finally, the present study divided participants into categorical subtypes 

while other studies have suggested the existence of dynamic or continuous models of FC 

subtypes (Tang et al., 2019; Urchs et al., 2020). The use of soft clustering or membership criteria 

could be explored in future studies.  

Conclusions 

We find evidence of heterogeneity in functional connectivity of the language network 

within ASD. Two ASD subgroups characterized by broad language network under- vs. 

overconnectivity were identified, utilizing unsupervised statistical learning. However, distinct FC 

profiles were not linked to significant differences in language ability or symptom severity 

between subgroups.  

Chapter 2, in full, is currently being prepared for submission for publication. Gao, Y., 

Linke, A. C., Mash, L. E., Fong, C. H., Alemu, K., Pastrana, J., Helm, J. L., Fishman, I., and 

Müller, R.-A. The dissertation author was the primary investigator and author of this paper. 
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Table 2.1. Participant demographics 
 

 ASD (n = 69) TD (n =60) Statistic p-values 

Gender 11 female  14 female X2 (1) = 1.122 0.289 
Handedness 9 left 8 left X2 (1) = 0.002 0.961 

 Mean 
(SD) Range Mean 

(SD) Range   

Age in years 13.2 (2.7) 8.0-18.0 13.1 (2.8) 6.9-17.6 t(127)= 0.34 0.73 
Head Motion       

RMSD pre-censoring 0.076 
(0.03) 0.02-0.16 0.081 

(0.09) 0.02-0.16 t(127)= -0.47 0.64 

RMSD after 
censoring 

0.003 
(0.002) 0.00-0.01 0.003 

(0.002) 0.00-0.01 t(127)= 0.71 0.48 

Post-censoring TP 175.4 
(6.4) 150-180 176.7 

(6.2) 146-180 t(127)= -1.04 0.29 

WASI-II        
 Verbal IQ 100 (18) 67-147 108 (10) 78-133 t(127)= -2.82 0.005 
 Nonverbal IQ 103 (17) 53-140 106 (13) 62-137 t(127)= -1.17 0.242 
 Full-scale IQ 102 (16) 64-141 108 (11) 79-132 t(127)= -2.18 0.031 
CELF-4*           
 Core Language 93 (21) 40-120 110 (13) 62-127 t(99)= -4.732 <0.001 
 Receptive 93 (20) 42-131 104 (14) 60-128 t(99)= -3.09 0.003 
 Expressive 90 (21) 29-120 108 (12) 67-130 t(99)= -4.83 <0.001 
SRS-2 Total 77 (9) 60-101 43 (4) 37-58 t(99)= 24.88 <0.001 

ADOS-2�            
 Social Affect 10.2 (3.8) 4-20 -- --    
 Repetitive Behavior 3.0 (2.0) 0-8 -- --    
 Total 13.2 (4.3) 5-24 -- --    
 Severity 7.3 (2.0) 3-10 -- --   
ADI-R       
 Social Interaction 17.9 (4.8) 6-28 -- --   
 Communication 13.5 (5.1) 2-24 -- --   
 Repetitive Behavior 5.9 (2.1) 1-12 -- --   

ASD: autism spectrum disorders; TD: typically developing; RMSD: root‐mean‐squared displacement; TP: 
Time-points (180 total time-points before censoring). * CELF-4 scores were only available for 56 ASD 
and 45 TD participants. � 23 ASD participants were assessed with Module 3 and 3 participants were 
assessed with Module 4 of the ADOS. 
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Table 2.2. Latent profile analysis subgroup model fit  
 
 AIC BIC n-Adj BIC Entropy LMRT BLRT 
2-class Solution 801 816 794 0.775 p = 0.035 p = 0.030 
3-class Solution 794 817 785 0.770 p = 0.048  p < 0.001  
4-class Solution 797 826 785 0.838 p = 0.446 p = 0.667 

AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; n-Adj BIC sample size-
adjusted Bayesian Information Criterion; LMRT: Lo–Mendell–Ruben Adjusted Likelihood Ratio Test; 
BLRT: Bootstrapped Likelihood Ratio Test.   
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Table 2.3. Subgroup demographics 
 
 ASD1 (n=20) ASD2 (n=30) ASD3 (n=19) 
Gender 4 female 3 female 4 female 
Handedness 2 left 4 left 3 left 
Medications 7 on; 13 off 11 on; 19 off 6 on; 13 off 

 Mean (SD) Range Mean (SD) Range Mean 
(SD) 

Range 

Age in years 13.6 (3.0) 8.5-17.8 13.5 (2.7) 8.0-
17.7 12.5 (2.4) 9.2-18 

Head Motion       

 RMSD pre-censoring 0.074 
(0.03) 

0.03-
0.15 

0.078 
(0.04) 

0.02-
0.16 

0.07 
(0.03) 

0.02-
0.12 

WASI       
 

 Verbal IQ 100 (14.1) 70-118 101 (19.6) 69-147 102 (18.1) 67-131 

 Nonverbal IQ 104 (19.8) 53-140 107 (14.7) 84-140 99 (18.0) 66-134 

 Full-scale IQ 103 (14.8) 66-123 104 (17.0) 76-141 101 (17.6) 64-127 

CELF-4*     
 

 Core Language 91 (22.7) 52-120 96 (24.3) 40-120 93 (16.3) 50-117 

 Receptive 94 (21.8) 54-131 93 (23.1) 42-119 94 (13.4) 54-107 

 Expressive 87 (22.2) 51-118 93 (24.2) 29-120 92 (12.4) 55-114 

SRS-2 Total 78 (9.2) 60-95 77 (10.0) 62-101 76 (7.5) 62-89 

ADOS-2      
 

 Social Affect 10.4 (3.9) 6-20 10.7 (3.5) 5-16 9.5 (4.4) 4-17 

 Repetitive Behavior 2.6 (1.8) 0-5 3.5 (2.2) 0-8 2.6 (1.9) 0-5 

 Total 12.9 (5.2) 6-24 14.1 (3.7) 5-21 12.1 (4.2) 6-18 

 Severity 6.9 (1.9) 3-10 7.7 (1.8) 3-10 6.9 (2.1) 3-10 

ADI-R       
 

 Social Interaction 17.6 (4.1) 10-22 18.7 (5.2) 6-28 16.7 (4.9) 7-25 

 Communication 13.0 (5.3) 4-22 14.1 (5.6) 2-24 13.0 (4.4) 4-19 

 Repetitive Behavior 5.3 (1.8) 2-9 6.2 (2.1) 3-11 6.2 (2.6) 1-12 
ASD1-3: autism spectrum disorders subgroups; RMSD: root‐mean‐squared displacement; *CELF-4 
scores were only available for 17 participants in ASD1, 22 in ASD2, and 17 in ASD3. There were no 
significant between subgroup differences in the above variables. 
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Table 2.4. Current psychotropic medication of Autism Spectrum Disorders (ASD) group 

 
a Includes antipsychotics and anticonvulsants; b Includes sympatholytic and antihistamine used as an 
anxiolytic; Medication information was not available for 5 ASD participants. 
  

Participant Stimulants Mood 
Stabilizers a Antidepressants Anxiolytics/ 

Others b List of Medications 

1 +    Amphetamine/dextroamphetamine 

2  +  + Aripiprazole, alprazolam, 
hydroxyzine, risperidone 

3 +  +  Methylphenidate, sertraline  
4   +  Fluoxetine 
5   +  Paroxetine 

6 + + +  Sertraline, risperidone, 
methylphenidate 

7 +   + Amphetamine/dextroamphetamine, 
guanfacine 

8 + + +  Methylphenidate, citalopram, 
risperidone  

9 +  +  Amphetamine/dextroamphetamine, 
sertraline 

10  + + + Aripiprazole, oxcarbazepine, 
clonidine, fluoxetine 

11   +  Fluoxetine 
12  +  + Ziprasidone, guanfacine  
13 +   + Lisdexamfetamine, guanfacine  
14 +  +  Lisdexamfetamine, venlafaxine  

15 +  +  Sertraline, lisdexamfetamine, 
fluvoxamine 

16 + + +  
Divalproex sodium, 
methylphenidate, fluoxetine, 
lamotrigine  

17 +  + + lisdexamfetamine, guanfacine, 
sertraline  

18   +  Escitalopram 
19    + Clonidine 
20  +   Aripiprazole  

21 +  + + Guanfacine, methylphenidate, 
fluoxetine  

22    + Unnamed anxiolytic 
23 + +   Aripiprazole, lisdexamfetamine  
24 +    Dexmethylphenidate  

25  + + + Escitalopram oxalate, guanfacine, 
aripiprazole  

Total 14 9 15 10  
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Figure 2.1. Language network iFC 
(A) Language network regions of interest derived from spatial overlap between statistical 
parametric maps from NeuroSynth (term-based meta-analysis for “language”) and group ICA 
using FSL MELODIC. lIFG1: left inferior frontal gyrus/ anterior Brodmann Area (BA) 44; 
lIFG2: left inferior frontal gyrus/ posterior BA 44; lIFG3: left inferior frontal gyrus/ BA 45; 
lIFG4: left inferior frontal gyrus/ BA 47; lSTS: left superior temporal sulcus; rSTS: right 
superior temporal sulcus; lSMA: left supplemental motor area; rIFG: right inferior frontal gyrus/ 
BA44. (B) Average within-group similarity boxplots for ASD (red) and TD (teal) groups. 
Midline represents median, hinges of the box denote first and third quartile, whiskers extend 
from quartile to the most extreme value within 1.5x of distance between first and third quartile 
(inter-quartile range). Values outside of the 1.5x inter-quartile range are shown as outliers. (C) 
Differences in language network iFC between subgroups and TD group. Glass brain depictions 
of connections of language ROI pairings with significantly lower connectivity in subgroup ASD2 
than in the TD group (blue; upper row); with significantly greater connectivity in ASD3 than in 
the TD group (red; middle row); and with reduced connectivity in ASD2, but increased 
connectivity in ASD3, compared to TD group (purple; lower row). (D) CELF-4 Core Language, 
Receptive Language, and Expressive Language index scores by ASD subgroup, in comparison to 
TD group.  
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INTRODUCTION 

 Autism spectrum disorders (ASD) are a group of heterogeneous developmental disorders 

associated with atypical brain morphology (Carper et al., 2002; Ecker et al., 2013) and structural 

connectivity (Travers et al., 2012). Numerous genes involved in neuronal proliferation, 

differentiation, and migration have been implicated in atypical cortical organization and 

developmental heterogeneity in ASD (for review see Courchesne et al., 2019; Ecker & Murphy, 

2014). Recent interest in ASD subtypes has pointed to stratification of more homogeneous 

subgroups of individuals with ASD to better account for variability in neuroanatomy and clinical 

heterogeneity. Some studies have found morphologically distinct ASD subgroups such as 

individuals that exhibiting macrocephaly (Amaral et al., 2017). In a recent neuroimaging-driven 

ASD subtyping study, Hong et al. (2017) identified subgroups characterized by differences in 

cortical thickness, surface area, grey-to-white matter tissue blurring, and geodesic distance. 

However, no group thus far has considered ASD subgroups based on language-related 

morphometry and gyrification. The aims of the present study were to 1) examine language-

related morphological and structural connectivity differences between ASD and typically 

developing (TD) children; 2) identify homogeneous subgroups of ASD participants based on 

morphological features including cortical thickness and local gyrification index of language 

regions; 3) test for subgroup differences in diffusion indices of language-related white matter 

tracks; 4) characterize subgroups by demographic and clinical measures of language and ASD 

symptomology; and 5) explore the relationship between functionally and structurally derived 

ASD subgroups. 
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METHODS 

Participants 

Study 3 used neuroimaging and behavioral data that have been continuously collected for 

the same study protocol as Studies 1 and 2, however, with additional participants added since the 

initial study. A total of 177 participants (104 ASD, 73 TD) with structural MRI (sMRI) data and 

138 (73 ASD, 65 TD) with diffusion-weighted imaging (DWI) data were included in this study 

(Table 3.1). All participants completed behavioral measures of intellectual abilities (WASI-II; 

Wechsler, 2011), handedness (Edinburgh Handedness Inventory; Oldfield, 1971), and language 

abilities (Clinical Evaluation of Language Fundamentals, CELF-4; Semel, Wiig, & Secord, 

2004). In addition, caregivers completed a questionnaire regarding ASD-related symptoms 

(Social Responsiveness Scale- Second Edition, SRS-2; Constantino & Gruber, 2012). 

Imaging Specifics 

All anatomical and diffusion images were acquired using the same 3 Tesla GE Discovery 

MR750 scanner and 8-channel head coil, as described in Studies 1-2. Anatomical images were 

collected using a T1-weighted inversion recovery fast spoiled gradient echo sequence. DWI data 

were collected using an echo planar imaging (EPI) pulse sequence, encoded for 61 non-collinear 

diffusion directions at b = 1000 s/mm2, and one at b=0 s/mm2 (TR= 8,500 ms; TE= 84.9 ms; flip 

angle= 90; FOV= 240 mm; 1.88 × 1.88 × 2 mm3 resolution). Field map images were collected 

with the same spatial resolution to correct for geometric distortions induced by field 

inhomogeneities.  

Anatomical processing including cortical reconstruction, normalization to MNI space, 

segmentation of gray/white matter boundaries (white matter surface) and gray 

matter/cerebrospinal fluid boundaries (pial surface), and polygonal tessellation (Fischl et al., 
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2001) were completed using FreeSurfer (Dale et al., 1998). All FreeSurfer output was examined 

on a slice-by-slice basis to identify inaccuracies in surface placement, which were corrected with 

white matter control points as needed and then reassessed for accuracy. Scans that showed 

persistent inaccuracies were excluded, as were those with major artifacts, such as ghosting or 

ringing. 

DWI processing included automatic reconstruction of white matter tracts and extraction 

of tensor-based indices (e.g., mean diffusivity) using TRActs Constrained by UnderLying 

Anatomy (TRACULA; Yendiki et al., 2011), FMRIB Software Library (FSL; Smith et al., 

2004), and FreeSurfer. Susceptibility distortions caused by phase encoding direction were 

corrected using a fieldmap (fugue). FSL’s eddy_correct was used to correct for eddy current-

induced distortions and inter-volume head movement. Participant motion were measured by 

average volume-by-volume rotation and average volume-by-volume translation (Yendiki et al., 

2014). TRACULA used each participant’s FreeSurfer anatomical parcellation and segmentation, 

probabilistic tractography (FSL BEDPOSTX; Behrens et al., 2003, 2007), as well as a prior 

anatomical learning dataset to label and reconstruct 18 white matter tracts. Average diffusion 

indices for each tract were weighted by the tract’s per-voxel probability. Each participant’s 

reconstructed white matter tracts were visually inspected by at least two independent raters for 

severity of signal dropout and proper vector orientation. Tracts that failed to reconstruct or were 

severely malformed were removed from analyses.  

Language Anatomical Variables 

Language network region of interests (ROIs) derived from a combination of group 

independent component analysis (ICA) of resting state fMRI data and NeuroSynth meta-analysis 

association map for the term “language” from Study 2 were adopted for sMRI measures in the 
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present study. These volumetric ROIs were transformed into surfaces, resampled onto fsaverage, 

and registered to each individual participant’s native surface space to extract morphometric 

variables. Anatomical variables included cortical thickness (CT) and local gyrification index 

(lGI), a ratio of surface area within sulcal fold relative to the surface area of the outer cortical 

hull, extracted from the aforementioned ROIs.  

Diffusion features included fractional anisotropy (FA), as well as mean, radial, and axial 

diffusivity (MD, RD, AD) of two major tracts considered critical for language processing, the 

arcuate and uncinate fasciculi (Catani & Mesulam, 2008; Parker et al., 2005). In addition, the 

inferior longitudinal fasciculus was included, given connections between temporal and visual 

regions, which have previously been implicated in language processing in individuals with ASD 

(Gaffrey et al., 2007; Kana et al., 2006). All structural and diffusion variables were normalized to 

z-scores and compared between ASD and TD groups using independent-sample t-tests. False 

discovery rate (FDR) was used to correct for multiple comparisons. 

sMRI Subgroup Analysis 

As in Study 2, a combination of CT and lGI of each ROI was dimensionally reduced 

using T-Sne (van der Maarten & Hinton, 2008) to conserve power for subgroup analysis. Latent 

profile analysis (LPA) of these T-Sne language morphology dimensions was carried out using 

MPlus (version 8; Muthén & Muthén, 1998-2011) to derive ASD language morphology 

subgroups. The number of ASD subgroups was iteratively increased until a best fit solution was 

found. Subgroup solutions were evaluated based on Akaike Information Criterion (AIC; Akaike, 

1974), Bayesian Information Criterion (BIC; Schwarz, 1978), sample size-adjusted BIC (nBIC; 

Sclove, 1987), and entropy (Ramaswamy et al., 1993), Lo–Mendell–Ruben Adjusted Likelihood 

Ratio Test (LMRT; Lo et al., 2001), and Bootstrapped Likelihood Ratio Test (BLRT; Arminger 
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et al., 1999; McLachlan et al., 2000). Multivariate analysis of covariance (MANCOVA) was 

used to identify specific language network morphological differences between subgroups and TD 

participants, while controlling for effects of Total Brain Volume (TBV). TBV was used as a 

covariate to control for individual variability in brain size. Similarly, four different MANCOVA 

models were used for each of the diffusion indices (FA, AD, RD, MD) for the three bilateral 

white matter tracks, while controlling for the effects of motion. False Discovery Rate was used to 

correct for multiple comparisons across models. Finally, the subgroups were characterized with 

respect to intellectual abilities, symptom severity, and language abilities using one-way 

ANOVA, with multiple comparison adjustment using Tukey's honest significant difference test 

(Tukey’s HSD) and, when appropriate, Games-Howell post-hoc test (GH).  

Comparisons with Functional Subgroups 

To further explore relationships between functional subgroups and anatomical language 

features, multinomial logistic regressions were employed to statistically predict iFC subgroup 

membership in Study 2 from language morphology dimensions (T-Sne reduced dimensions of 

CT and lGI). Associations between functionally- and structurally derived subgroup memberships 

were assessed using cross-tabulation Chi-squared tests. The iFC-derived subgroups (fASD1-3) 

were further examined by direct between-subgroup comparisons of individual anatomical (i.e., 

CT, lGI) and diffusion indices using MANCOVA, while controlling for the effects of TBV and 

motion, respectively. 

RESULTS 

Comparison at the whole-group level (ASD vs. TD) did not reveal significant differences 

in cortical thickness or lGI (pFDR> 0.95) in any of the language ROIs. There were also no 



 
80 
 

significant group differences in diffusion indices of the uncinate, arcuate, or inferior longitudinal 

fasciculi, after controlling for motion (pFDR> 0.98).  

ASD subgrouping based on anatomical features 

Latent profile analysis of T-Sne-derived structural dimensions of language ROIs 

(including lGI and cortical thickness) revealed a best fit solution consisting of three ASD 

subgroups (DAIC= 8.7; DBIC= 0.8; DnBIC= 10.3; entropy= 0.69; LMRT=13.8, p= 0.08; BLRT= 

14.8, p< 0.001; Table 3.2). The subgroups (sASD1-3) included 27, 36, and 41 participants, 

respectively. The classification probability of most likely latent class membership for each 

subgroup ranged from 85% to 88%. The subgroups differed in cortical thickness from each other 

and from the TD group in all six left hemisphere language regions (Table 3.3, ps< 0.01), after 

controlling for total brain volume (TBV). The differences were mostly driven by higher cortical 

thickness in sASD3 in five of six regions, and significantly lower cortical thickness in sASD1 in 

Brodmann Area 47 (BA 47; Figure 3.1A). Similarly, there was a significant effect of subgroup 

membership on lGI in six out of eight language regions (Table 3.3, ps< 0.05). In all six regions, 

sASD1 displayed significantly higher gyrification than the other subgroups and TD peers (Figure 

3.1B).  

Comparison of Subgroups between Imaging Modalities 

There was no significant association of subgroup membership between functionally- and 

morphologically-derived ASD subgroups (𝜒2(4)= 1.44, p= 0.84). Structural dimensions did not 

significantly predict functional subgroup membership (ps> 0.12). However, the iFC-derived 

subgroups did exhibit some differences in language region morphology. The functionally-

derived subgroups showed a significant difference in cortical thickness in BA 44 (F(2, 55)= 4.16, 

p= 0.02) and BA 45 (F(2, 55) = 3.25, p= 0.05), after controlling for TBV. In both cases, fASD3 
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exhibited higher cortical thickness. There was also a significant between-subgroup effect on lGI 

of BA 47 (F(2, 55)= 4.60, p= 0.01), after controlling for TBV; largely driven by the difference in 

gyrification between fASD1 and fASD3. The morphologically-defined ASD subgroups did not 

differ in iFC between language regions (pFDR> 0.92). There was no relationship between ASD 

subtypes (iFC or structural) and diffusion indices of language-related white matter tracts. 

Behavioral Characteristics 

The subgroups displayed trending difference in communicational symptoms (SRS-2 

Social Communication subscale score, p= 0.06; Table 3.4), mostly driven by lower scores in 

sASD2. In addition, the subgroups showed a marginal difference in language abilities (CELF-4 

Core Language, F(2, 74)= 2.62, p= 0.08; CELF-4 Receptive Language, F(2, 74)= 2.64, p= 0.08; 

CELF-4 Expressive Language, F(2, 74)= 2.41, p= 0.10) with marginally lower language abilities 

in sASD1 (Table 3.3). The subgroups did not differ in gender, non-verbal intelligence, or 

medication status (ps> 0.27; see Table 3.5 for participant medications). However, the participants 

in sASD2 were significantly older than the participants in the two other subgroups (ps< 0.05). 

CONCLUSION 

 Our study examined language-related neuroanatomical and structural connectivity in 

ASD. We did not find differences between ASD and TD cohorts at the whole-group level. 

However, when ASD participants were divided into more homogeneous subgroups, three distinct 

patterns of cortical morphology emerged: sASD1 characterized by greater gyrification and worse 

language abilities, sASD2 composed of older participants with less severe sociocommunicative 

symptoms, and sASD3 differentiated by increased cortical thickness. Our results suggest 

increased gyrification (which could be caused by regionally diverging rates of neuroproliferation 

as well as differing cortical architecture and degree of axonal tension (Ronan & Fletcher, 2015)) 
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within language regions could be detrimental to development of language abilities. The existence 

of sASD2 indicates a need for further investigation into age-related trajectories of structural 

brain development in children and adolescents with ASD. Our finding of sASD3 was consistent 

with a previous report by Hong et al. (2017) of an ASD subgroup with greater cortical thickness, 

suggesting that such a variant may be relatively prevalent within the larger ASD population. 

These subgroups of independent neuroanatomical features in language regions indicate 

divergence of cortical development such as neuroproliferation, dendritogenesis (Shaw et al., 

2008), and myelination (Deoni et al., 2015) within the ASD population. 

Chapter 3 is currently being prepared for submission for publication. Gao, Y., Kohli, J. 

S., Schadler, A. J., Fong, C. H., Solders, S. K., Baggett, N., Ortega, M., Alemu, K., Pastrana, J., 

Hau, J., Linke, A. C., Helm, J. L., Fishman, I., Carper, R. A., & Müller, R.-A. The dissertation 

author was the primary investigator and author of this paper.  
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Table 3.1. Participant characteristics 

  ASD (n = 104) TD (n = 73) Statistic p-values 

Gender 20 female 15 female X2 (3) = .74 .69 

Handedness 13 left 8 left X2 (3) = 2.29 .52 

  Mean (SD) Range Mean (SD) Range   
Age in years 12.7 (2.9) 7.3-18.1 12.9 (2.8) 6.9-18.5 t(175)= -.35 .73 
Head Motiona       
Average 
Translation .88 (.23) .41-1.81 .83 (.22) .47-1.75 t(130)= 1.25 .22 

Average 
Rotation .005 (.003) .002-.014 .004 (.002) .002-.014 t(130)= 1.63 .11 

WASI-IIb        
 Verbal IQ 98 (20) 45-147 107 (12) 73-147 t(173)= -3.71 < .001 
 Nonverbal IQ 102 (18) 53-145 105 (13) 62-137 t(173)= -1.39 .17 
 Full-scale IQ 100 (18) 59-141 107 (12) 79-141 t(173)= -2.82 .005 
CELF-4c       
 Core Language 91 (24) 40-127 109 (14) 58-129 t(128)= -5.43 <.001 
 Receptive 91 (22) 42-131 104 (14) 60-128 t(128)= -3.87 <.001 
 Expressive 90 (23) 29-130 106 (14) 61-130 t(128)= -4.95 <.001 
SRS-2 Totald 77 (11) 55-101 45 (6) 37-79 t(152)= 23.74 <.001 
ADOS-2       
 Social Affect 10.7 (4.3) 1-20 -- --   
 Repetitive 
Behavior 3.0 (2.1) 0-11 -- --   

 Total 13.6 (4.9) 3-25 -- --   
 Severity 7.3 (2.1) 1-10 -- --   
ADI-R       
 Social 
Interaction 18.7 (4.9) 6-28 -- --   

 Communication 14.3 (5.3) 2-25 -- --   
 Repetitive 
Behavior 

6.0 (2.1) 1-12 -- --   

ASD: autism spectrum disorders; TD: typically developing; a Head Motion measures were only 
available for 73 ASD and 59 TD participants; b IQ scores were available for 102 ASD and 73 
TD participants; c CELF-4 scores were available for 75 ASD and 55 TD participants; d Social 
Responsiveness Scale-2 Total scores were available for 92 ASD and 62 TD participants. 
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Table 3.2. Latent profile analysis subgroup model fit  

 AIC BIC n-Adj BIC Entropy LMRT BLRT 
2-class Solution 904 922 900 0.580 p = 0.170 p = 0.267 
3-class Solution 895 922 890 0.687 p = 0.079  p < 0.001  
4-class Solution 898 932 891 0.713 p = 0.412 p = 0.667 

AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; n-Adj BIC sample size-
adjusted Bayesian Information Criterion; LMRT: Lo–Mendell–Ruben Adjusted Likelihood Ratio Test; 
BLRT: Bootstrapped Likelihood Ratio Test.  
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Table 3.4. Clinical characteristics between subgroups 

sASD1-3: structurally derived ASD subgroups 1-3. * Main effect of subgroup significant at  
p< 0.05; ° Marginally significant effect of subgroup at p< 0.10. sASD2+ participants were 
significantly older than participants from the two other subgroups at ps< 0.05, after correcting for 
multiple comparisons. † Marginally significant difference between subgroups (p< 0.10) in post-
hoc comparison, after correcting for multiple comparisons.   
  

  sASD1 (n=27) sASD2 (n=36) sASD3 (n=41)  
Gender 4 female 5 female 11 female p= 0.24 
Handedness 4 left 2 left 7 left p= 0.22 
Medications 6 on; 21 off 10 on; 26 off 15 on; 26 off p= 0.47 
  Mean  SD Mean  SD Mean  SD Post-hoc 

Age in years* 12.3 2.8 14.1 2.6 11.9 2.8 sASD2+ 

WASI-II         
 Verbal IQ 96 25 101 20 97 17  
 Nonverbal IQ 102 18 100 19 104 18  
 Full-scale IQ 99 22 101 18 101 17  
CELF-4       
 Core Language° 80 29 95 23 94 19 sASD1<sASD2† 
 Receptive° 81 24 95 22 94 20  
 Expressive° 80 28 94 21 93 20  
SRS-2        
 Total 78 10 74 9 78 12  
 Social 
Communication° 

77 11 72 9 78 11 sASD2<sASD3† 

ADOS-2        
 Social Affect 12.1 4.4 10.4 4.0 10.2 4.3  
 Repetitive 
Behavior 3.1 1.7 3.3 2.2 2.8 2.2  

 Total 15.4 4.9 13.4 4.9 12.7 4.8  
 Severity 8.1 1.6 7.2 2.2 6.9 2.3  
ADI-R         
 Social Interaction 17.9 4.7 18.4 5.8 19.5 4.2  
 Communication 13.9 6.3 13.8 5.0 15.1 4.8  
 Repetitive 
Behavior 

5.8 2.3 6.2 1.8 6.0 2.2  
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Table 3.5. Current psychotropic medication of Autism Spectrum Disorders (ASD) group 

a Includes antipsychotics and anticonvulsants; b Includes sympatholytic and antihistamine used as an anxiolytic;  
Medication status information were not available for 12 of 104 ASD participants.  

Participant Stimulants Mood  
Stabilizersa Antidepressants Anxiolytics/ 

Othersb List of Medications 

1 +    Amphetamine/dextroamphetamine 

2  +  + Aripiprazole, alprazolam, 
hydroxyzine, risperidone 

3 +  +  Methylphenidate, sertraline  
4   +  Paroxetine 

5 + + +  Sertraline, risperidone, 
methylphenidate 

6 +   + Amphetamine/dextroamphetamine, 
guanfacine 

7 + + +  Methylphenidate, citalopram, 
risperidone  

8 +  +  Amphetamine/dextroamphetamine, 
sertraline 

9  + + + Aripiprazole, oxcarbazepine, 
clonidine, fluoxetine 

10   +  Fluoxetine 

11 + + +  
Sertraline, 
amphetamine/dextroamphetamine, 
lamotrigine 

12  +  + Ziprasidone, guanfacine  
13 +  +  Lisdexamfetamine, venlafaxine  

14 +  +  Sertraline, lisdexamfetamine, 
fluvoxamine 

15 + + +  
Divalproex sodium, 
methylphenidate, fluoxetine, 
lamotrigine  

16 +  + + Lisdexamfetamine, guanfacine, 
sertraline   

17   +  Escitalopram  
18  +   Aripiprazole  

19 +  + + Guanfacine, methylphenidate, 
fluoxetine  

20    + Unnamed anxiolytic 
21    + Guanfacine 
22 + +   Aripiprazole, lisdexamfetamine  
23 +    Dextroamphetamine 
24  +   Lamotrigine, aripiprazole 
25    + Guanfacine 
26 +  +  Methylphenidate, citalopram 
27   + + Sertraline, guanfacine 

28  +   Aripiprazole, risperidone, 
quetiapine 

29  +  + Lithium, buspirone, risperidone 
30 +    Dexmethylphenidate  

31  + + + Escitalopram, guanfacine, 
aripiprazole  

Total 16 13 17 12  
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Figure 3.1. Between group morphological differences  

(A) Cortical thickness boxplots for sMRI-derived ASD subgroup 1 (sASD1; teal), subgroup 2 
(sASD2; yellow), subgroup 3 (sASD3; lavender), and TD group (red). Boxplot midline denotes 
median with hinges of the box representing first and third quartile. Trailing dots represent 
outliers for each region outside of 1.5x inter-quartile range. lIFG1: left inferior frontal gyrus/ 
anterior Brodmann Area (BA) 44; lIFG2: left inferior frontal gyrus/ posterior BA 44; lIFG3: left 
inferior frontal gyrus/ BA 45; lIFG4: left inferior frontal gyrus/ BA 47; lSTS: left superior 
temporal sulcus; rSTS: right superior temporal sulcus; lSMA: left supplemental motor area; 
rIFG: right inferior frontal gyrus/ BA44. (B) Local gyrification index boxplots. 
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DISSERTATION CONCLUSION 

Summary of findings  

 
The three studies of this dissertation explored the functional, and structural neuroanatomy 

of the language network, with specific focus on heterogeneity and interindividual variability, in 

children with ASD, using multimodal neuroimaging. Study 1 examined iFC within the language 

network and between language areas and other brain regions (seed-to-whole brain analysis) in 

children with ASD, using an extensive set of language regions adapted from a meta-analysis of 

54 neuroimaging studies of language comprehension (Rodd et al., 2015). We found overall 

increased iFC within the language network in addition to increased connectivity between 

language regions, PCC, and visual regions in the ASD group, in comparison to TD peers. While 

effects of diagnostic status were modest at the whole-group level, a subgroup of ASD 

participants showed a distinctive pattern of PCC-mediated iFC between frontal language region 

and visual cortex, identifying the need for further investigation of heterogeneity of the language 

network in ASD.  

 This investigation was pursued in Study 2. The language regions in Study 2 differed from 

Study 1 for the purpose of developing data-driven ROIs from a wider range of neuroimaging 

studies (beyond language comprehension ROIs from Study 1), and those that better fit school-

age participants. Although Study 2 included a larger sample than Study 1, no significant iFC 

differences at the whole-group level were detected, which is remarkable given several previous 

studies with ASD smaller samples reporting significant language FC differences from TD peers. 

However, we found significantly higher within-group heterogeneity of language network iFC in 

the ASD group. LPA of iFC dimensions resulted in three ASD subgroups, with distinct patterns 

of language network iFC. Two of the subgroups showed opposite patterns of connectivity 
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(under- vs. overconnectivity), which likely explains overall absence of effects at the whole-group 

level. While all three subgroups exhibited lower language abilities than TD participants, no 

significant differences in symptom severity or language skills between the subgroups were 

detected, possibly due to limited statistical power in relatively small subgroups.  

In Study 3, we combined sMRI and DWI to better understand ASD language subtypes. 

Similar to Study 2, at the whole-group level, ASD participants did not differ significantly from 

their TD peers in CT or lGI of language regions. However, after the ASD group was partitioned 

using LPA of morphological dimensions, three subgroups emerged that differed from one 

another as well as from the TD group. These subgroups differed in age and marginally in 

language abilities and sociocommunicative symptoms. Interestingly, diffusion indices of 

language-related white matter tracts did not differ between subgroups in either the functionally-

derived nor the morphologically-derived subgroups. 

General conclusions 

 
Taken together, the three studies expanded on previous reports of atypical increased FC 

of language network with visual regions (Knaus et al., 2008; Pang et al., 2016) and DMN (Zhao 

et al., 2016) as well as increased FC variability (Hahamy et al., 2015; Nunes et al., 2019) in 

ASD. Strikingly, even with an improved ROI scheme and expanded sample size, we were not 

able to detect between-group differences in language network iFC, morphology, or structural 

connectivity. Conversely, when the ASD group was parsed into more homogeneous subgroups, a 

clear picture of varied language network ASD subtypes emerged. The existence of ASD 

subgroups composed of markedly different patterns of iFC and morphology may explain some of 

the inconsistencies seen in the ASD imaging studies, such as the longstanding debate of 

underconnectivity (Just et al., 2004; Verly et al., 2014) vs. overconnectivity (Lee et al., 2017; 
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Supekar et al., 2013) in ASD FC literature. These findings indicate that by using a one-size-fits-

all approach to ASD research, much of the intricacies in underlying neurobiology of language is 

lost to the noise within a heterogeneous population. While there has been an interest in studying 

distinct ASD subsets, the existing literature has mostly relied on traditional group-level 

comparisons (Hull et al., 2017), thus failing to account for the known heterogeneity and likely 

missing critical differences that account for symptomatology in ASD individuals. 

Comparing the findings from Studies 2 and 3, fMRI and sMRI modalities yielded 

different subgroup clusterings of the ASD cohort. Our findings also did not demonstrate a clear 

link in membership between the two imaging modalities, which suggests that heterogeneity of 

brain organization of language in ASD may differ between functional and anatomical 

dimensions. As such, it was unsurprising to see a lack of relationship between subgroup 

membership and diffusion measures of the language-related white matter tracts. Continuation of 

the current study could combine DWI with sMRI and fMRI for more comprehensive neuro-

subtyping. However, care must be taken to avoid collinearity and differential weight assignment 

of various imaging features (as some features maybe more informative than others; Eill et al., 

2019). 

In addition, sMRI-derived subgroups showed behavioral differences while iFC-derived 

subgroups did not. This distinction may be due to differences in neurodevelopmental history 

captured by the two imaging modalities (Eill et al., 2019). On the one hand, morphological 

features are likely to reflect atypicality predominantly with respect to development history 

(Hazlett et al., 2017). Furthermore, lGI has been shown to be more sensitive to group differences 

and developmental changes in ASDs (Kohli, et al., 2018). On the other hand, iFC patterns – 

although often considered to reflect ‘intrinsic’ functional network architecture (Van Dijk et al., 
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2010) are equally affected by cognitive state and online processing (Buckner & Krienen, 2013; 

Mason et al., 2007), as well as transient state-based changes (Mash et al., 2019; Rashid et al., 

2018) and impact of learning (Lewis et al., 2009).   

The lack of robust links between brain-based subgroupings and language abilities or 

symptom severity indicates complexity in ASD heterogeneity that is beyond what was explored 

in this dissertation. Previous studies have found reduced differentiation between neural networks 

in the ASD population (Hong et al., 2019; Keown et al., 2017). Subgrouping derived solely 

based on language network FC may be missing important features of network organization, such 

as segregation or differentiation from other networks, that may be crucial to account for 

differences in language abilities. This was partially supported by Study 1, which revealed a 

subgroup of participants with posterior default mode region (PCC)-mediated FC between frontal 

language regions and visual regions that was linked to lower language abilities. As this 

dissertation focused on the language network, the FC and morphology of other functional 

domains may provide additional evidence for behavioral language and symptom variability in 

ASD.  

In addition, our participant sample mostly consisted of high-functioning children in 

middle to late childhood. Thus, the ASD participants had completed years of schooling and may 

have had various interventions. As learning and experiences has been shown to have an impact 

on FC (Lewis et al., 2009), it is possible that more robust links between in language abilities and 

distinct language FC patterns may be detectable in younger cohorts of ASD participants. Another 

possible explanation for the weak link between language differences and subgroup membership 

could be the lack of sensitivity from the behavioral measure used. While the CELF-4 provides 

general index scores in expressive and receptive language, more subtle variabilities within those 
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language abilities may be lost. Future studies with a more thorough neuropsychological battery 

may be able to detect more salient language and cognitive differences between subgroups. 

Finally, while neuropsychological assessments enable researchers to examine various cognitive 

abilities, the ecological validity of the currently available measures to truly capture language 

abilities in individuals with autism may be questionable (Chaytor & Schmitter-Edgecombe, 

2003). 

The present dissertation included three cross-sectional neuroimaging studies of language 

in ASD. In Studies 1 and 2, neither diagnostic groups (ASD, TD) nor ASD subgroups differed in 

age. However, in Study 3 there was a difference in age between the sMRI-derived subgroups. 

Our participants span between ages 7 and 18 years, a period characterized by extensive 

maturational changes in the brain (Luna et al., 2001; Steen et al., 1997; Whitford et al., 2007). 

Age-related morphological changes between childhood and adolescents including gradual 

increases in cortical volume and gyrification in childhood followed by decrease in cortical 

thickness and gyrification in adolescence (Kohli et al., 2019; Paus et al., 2008; Tamnes et al., 

2010). The three studies utilized participants age-matching and covariates including total brain 

volume to reduce age-related confounds. However, there may be differences in developmental 

trajectory in language related regions and network connectivity between participants. Without 

longitudinal data, we are limited in our ability to account of developmental changes that occur 

from childhood to adolescence.  

While the sample size of this dissertation is relatively large compared to earlier 

neuroimaging studies of the language network in ASD, it is relatively small compared to other 

statistical or machine learning studies (Hong et al., 2017). Measures were taken to conserve 

power (i.e. dimension reduction); however, a larger sample size may improve neuroimaging 
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subtyping. For example, the entropy of the structural 3-subgroups model was relatively low 

(Entropy = 0.68). It is possibly that a larger sample size would improve the statistical fit of the 

model. Increased statistical power may also improve clinical characterization of the subgroups. 

Relatedly, while detection of subgroups in this dissertation corroborates heterogeneity of 

language neurobiology within ASD, the exact composition of subgroups may not be readily 

generalizable. Definitive studies of neurophenotypes will require large data repositories. While 

multisite repositories such as Autism Brain Imaging Data Exchange (ABIDE;  Di Martino et al., 

2014; Di Martino et al., 2017) are becoming available, site variability remains an issue. Currently 

available large ASD repositories also do not encompass rich sets of multimodal imaging, 

clinical, and phenotyping data that are likely indispensable for conclusive findings of ASD 

subtypes. More generally, the findings from the three studies presented underline that ASD 

studies using conventional group-level analysis, which have dominated the literature, must be 

interpreted with caution and can only be considered gross or first pass-approaches to detection of 

ASD-specific brain anomalies, which must be followed up by analyses for the detection of more 

homogeneous subgroups or clusters of individuals with ASD.  

ASD are a highly prevalent set of disorders, currently estimated to affect 1 in 54 children 

aged 8 years in the United States (Maenner, 2020), with an estimated lifetime economic impact 

of $3.2 million per capita (Ganz, 2007). As language abilities are the best predictors of future 

outcome for individuals with ASD (Mawhood et al., 2000; Szatmari et al., 2015), it is essential to 

gain a better understanding of language processing in this vulnerable population. However, the 

heterogeneity across the autism spectrum in etiology (Betancur, 2011; Jeste & Geschwind, 2014; 

Mandy & Lai, 2016), symptom presentation (Constantino & Charman, 2016; Georgiades et al., 

2013), and interventions (Bradshaw et al., 2015; Helt et al., 2008; Wong et al., 2015) has made it 
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difficult to elucidate language processing in ASD. To date, this dissertation is the first study 

aimed to both address language network heterogeneity and to identify language-focused ASD 

subtypes using statistical learning of neuroimaging data. The empirical identification of these 

subtypes highlighted a need to address individual variability in ASD research and for a more 

representative nosology for this group of disorders. We hope that this will eventually translate to 

the development of more precise interventions that target language impairments in subsets of the 

ASD population.   
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