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feature through feature-invariant representations: Behavioral
experiments and model simulations
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Zhong-Lin Lu Division of Arts and Sciences,
NYU Shanghai, Shanghai, China

Center for Neural Sciences and Department of
Psychology, New York University, New York, NY, USA
NYU-ECNU Institute of Brain and Cognitive Science,

Shanghai, China

Barbara Dosher Department of Cognitive Sciences,
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A large body of literature has examined specificity and
transfer of perceptual learning, suggesting a complex
picture. Here, we distinguish between transfer over
variations in a “task-relevant” feature (e.g., transfer of a
learned orientation task to a different reference
orientation) and transfer over a “task-irrelevant” feature
(e.g., transfer of a learned orientation task to a different
retinal location or different spatial frequency), and we
focus on the mechanism for the latter. Experimentally,
we assessed whether learning a judgment of one feature
(such as orientation) using one value of an irrelevant
feature (e.g., spatial frequency) transfers to another
value of the irrelevant feature. Experiment 1 examined
whether learning in eight-alternative orientation
identification with one or multiple spatial frequencies
transfers to stimuli at five different spatial frequencies.
Experiment 2 paralleled Experiment 1, examining
whether learning in eight-alternative spatial-frequency
identification at one or multiple orientations transfers to
stimuli with five different orientations. Training the
orientation task with a single spatial frequency
transferred widely to all other spatial frequencies, with
a tendency to specificity when training with the highest
spatial frequency. Training the spatial frequency task
fully transferred across all orientations. Computationally,
we extended the identification integrated reweighting
theory (I-IRT) to account for the transfer data (Dosher,
Liu, & Lu, 2023; Liu, Dosher, & Lu, 2023). Just as
location-invariant representations in the original IRT
explain transfer over retinal locations, incorporating
feature-invariant representations effectively accounted

for the observed transfer. Taken together, we suggest
that feature-invariant representations can account for
transfer of learning over a “task-irrelevant” feature.

Introduction

The performance in visual perceptual tasks is often
highly dependent on experience, with performance
improvements arising from perceptual learning. When
learning one task improves performance on another
untrained one, the learning transfers or generalizes;
whereas, if it does not, then the learning is deemed
specific. The circumstances in which visual perceptual
learning occurs and whether and how learning in one
task transfers to another are major theoretical issues
that have been extensively researched. Specificity to the
trained judgment has been noted for many stimulus
features, including cases of specificity to retinal training
location (Karni & Sagi, 1991). Other research has
investigated training protocols that might increase
transfer (for reviews of perceptual learning and/or
transfer, see Connolly, 2019; Dosher & Lu, 2020; Fine
& Jacobs, 2002; Green, Banai, Lu, & Bavelier, 2018; Lu
& Dosher, 2022; Sagi, 2011).

The focus of this paper is a relatively unstudied
aspect of transfer: namely, whether perceptual learning
transfers over variations in task-irrelevant stimulus
variations. Or, to put it differently, whether training
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Figure 1. Examples of transfer within a task-relevant dimension
(top; to an orthogonal reference angle in an orientation
identification task) and within a task-irrelevant dimension
(bottom; to a different spatial frequency in the same
orientation identification task).

generalizes to stimuli that look different due to changes
in a task-irrelevant feature of the stimulus. For example,
if observers are trained to judge orientation for a
high-spatial-frequency stimulus, does the ability to
judge orientation transfer to stimuli with other spatial
frequencies? Alternatively, if observers are switched
to judge a different set of orientations, this requires
transfer to new stimuli in the task-relevant dimension.
Generalization of learning has a practical value—it is
much less efficient if every possible combination of
trained features must be learned. On the other hand,
visual perceptual learning may capitalize on all of
the available information in the exact stimuli that are
trained to optimize performance on the trained task,
leading to specificity.We aimed to test these possibilities.
Examples of transfer within the task-relevant dimension
and a task-irrelevant dimension are shown in Figure 1
for a two-alternative task. Testing multiple graded
changes in the task-irrelevant dimension can be used to
examine transfer tuning functions.

The current project examined the role of task-
irrelevant transfer behaviorally in two studies—one
in which observers learn to perform multi-alternative
orientation absolute identification using one or several
spatial-frequency variations in the training stimuli,
and another in multi-alternative spatial-frequency
identification using one or several orientation variations
in the training stimuli. This design measured tuning
in transfer after training with a single level of the
task-irrelevant dimension. We also extended and tested
a model of visual perceptual learning, the identification
version of the integrated reweighting theory (I-IRT)
(Dosher, Jeter, Liu, & Lu, 2013: Dosher, Liu, &
Lu, 2023; Liu, Lu, & Dosher, 2023). This extension
incorporates feature-invariant representations to
account for our new data indicating substantial transfer
across task-irrelevant variations in stimulus appearance.

Specificity and transfer

There is an extensive literature on specificity and
transfer in visual perceptual learning in many different
perceptual tasks. Many early perceptual learning studies
showed significant specificity for the trained tasks,
such as specificity to the trained orientation (Schoups,
Vogels, & Orban, 1995), location (Crist, Kapadia,
Westheimer, & Gilbert, 1997), motion direction (Ball &
Sekuler, 1987), or the eye trained (Karni & Sagi, 1991).
Several theoretically influential examples involved
specificity to the retinal location of training, leading
researchers to hypothesize early visual cortical areas as
a substrate for learning (Karni & Sagi, 1991).

In many cases, however, tasks exhibit both some
specificity and some transfer to the new task variants
(Jeter, Dosher, Liu, & Lu, 2010; for a review, see Dosher
& Lu, 2020; Lu & Dosher, 2022). Even testing the
same stimuli, different tasks or judgments can yield
both specificity and transfer (Green, Kattner, Siegel,
Kersten, & Schrater, 2015). Transfer between tasks is
asymmetric in some cases (Dosher & Lu, 2005; Ahissar
& Hochestein, 1997; Jeter, Dosher, Petrov, & Lu, 2009;
Liu & Weinshall, 2000). In addition, a substantial
literature has investigated “double training” in more
than one task (e.g., orientation task 1 in location 1
and orientation task 2 in location 2) and improved
transfer across locations and tasks (Hu, Wen, Chen, &
Yu, 2021; Wang et al., 2016; Xiao et al., 2008; Xiong,
Zhang, & Yu, 2016; Zhang et al., 2010). From all these
informative yet nuanced results, one conclusion holds:
Details matter. The specific stimulus, task, training
sequence, and measurements may all affect the level of
transfer.

Task-relevant and task-irrelevant stimulus
feature transfer

We suggest an added classification of transfer
into two categories: transfer over variation in a
task-relevant stimulus feature or over variation in
a task-irrelevant stimulus feature. This may help
disentangle the learning transfer literature, as these
two types of transfer may require different underlying
mechanisms. This project focuses on the little-studied
case of transfer over altered task-irrelevant stimulus
features.

An example of transfer (or specificity) over a task-
relevant feature is training an orientation identification
task centered around one reference orientation that
transfers to an orientation identification task centered
around a different reference orientation. Many of the
classic examples of specificity are of this kind, such
as for orientation (Dosher & Lu, 2007; Schoups et al.,
1995; Vogels & Orban, 1985) or motion direction
(Ball & Sekuler, 1987; Watanabe et al., 2002). In these
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cases, the observer’s judgments reflect activity in what
are likely to be distinct neural representations in the
training and transfer tasks (e.g., around the horizontal
and vertical orientations).

The best-known example of task-irrelevant transfer
occurs when visual perceptual learning transfers to a
different retinal location. The stimuli and judgments are
identical, but they are tested in another location relative
to fixation. One well-known example demonstrated
specificity of training to location in the texture
discrimination task (Karni & Sagi, 1991). Others
involved orientation tasks in different retinal locations
(Schoups et al., 1995). In some cases, a mixture of
transfer and specificity is observed (e.g., Dosher et al.,
2013; Schoups et al., 1995; Shiu & Pashler, 1992),
whereas in others the specificity is nearly complete (e.g.,
Ball & Sekuler, 1987). Another such feature is specificity
(Karni & Sagi, 1991), or generalization over the eye
of training (Schoups et al., 1995). External noise level
is also an example of transfer over a task-irrelevant
feature, which yields asymmetric transfer (Dosher & Lu,
2005). One closely relevant study examined transfer over
task-relevant and task-irrelevant features in the same
task: switching only orientations, only retinal locations,
or both in an orientation identification task (identifying
a stimulus orientation as clockwise or counterclockwise
±5° of one or another diagonal reference angle)
(Dosher et al., 2013). A mix of specificity and transfer
occurred in all cases, with more specificity for changes in
orientation alone (task-relevant transfer), and the most
transfer for changes in location alone (task-irrelevant
transfer).

The current project examined transfer over a
task-irrelevant feature other than location—one
that alters stimulus appearance. It trains orientation
judgments with stimuli of one spatial frequency and
assesses transfer of the same orientation judgment to
stimuli of another spatial frequency (as in Figure 1),
or it trains spatial frequency judgments with stimuli at
one orientation and tests transfer to stimuli of other
orientations. There are few exact predecessors of this in
the perceptual learning literature. Perhaps the closest
is training contrast detection, which leads to graded
transfer near the spatial frequency of the training
stimulus (Hou et al., 2011; Huang, Zhou, & Lu, 2008;
Sowden, Rose, & Davies, 2002; Zhou et al., 2006).

There are theoretical arguments supporting both
specificity and transfer across variation in a task-
irrelevant feature. Learning a visual task should take
advantage of full knowledge of the stimulus (perhaps
by learning image templates that match the trained
stimuli). This might optimize performance on a specific
trained task but lead to more specificity. However,
from a practical perspective, transfer of training
across a task-irrelevant feature improves performance
over many task variants when training on only one
task-irrelevant feature value. This transfer could be

accomplished by pooling over the task-irrelevant feature
to combine inputs from multiple feature-dependent
representations. Another claim (Raviv, Lupyan, &
Green, 2022) is that varying the stimuli trained in a task
increases transfer. This agrees with using variation in
a task-irrelevant feature during training to encourage
related generalization (Manenti, Dizaji, & Schwiedrzik,
2023). The idea of variation during training is a point
we return to later.

Related results on pooling

Pooling over task-irrelevant dimensions has been
used to explain the results in some psychophysical
studies. In a series of experiments, Olzak and colleagues
(Olzak & Thomas, 1992; Olzak & Thomas, 1999; Olzak
& Wickens, 1997; Thomas & Olzak, 1996) studied
masking and cue combination in discriminating spatial
frequency or orientation using complex gratings. For
example, in orientation identification, the information
from two widely different spatial frequency components
seems to be integrated, so that performance for a
congruent stimulus (in which orientation information is
of the same sign in both spatial frequency components)
is always much better than that of an incongruent
stimulus (in which the orientation judgment conflicts
for two spatial frequency components). Similar results
also hold for spatial frequency judgments from complex
gratings with both horizontal and vertical orientation
components.

To account for these results, Olzak et al. proposed
summation/pooling across the spatial frequency
channels (“cigar” model) for orientation judgments
and across orientation channels (“doughnut”
model) for spatial frequency judgments. The “cigar”
model has processing stages that are broadly
tuned for spatial frequency but narrowly for
orientation, and the “doughnut” has processing
stages that are broadly tuned for orientation but
narrowly for spatial frequency. The pooling in
these studies occurred for simultaneously available
components of complex stimuli, whereas relevant
pooling in the perceptual learning studies here
occurred through activation in different trials of
corresponding pooled representations that we refer
to as (task-irrelevant) feature invariant. The idea
of related pooled representations also has roots in
neurophysiological studies, a point considered in the
Discussion.

Integrated reweighting theory and transfer

The integrated reweighting theory (IRT) provides
a theoretical and computational framework for
both learning and transfer in visual tasks. In the



Journal of Vision (2024) 24(6):17, 1–24 Liu, Lu, & Dosher 4

Figure 2. Stimuli of the two experiments were Gabors displayed with external noise. (a) Gabor stimuli for the eight-alternative forced
choice (8AFC) orientation-identification task. Every stimulus is of one of the eight possible orientations and one of the five possible
spatial frequencies. (b) Gabor stimuli for the 8AFC spatial-frequency task. Every stimulus is of one of the eight possible spatial
frequencies and one of the five possible orientations.
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reweighting models, the most relevant and active
sensory representation units are increasingly weighted
to drive activation in a decision unit, whereas less
relevant representations are downweighted; learning is
embodied in the process of reweighting. The original
reweighting model has banks of representation units
jointly tuned to orientations and spatial frequencies
that are location specific (Petrov, Dosher, & Lu, 2005;
Petrov, Dosher, & Lu, 2006). The IRT also includes
banks of orientation and spatial frequency tuned
units that are location invariant—units that respond
to stimuli in all retinal locations—to account for
location transfer (Dosher et al., 2013). Transfer over
location is mediated by learning of weights from
location-invariant representations to decision, in
addition to location-specific representations whose
weights reflect learning that is specific to location. The
IRT accounts for the different amounts of transfer
and specificity when only orientation, only location,
or both are switched from training to transfer in
orientation discrimination (Dosher et al., 2013). The
same representation structure is also used to account for
effects of double training of multiple tasks in multiple
locations, which (as reviewed earlier) often produces
strong transfer (Talluri, Hung, Seitz, & Series, 2015),
and the interactions of training in multiple locations
in a task roving paradigm (Dosher, Liu, Chu, & Lu,
2020).

The current project examines whether transfer
over task-irrelevant features occurs empirically in
multi-alternative identification tasks or, alternatively, if
there is significant specificity to the training stimulus,
or some of both. By analogy to the location-invariant
representations, feature-invariant representations
that pool over task-irrelevant feature variation might
account for task-irrelevant transfer to untrained
stimuli. For example, orientation-tuned representations
that pool over spatial frequencies may enable transfer
of orientation identification trained in one spatial
frequency to others, or spatial-frequency tuned
representations that pool over orientations can enable
transfer of spatial-frequency identification trained
in one orientation to others. We test whether this
extended identification IRT (eI-IRT) can account for
the mixture of transfer and/or specificity demonstrated
in the behavioral data. The computational model and
its fit to the data are considered in “The extended
I-IRT” section following the reporting of behavioral
results.

Design and rationale

Our experiments measured the transfer of
perceptual learning over task-irrelevant features by
comparing post-training performance to pre-training
performance in multi-alternative absolute identification.

Improvements reflect learning when the test stimulus
matched the trained one and transfer when the
test stimulus differed from the training stimulus in
task-irrelevant feature. Pre-training measurements
accounted for any differences in performance for
different values of the task-irrelevant dimension by
providing baselines. In each trial of the experiment,
the test stimulus occurred in one of two peripheral
visual locations (e.g., top left, lower right of fixation),
pre-cued just slightly before the stimulus, to control
fixation. The pre- and post-training assessments used
an intermediate contrast condition in high external
noise, where performance differences are largest.
No feedback was given to limit learning during
assessments alone (assessed in a no-training control
group).

The task was eight-alternative absolute identification
of either orientation (Experiment 1) or spatial
frequency (Experiment 2), and the stimulus sets
took multiple values of the task-relevant and the
task-irrelevant features (see Figure 2). N-alternative
tasks are especially useful in comparing different
transfer conditions, because their low guessing rate
(1/8, or 12.5% here) yields more information on each
trial, so assessment can be done with fewer trials (Hou,
Lesmes, Bex, Dorr, & Lu, 2015). In these studies, we
assessed transfer at five values of the task-irrelevant
feature, producing a transfer function that, if specificity
occurs, should center around the trained task-irrelevant
value.

The training in the experimental groups occurred
in a design known to produce learning in these
eight-alternative identification tasks using full response
feedback or supervision (correct response indicated)
and three levels of contrast (low, medium, and high)
intermixed in multiple sessions (Dosher et al., 2023;
Liu et al., 2023). Following the baseline assessment,
multiple sessions were trained with one or all values of
the task-irrelevant feature (in four different groups) with
high external noise, a post-training assessment, two
sessions in zero external noise, and a final post-training
assessment. Including both zero and high external
noise trials better constrained the model estimates of
additive internal noise (see Dosher & Lu, 2020). The
statistical analysis of the training data is presented in
Supplementary Tables S1-2 and S2-2.

Behavioral experiments

Methods

Design
The two experiments had the same design: pre-

and post-tests to assess performance improvement
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Figure 3. The experimental design in the training conditions. Both experiments had a session of pre-test, five sessions of training with
high noise, a post-test, two sessions of training with zero noise, and another post-test. The control group has just the first session and
seventh session of pre- and post-tests, with no training in between.

and generalization and training under both high
and zero external Gaussian noise between these pre-
and post-tests. Both experiments had 10 sessions,
where the first, seventh, and 10th sessions were
pre- and post-tests. The second to ∼sixth sessions
included training under high noise, and the eighth
and ninth sessions included training under zero noise.
There were four training groups in each experiment.
Experiment 1 had three training groups trained at
one of three spatial frequencies (e.g., low, medium, or
high spatial frequency); Experiment 2 included one
of three orientations and a fourth that intermixed
all task-irrelevant stimuli during training. There was
also a control group who participated in the pre- and
post-tests only, with a 6-day gap in between to mimic
the training group schedule. This allowed evaluating
any learning that occurred from the pre- to post-tests
alone.

In Experiment 1, observers discriminated the eight
orientations of a Gabor patch in one pre-cued location
of two possible locations (top left or bottom right),
tested over trials with stimuli of one or more spatial
frequencies. In pre- and post-tests, equal numbers of
stimuli at five different spatial frequencies were tested.
The contrast of the stimulus in the pre- and post-tests
was 0.6 (intermediate contrast) presented in high noise.
No feedback was presented in pre- and post-tests. The
training sessions (five sessions in high external noise and
two in zero external noise) included stimuli displayed
at contrasts of 0.3, 0.6, and 1.0 using a single spatial

frequency or a set of spatial frequencies (low, middle,
high, or all) in the different groups. Response feedback
was provided after each trial during the training sessions
(whether the response was correct and the identity of
the correct response). A parallel arrangement was used
for the eight-alternative spatial-frequency identification
in Experiment 2. (See Figure 2 for stimuli and Figure 3
for a diagram of the experimental design.)

Observers
The experiments included 102 observers. All subjects

signed a written Institutional Review Board consent
from the University of California, Irvine. Observers
were required to have normal to corrected-to-normal
vision. Each observer in the experimental groups
completed the 10-session experiment, spanning roughly
2 to 3 weeks. Control groups completed two sessions of
pre- and post-tests, with a 6-day gap between sessions.
Each pre- or post-test session tested 800 trials, and each
training session had 960 trials. Thus, each observer
in training conditions participated in 9120 trials, and
each observer in control groups participated in 1600
trials, for a total of 380,800 trials overall in each of
the two experiments. Two participants were excluded
(one failed to show any learning, and so there was no
way to analyze transfer; another misunderstood the
task, and the pre-test performance was below chance);
this resulted in 10 observers for each group in each
experiment.
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Stimuli and apparatus
The stimuli were Gabor patterns with an orientation

and central spatial frequency. In Experiment 1, the
orientation of the stimulus was randomly chosen from
eight possible angles (−78o, −55.5°, −33°, −10.5°,
12°, 34.5°, 57°, or 79.5°), with its central spatial
frequency at one or more spatial frequencies. In pre-
and post-tests, the spatial frequency of the stimulus
was randomly chosen on each trial from five possible
ones (0.7, 1.0, 1.4, 2.0, or 2.8 cycles per degree [cpd]).
In the training sessions between pre- and post-tests,
orientation identification was trained in separate
groups with stimuli with a designated spatial frequency
(low at 0.7 cpd, middle at 1.4 cpd, and high at 2.8
cpd, or randomized over all five spatial frequencies
as in pre- and post- tests). Training consisted of five
sessions in high external noise and then two sessions
in zero external noise. Experiment 2 evaluated learning
and transfer in spatial-frequency identification and
followed the same design, with the spatial frequency
randomly chosen on each trial from eight possible
ones (0.5, 0.7, 1.0, 1.4, 2.0, 2.8, 4.0, or 5.6 cpd). In
pre- and post-tests, spatial-frequency identification
was tested at five orientations, randomized over trials
(−55.5°, −33°, −10.5°, 12°, or 34.5°). In training
phases, the stimuli used one orientation (left at
−55.5°, middle at −10.5°, or right at 34.5°) or all five
orientations (as in pre- and post-tests), depending
on the group. (See Figure 2 for an example of all
stimuli in high noise.) Thus, each experiment included
four groups of observers in the various training
conditions and one group of observers in the control
condition.

On each trial, the Gabor stimulus was displayed
either at the top left or bottom right corner of the
screen. The 64 × 64 pixel patch is defined by l (x, y) =
l0(1.0 + csin(2π f (ysin(θ ) + xcos(θ )) × e

x2+y2

2σ2 ), where θ
and f are the chosen orientation and spatial frequency,
respectively; σ = 0.7°, the standard deviation of the
Gaussian envelope; c is the maximum contrast; and
l0 is the mid-gray background luminance. In our
experiment, c was one of the three contrasts: 0.3, 0.6,
or 1.0.

The external noise images were generated
independently for each trial. Each noise image was
composed of 2 × 2-pixel noise elements, whose
contrasts were randomly chosen from a Gaussian
distribution with mean 0 and standard deviation
0.33 (for the orientation task) or 0.25 (for the spatial
frequency task) and filtered through a second-order
Butterworth bandpass filter (cut-off frequencies at
1.4 cpd and 5.6 cpd, respectively). On each trial, the
stimulus sequence was two external noise images
followed by one signal image and then followed by
two more external noise images (NNSNN). Each
external noise image was independently generated.

These images were flashed through quickly at the
refresh rate, and participants perceived a single noisy
Gabor through temporal integration. Stimuli were
generated using MATLAB (MathWorks, Natick, MA)
with Psychtoolbox 3 on a Dell PC (Dell Technologies,
Round Rock, TX) and displayed on a 20-inch monitor
(ViewSonic, Brea, CA). The color monitor was set at
a refresh rate of 60 Hz and resolution of 640 × 480
pixels and in a pseudo-monochrome with luminance
linearized into 127 levels by a visual calibration
procedure (Lu & Dosher, 2013). The minimum,
maximum, and mid-gray background luminance
values were 1, 67, and 34 cd/m2, respectively. Images
were presented at 5.3° visual angle eccentricity,
subtended 2.8° × 2.8°. Participants sat 83 cm from
the monitor, and a chin rest was used to stabilize the
distance.

Procedure
The task was explained to the observers, including

showing them printed examples of the stimuli. Then,
observers practiced 32 exemplar trials in zero noise
to make sure they understood the task. In the actual
experiment, in each trial, a central fixation cross and
two sets of location marks on the two locations (top
left/bottom right) were shown for 300 ms, then the
stimulus sequence (NNSNN) was flashed through
in the stimulus location. Each noise frame appeared
for one refresh count (16.7 ms), and the signal frame
appeared for two refresh counts (33.3 ms). A central
pre-cue arrow indicating the tested location appeared
100 ms before the first stimulus frame and reappeared
as a post-cue after the stimulus display was complete.
The signal contrast was randomly set at 0.3, 0.6,
or 1.0 (or 0.6 during pre- and post-assessments).
Observers pressed one of the eight keys (a, s, d, f, j,
k, l, or ;) as the response, one for each orientation
(Experiment 1) or spatial frequency (Experiment
2). In training trials, observers received feedback
that indicated response accuracy and the correct
response.

Data analysis
Learning and transfer were assessed based on

performance of pre-and post-tests, as well as in the
training sessions. Performances in the two post-tests
were essentially equivalent (see Results and Figures 4
and 6), so data from the two post-tests were combined.
For learning, we looked at performance improvement
over the training sessions, as well as the improvement
from pre-test to post-tests compared with a control
group with no training sessions.

To assess transfer, we compared performance
improvements among different spatial frequencies
(Experiment 1) or orientations (Experiment 2) from
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Figure 4. Experimental results of the orientation identification task (Experiment 1). Five panels are the five groups: control (pre- and
post-tests only, top left), training with low spatial frequencies (middle left), high spatial frequencies (middle right), middle spatial
frequencies (bottom left), and all spatial frequencies (bottom right). All pre- and post-tests were done with all five spatial frequencies
with the middle contrast (0.6). Training was done with three contrast levels (0.3, 0.6, and 1.0). The control group changed little from
pre- to post-test, whereas the overall post-tests performance of all spatial frequencies improved after training regardless of which
spatial frequencies (group) were trained, signifying both learning and transfer (over a task-irrelevant feature).

pre-test to post-test in each of the training groups. We
defined an improvement index, I, as

I = (
pcpost − pcpre

)
/
(
1 − pcpre

)

The improvement index shows what percentage of
the maximum possible improvement was realized by
learning. (This index is contrast dependent; however,
all pre- and post-tests in this design used the same 0.6
contrast.) Analyses of variance, both traditional and
Bayesian, were performed to test whether there was a
significant difference between observed improvements
as a function of the training group.

Results

Experiment 1: Orientation identification with
different spatial frequency

Training the eight-alternative orientation
identification task generated significant learning, and
most learning also transferred across different spatial
frequencies. Figure 4 shows the proportion correct for
all sessions, including pre-test, training in high noise,
the first post-test, training in zero noise, and the final
post-test, for all training groups (low, middle, high, or



Journal of Vision (2024) 24(6):17, 1–24 Liu, Lu, & Dosher 9

Figure 5. Results from the pre- and post-tests in orientation identification (Experiment 1; see text). (a) The proportion correct results.
Change for the control group is limited. In training groups, the (near) parallel line of pre- and post-tests represents (almost) complete
transfer. Top left shows control; middle left, training in a low spatial frequency; middle right, training in a high spatial frequency;
bottom left, training in a middle spatial frequency; and bottom right, training in all five spatial frequencies. (b) Pre- to post-tests
improvement index (see text). Similar bar length across different spatial frequencies signifies transfer. The error bars are standard
error of the mean (SEM).

all five values of the task-irrelevant feature) and the
control group.

For all of the training groups, both learning due to
training and generalization were manifested. Learning
can be seen in the higher performance levels in the
post-tests compared with those in the pre-test and
in the learning curves in the high external noise
training sessions. Transfer is seen in improvements
that extended to all spatial frequencies in post-tests,
whether the orientation task was trained at that spatial
frequency or that spatial frequency was untrained
(see statistical tests below). The proportion correct
was equivalent in the first and second post-tests
(most p > 0.1; see Supplementary Table S1-1 for
details), so the results from the two post-tests were
combined in the following analyses. Analyses of
variance on pre-test (session 1) performance found
no significant difference among groups, F(3, 36) =
0.394, p > 0.7, before training, and, upon training
(sessions 2 to 6), the analyses found no difference
in learning among groups, F(3, 36) = 0.287, p >
0.8. Taken together, then, all training groups started

with similar initial performance and showed similar
improvement over the training sessions (see detailed
analysis of the training data in Supplementary Table
S1-2).

Next, we look in more detail at the pre- and post-tests
to assess both learning and transfer (see Figure 5a).
Performance improvements correspond with the gap
between two curves (pre-test and post-test) in each
subpanel. Transfer across all task-irrelevant variations
in the training stimuli is seen in the near-parallel form
of the pre- and post-curves (similar improvement
across all spatial frequencies) regardless of the spatial
frequency (or frequencies) used to train the orientation
identification task (low, medium, high, or all groups).
There was almost complete transfer in most cases
(training with low or middle spatial frequencies
transferred to all other ones; training with high
spatial frequency mostly transferred to other spatial
frequencies, albeit showing a trend for reduced transfer
in the lowest spatial frequencies). Statistical analysis
confirmed these observations (see Supplementary Table
S1-3 for details).
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An improvement index was computed from the
pre- and post-training test scores (see Methods) for
each group and each spatial frequency (Figure 5b).
Again, virtually all spatial frequency tests showed
significant improvement in orientation identification
from pre- to post-test in all training groups
(improvement index > zero, all ps < 0.01, with the
only exception being for lowest spatial frequency
tests in the group trained with high spatial frequency
(p = 0.07). (See Supplementary Table S1-4 for
details.) In comparison, any improvements in the
control group from pre-test to the post-test were
relatively small (only improvement of the first
and third spatial frequencies reached significance
and the others did not; see Figure 5b, top-left
panel).

Traditional statistical testing evaluates the evidence
for an alternative hypothesis, which some have
argued does not directly assess evidence in favor of
a null hypothesis (Wagenmakers, 2007). Because the
theoretical point is the essentially equivalent pattern of
transfer in all training groups, we performed Bayesian
tests using the Bayesian information criterion (BIC),
or fitness of competing models, method (Masson,
2011), to assess the strength of evidence favoring
the null hypothesis of equivalent transfer across
the task-irrelevant stimulus dimension, as well as
the evidence favoring the alternative hypothesis of
differential transfer. Traditional p values reflect p(D/H0),
or the probability of observing current data given
the null hypothesis. The Bayesian method provides
estimates of p(H0/D) and p(H1/D), or the probability
that the null (or alternative) hypothesis is true given the
data.

We carried out a Bayesian analysis on the
improvement indices, with trained spatial frequency
as a between-group factor and spatial frequency of
the test stimulus as a within-group factor. In this
analysis, with five groups (including the control), the
calculated effect sizes for group, spatial frequency
and the interaction between them were 0.330, 0.0181,
and 0.194, respectively, and the pBIC(H0/D) values
were 0.00, 1.00, and 1.00, respectively. Values near 1.0
provide very strong evidence that the null hypothesis
is true, whereas values near 0 favor the alternative
hypothesis. The strong evidence for the alternative
hypothesis comparing across groups solely reflected
the difference between the control group and all four
training groups. When excluding the control group,
evidence for group differences was eliminated, with
respective effect sizes of 0.0388, 0.0209, and 0.209
for group, spatial frequency, and the interaction
term, respectively, and the pBIC(H0/D) values were
0.99, 1.00, and 1.00, respectively, showing that the
degree of learning was not significantly affected by
training group, spatial frequency of the stimuli, or the
interaction between them. Thus, the Bayesian analysis

provided direct evidence consistent with broad transfer
across all spatial frequencies in all four training groups.
In this case, including all spatial frequencies during
training resulted in essentially equivalent post-training
results. (The classic frequentist analysis is presented in
Supplementary Tables S1–S3.)

We also examined the response confusion matrices
(the frequency of different responses given to each
stimulus), which showed performance improvements
across all orientations in the stimuli (not biasing
responses to a subset of stimuli) in the training
groups. The control group showed minimal change.
See Supplementary Figure S1-1 for a visualization of
the heat diagrams of the pre- and post-tests in all five
groups and Supplementary Figure S1–S2 for response
confusion profiles, which show the confusions with near
stimuli.

In summary, then, Bayesian (and frequentist)
statistical methods confirmed the null hypothesis of
no difference between training groups, leading to
the conclusion that training with any of the spatial
frequencies transfers essentially completely to others
in the orientation identification task, that the amount
of transfer was similar after training with all spatial
frequencies, and that such generalization is not
explained by learning from the pre-test to post-test
improvement alone (control conditions). Similar
conclusions were supported by an analysis of the
pattern of response confusions.

Experiment 2: Spatial-frequency identification
task with different orientations

Experiment 2 paralleled Experiment 1 with the
spatial-frequency identification task that required
identification of eight different spatial frequencies
tested using five different stimulus orientations. Here,
the four main groups trained on a left-most orientation,
a right-most orientation, a middle orientation, or
all five orientations. Figure 6 shows the effect of
spatial-frequency identification training with stimuli
of different orientations, including performance on the
pre-test, the training sessions using external noise, the
first post-test, training in zero external noise, and the
second post-test. Paralleling results of Experiment 1,
there was significant learning in all training conditions
as measured by improvements from pre- to post-test
performance and across training sessions, while the
control group showed little change of performance.
Here, there appeared to be a complete transfer of
learning—the performance in the pre- and post-tests
for the groups that trained with stimuli of different
orientations was essentially the same. Figure 7 shows
nearly parallel lines from pre-test to post-test for
all orientations regardless of training group. Once
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Figure 6. Behavioral results of the spatial-frequency identification task (Experiment 2). The five panels show results of the five groups:
control (pre- and post-tests only, top left), training with a left orientation (middle left), a right orientation (middle right), a middle
orientation (bottom left), and all orientations (bottom right). All pre- and post-tests were done with all five tested orientations
displayed at the middle contrast (0.6). Training was done with three contrast levels (0.3, 0.6, and 1.0) in high external noise (sessions
2–6) or zero external noise (sessions 8 and 9). The control group changed little from pre- to post-test, whereas overall post-test
performance of all orientations improved after training regardless of which orientations participants were trained on, signifying both
learning and transfer (over a task-irrelevant feature).

again, no difference was observed between the two
post-tests (most p > 0.1; see Supplementary Table
S2-1 for details), so performance was combined
for analysis. Analyses of variance found neither
significant differences in pre-test performance among
groups before training, F(3, 36) = 1.040, p > 0.3, nor
differences in learning during training (session 2 to

6), F(3, 36) = 1.608, p > 0.2. A detailed analysis of
the training sessions appears in Supplementary Table
S2-2.

Taken together, all training groups started with
similar initial performance and showed similar
improvement over the five sessions of training. The
pre-test to post-test improvement was also equivalent



Journal of Vision (2024) 24(6):17, 1–24 Liu, Lu, & Dosher 12

Figure 7. The pre- and post-tests accuracies and improvement indices of the spatial-frequency identification task (Experiment 2).
Performance from the two post-tests were averaged. (a) The proportion correct results. The control group showed little
improvement. In training groups, the (nearly) parallel line of the pre- and post-tests represents essentially complete transfer. Top left
shows control; middle left, training in the left orientation; middle right, training in the right orientation; bottom left, training in the
middle orientation; and bottom right, training in all five orientations. (b) Improvement indices comparing post- to pre-test
performance (as defined in the text). Similar bar length across different orientations also signifies broad transfer over orientation of
training. The error bars are SEM.

among the different training groups (see Supplementary
Table S2-3). As before, all test orientations showed
significant improvement from pre- to post-tests in
all training groups (improvement greater than 0; all
p < 0.01; see Supplementary Table S2-4 for details).
In contrast, for the control group, no improvement
was observed (all p > 0.1; see Figure 7b, top-left
panel).

As in Experiment 1, we performed a Bayesian
analysis that provided estimates of p(H0/D) and
p(H1/D), or the probability of the null (or alternative)
hypothesis given the data. Traditional p values reflect
p(H0/D), or the probability of observing current data
given the null hypothesis. The estimated effect sizes for
group, stimulus orientation, and interaction were 0.244,
0.018, and 0.111, respectively, and the pBIC(H0/D)
values were 0.00, 1.00, and 1.00, respectively, reflecting
a group difference between the control group and all of
the training groups. When excluding the control group,

the effect sizes were 0.0768, 0.0394, and 0.161 for group,
orientation, and the interaction, respectively, and the
pBIC(H0/D) values were 0.77, 1.00, and 1.00, respectively,
favoring the null hypothesis that the performance
improvement due to learning occurred equivalently at
all different stimulus orientations in all four training
groups. (Corresponding standard frequentist statistical
analysis is provided in Supplementary Table S2-3.)
Consistent with Experiment 1, both Bayesian statistical
assessments and frequentist analyses supported the
null hypothesis: that learning in any of the orientations
completely transfers to other orientations in the spatial-
frequency identification task. The patterns of response
confusion (the frequency of responses given to each
stimulus) in the pre-tests compared to the post-tests
for all five groups provided a consistent visualization
of these findings, as shown in Supplementary
Figures S2-1 (heatmaps) and S2-2 (response
profiles).
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Summary of experimental results

The goal of the current behavioral experiments was
to test whether visual perceptual learning of a primary
task trained at specific values of a task-irrelevant feature
transferred across variations in that task-irrelevant
feature. This was examined in two parallel studies:
Experiment 1 trained observers in eight-alternative
orientation identification with spatial frequency
as the task-irrelevant feature, and Experiment 2
trained observers in eight-alternative spatial-frequency
identification with orientation as the task-irrelevant
feature.

Both studies showed broad transfer over variations
in the task-irrelevant feature, even when initial
training used only a single value of that feature.
Although there were some minor deviations associated
with specific stimuli, the overall findings were quite
robust, with Bayesian statistics strongly favoring
null effects of the task-irrelevant training feature on
post-training improvements across the four training
groups; that is, pBIC(H0/D) values were near 1. Another
important finding was the equivalence of learning
and transfer in the four training groups as measured
by the improvement index comparing post-training
to pre-training assessments. Here, too, the Bayesian
probabilities affirmatively support no substantial
differences due to training protocol; that is, pBIC(H0/D)
values were near 1 for the effect of training group.
Changes in the pattern of response confusions also
generally supported these conclusions.

Overall, then, both experiments demonstrated
generalization of visual perceptual learning across
task-irrelevant feature variation and relative equivalence
of the effects of training in the different training groups.
Both findings intuitively support ideas of pooling over
features and resulting feature-invariant representations
even if only one example task-irrelevant feature was
trained. The following section develops an extended
version of the identification-integrated reweighting
theory (the eI-IRT) to account for these behavioral
effects of learning and transfer.

The extended I-IRT

Model description
The original integrated weighting theory (IRT)

was first developed to account for generalization of
perceptual learning over different retinal locations
(Dosher et al., 2013). The IRT is a neural network
model that makes perceptual decisions by weighting
evidence (activation) in representation units connected
to a decision unit and learns by changing those weights
to improve performance—reweighting. The IRT
uses augmented Hebbian learning rules to learn the

reweighting with representation activations computed
from a signal-processing front end inspired by early
visual cortical processing, as in the augmented Hebbian
reweighting model (AHRM) (Petrov et al., 2005;
Petrov et al., 2006). The key insight of the IRT was to
account for cross-location transfer with reweighting
of location-invariant feature representations and
specificity to location through location-specific feature
representations.

We recently extended the reweighting models
to account for multi-alternative (>2) identification
in the I-IRT (Dosher et al., 2023; Liu et al., 2023)
by implementing a decision structure with one
mini-decision unit for each potential identification
response, with the most active determining the response.
This form of the reweighting theory accounted for the
impact of different forms of feedback (no feedback,
accuracy feedback, and response feedback) on learning
in the eight-alternative orientation identification task
(Liu et al., 2023) in both a fixed contrast design and
a contrast threshold paradigm in spatial-frequency
identification (using response feedback) (Dosher et al.,
2023); both cases trained in a single value of the
task-irrelevant dimension.

The I-IRT, like other reweighting models, has
representation, decision, and learning modules
(with feedback and criterion control units). The
representation module has both location-specific and
location-invariant representations for a given stimulus.
The former is only active when a stimulus shows up at
a specific retinal location, whereas the latter is active
wherever the stimulus appears. Activations in both types
of representations are weighted to each mini-decision
unit (together with the activation in a criterion control
unit). The identification response for each trial in the
I-IRT is based on the most active mini-decision unit.
During learning, feedback assists updating the weights
between representations and the mini-decision units if
external feedback is available. If there is no external
feedback, the weights are updated according to the pure
Hebbian rule (full response feedback was used here).
The inclusion of location-invariant representations
allows the model to generalize learning for stimulus
in an untrained retinal location. For a full description
of the original IRT, see Dosher et al. (2013), Liu et al.
(2014), and Liu et al. (2015); for a full description of the
I-IRT, see Dosher et al. (2023) and Liu et al. (2023).

Here, we further extended the I-IRT for broader
transfer with feature-invariant representations (i.e.,
eI-IRT). The representations in the IRT and I-IRT are
selective for both orientation and spatial frequency.
For potential transfer over the task-irrelevant feature,
we included new feature-invariant representations
that pool over variations in the task-relevant feature
(e.g., orientation) regardless of the level of another
feature (e.g., spatial frequency). Activations in these
feature-invariant representations, along with those
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Figure 8. The eI-IRT model. The stimulus (here an oriented Gabor image) shown in one location is represented by location- and
feature-specific representations, location-invariant representations, and feature-invariant representations. All of these
representations are weighted to eight mini-decision units, one for each potential identification response. A max rule on the
mini-decision activations determines the predicted response on each trial. Feedback is used to help updating the weights between
representations and mini-decision units. Bias (or criterion control) is used to balance the response frequencies of different responses.

tuned to both spatial frequency and orientation,
are fed into mini-decision units, and the weights
are updated by learning. Through the action of the
task-irrelevant feature-invariant representations,
training an orientation task with one spatial frequency
can potentially transfer to the same task with a different
spatial frequency, and, similarly, a spatial frequency
task can transfer over orientations. See Figure 8 for the
model with feature-invariant representations. Versions
of the IRT with and without the feature-invariant
representations (units) were considered. A more
detailed description of the model equations is provided
in Supplementary Materials, Model Details.

Simulation fits to data
The extended I-IRT simulations were evaluated by

running the simulation through the same experiments
as the human observers: stimuli, trial sequence, and
measurements. Predicted performance from the I-IRT
(without feature-invariant representations) and the

eI-IRT (with feature-invariant representations) was
computed from the average of 100 simulated runs. Most
parameters of the model were fixed a priori according
to physiology or from previous implementations of
the IRT and I-IRT (Dosher et al., 2013; Dosher et al.,
2020; Dosher et al., 2023; Liu, Dosher, & Lu, 2014;
Liu, Dosher, & Lu, 2015; Liu et al., 2023). Only the
(single) model learning rate and internal noise terms
(representational noise and decision noise) and a scaling
factor of the stimulus activation were varied in the
current quantitative fits to the behavioral data.

Crucially, in each experiment, model parameters were
held the same across the four different training groups
(low, middle, high, and all) and the control group, so
that the difference in learning and transfer emerged
organically from the model and experimental design,
not from additional parameters for each training
condition. The one exception was a scaling factor that
varied slightly across different groups, set to fit slightly
different initial performance in the first session due to
random individual differences in subjects assigned to
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Figure 9. The I-IRT model simulation of the Experiment 1 data without FI units (a) and with FI units (b). As in Figure 5, the blue and red
lines are the pre- and post-test data of the experiment, and the error bars are ±1 SEM. Blue and red shaded areas are the pre- and
post-test predictions of the simulation, and the shade height is ±1 SD. (a) Without FI units, the I-IRT predicted specificity of the
training not observed in the data, as training in low spatial frequency was predicted to transfer little to the high spatial frequency, and
vice versa. (b) With FI units, the eI-IRT predicted wide generalization following training in a specific spatial frequency, in agreement
with the data.

groups. As we will show, simulating the eI-IRT that
incorporated feature-invariant representation units
made predictions consistent with the behavioral results.
In fitting the model simulations, we started with a
grid search over the few variable parameters to find
the likely regions for a good fit, then followed with
an error minimization search starting with reasonable
parameters in these regions. We searched for the
parameters with a best least-square fit to the average
data across all groups.

Fits of the I-IRT and eI-IRT to the behavioral
results

We applied the I-IRT (Dosher et al., 2023; Liu et al.,
2023), and the new eI-IRT to simulate the behavioral
results. By simulating the behavioral experiments both
with and without feature-invariant units, we sought to
show that these units are both necessary and sufficient

to account for our behavioral results. The addition of
feature-invariant representation units pooling over the
task-irrelevant dimension in the new eI-IRT parallels
the use of location-invariant representations to account
for location transfer in the original IRT (Dosher et al.,
2013).

Figure 9a shows simulation predictions for pre-test
and post-test data based on the I-IRT (Dosher
et al., 2013; Liu et al., 2023) for the eight-alternative
orientation identification task (Experiment 1). Varying
values of noise terms, learning rate, and the scaling
factor were selected to provide a good fit to the control
group data, the initial session data in all training
groups, and the average improvement from pre- to
post-tests. The model included both location-dependent
and location-invariant representation units tuned to
combinations of orientation and spatial frequency
content in the stimulus. Full task transfer over
the irrelevant feature, however, was not predicted
by the I-IRT model, which does not include the
feature-invariant units. As shown in Figure 9a, without
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Parameters Parameter values

Parameters set a priori
Orientation spacing, �θ 15°
Spatial frequency spacing, �f 0.5 octave
Maximum activation level, Amax 1
Weight bounds, wmin and wmax ±1
Initial weights scaling factor, winit 0.0338
Activation function gain, γ 3.5
Location-specific orientation bandwidth, hθ 30°
Location-invariant orientation bandwidth, hθ I 60°
Location-specific frequency bandwidth, hf 1 octave
Location-invariant frequency bandwidth, hfI 2 octave
Radial kernel width, hr 2 dva

Parameters adjusted for the data Without FI units With FI units

Exp. 1 Exp. 2 Exp. 1 Exp. 2
Normalization constant k 1e-5
Scaling factor a 0.036∼0.042 0.05∼0.06 0.018∼0.021 0.025∼0.032
Location-specific multiplicative noise, σm 0.1 0.05 0.1 0.05
Location-invariant multiplicative noise, 2*σm 0.2 0.1 0.2 0.1
Location-specific additive noise, σ a 3e-6 0 3e-6 1e-6
Location-invariant additive noise, 2*σ a 6e-6 0 6e-6 2e-6
Decision noise, σ d 0.15 0.1 0.15 0.09
Learning rate, η 2.8e-4 2.5e-4 1.64e-4
Bias weight, wb 1.0
Feedback weight, wf 1.0

Table 1. Parameters of the best-fitting model.

feature-invariant units the I-IRT consistently predicted
more specificity to the task-irrelevant feature used
during training than shown in the data; for example,
training an orientation task in low spatial frequency is
predicted to transfer only modestly to the high spatial
frequency and vice versa.

We used the eI-IRT including feature-invariant
(FI) units or representations to account for the broad
transfer over variations in the irrelevant feature observed
in our behavioral studies. Spatial frequency-invariant
orientation representations pool the activations of all
representations sensitive to a given orientation from all
the spatial frequencies, and orientation-invariant spatial
frequency representations pool over representations
sensitive to a certain spatial frequency from all the
orientations. See Figure 9b for the simulated predictions
of this model with best-fit parameters, as listed in
Table 1.

With spatial frequency-invariant orientation
representations, the eI-IRT model simulations
nicely captured the transfer results in Experiment 1
(compare Figure 9b, where r2 = 0.879, with Figure 8a,
where r2 = 0.627), and, likewise with orientation-
invariant spatial frequency representations, Experiment
2 results are also accounted for (compare Figure 10b,
where r2 = 0.886 with Figure 9a, where r2 = –0.311).
The model without FI unit predicted strong specificity

and yielded a very low r2. See Supplementary Materials,
Model Details, for further details and model discussion.

A look at the weight dynamics, or changes in
weights over training, shows how the model embodies
both learning and transfer with or without the
feature-invariant units (Figure 11). In these figures,
weights from representations that are most relevant
to the task (i.e., supporting the identification of a
particular spatial frequency or orientation) are plotted,
and an increase in these weights benefits the task. The
left panels summarize weight changes for a model
without the feature-invariant units (see Figures 9a
and 10a for performance simulation results), and the
right panels summarize weight changes for a model with
the FI units (see Figures 9b and 10b for performance
simulation results). The top panels are for Experiment
1 (orientation identification), and the bottom ones are
for Experiment 2 (spatial frequency identification).
For each panel, each bar shows post-training weights
on selected representations to best reveal how weights
changed to improve performance. These graphs show
those most closely matched to the task-relevant feature
for each of three values of the task-irrelevant value,
with dashed lines indicating initial pre-training weights.
For example, for orientation identification, Figure
11 shows the weight on representations tuned to the
closest orientation for each stimulus (averaged over
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Figure 10. The I-IRT model simulation of the Experiment 2 data without FI units (a) and with FI units (b). Similar to Figure 7, the blue
and red lines are the pre- and post-tests of the experiment and the error bars are ±1 SEM. Blue and shaded areas are the pre- and
post-tests of the simulation, and the shade height is ±1 SD. (a) Without the FI units, the I-IRT overpredicted the specificity of the
training, as training in a specific orientation (left, middle, or right) transferred little to orientations farther away. (b) With the FI units,
the I-IRT predicted more generalization of training in a specific orientation, in agreement with the data.

stimuli) and also tuned to low, medium, and high spatial
frequencies, and for the FI units that pool over them for
the extended I-IRT model.

For Experiment 1 (Figures 11a and 11b), in all
training groups, the weights from the standard
feature-specific representations to the decision units
increased in amplitude for the most relevant features
(matching in both orientation and spatial frequency),
which supports both learning in the training task
and partial specificity when trained with one spatial
frequency and tested on another far away from the
trained one (i.e., trained with the highest spatial
frequency and tested with the lowest spatial frequency
and vice versa). Note that the activation profile for the
low spatial frequency stimulus is broader with lower
peak values than that for the high spatial frequency
(consistent with Fourier analysis of the stimuli), so the
post-training weights of low spatial-frequency channels
are also of lower values and more spread than those
of high spatial-frequency channels (see Figure 11a,
comparing the blue bar in the middle left subpanel

with the red bar in the middle right subpanel).
When the FI unit is available as in Figure 11b, the
weights from the most relevant orientation-specific
but feature-invariant (spatial-frequency invariant)
representations to decision units increase in amplitude
regardless of which spatial frequency is trained.
It is these increased weights on FI representations
that drive transfer to the stimuli with non-trained
spatial frequencies. Similar patterns hold for the
simulation for the spatial frequency task. Improvement
in task performance came from changes in weights
for the standard feature-specific representations
(Figures 11c and 11d) and also from changes in
weights for the orientation-invariant spatial-frequency
representations (Figure 11d) when available, which
is of benefit to tests for stimuli for trained and
untrained orientations. Therefore, the addition of
feature-invariant representations is both necessary and
sufficient to account for the broad transfer of learning
effects over a task-irrelevant feature in the context of
the eI-IRT model.
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Figure 11. For Experiment 1, the weight dynamics of the I-IRT without (a) and with (b) FI units are shown; for Experiment 2, the most
relevant representation channels comparing post-training weights to pre-training weights (c, d) are shown. (a) Pre- and post-training
weights for the fit to the orientation identification task without FI units; when training at a specific spatial frequency, the weights for
channels most selective to that spatial frequency increased the most, and weights from other channels increased less or even
decreased. This change of feature-specific weights enables learning of the practiced spatial frequency but limits transfer to other
spatial frequencies. (b) Pre- and post-training weights in the fit with FI units. Besides similar weights change pattern as in (a) from
feature-specific units, the weights for feature-invariant channel increased regardless of which spatial frequency was trained. The
increase of both feature-specific and feature-invariant weights enables learning at the trained spatial frequency, whereas an increase
of the FI weights enables transfer across spatial frequencies. This pattern is the same for both location-specific and location-invariant

→
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←
units. (c, d) The equivalent weights change for the spatial-frequency identification task. Similarly, the increased weights of both
feature-specific and feature-invariant weights enable learning, whereas the weights increase of the feature-invariant unit enables
transfer across different orientations.

Discussion

Transfer over task-irrelevant feature variation in
the stimulus

In this project, we proposed and tested a general
mechanism by which transfer across task-irrelevant
features might occur in visual perceptual learning.
Inspired by visual psychophysical studies of how
the components of compound stimuli affect pattern
discrimination (e.g., Olzak & Thomas, 1999) and
by physiology, as well as modeling approaches,
we proposed that a “pooling” mechanism drives
feature-invariant representations that are the basis of
learning and transfer over task-irrelevant features.
We tested this idea by studying perceptual learning
in eight-alternative identification tasks in two
parallel experiments: orientation identification and
spatial-frequency identification. Both experiments
resulted in almost complete transfer across variations
in the task-irrelevant dimension regardless of the
stimulus (I) used during training. A recent paper also
reported transfer of learned orientation discrimination
across task-irrelevant variation in spatial frequency
in a two-interval discrimination (with standard) task
(Manenti et al., 2023).

Task-relevant transfer compared to
task-irrelevant transfer

The literature on transfer over task-relevant
feature provides a context for transfer over variations
in task-irrelevant stimulus features. First, Dosher
et al. (2013) found that training in two-alternative
orientation identification transferred more over
a task-irrelevant feature (location) than over the
relevant one (orientation)—in which, because the
original and transfer orientations were sufficiently
different, any transfer likely reflects general learning
to exclude external noise as well other possible details.
Second, variation in task-relevant features during
training leads to significant disruption of learning in
two-alternative tasks (Dosher et al., 2020; Parkosadze,
Otto, Malania, Kezeli, & Herzog, 2008; Sagi, Adini,
Tsodyks, & Technion, 2003; Zhang et al., 2008),
sometimes referred to as the roving deficit. For
example, training orientation discrimination at multiple
reference orientations was found to substantially reduce
perceptual learning (Dosher et al., 2020), and training

contrast discrimination at multiple reference contrasts
showed no perceptual learning (Kuai, Zhang, Klein,
Levi, & Yu, 2005). However, when both irrelevant
feature (location) and relevant feature (reference
orientation) were varied in double training experiments,
a two-interval orientation discrimination task showed
substantial transfer (Xie & Yu, 2020). Taken together,
these observations suggest that phenomena observed
for task-relevant stimulus variation may not apply in
the same way (or at all) for variations in task-irrelevant
dimensions.

Integrated reweighting theory of learning and
transfer

A computational model, the extended identification
integrated reweighting theory (eI-IRT), developed here,
showed that feature-invariant representations in the
stimulus encoding, analogous to the location-invariant
representations that previously accounted for transfer
over retinal locations (Dosher et al., 2013; Dosher
et al., 2020), were necessary and sufficient to account
for such results. Learned weights from these invariant
representation units to the decision units predict
broad transfer over a task-irrelevant feature, based on
reweighting of connections from the task-irrelevant
feature-invariant representations. At the same time,
the original IRT makes systematic predictions about
transfer over switches in task-relevant task stimuli, as
well as over variations in a task-irrelevant dimension
(Dosher et al., 2013). It also predicts the reduction
or elimination of learning in designs that rove the
task-relevant stimuli (Dosher et al., 2020), and related
models account for many results from double training
paradigms (Taluri et al., 2015).

Pooling mechanisms in psychophysical models

Pooling mechanisms such as the feature-invariant
representations in the eI-IRT may be related to
pooling phenomena previously suggested by a set
of psychophysical experiments from Olzak and
colleagues (“cigars” for spatial frequency-pooled
orientation representations and “doughnuts” for
orientation-pooled spatial frequency representations;
see Olzak & Thomas, 1992; Olzak & Thomas, 1999;
Olzak & Wickens, 1997; Thomas & Olzak, 1996).
Although their experiments focused on pattern
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discrimination of compound stimuli after some practice
and the different orientations or spatial frequencies
leading to pooling were simultaneously present in
their compound stimuli, our experiments examined
perceptual learning given a single training stimulus
on each trial and the generalization of learning over
the task-irrelevant feature in memory. The eI-IRT
models this via learned weights for feature-invariant
representations. A common integration/pooling
mechanism may account for our results and those
of Olzak and colleagues. Although there may be
differences in the detailed mechanisms in the two sets of
studies, a pooling process seems to underlie both. The
availability of feature-invariant representations enables
focus on important features for the overt task while also
supporting potential transfer across stimulus variations.

Physiological substrates

Macaque monkey V1 and V2 neurons have a diverse
selectivity to both orientation and spatial frequency
(De Valois, Albrecht, & Thorell, 1982), which may be
adaptive for processing natural images: narrowly tuned
orientation neurons and broadly tuned neurons for
stimuli with multiple orientations (Goris, Simoncelli,
& Movshon, 2015). Many neurons are selective for
both orientation and spatial frequency in primary
visual cortex in macaque, yet neurons that are narrowly
tuned to orientation but broadly tuned to spatial
frequency, and vice versa, also may exist (DeValois
et al., 1982). Also, similar tuning of neurons to
orientation and spatial frequency seems to be observed
in V2 and V4 (Zhang, Schriver, Hu, & Roe, 2023).
Other models impute a circle/cylinder arrangement for
orientation and spatial frequency coding in primary
visual cortex (Bressloff & Cowan, 2003), analogous to
the doughnut/cigar pooling model, but do not fully
specify the physiological underpinnings of any pooling
or summation.

Olzak and Thompson (1999, p. 251) said, “The
neural substrates of the summing [e.g., pooling] circuits
we describe are entirely unknown, although it is
tempting to draw parallels between the psychophysics
and physiological findings.” They point to summation
within orientation columns, which include cells tuned
to different spatial frequencies, as a basis for the
“cigars” in their model, arguing that these “may be
represented in V1 itself, or … in V2 or beyond.” The
substrate underlying summations of spatial frequency
over orientations is less obvious, but they suggest that
long cortical slabs of activation in experiments testing
a single spatial frequency across orientations might
support the “doughnuts” in their model (Olzak &
Thompson, 1999). Absent significant new physiological
evidence, we concur that selective tuning for the
task-relevant feature across multiple values of the

task-irrelevant feature at an early visual cortical level
cannot be ruled out.

Alternatively, it may be that evidence across task-
irrelevant variation is pooled at a higher level of cortex
through readout mechanisms. It has been argued, for
example, that invariant representations for orientation
pooled over spatial frequency arise, especially with
varied training, and are localized in ventral temporal
cortex (VTC) (Manenti et al., 2023). Notably, it has
also been argued that the judgment process and pooling
might differ for coarse or fine discriminations (Adab &
Vogels, 2016). The location-invariant representations
of the IRT, for example, have been associated with V4
or higher levels of visual cortex (Dosher et al., 2013;
Talluri et al., 2015).

To summarize, invariant (pooled) representations
for orientation (over spatial frequency) and spatial
frequency (over orientation) may (or may not) occur at
the same early cortical level (V1/V2) as the basic units
of the IRT that are tuned jointly for spatial frequency
and orientation, whereas the location-invariant units
have been associated with higher levels of the visual
hierarchy (V4/IT) (Talluri et al., 2015). We believe that
identification of objects via complex feature arrays
surely will reflect decision combinations in higher brain
regions (Dosher & Lu, 2020). Further understanding
of the organization of selectivity in visual cortex
from cellular physiology or brain imaging may be
required to fully understand physiological substrates for
task-irrelevant feature invariant learning.

Different factors affecting learning and transfer

The degree of transfer across either task-irrelevant
or task-relevant stimulus variations may be influenced
by the details of the testing paradigms, such as the
variability in stimuli, number of alternatives, number of
presentation intervals, or granularity of discrimination
(coarse or fine). For example, a prior review (Raviv
et al., 2022) argued that variability in both stimuli and
training schedule shapes learning and generalization.
Specifically, the authors suggested that variability in
an irrelevant dimension early in training may help
refine decision boundaries and boost later learning
and generalization. Broadly similar claims have been
made for double training experiments (e.g., Xiao
et al., 2008; Zhang et al., 2010), in which training in
multiple spatial locations and tasks has been reported
to increase generalization of learning across locations
(a task-irrelevant dimension) and tasks (a task-relevant
dimension). In contrast, classical visual perceptual
learning experiments that trained in one retinal location
or feature often showed substantial specificity (e.g.,
Karni & Sagi, 1991).

The study of perceptual learning of orientation (two-
interval, standard first two-alternative discrimination
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thresholds) cited above (Manenti et al., 2023) reported
that training with variable spatial frequencies in a
coarse discrimination task showed more transfer than
those trained using a single spatial frequency. The
authors also argued that feature variations during
training similarly leads to more generalization in a
deep learning network. In contrast, Experiments 1 and
2 in the current study, which tested eight-alternative
identification, showed generalization without varying
the task-irrelevant feature during training; three groups
trained with single (different) values of a task-irrelevant
feature showed approximately equivalent performance
and the same wide transfer as the group trained with a
mixture of values of the task-irrelevant dimension.

One potential influence is the use of a pre-test
baseline that included variations in the task-irrelevant
feature in our experiments, as one review suggested
that the use of pre-test baselines increased transfer
compared to designs that did not use pre-tests (Dosher
& Lu, 2020, chapter 3). However, a study design similar
to that of our experiments (pre- and post-tests at
multiple spatial frequencies but training at one) in
two-interval contrast detection found narrower spatial
frequency tuning following training in normal control
observers (Huang et al., 2008; Zhou et al., 2015).

Another possibility is that the two-alternative
and n-alternative tasks may yield somewhat different
sensitivity to factors such as variation in trained
stimuli. The eight-alternative identification tasks
used here require either eight templates (as in the
I-IRT) or seven criteria, whereas the two-alternative
identification tasks require either two templates or
one criterion in the decision system. Some might
argue that the two tasks have different memory
load. In our view, however, the two-alternative and
n-alternative identification designs have the same
memory demands during an individual trial, where the
observer sees and responds to only a single test stimulus
on each trial, and it is the decision structure that is
more complex. There is no delay imposed between
the stimulus presentation and the response (unlike
visual memory tasks that manipulate a delay after
the stimulus display). On the other hand, the typical
two-interval designs present a standard and another
stimulus in two different intervals with a brief interval
between, followed by a response either immediately
(e.g., Huang et al., 2008) or after a significant delay
(Manenti et al., 2023). This requires other forms of
memory during the trial. (The two-interval designs
require specific modeling of the memory delay and the
kinds of stimulus information retained; see Liu, Lu, &
Dosher, 2021.) Additionally, n-alternative identification
designs tend to use more coarsely varying stimuli,
whereas two-interval designs likely measure minimal
stimulus difference thresholds and so may require
reliance on all features of the stimulus to achieve good
performance.

Ideally, each detailed experimental design could be
modeled within a computational framework such as
the IRT or other model framework to promote a full
understanding of the influence of these various factors.
Depending on practical goals (whether specificity or
generalization is desired), we may be able to use these
models to design different experimental manipulations
with knowledge from all these learning and transfer
studies.

Conclusions

In summary, we showed broad generalization
of learning across task-irrelevant features in visual
perceptual learning and propose a model to account for
this transfer. The proposed distinction between transfer
over task-relevant features versus task-irrelevant
features may be a way to both organize and understand
sometimes apparently conflicting results on transfer
in perceptual learning. It may also provide insights
relevant to the design of effective training paradigms.
Further research in transfer both across irrelevant and
relevant features will shed light on brain mechanisms of
learning and instruct practical training paradigms.

Keywords: perceptual learning, transfer, generalization,
task-irrelevant feature
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