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2

1 Dear Editor,

2 Bamboo is a special grass to human due to its great economic and ecological values. 

3 Around 2.5 billion people are directly producing and consuming bamboo, and its 

4 international trade reached 68.8 billion US dollars in 2018 (Data from International 

5 Bamboo and Rattan Organization). One major bamboo species in Asia is Ma bamboo 

6 (Dendrocalamus latiflorus Munro), which is a hexaploid species with three 

7 subgenomes (2n=72, AABBCC) (Guo et al., 2019). Despite its agronomic importance, 

8 it is nearly impossible to modify bamboo traits by traditional breeding as it takes over 

9 70 years to flower. Bamboo research largely lagged behind due to the lack of efficient 

10 genetic manipulation tools.

11

12 The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/Cas9 

13 provides straight-forward ways for genome editing in many plants (Yin et al., 2017), 

14 but has never been applied in bamboo. Here, we reported the generation of bamboo 

15 mutants with CRISPR/Cas9 technology by targeting one specific copy or all 

16 homoeologous genes.

17

18 Since our recently established genetic transformation protocol is time-consuming 

19 (~1.5 years) (Ye et al., 2017), we optimized the CRISPR/Cas9 system in bamboo 

20 protoplast. We first improved the protoplast preparation methods, and could isolate 

21 3.0 × 106 protoplasts/g fresh leaves. Next, we improved the PEG-mediated 

22 transformation method, and reached efficiencies of 53.3% for a single plasmid and 

23 29.8% for two co-transformed plasmids (Figure 1A), which is sufficient for 

24 optimizing the CRISPR/Cas9 system. The maize UBI promoter was used to drive 

25 Cas9 expression (Ye et al., 2017). Three polymerase III-dependent promoters from 

26 rice (OsU6a/OsU6b/OsU6c) were selected to express the sgRNA cassettes (Ma et al., 

27 2015), as bamboo exhibits high genomic similarity with rice (Peng et al., 2013). To 

28 check the effectiveness of CRISPR/Cas9 constructs, a frame-shift mutated GFP 

29 (mGFP) containing an additional “guanine” thereby produces no fluorescence signal 
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3

1 was simultaneously co-transformed with CRISPR/Cas9 plasmids (Figure 1B). 

2 Around 1.8% of the protoplasts transformed with the UBI-Cas9/OsU6b-sgRNA 

3 construct showed strong signals within 72 h, indicating that the mGFP function was 

4 restored by the CRISPR/Cas9 system through deleting the additional “guanine” 

5 (Figure 1C). The OsU6a and OsU6c promoters work as well, however, with lower 

6 efficiency than the OsU6b promoter, as positive signals were only occasionally 

7 observed with more than 10 replicates. Taking together, the UBI-Cas9/OsU6b-sgRNA 

8 construct effectively works in bamboo protoplast, and were used for the following 

9 endogenous gene editing in Ma bamboo.

10

11 The putative phytoene synthase (PSY1) in bamboo, whose homolog in maize 

12 functions in carotenoid biosynthesis (Zhu et al., 2016), was selected for the initial test. 

13 Three bamboo PSY1 alleles (DlmPSY1-A, DlmPSY1-B, DlmPSY1-C) were identified 

14 and cloned by a homology cloning strategy (Figure 1D). To mutate all copies of 

15 DlmPSY1, sgRNA1 targeting a conserved site among all DlmPSY1 loci was designed 

16 (Figure 1D). In addition, the sgRNA2 target site containing 2–3 single-nucleotide 

17 polymorphisms (SNPs) in the spacer region among three DlmPSY1 homoeoalleles and 

18 was selected to test the tolerance of sgRNA mismatches (Figure 1D).

19

20 1,600 bamboo calluses induced from stem were transformed as described 

21 previously (Ye et al., 2017). In total, 34 independent transgenic lines were confirmed 

22 positive (2.1%) by PCR. Based on Sanger sequencing results, 22 (100%) and 10 

23 (83.3%) independent T0 lines were edited in the sgRNA1 and sgRNA2 region, 

24 respectively (Figure 1E), indicating that both constructs effectively induce 

25 endogenous gene editing.

26

27 The editing profiles were further analyzed by sequencing. Eighteen lines (81.8%) 

28 contained putative homozygote/biallelic mutations in all subgenomes at the sgRNA1 

29 target site. In some lines, putative homozygote/biallelic mutations exist in one 
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4

1 subgenome while heterozygote or chimeric mutations appear in other subgenomes 

2 (T0-10 and T0-26) (Figure 1F). Eight mutation types were identified from 590 

3 independent clones (Figure 1G). The most frequent mutation type was deletion 

4 (75%), of which 59.1% are small deletions (<2bp). The ratios of large fragment 

5 deletions (≥14bp), insertions, and combined indels were 15.9%, 2.21%, and 7.82%, 

6 respectively (Figure 1G). Since bamboo propagates through asexual budding, those 

7 homozygote/biallelic mutations will remain in the genome of their offspring clones 

8 during breeding.

9

10 sgRNA2 that perfectly targets DlmPSY1-A1, but not DlmPSY1-B1 or DlmPSY1-C1 

11 was designed to study the recognition specificity (Figure 1D). Sequencing results 

12 confirmed that 10 transgenic lines contain mutations in DlmPSY1-A1, but none in 

13 DlmPSY1-B1 and DlmPSY1-C1 (Figure 1E). Two lines (20%) were putative 

14 homozygous or biallelic mutations (T0-12 and T0-14), while 7 lines (70%) were 

15 heterozygous/chimeric (T0-30 to T0-32 as representative examples, Figure 1H). The 

16 ratios of deletions, insertions, and combined mutations were 86%, 9%, and 5%, 

17 respectively (Figure 1I). The mutations were predominantly short nucleotide changes 

18 (1–26bp), and 22.7% were 1bp nucleotide deletions (Figure 1I). Those data 

19 demonstrated the successful application of the CRISPR/Cas9 system in mutating a 

20 specific DlmPSY1 allele. 

21

22 Eighteen lines (81.8%) with homozygote/biallelic mutations in all subgenomes at 

23 the sgRNA1 site exhibited albino phenotypes (Figure 1J), which appeared at an early 

24 stage during tissue culture, and persisted at the plantlets stage (Figure 1J). Those 

25 results suggest that genome editing takes place at an early stage in embryonic cells, 

26 and led to the loss-of-function of all DlmPSY1 alleles. Similar results were reported in 

27 rice, wheat or cotton (Wang et al., 2018; Wang et al., 2014; Zhang et al., 2014). In 

28 case of sgRNA2, although DlmPSY1-A was mutated, no visible phenotypic change 

29 was observed due to the existence of the wild-type DlmPSY1-B and DlmPSY1-C 
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5

1 alleles.

2

3 Next, we applied this technology in bamboo molecular research. Bamboo is the 

4 tallest grass in the world, while the underlying mechanism is unknown. Previously, 

5 we identified several Gibberellin-responsive genes including GRG1 (GA-responsive 

6 gene 1, PH01004823G0070) that potentially acts in controlling bamboo height 

7 (Zhang et al., 2018). Here two homozygote grg1 mutants (efficiency 40%) in Ma 

8 bamboo were produced using our optimized CRISPR/Cas9 technology. Mutation in 

9 GRG1 increased plant height (Figure 1K), mostly due to elongated internodes 

10 (Figure 1L-N). Sequencing results confirmed that the grg1 mutant has the putative 

11 homozygous mutation in A1-subgenome, biallelic mutation in B1-subgenome, and 

12 homozygous mutation in C1-subgenome (Figure 1O), indicating the loss-of-function 

13 of GRG1 in transgenic bamboo. To our knowledge, this is the first example on 

14 controlling bamboo height through gene manipulation, which will contribute to 

15 subsequent studies on the molecular mechanisms behind the fast growth of bamboo.

16

17 In summary, for the first time we engineered the hexaploid Ma bamboo through 

18 CRISPR/Cas9 technology. The homozygote mutations were obtained in the first 

19 generation of transgenic lines, which is extremely important for bamboo species due 

20 to its long vegetative growth periods. We also confirmed the albino phenotype of 

21 dlmpsy1 mutant in bamboo and generated a bamboo mutant with altered plant height. 

22 This demonstrates the applicability of CRISPR/Cas9 in bamboo and thereby boosts 

23 future bamboo research and breeding.

24

25
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15 Figure Legend

16 Figure 1. Genome editing in Ma bamboo using CRISPR/Cas9 technology

17 A. Bamboo protoplast isolation and transformation. a. Microscopic image of 

18 isolated bamboo protoplast transformed with 35S:tdTomato. b-d. Images of 

19 bamboo protoplasts co-expressing the fluorescence proteins tdTomato (b) and 

20 GFP (c) driven by the 35S promoter, and their overlay (d). 

21 B. CRISPR/Cas9 plasmids for bamboo protoplast. Top: CRISPR/Cas9 constructs 

22 expressing the sgRNA directed against mGFP and driven by 

23 OsU6a/OsU6b/OsU6c respectively; Middle: mGFP-expression construct, 

24 mGFP contains one additional guanine (lower-green case) downstream of the 

25 translational start site (red); bottom: GFP-expression construct. The sgRNA 

26 was designed to produce the presumptive cleavage site at the third nucleotide 

27 upstream of the PAM sequence (blue).

28 C. Representative bamboo protoplasts co-transfected with mGFP and 

29 OsU6b-sgRNA/UBI-Cas9 reproducibly emitting fluorescence signals (red 
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1 arrows).

2 D. DlmPSY1 gene structure and sequences of the target sites. Gray boxes: exons; 

3 black lines: introns; number in brackets: positions of start codon, stop codon 

4 and sgRNA target sites (red and orange rectangles). The PAM regions (blue), 

5 SNPs (red), and nucleotide sequences of the sgRNAs and DlmPSY1 genes were 

6 given. 

7 E. Frequencies of the CRISPR/Cas9-induced mutations in two target sites of the 

8 DlmPSY1.

9 F. Representative DlmPSY1 mutations at the sgRNA1 site. T0-1, T0-2, T0-3, 

10 T0-12 and T0-13 represent loss-of function mutants. T0-10 and T0-26 lines 

11 contain heterozygote mutations in the C1-subgenome and chimeric mutations 

12 in the A1-subgenome, respectively. Red: sgRNA target regions; blue: PAM 

13 regions; green lowercase letters: nucleotide indels; dotted lines: omitted 

14 nucleotides.

15 G. Frequencies of indels (left) and mutation types (right) at the sgRNA1 site of 

16 DlmPSY1. i# and d#: # of bp inserted or deleted, respectively; d≥14: more 

17 than 14 bp deletion; i+d: target sites with both deletions and insertions. 

18 H. Representative DlmPSY1 mutants at the sgRNA2 site. The represents 

19 homozygote (T0-12), biallic (T0-14), and heterozygote (T0-30 to T0-32) at 

20 A1-subgenome were shown.

21 I. Frequencies of indels (left) and mutation types (right) at the sgRNA2 site of 

22 DlmPSY1. (legend: see G)

23 J. Phenotypes of representative dlmpsy1 mutants. a-c, wild-type; d-f, dlmpsy1 

24 mutant (T0-1).

25 K-N. Phenotypes of wild-type and the represented grg1 mutant. Growth 

26 phenotype (K) and internode elongation (L) of 5-month old wild-type (a) and 

27 grg1 (b) plants grown in the greenhouse. Plant heights (M) and internode lengths 

28 (N) were quantified. ∗∗: p < 0.01. 

29 O. Mutations of the GRG1 gene were confirmed by Sanger sequencing. The 
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1 sgRNA target regions (red), PAM regions (blue), nucleotide insertions (green) and 

2 their length (right side) are shown.
3

4
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Mutation type

GAGGAGGTCCGGCCAGCCTCCCCCGGCTCGA
GAGGAGGTCCGGCCAGCCT--CCCGGCTCGA −2
GAGGAGGTCCGGCCAGCCTCccCCCCGGCTCGA
GAGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1
GAGGAGGTCCGGCCAGCCTCccCCCCGGCTCGA
GGGGAGGTCCGG--------------CTCGA −14
GGGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1

WT

+2

+2

T0-26 A1:

C1:

B1:

GAGGAGGTCCGGCCAGCCT--CCCGGCTCGA −2
GAGGAGGTCCGGCCAGCCTCccCCCCGGCTCGA
GAGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1

WTGGGGAGGTCCGGCCAGCCTCCCCCGGCTCGA
GGGGAGGTCCGG--------------CTCGA −14

+2
T0-10 A1:

C1:

B1:

GAGGAGGTCCGG--------------CTCGA −14
GAGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1
GAGGAGGTCCGGC----------------CAAGGC −21
GGGGAGGTCCGGCCAGC------------GTGA −12/+2
GGGGAGGTCCGGCC--------CCGGCTCGA −8

T0-13 A1:

C1:

B1:

GAGGAGGTCCGGCCAGCCT--CCCGGCTCGA −2
GAGGAGGTCCGGCCAGCCTCaCCCCGGCTCGA
GAGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1
GAGGAGGTCCGGCCAGCCTaaCCCCGGCTCGA +2
GGGGAGGTCCGG--------------CTCGA −14
GGGGAGGTCCGGCCAGCCT-cccCGGCTCGA −1

T0-12 A1:

C1:

B1: +1

GAGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1
GAGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1
GAGGAGGTCCGGCCAGCCTC---------TTCTT +2 /−27
GGGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1

T0-3 A1:

C1:

B1:

GAGGAGGTCCGGCCAGCCT--CCCGGCTCGA −2
+2GAGGAGGTCCGGCCAGCCTCccCCCCGGCTCGA

GGGGAGGTCCGG--------------CTCGA −14
GGGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1

T0-2 A1:

C1:
B1:

GAGGAGGTCCGGCCAGCCT--CCCGGCTCGA −2
+2
+2

GAGGAGGTCCGGCCAGCCTCccCCCCGGCTCGA
GAGGAGGTCCGGCCAGCCTCccCCCCGGCTCGA
GAGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1
GGGGAGGTCCGGCCAGCCT-CCCCGGCTCGA −1
GGGGAGGTCCGGCCAcCCT-CCCCGGCTCGA −2/+1

T0-1 A1:

C1:

B1:

GAGGAGGTCCGGCCAGCCTCCCCCGGCTCGA
GAGGAGGTCCGGCCAGCCTCCCCCGGCTCGA
GGGGAGGTCCGGCCAGCCTCCCCCGGCTCGA

WT A1:

C1:
B1:

sgRNA

sgRNA1
sgRNA2

Numbers of 
transgenic

lines

22
12

Numbers 
of plants 
analyzed

22
12

Numbers of
plants with 

mutation

22
10

Mutation 
efficiency
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83.3%
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(2772)

Start

DlmPSY1-A1:
DlmPSY1-B1:

GAGGTCCGGCCAGCCTCCCCCGG
GAGGTCCGGCCAGCCTCCCCCGG
GAGGTCCGGCCAGCCTCCCCCGG
GAGGTCCGGCCAGCCTCCCCCGG

DlmPSY1-C1:

(1) (188)

(357)

DlmPSY1-A1: GCGCGGCACCTCCAGGTCCTTGG
GCGCGGCACCTCCAGGTCCTTGG

DlmPSY1-B1: GCGTGGCACCTCCAGCTCCTTGG
DlmPSY1-C1:GCGTGGCACCTCCAACTCCTTGG

sgRNA2:

DlmPSY1

sgRNA1:

Merged

20 µm20 µm 20 µm

Bright Field GFP Field
GGCCATGGTGAGCAAGGGCGAGGAGC

35S GFP Tnos

35S

GGCCATGGTGAGCAAGGgGCGAGGAGC
sgRNA: GCCATGGTGAGCAAGGGGCG

mGFP Tnos

OsU6a/b/c sgRNA UBI Cas9 Tnos

10 µm 10 µm 10 µm

dcba

50 µm
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2

1 Dear Editor,

2 Bamboo is a special grass to human due to its great economic and ecological values. 

3 Around 2.5 billion people are directly producing and consuming bamboo, and its 

4 international trade reached 68.8 billion US dollars in 2018 (Data from International 

5 Bamboo and Rattan Organization). One major bamboo species in Asia is Ma bamboo 

6 (Dendrocalamus latiflorus Munro), which is a hexaploid species with three 

7 subgenomes (2n=72, AABBCC) (Guo et al., 2019). Despite its agronomic importance, 

8 it is nearly impossible to modify bamboo traits by traditional breeding as it takes over 

9 70 years to flower. Bamboo research largely lagged behind due to the lack of efficient 

10 genetic manipulation tools.

11

12 The CRISPR (Clustered Regularly Interspaced Short Palindromic 

13 repeatRepeat)/Cas9 provides straight-forward ways for genome editing in many plants 

14 (Yin et al., 2017), but has never been applied in bamboo. Here, we reported the 

15 generation of bamboo mutants with CRISPR/Cas9 technology by targeting one 

16 specific copy or all homoeologous genes.

17

18 Since our recently established genetic transformation protocol is time-consuming 

19 (~1.5 years) (Ye et al., 2017), we optimized the CRISPR/Cas9 system in bamboo 

20 protoplast. We first improved the protoplast preparation methods, and could isolate 

21 3.0 × 106 protoplasts/g fresh leaves. Next, we improved the PEG-mediated 

22 transformation method, and reached efficiencies of 53.3% for a single plasmid and 

23 29.8% for two co-transformed plasmids (Figure 1A), which is sufficient for 

24 optimizing the CRISPR/Cas9 system. The maize UBI promoter was used to drive 

25 Cas9 expression (Ye et al., 2017). Three polymerase III-dependent promoters from 

26 rice (OsU6a/OsU6b/OsU6c) were selected to express the sgRNA cassettes (Ma et al., 

27 2015), as bamboo exhibits high genomic synteny similarity with rice (Peng et al., 

28 2013). To check the effectiveness of CRISPR/Cas9 constructs, a frame-shift mutated 

29 GFP (mGFP) containing an additional “guanine” thereby produces no fluorescence 
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3

1 signal was simultaneously co-transformed with CRISPR/Cas9 plasmids (Figure 1B). 

2 Around 1.8% of the protoplasts transformed with the UBI-Cas9/OsU6b-sgRNA 

3 construct showed strong signals within 72 h, indicating that the mGFP function was 

4 restored by the CRISPR/Cas9 system through deleting the additional “guanine” 

5 (Figure 1C). The OsU6a and OsU6c promoters work as well, however, with lower 

6 efficiency than the OsU6b promoter, as positive signals were only occasionally 

7 observed with more than 10 replicates. Taking together, the UBI-Cas9/OsU6b-sgRNA 

8 construct effectively works in bamboo protoplast, and were used for the following 

9 endogenous gene editing in Ma bamboo.

10

11 The putative phytoene synthase (PSY1) in bamboo, whose homolog in maize 

12 functions in carotenoid biosynthesis (Zhu et al., 2016), was selected for the initial test. 

13 Three bamboo PSY1 alleles (DlmPSY1-A, DlmPSY1-B, DlmPSY1-C) were identified 

14 and cloned by a homology cloning strategy (Figure 1D). To mutate all copies of 

15 DlmPSY1, sgRNA1 targeting a conserved site among all DlmPSY1 loci was designed 

16 (Figure 1D). In addition, the sgRNA2 target site containing 2–3 single-nucleotide 

17 polymorphisms (SNPs) in the spacer region among three DlmPSY1 homoeoalleles and 

18 was selected to test the tolerance of sgRNA mismatches (Figure 1D).

19

20 1,600 bamboo calluses induced from stem were transformed Hygromycin-resistant 

21 bamboos were regenerated as described previously (Ye et al., 2017). In total, 34 

22 independent transgenic lines regenerated from 1,600 calluses were confirmed positive 

23 (2.1%) by PCR. Based on Sanger sequencing results, 22 (100%) and 10 (83.3%) 

24 independent T0 lines were edited in the sgRNA1 and sgRNA2 region, respectively 

25 (Figure 1E), indicating that both constructs effectively induce endogenous gene 

26 editing.

27

28 The editing profiles were further analyzed by sequencing. Eighteen lines (81.8%) 

29 contained putative homozygote/biallelic mutations in all subgenomes at the sgRNA1 
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4

1 target site. In some lines, putative homozygote/biallelic mutations exist in one 

2 subgenome while heterozyoteheterozygote or chimeric mutations appear in other 

3 subgenomes (T0-10 and T0-26) (Figure 1F). Eight mutation types were identified 

4 from 590 independent clones (Figure 1G). The most frequently appeared mutation 

5 type is was deletion (75%), of which 59.1% are small deletions (<2bp). The ratios of 

6 large fragment deletions (≥14bp), insertions, and combined indels were 15.9%, 

7 2.21%, and 7.82%, respectively (Figure 1G). Since bamboo propagates through 

8 asexual budding, those homozygote/biallelic mutations will remain in the genome of 

9 their offspring clones during breeding.

10

11 sgRNA2 that perfectly targets DlmPSY1-A1, but not DlmPSY1-B1 or DlmPSY1-C1 

12 was designed to study the recognition specificity (Figure 1D). Sequencing results 

13 confirmed that 10 transgenic lines contain mutations in DlmPSY1-A1, but none in 

14 DlmPSY1-B1 and DlmPSY1-C1 (Figure 1E). Two lines (20%) were putative 

15 homozygous or biallelic mutations (T0-12 and T0-14), while 7 lines (70%) were 

16 heterozygous/chimeric (T0-30 to T0-32 as representative examples, Figure 1H). The 

17 ratios of deletions, insertions, and combined mutations were 86%, 9%, and 5%, 

18 respectively (Figure 1I). The mutations were predominantly short nucleotide changes 

19 (1–26bp), and 22.7% were 1bp nucleotide deletions (Figure 1I). Those data 

20 demonstrated the successful application of the CRISPR/Cas9 system in mutating a 

21 specific DlmPSY1 allele. 

22

23 Eighteen lines (81.8%) with homozygote/biallelic mutations in all subgenomes at 

24 the sgRNA1 site exhibited albino phenotypes (Figure 1J), which appeared at an early 

25 stage during tissue culture, and persisted at the plantlets stage (Figure 1J). Those 

26 results suggest that genome editing takes place at an early stage in embryonic cells, 

27 and led to the loss-of-function of all DlmPSY1 alleles. Similar results were reported in 

28 rice, wheat or cotton (Wang et al., 2018; Wang et al., 2014; Zhang et al., 2014). In 

29 case of sgRNA2, although DlmPSY1-A was mutated, no visible phenotypic change 
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5

1 was observed due to the existence of the wild-type DlmPSY1-B and DlmPSY1-C 

2 alleles.

3

4 Next, we applied this technology in bamboo molecular research. Bamboo is the 

5 highest tallest grass in the world, while the underlying mechanism is unknown. 

6 Previously, we identified several Gibberellin-responsive genes including GRG1 

7 (GA-responsive gene 1, PH01004823G0070) that potentially acts in controlling 

8 bamboo height (Zhang et al., 2018). Here atwo homozygote grg1 mutants (efficiency 

9 40%) in Ma bamboo waswere produced using our optimized CRISPR/Cas9 

10 technology. Mutation in GRG1 increased plant height (Figure 1K), mostly due to 

11 elongated internodes (Figure 1L-N). Sequencing results confirmed that the grg1 

12 mutant has the putative homozygous mutation in A1-subgenome, biallelic mutation in 

13 B1-subgenome, and homozygous mutation in C1-subgenome (Figure 1O), indicating 

14 the loss-of-function of GRG1 in transgenic bamboo. To our knowledge, this is the 

15 first example on controlling bamboo height through gene manipulation, which will 

16 contribute to subsequent studies on the molecular mechanisms behind the fast growth 

17 of bamboo.

18

19 In summary, for the first time we engineered the hexaploid Ma bamboo through 

20 CRISPR/Cas9 technology. The homozygote mutations were obtained in the first 

21 generation of transgenic lines, which is extremely important for bamboo species due 

22 to its long vegetative growth periods. We also confirmed the albino phenotype of 

23 dlmpsy1 mutant in bamboo and generated a bamboo mutant with altered plant height. 

24 This demonstrates the applicability of CRISPR/Cas9 in bamboo and thereby boosts 

25 future bamboo research and breeding.

26

27
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15

16 Figure Legend

17 Figure 1. Genome editing in Ma bamboo using CRISPR/Cas9 technology

18 A. Bamboo protoplast isolation and transformation. a. Microscopic image of 

19 isolated bamboo protoplast transformed with 35S:tdTomato. b-d. Images of 

20 bamboo protoplasts co-expressing the fluorescence proteins tdTomato (b) and 

21 GFP (c) driven by the 35S promoter, and their overlay (d). 

22 B. CRISPR/Cas9 plasmids for bamboo protoplast. Top: CRISPR/Cas9 constructs 

23 expressing the sgRNA directed against mGFP and driven by 

24 OsU6a/OsU6b/OsU6c respectively; Middle: mGFP-expression construct, 

25 mGFP contains one additional guanine (lower-green case) downstream of the 

26 translational start site (red); bottom: GFP-expression construct. The sgRNA 

27 was designed to produce the presumptive cleavage site at the third nucleotide 

28 upstream of the PAM sequence (blue).

29 C. Representative bamboo protoplasts co-transfected with mGFP and 
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1 OsU6b-sgRNA/UBI-Cas9 reproducibly emitting fluorescence signals (red 

2 arrows).

3 D. DlmPSY1 gene structure and sequences of the target sites. Gray boxes: exons; 

4 black lines: introns; number in brackets: positions of start codon, stop codon 

5 and sgRNA target sites (red and orange rectangles). The PAM regions (blue), 

6 SNPs (red), and nucleotide sequences of the sgRNAs and DlmPSY1 genes were 

7 given. 

8 E. Frequencies of the CRISPR/Cas9-induced mutations in two target sites of the 

9 DlmPSY1.

10 F. Representative DlmPSY1 mutations at the sgRNA1 site. T0-1, T0-2, T0-3, 

11 T0-12 and T0-13 represent loss-of function mutants. T0-10 and T0-26 lines 

12 contain heterozygote mutations in the C1-subgenome and chimeric mutations 

13 in the A1-subgenome, respectively. Red: sgRNA target regions; blue: PAM 

14 regions; green lowercase letters: nucleotide indels; dotted lines: omitted 

15 nucleotides.

16 G. Frequencies of indels (left) and mutation types (right) at the sgRNA1 site of 

17 DlmPSY1. i# and d#: # of bp inserted or deleted, respectively; d≥14: more 

18 than 14 bp deletion; i+d: target sites with both deletions and insertions. 

19 H. Representative DlmPSY1 mutants at the sgRNA2 site. The represents 

20 homozygote (T0-12), biallic (T0-14), and heterozygote (T0-30 to T0-32) at 

21 A1-subgenome were shown.

22 I. Frequencies of indels (left) and mutation types (right) at the sgRNA2 site of 

23 DlmPSY1. (legend: see G)

24 J. Phenotypes of representative dlmpsy1 mutants. a-c, wild-type; d-f, dlmpsy1 

25 mutant (T0-1).

26 K-N. Phenotypes of wild-type and the represented grg1 mutant. Growth 

27 phenotype (K) and internode elongation (L) of 5-month old wild-type (a) and 

28 grg1 (b) plants grown in the greenhouse. Plant heights (M) and internode lengths 

29 (N) were quantified. ∗∗: p < 0.01. 
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1 O. Mutations of the GRG1 gene were confirmed by Sanger sequencing. The 

2 sgRNA target regions (red), PAM regions (blue), nucleotide insertions (green) and 

3 their length (right side) are shown.
4

5
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