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Computational principles underlying people’s behavior explanations
AJ Piergiovanni Alan Jern

piergiaj@rose-hulman.edu jern@rose-hulman.edu
Department of Computer Science & Software Engineering Department of Humanities and Social Sciences

Rose-Hulman Institute of Technology Rose-Hulman Institute of Technology

Abstract

There are often multiple explanations for someone’s behavior,
but people generally find some behavior explanations more sat-
isfying than others. We hypothesized that people prefer be-
havior explanations that are simple and rational. We present
a computational account of behavior explanation that captures
these two principles. Our computational account is based on
decision networks. Decision networks allow us to formally
capture what it means for an explanation to be simple and ra-
tional. We tested our account by asking people to rate how sat-
isfying several behavior explanations were (Experiment 1) or
to generate their own explanations (Experiment 2). We found
that people’s responses were well predicted by our account.
Keywords: behavior explanation; social cognition; decision
networks

Every day, we generate explanations for other people’s be-
havior. For example, suppose that you observe Bob as he
arrives to a meeting. When he arrives, there are three people
already seated at a table, one at the far left of the table, one
in the middle, and one at the far right. Bob takes the seat
closest to the person on the left. Why did Bob choose to sit
there? Perhaps he likes the person on the left, or he dislikes
the person on the right, or perhaps he dislikes another per-
son who he knows will later sit on the right. Often, there are
many possible explanations for people’s behavior. Neverthe-
less, some behavior explanations are intuitively more satisfy-
ing than others. For example, you are likely to find any one
of the above explanations more satisfying than all of the ex-
planations combined: namely, that he likes the person on the
far left, and dislikes the person already seated on the far right
and dislikes the person he knew would also sit on the right.

What makes some behavior explanations more satisfying
than others? The example above suggests that simpler expla-
nations are more satisfying. However, a simple explanation
must first qualify as a valid explanation in order to be satis-
fying. In other words, the explanation must provide rational
support for the behavior. For example, it would not make
sense to explain that Bob sat where he did because he does
not like the person he sat next to. Such an “explanation” is
not satisfying because a rational actor who dislikes someone
will generally avoid that person and therefore Bob’s behavior
is left unexplained. This example suggests that there are two
principles that underlie people’s behavior explanations. We
will refer to these principles as simplicity and rationality.

The importance of simplicity and rationality in behavior
explanation is supported by previous research. When explain-
ing causal events, people prefer explanations that posit fewer
causal relationships (Lombrozo, 2007). And when people
generate explanations for intentional behaviors, their expla-
nations tend to refer to implicit beliefs and desires that pro-

vide rational support for the behaviors (Malle, 1999, 2004).
Additionally, research has suggested that, when reasoning
about other people’s mental states, people expect others to
behave generally rationally (e.g., Baker, Saxe, & Tenenbaum,
2009; Ullman et al., 2009; Jern & Kemp, 2011). Dennett
(1987) has called this expectation the intentional stance.

Behavior explanation is closely related to what social psy-
chologists call interpersonal attribution, the problem of at-
tributing someone’s behavior to either dispositional or situ-
ational causes. However, the literature on interpersonal at-
tribution has focused primarily on cognitive processes rather
than computational principles (Anderson, Krull, & Weiner,
1996; Gilbert, 1998). Similarly, although previous research
on explanation generation suggests that people rely on sim-
plicity and rationality when explaining other people’s behav-
ior, these principles have not been formally defined and uni-
fied in a computational framework (see, e.g., Keil, 2006).
As a result, it is difficult to predict how the two principles
will each influence people’s judgments when people consider
explanations that vary in both simplicity and rationality (see
Pacer, Williams, Chen, Lombrozo, & Griffiths, 2013).

In this paper, we present a computational account of be-
havior explanation that formally characterizes what it means
for an explanation to be simple and rational. Our account
is based on the graphical modeling framework of decision
networks1 (Howard & Matheson, 2005). Decision networks
have been used previously to account for people’s inferences
about other people’s mental states (Jern & Kemp, 2011) but
have not been used to account for people’s behavior explana-
tions. As we show later, because decision networks can be
ordered by network complexity, they can be used to provide
a formal definition of simplicity. And because decision net-
works incorporate a notion of choice utility, they can be used
to provide a formal definition of rationality.

We begin by describing the basic properties of decision net-
works and explain how we use decision networks to define
simplicity and rationality. We then test the predictions of our
decision network account in two experiments in which people
judged or generated explanations of someone else’s behavior.

Explaining behavior with decision networks
We will briefly introduce decision nets (short for decision
networks) using the example situation described at the be-
ginning of this paper. This situation can be represented by
the decision net in Figure 1a, where Bob has been replaced
with X. X’s seat choice is represented by the rectangular

1Decision networks are sometimes called influence diagrams.
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Figure 1: Decision networks. (a) A decision network repre-
senting a choice in which only A’s location affects X’s choice.
(b) The set of decision network explanations we considered
in our experiments. The networks differed in which of the
dashed edges were present.

choice node labeled “X’s Seat Location”. In this example,
X’s choice might depend on where Persons A, B, and C are
already seated. Their seat locations are represented by the
oval nodes. The edges leading from the oval nodes to X’s
choice node indicate that X knows the values of these vari-
ables before choosing where to sit. X’s utility is represented
by the diamond utility node. The edges leading to the utility
node indicate which variables affect X’s utility. In Figure 1a,
there are edges leading to the utility node from A’s location
and X’s choice. This structure is consistent with X wanting to
sit near A and not caring about how close he is to B and C. A
fully parameterized decision net would also include a utility
function that specifies exactly how X’s utility depends on his
seat and A’s seat, as well as conditional probability tables for
any probabilistic variables.

Decision nets assume that choices are taken to increase
utility. In Figure 1a, X’s utility depends on his choice and
A’s location. If we suppose that X would like to sit near A,
X’s utility will be higher for seats that are located closer to A.

The decision net in Figure 1a assumes that X only cares
about A’s seat location when choosing where to sit. Suppose,
however, that you don’t know what motivated X’s choice, but
you observed where he sat and want to explain his choice of
seat. This problem is analogous to observing the value of a
choice node in a decision net and determining the network
structure that best explains the choice. Accordingly, we pro-
pose that behavior explanations can be represented by deci-
sion nets. We assume that each potential explanation for a
behavior corresponds to a fully parameterized decision net in
which the value of the choice node has been observed. We
now show how, with this assumption, decision nets can cap-
ture the principles of simplicity and rationality and can be
used to make probabilistic judgments about which potential
explanations better explain a given behavior.

Simplicity
Because decision nets are networks, we may quantify how
simple a decision net explanation is using standard methods
of measuring network complexity. Intuitively, simpler ex-

planations will have fewer nodes, edges, and possible node
values. This intuition can be captured using a definition of
simplicity based on minimum description length (MDL; Ris-
sanen, 1978). MDL has been used previously to account for
aspects of reasoning (Fass & Feldman, 2002). For example,
people find it easier to learn concepts that can be described
by shorter codes (Feldman, 2000).

Let S(N) be the simplicity of decision net N. We define
S(N) as the inverse of a standard MDL-based definition of
network complexity (De Campos, 2006):

S(N) =
1

∑i(xi ·qi)
, (1)

where xi is the number of values that node i can take on, and
qi is number of values that the parents of i can take on. Ac-
cording to this definition, simplicity increases as the number
of nodes decreases, as the number of edges decreases, and as
the number of possible values of each node decreases.

Rationality
Because decision nets assume that choices are taken to in-
crease utility, it is straightforward to capture the principle of
rationality. Namely, a decision net explanation provides more
rational support for a choice if that choice results in more util-
ity for the actor. A decision net explanation will provide com-
plete rational support for a choice if the choice results in the
maximum possible utility for that decision net.

Comparing explanations
We will treat the problem of judging which explanations are
better than others as a model selection problem in which the
models under consideration are fully parameterized decision
nets corresponding to the different explanations. Specifically,
we compute the probability that each decision net N is the
explanation for choice c:

P(N|c) ∝ P(c|N) ·P(N). (2)

In order to compute the likelihood function, P(c|N), we make
use of the decision net assumption that actors are likely to
make choices that increase their utility. We will consider two
ways of instantiating this assumption: by assuming that ac-
tors make choices to maximize expected utility, or by making
choices probabilistically in proportion to expected utilities.
We define the prior probability, P(N), to be proportional to
the simplicity of the decision net: P(N) ∝ S(N).

Equation 2 shows how decision nets can be used to in-
corporate formal definitions of simplicity and rationality into
computations about which behavior explanations are better
than others. Earlier, we suggested that formal definitions of
simplicity and rationality allow for predictions to be made
about how these two principles will collectively influence
people’s judgments about behavior explanations. We tested
the predictions of our decision net account in an experiment
in which people observed someone’s choice and judged ex-
planations of the choice that varied in both simplicity and ra-
tionality.
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One Person Two People Three People
Near A Near A and B Near A and B, Far from C
Near B Near A, Far from B Near A, Far from B and C
Far from A Near A, Far from C
Far from B Near B, Far from C
Far from C Far from A and C

Far from B and C

Table 1: The set of possible explanations in Experiment 1.

Experiment 1
In Experiment 1, participants read about a choice someone
made and then rated how satisfying several explanations for
the choice were. Specifically, participants read about a meet-
ing in which three people, A, B and C, had already arrived
and selected seats. Person X arrived last and chose a seat.
Participants were told that X likes some people, dislikes some
people, and is indifferent toward some people. Accordingly,
all of the explanations were expressed as combinations of de-
sires to sit near to, or far from, certain people. Table 1 shows
the complete set of explanations shown to participants. For
example, the second explanation in the second column of Ta-
ble 1 identified as “Near A, Far from B” was presented to
participants as ”X wanted to sit near A and far from B.”

Model
All of the explanations in Table 1 can be represented by
variations of the decision net in Figure 1b. The differences
between the explanations can be captured by differences in
which edges lead to the utility node (depicted by dashed lines
in the figure). For example, in the decision net corresponding
to the “Near A, Far from B” explanation, only the “A’s loca-
tion” and “B’s location” nodes would have edges leading to
the utility node.

Additionally, differences in explanations with identical
network structures, such as the “Near A” and “Far from A”
explanations, can be captured by differences in their utility
functions. We assumed that the total utility U(s) that X as-
signed to each seat s depended on the seat’s proximity to the
people X wanted to sit near to and far from. Specifically, let
ui(s) be the utility X derives from seat s’s proximity to Person
i. We defined ui(s) as follows:

ui(s) =


e−kd if X wants to sit near i
1− e−kd if X wants to sit far from i
0 otherwise

(3)

In this equation, d is the distance, in number of seats, from
Person i’s seat, and k is a free parameter. Equation 3 has the
property that there is a larger difference in utility between the
more desirable seats than between the less desirable seats. We
then made a standard assumption that utilities are additive.
That is, X’s total utility U(s) = ∑i ui(s). Finally, we assumed
that X would choose seats in proportion to utility. That is,

P(c = s j) =
U(s j)

∑k U(sk)
. (4)

We made this assumption because we hypothesized that, in
our low-stakes seating story, participants would not expect
people to behave completely rationally. However, we con-
sidered an alternative model that did assume that people are
completely rational.

Alternative models
We compared our decision net model to several alternative
models that were designed to test the importance of our as-
sumptions.

Utility-maximizing model The utility-maximizing model
tested whether people only consider an explanation to be sat-
isfying if it provides complete rational support for a choice.
This model is identical to our decision net model but as-
sumes that people are completely rational. In other words,
this model follows Equation 2 but uses a likelihood function
that is equal to 1 if an observed choice results in the maximum
utility under a given explanation, and is equal to 0 otherwise.

Simplicity model The simplicity model tested whether the
rationality principle is necessary to account for people’s judg-
ments. This model is identical to our decision net model but
does not take into account how probable an observed choice
was under each explanation. In other words, this model fol-
lows Equation 2 but sets P(c|N) = 1.

Utility-only model The simplicity model tested whether
the simplicity principle is necessary to account for people’s
judgments. This model is identical to our decision net model
but does not take into account how simple explanations are.
In other words, this model follows Equation 2 but sets P(N)=
1.

Method
Participants 125 Amazon Mechanical Turk users com-
pleted the experiment. 20 were omitted for failing a manipu-
lation check described below. All were compensated.

Design and Procedure Participants were randomly as-
signed to one of three conditions. The conditions are depicted
in the diagrams above the plots in Figure 2. The diagrams
show where Persons A, B, C, and X chose to sit in a row of
seats at a meeting.

Participants saw one of these diagrams and were instructed
to “Rate how satisfying the following explanations are for
why X chose to sit there.” They were then shown the 13 ex-
planations from Table 1 and rated them on a scale from 1
(“very bad explanation”) to 7 (“very good explanation”). The
set of 13 explanations included any explanation that would
provide complete rational support for X’s seat choice in any
of the three conditions, as well as several explanations, such
as “Far from A” that do not provide strong rational support in
any condition.

The order of the explanations was randomized for each par-
ticipant. Additionally, half of participants in each condition
saw a “mirror image” of the diagrams in Figure 2. For ex-
ample, in the condition in the center of Figure 2, X would be
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Figure 2: Comparison of decision net model predictions to people’s judgments for all explanations in all conditions of Experi-
ment 1.

shown seated closest to C instead of A. For these participants,
the set of explanations was adjusted to reflect the different
seating location (e.g., “Near A” would be replaced with “Near
C”). To ensure that the participants read directions carefully,
we included a manipulation check at the end of the experi-
ment. The manipulation check consisted of a second page
that appeared identical to the first, but instructed participants
to leave all answers blank. 20 participants failed the manipu-
lation check and were therefore omitted from analysis.

Results

Model predictions were generated by computing P(N|c) ac-
cording to Equation 2 for each explanation and normalizing
the results to sum to 1. When computing S(N) using Equa-
tion 1, we assumed that the utility node of each decision net
could only take on a finite number of values equal to the
number of available seats. Parameter k in Equation 3 was
fit to the data for each model (best-fitting k for decision net
model: 0.249; utility-maximizing model: 0.245; simplicity
model: 0.249, utility-only model: 0.253). Comparisons be-
tween model predictions and people’s judgments for all 13
explanations across all conditions are shown in Figure 3.

As shown in Figure 3a, our decision net model predicts
people’s judgments quite well (r = 0.84). By contrast, as
shown in Figure 3b, the utility-maximizing model performs
poorly (r = 0.53). The utility-maximizing model assigns a
probability of 0 to many explanations that people assigned
high ratings to. For example, in the rightmost condition in
Figure 2, both participants and our decision net model judged
“Far from C” to be one of the top 3 most satisfying explana-
tions. However, the utility-maximizing model assigned “Far
from C” a value of 0 because X’s seat in that condition is not
the optimal seat for being far from C. The poor performance
of the utility-maximizing model suggests that people can find
behavior explanations satisfying even if they do not provide

complete rational support for the behavior.
The predictions of the simplicity and utility-only models

are shown in Figures 3c and 3d. Figure 3c shows clearly
that people did not base their judgments on simplicity alone
(r = 0.02). This makes sense when you consider, for exam-
ple, that the decision nets corresponding to the “Near A” and
“Far from A” explanations have identical structure, and are
therefore equally simple. However, in most cases, at most
one of these two explanations will be reasonable. The utility-
only model performs better (r = 0.34), but not nearly as well
as the decision net model. The poor performance of these two
alternative models supports our hypothesis that people rely on
both simplicity and rationality when explaining behavior.

Figure 2 compares the decision net model predictions to
people’s judgments for all 13 explanations in each condition.
Overall, the model accounts well for the qualitative patterns
in people’s judgments. However, there are a few predictions
the model gets wrong. For example, in the condition where
X sat next to A (left plot), people judged the “Far from A”
explanation to be about as satisfying as the “Far from A and
C” explanation, while the decision net model predicted that
“Far from A and C” is more probable than “Far from A”. The
model’s prediction in this case is a consequence of the fact
that it treats utilities as additive. According to the model, un-
der the “Far from A and C” explanation, X’s seat provides lit-
tle utility for being near A, but it provides considerable utility
for being far from C. The sum of these two utilities is higher
than the seat’s utility under the “Far from A” explanation, so
the model assigns a higher probability to the former explana-
tion. The fact that people did not do this suggests that they
may have considered negative utilities, or that people may not
always think of utilities as additive. Perhaps if one part of an
explanation is poor, people may judge the whole explanation
to be poor.

Although the decision net model accounted well overall for
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(a) Decision net model
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(b) Utility-maximizing model
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(c) Simplicity model
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(d) Utility-only model

Figure 3: Comparison of model predictions and human judgments in Experiment 1.

people’s judgments about explanations that we provided, it is
possible that our participants may have considered additional
explanations not in Table 1. Therefore, we conducted a sec-
ond experiment in which participants generated their own be-
havior explanations.

Experiment 2
Experiment 2 allowed us to test whether people considered
any alternative explanations in Experiment 1 that our model
did not account for.

Method
Participants 45 Amazon Mechanical Turk users completed
the experiment and were compensated for participation.

Design and Procedure The design and procedure were
identical to Experiment 1 except that participants generated
their own explanations rather than rate a list of provided ex-
planations. Participants saw one of the three cases in Fig-
ure 2 and were asked to provide their best explanation for
why person X chose the seat. Participants were told that X
liked some of the people at the meeting, disliked some, and

was indifferent toward some. However, no guidance or con-
straints were placed on participants’ responses. Participants
also completed the manipulation check from Experiment 1.
All participants passed the check, so no participants were
omitted from analysis.

Results

All generated explanations were coded as one of the 13 expla-
nations in Table 1 or as “other”. For example, the response “X
doesn’t like C’ was coded as “Far from C”, while the response
“X doesn’t like anyone” was coded as “other”. We (the two
authors) coded independently with 96% agreement (Cohen’s
κ = 0.95). We disagreed on two responses and resolved the
disagreement by coding both responses as “other” in order to
be as uncharitable to our model as possible. As shown in Fig-
ure 4, the decision net model’s top six explanations in each
condition accounted for at least 70% of participants’ gener-
ated explanations. Overall, only 6 of the 45 generated expla-
nations were coded as “other”. These results suggest that the
our list of explanations in Table 1 encompasses the vast ma-
jority of explanations that participants naturally considered.
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Figure 4: The proportion of generated explanations in Ex-
periment 2 included in the decision net model’s top predicted
explanations. Conditions 1, 2, and 3 refer to the left, middle,
and right conditions in Figure 2.

Conclusion
Our goal was to identify the computational principles that
make some behavior explanations more satisfying than oth-
ers. Overall, our results support the hypothesis that people
rely on both simplicity and rationality when judging and gen-
erating explanations of other people’s behavior and that both
of these principles can be formally characterized using deci-
sion nets.

Although we considered only a narrow space of possible
explanations that differed in utility functions, decision nets
can be easily adapted to account for at least one other type
of explanation. Recall that some edges in decision nets (such
as the edges leading to the rectangular node in Figure 1b)
represent what a person knew before making a choice. Con-
sequently, the presence or absence of these edges can be used
to represent explanations that differ in what someone did or
did not know.

The decision net account in this paper does not provide
an account of the cognitive processes involved in explain-
ing behavior, but it may help to motivate future research on
cognitive processes. For example, our models assumed that
the potential explanations, represented as decision nets, were
already constructed and available for comparison. One im-
portant question is how those explanations are constructed to
begin with. As another example, consider the fact that our
definition of simplicity takes into account each decision net’s
structure. In our experiments, the decision nets had relatively
simple structures that could likely be fully stored in working
memory. For more complex decision nets, however, people
may be limited by working memory capacity. Consequently,
people may be unable to fully compare different explanations
and will cease to show a simplicity preference.

Overall, our results suggest that decision nets provide a
useful formal framework for exploring how people explain
behavior. Decision nets provide a formal language for captur-

ing existing ideas from the literature on social cognition and
explanation, and present new questions for future research.
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