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ON THE RE-ACCELERATION OF BUNCHED BEAMS

David H. Whittum and Andrew M. Sessler”
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

George D. Craig and John F. DeFord**

Lawrence Livermore National Laboratory, Livermore, California, 34550
and

David U. L. Yu***
DULY Consultants, Rancho Palo Verdes, California 90732

ABSTRACT

We examine the re-acceleration of a bunched beam through a
linear induction accelerator (LIA) cavity, with attention to the energy lost
through coupling to the TM modes of the structure. We find that the
energy lost at 1 kA peak current is a small fraction of the boost which the
LIA is designed to impart. We discuss implications for a Relativistic
Klystron or Free Electron Laser (FEL) version of the Two-Beam
Accelerator (TBA).

INTRODUCTION

The Relativistic Klystron! and Free Electron Laser? versions of the
Two Beam Accelerator require the re-acceleration of a 1-3 kA, 40-50 ns
electron beam (the "drive" beam), a few mm in radius, bunched on the
scale of the klystron output cavity rf wavelength. This re-acceleration is
to be accomplished by the use of linear induction accelerator (L.IA)
cavities (see Figure 1) which impart a boost of order ~ 100 keV to each
electron passing through the cavity.3 One problem with this scheme is
that an rf beam passing through the LIA cavity will couple to the various
TM modes of the structure and lose energy ("beam loading").

Our concern in this paper is to compute that energy loss or,
equivalently, the longitudinal impedance of the LIA cavity.# We will
not be addressing the beam break-up problem® and we will not be

*Work supported by the Office of Energy Research, U.S. Dept of Energy,
under Contract No. DE-AC03-76SF00098 _.

**Work supported by the U.S. Dept. of Energy under Contract No. W-
7405-ENG-48

***Work supported by the U.S. Dept. of Energy under SBIR Contract No.
DE-AC03-87ER80529

LBL-27092



considering beams arriving off-axis, which would, of course, couple
differently to cavity modes.
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Figure 1. The LIA (linear induction accelerator) cavity geometry. Pictured
is the SNOMAD II LIA cavity to be used in upcoming experiments at the
Accelerator Research Center (ARC) at Lawrence Livermore National
Laboratory (LLNL).

The organization of this paper is as follows. In the next section we
compute a lower bound on the energy loss of an electron passing
through the LIA cavity, by modelling the cavity as an open gap. In the
third section we compute an upper bound to the energy loss modelling
the LIA cavity as an rf cavity. In the fourth section we make use of the



"idealized LIA model," consisting of a pillbox terminated in an
impedance. In the fifth section, we compare analytic results with the
longitudinal impedance determined numerically via AMOS®. For
examples, we will refer to the SNOMADII and Advanced Test
Accelerator (ATA) cells”. In the last section, we draw conclusions.

Table 1. Notation

oy=angular frequency of the TM; mode
Q= Q of the mode TM;,

L= gap length

b=beam pipe radius

f.=cut-off frequency for TM1=2.405¢c/ 2nb
vp=beam velocity

c=speed of light

A=(m,n,p)=mode index

m=azimuthal mode number=0 for this work
n=radial mode number

p=z mode number

t=pulse length ~ 40 - 50 ns
f=beam bunching frequency ~ 11.42 - 17.14 GHz

w=2mf
[=peak current ~ 2 kA

B=transit angle=wL /vy,
Y = beam energy / rest energy ~ 10 - 20

OPEN GAP MODEL

As a first estimate of the energy loss in the LIA cavity, we estimate
the power radiated through an open gap by an rf beam. By superposition,
the effect of the gap is to provide a virtual current source given by

- S(r—-b)
J(r,t) ZQWG(Z)G(L— 2)I(t — Z/Vb)



i.e., just the opposite of the return current that if present would result in
no radiation at all. Solving Maxwell's equations using the Green's

function corresponding to boundary conditions at «,8 we have

exp (—‘lk Ir_.~ r I) T(F' )
It -1

Ao =gfdr

where k=w/c, and we are interested in w corresponding to the harmonics

of the beam.
To estimate the total power radiated, we compute the Poynting

vector,

C
-f —E,B,

S=-f 77

and integrate this over a cylindrical surface at some large radius. We
express the result in terms of an impedance for the gap®

P(0) =R(w)|1(®)|*
and we find

L

1 .kz 2
R(@)= 2 | k Ojdz exp (1F)Jo(k—\/z2 +b )
and B=vp/c.
In the limit b>>L and kL2/2b << 1 we have
R(w) = 2 B?sin * (;—E)Ji(kb)

For the SNOMADII and the parameters of Table I, this result gives
an impedance of order 3 Q. The rf current is typically ~ 1 kA, so that the
impedance in Ohms corresponds to the average energy loss in keV, and
an energy loss ~ 3 keV would be significant, but acceptable.

Having obtained an estimate for a lower bound on the impedance,
we proceed to obtain an upper bound.



CAVITY MODEL

Next, we make use of an rf cavity model to obtain an upper bound
on the impedance of the LIA cavity. We write the electric field as a
superposition of cavity modes

E(F,0 = ).q,(OE, ()
'y

where A is the mode index (O,n,p) and qj is the normalized field
amplitude.10
Maxwell's equations reduce to!l

qu © dq - -

cavity

':—47158_8t J'dZ I(t— ‘VAb’) E‘M (rl:O,Z)

where we explicitly neglect the beam spot size and any off-axis
dispiacement of the beam.

Defining -eV(t) to be the change in energy experienced by an
electron entering the cavity at time t, we have

v (t):jdzEz (r, =0zt +VZ;)
=Y V(1)
A
=§; jdth (r,=0,2z)q,(t+ ‘VZ';)

For the Fourier components of the voltages Vi, we have then,
from the equation for the mode amplitudes, q,

Z
(wi -0’ -i a();)x)’\'/l(w) =iow, ~ (o)
A A



where Z;/Qx , the "surge impedance", is defined according to12

2

Z

A

N =A% [ 4R, (r, =0,2)exp (i%%)

cavity

The beam then deposits energy into the TM; mode at a rate

P, (®) = 3 Re(V,(0)I'@))
=R, (0)|(o)*

where we characterize the action of the mode A in terms of an

O)Cl)k >
o)
((Di— m2)2+ (%)

For example, for the TMgno mode of a closed cylindrical cavity we
havel4

impedance Rj(w)13:

1
R,= 57,

A

Zyo 4 L(Sin (9@)2
QOnO B ¢ R

- c 0/2

where 8 =wL /vy is the transit angle and R is the cavity radius. We then
have

’ Q OXDOnO_
_2n L sin (68/2) On0 QOnO
Rono = C R\ €/2

2
On0

(i 07) + (5

0n0



For SNOMADII parameters the surge impedance as given above is
~ 20 Q at 11.42 GHz and ~ 15 Q at 17.14 GHz. This result gives an
impedance, Rono, of order 5 - 100 Q, depending on how close the beam
frequency is to a resonance and depending on the mode Q. Taking this

together with the result of the last section, we have upper and lower
bounds on the effective impedance of the actual LIA cavity.

IDEALIZED LIA MODEL

A somewhat more realistic model than the closed cavity or the
open gap, is the pillbox terminated in an impedance, on a beam pipe.
This model has been examined by Briggs, et al in conection with the "dc"

beam at ATA.15
In Reference 7, it is shown that the impedance of this idealized

LIA cavity is

2
.1 L sin(9/2)) 1
Z(w)—l—ﬁ-ZOF( 0/2 H

where Zgp=4n/c ~ 377 Q and what we have denoted R(w) above is 1/2 Re
Z(w). His given by

__JO'(QCQ)_G'(C%b) 2 2" —exp (—1,L/b)
W oy L m,

where Np2=j? - (0b/c)? and
G(x) =J,(x)+ CN o{X)
with
R R
e =TT

R _.Z R




We exhibit the real part of the impedance as a function of
frequency for R=10 cm, b=2.8575 cm and Zs/Zp=2 in Figure 2 (SNOMADII

parameters).
Examining Figure 2, we see that this model predicts Re (Z) ~ 5 - 15

Q for SNOMADII, depending on how close the beam frequency is to a

resonance. This corresponds to an R(w) ~3 - 8 Q. The lower value,
corresponding to a beam bunching frequency between resonances, is
consistent with the open gap result.
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Figure 2. Impedance of the idealized SNOMADII cell for R=10 cm and
Zs/ Zp=2.

Note that the idealized LIA result assumes E, is constant across the
gap, i.e., it is analogous to considering only p=0 modes. This leads to an



underestimate of the impedance at frequencies f > c¢/2L. For the
SNOMADII cell, ¢/2L ~ 23 GHz, larger than frequencies of interest; thus
we would expect the idealized LIA model to be rather good for such short
gap cavities.

In Figure 3, we exhibit the real part of Z(w) for R=27 cm, b=6.725
cm and Zg/Zp=2 (ATA parameters), as computed from the idealized LIA
model. In the next section, we will compute the impedance for the same
cavity numerically, as a further check on our estimates.
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Figure 3. Impedance of the idealized ATA cell for R=27 cm and Z./Zy=2.

NUMERICALLY MODELLED CAVITY16

It is useful to compare these analytic estimates to the results of
numerical work. Two results for the impedance of the ATA cavity are
depicted in Figures 4 and 5. The difference between the two results is due



to the method of terminating the beam pipe. In Figure 4, the beam pipe
is terminated in the free space impedance of 377 Ohms, while in Figure
5, the beam pipe is terminatéd in a conducting wall.

Evidently, the use of conducting boundary conditions at the some
distance down the beam pipe introduces many additional spikes in
longitudinal impedance. These correspond to TMonp modes, with p > 0,
of the entire structure viewed as a single cavity. In fact, any impedance
mismatch at the pipe termination will result in spikes. Thus it is not
surprising to see spikes near cut-off, where impedance mismatch is
unavoidable.
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Figure 4. Impedance of the ATA cell as determined by the AMOS code,
using a free space impedance termination of the beam pipe.

Thus to accurately predict the impedance of the cavity, the
termination must be accurately modelled, and this is the subject of

10



ongoing numerical work. For the purposes of this paper it is enough to
see that the idealized cavity model gives a fair estimate of peak
impedance for p=0 modes (below 6 GHz).
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Figure 5. Impedance of the ATA cell as determined by the AMOS code,
using a conducting boundary termination of the beam pipe.

CONCLUSIONS

We have found that energy loss in reacceleration of a bunched
beam through an LIA cavity will be appreciable, but acceptable.
Evidently, this beam loading can vary significantly, depending on
whether the beam frequency is on a resonance, or between resonances.
Spurious TMgno resonances should therefore be a consideration in any
LIA design. We also found that , between resonances, the impedance is
of order that of an open gap.
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We note also that electrons at the beam head will suffer less boost

degradation, so that a spread in energy along a length ~ Qc/® at the beam
head will result. However, this length is of order a few centimeters, and
represents only a small fraction of the entire 12 - 15 meter beam.

More significantly, there will be an energy spread within each
bunch of order the average energy loss, and this must be considered in
any TBA design.

The authors acknowledge an instructive work by P. B. Wilson 17

and comments by R.L. Gluckstern.18
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Gluckstern finds, for the high frequency limit of the longitudinal
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1 L

Z(w)=1+1)Z
(@)= ( ) 02 12y

in agreement with the Lawson diffraction model. This gives R(w) = 1/2

Re (Z) ~ 6 Q for SNOMADII parameters, in fair agreement with the other
estimates above.

This high frequency result (the "optical model") gives a good
estimate for the envelope of the actual impedance curve at frequencies of
interest, where resonances tend to be less pronounced.
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