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SUMMARY

Signal transmission among cells enables long-range coordination in biological systems. However, 

the scarcity of quantitative measurements hinders the development of theories that relate signal 
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propagation to cellular heterogeneity and spatial organization. We address this problem in a 

bacterial community that employs electrochemical cell-to-cell communication. We developed a 

model based on percolation theory, which describes how signals propagate through a 

heterogeneous medium. Our model predicts that signal transmission becomes possible when the 

community is organized near a critical phase transition between a disconnected and a fully 

connected conduit of signaling cells. By measuring population-level signal transmission with 

single-cell resolution in wild-type and genetically modified communities, we confirm that the 

spatial distribution of signaling cells is organized at the predicted phase transition. Our findings 

suggest that at this critical point, the population-level benefit of signal transmission outweighs the 

single-cell level cost. The bacterial community thus appears to be organized according to a 

theoretically predicted spatial heterogeneity that promotes efficient signal transmission.

eTOC blurb:

Long-range electrical signal transmission allows dense bacterial communities known as biofilms 

to coordinate their actions and collectively enhance their fitness. However, it remains unclear how 

the community is organized to enable efficient long-range signal transmission, especially given 

that the community-level benefit comes at a cost to individual cells that relay the signal. Here we 

find that the biofilm copes with this cost-benefit problem by self-organizing at a theoretically 

defined tipping point (critical phase transition). At this critical point, the system transitions from 

having only short-range connectivity among a few cells to a fully connected conduit of signaling 

cells that span the entire community. Using mutant biofilms, we show that this regime optimally 

balances the cost and benefit of electrical signal transmission. The opposing constraints of 

performing a function that inherently carries a cost thus appear to drive a biological system to self-

organize its heterogeneity at a critical phase transition.

Graphical Abstract
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We report the use of a chip-based system for combinatorial high-throughput differentiation 

screening of microscale 3D human neural progenitor cells.

Keywords

percolation; criticality; signal transmission; self-organization; bacterial communities

INTRODUCTION

Biological systems such as tissues or bacterial communities often require reliable signal 

transmission among cells to coordinate actions at a distance (Debanne et al., 2011; 

Notaguchi and Okamoto, 2015). In metazoans, highly specialized and sophisticated 

structures are dedicated to signal transmission, such as axons that relay electrical signals in 

the nervous system. Densely packed bacterial communities have also been shown to benefit 

from coordinating their metabolic activities over long distances (exceeding hundreds of cell 

lengths) to cope with nutrient competition (Liu et al., 2015; Waters and Bassler, 2005). 

However, these bacterial communities face at least two main challenges to coordinate 

cellular actions at long distances. First, it is unclear how bacterial communities can achieve 

reliable signal propagation to desired target sites without specialized structures that direct 

the signals. Second, bacterial communities exhibit significant cell-to-cell heterogeneity that 

can constitute a key obstacle for long-range signal propagation (Li and You, 2013; Raj and 

van Oudenaarden, 2008; Symmons and Raj, 2016). For example, if only a fraction of cells 

contributes to signal transmission, the resulting cell-to-cell heterogeneity could cause the 

propagating signal to die out before reaching its desired target (Alonso and Bär, 2016; Cao 

et al., 1999; Steinberg et al., 2006; Waxman, 2006). It is thus important to establish the 

relevance of heterogeneity in bacterial communities in the context of long-range signal 

transmission (Figure 1A).
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The molecular mechanism that underlies signal propagation from the interior of the B. 
subtilis community towards its edge is based on ion channel-mediated electrochemical cell-

to- cell signaling (Figure 1A). Specifically, electrochemical signaling is initiated by cells in 

the biofilm interior when they experience glutamate starvation during biofilm expansion. 

This nutrient starvation leads to the opening of the metabolically-gated YugO potassium ion 

channel and subsequent release of intracellular potassium. The resulting local increase in 

extracellular potassium causes immediately adjacent cells to depolarize, which interferes 

with their uptake of glutamate, a charged amino acid. Consequently, the depolarized 

neighboring cell also experiences glutamate limitation and opens its potassium ion channels, 

releasing its own potassium ions (Prindle et al., 2015). This cell-to-cell relay mechanism 

gives rise to a chain- reaction that propagates the signal to the biofilm periphery. When the 

electrochemical signal reaches the biofilm edge, it halts growth of peripheral cells and 

thereby reduces their nutrient consumption. This reduction in nutrient consumption allows 

higher nutrient availability to the stressed cells in the biofilm interior. When nutrient stress in 

the interior is alleviated, signaling ceases. Now the biofilm resumes growth, which again 

results in a renewed starvation of interior cells and initiation of the electrochemical signal. 

This signaling process thus increases the overall fitness of the biofilm against chemical 

attack by maintaining a viable population of sheltered interior cells.

In addition to the population-level benefit, electrochemical signaling carries a measurable 

cost to individual cells, in the form of a reduction in growth rate (Figure 1B) (Liu et al., 

2015). This trade-off between single-cell level cost and population-level benefit suggests 

that it might be advantageous for the biofilm that not all cells carry the burden of relaying 

the signal for long-range transmission to succeed. But it is unclear what fraction of signaling 

cells is needed and how these cells would be organized in space to transmit the signal. 

Notably, signal propagation through such inhomogeneous populations is not a problem 

exclusive to biological systems, but a general question that has been deeply explored in 

fields such as physics, chemistry and materials science (Bär et al., 1996; Sendiña-Nadal et 

al., 1998; Steinbock et al., 1995). Percolation theory has emerged as the simplest statistical 

physics approach that directly addresses this problem. This theory has been commonly 

applied to study signal propagation through various spatially extended heterogeneous 

systems (Bak et al., 1990; Zhou et al., 2015). In particular, it describes the emergence of a 

connected path (connected cluster of cells) that spans the entire size of a spatially extended 

system, providing a conduit for signal transmission.

Here, we apply the framework of percolation theory to understand how electrochemical 

signals are propagated across a heterogeneous B. subtilis biofilm community. By 

incorporating excitable dynamics into a percolation model, we predict the ability of a 

biofilm to transmit a signal given different fractions of cells participating in signaling, as 

well as different signaling dynamics. We define cost and benefit for each set of signaling 

parameters and predict a region in parameter space, determined by the critical percolation 

point, where the signaling benefit outweighs the associated cost. Integration of mathematical 

predictions with quantitative experimental data from wild-type and mutant biofilms suggests 

that wild-type biofilms operate near this region. Our findings are likely to apply to other 

percolation systems where the benefit exhibits a sharp sigmoidal shape due to its population-

level character, while the cost is associated with the individual units that comprise the 
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system and thus increases linearly with the fraction of signaling units. We argue that in such 

systems, the benefit will outweigh the cost near the percolation threshold.

RESULTS

To address the problem of long-range signal transmission in biofilms, we began by 

constructing a percolation-theory-based model to investigate how a population of cells with 

heterogeneous electrical activity can reliably propagate signals (Figure 1A, STAR Methods). 

Percolation theory predicts the transition of a network from having only localized short-

range connections to the emergence of a fully connected path that spans the entire system 

(Figure 1C). Specifically, for a defined two-dimensional lattice, the onset of percolation 

occurs when the fraction of randomly positioned firing cells, ϕ, reaches a critical value, ϕc 

(Stauffer and Aharony, 1994). At this point, the system undergoes a sharp phase transition in 

its connectivity, giving rise to a connected cluster of firing cells with a size close to that of 

the entire system. Below the critical ϕ, too few cells are firing to have sufficient adjacent 

cells to comprise a fully connected cluster that can span the entire size of the system. 

Therefore, the probability of having a fully connected conduit for signal transmission across 

the system remains zero below the critical fraction, but then suddenly jumps to 1 (complete 

connectivity) as ϕ reaches the critical value. In other words, only when ϕ has reached the 

critical fraction of firing cells can there be clusters of firing cells that are large enough to 

span the system. This gives rise to the characteristic sudden phase transitions associated with 

criticality (Figure 1G) (Stauffer and Aharony, 1994).

Given the experimentally constrained size of the system and a modal value of six neighbors 

for the biofilm cells (Figure 1D), the model predicts an onset of signaling connectivity 

(percolation) when the fraction of firing cells in the biofilm reaches 0.45 (Figure 1E-G, see 

Figure S1C for lattices with different numbers of nearest neighbors). At this critical fraction, 

a firing cell is likely to have at least one immediately adjacent neighbor that is also a firing 

cell. Consequently, the cluster size distribution of firing cells will have a long tail. In other 

words, there is always a finite probability of finding a very large, system-spanning cluster of 

firing cells. Specifically, theory predicts that near this critical percolation threshold, and only 

near this point, the distribution of cluster sizes formed by signaling cells follows a power-

law decay with an exponent of 2.05 (Stauffer and Aharony, 1994) (Figures 1H, S2). While 

the critical value for the fraction of firing cells depends on the specifics of the lattice, such as 

the number of neighboring cells, the exponent is universal (Figure S1D). This means that the 

exponent value is the same for any two-dimensional lattice and thus a very stringent and 

general prediction (Aharony, 1980).

To reiterate, percolation theory thus makes two precise predictions required for signal 

transmission to become possible in bacterial communities: 1) The fraction of firing cells in 

the biofilm should be at, or above, the critical percolation threshold of 0.45, and 2) near the 

percolation threshold, the distribution of cluster sizes formed by firing cells should follow a 

power-law decay with a slope of 2.05.

To test these theoretical predictions, we determined the spatial arrangement of signaling 

cells within biofilms. We utilized a microfluidic platform to grow B. subtilis biofilm 
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communities (Liu et al., 2015) and image them with single-cell resolution (Figure S3). The 

microfluidic growth chamber contained designated regions where the biofilm was 

constrained in height to a twodimensional mono-layer. This allowed us to accurately 

quantify the spatial organization and dynamics of electrochemical signaling at the single 

cell-level. Furthermore, the two-dimensional geometry allowed us to directly investigate 

signal transmission in a geometry where the number of neighboring cells is limited, 

compared to three-dimensional regions of the biofilm where each cell has more than 6 

neighbors on average. The ability of the biofilm to transmit signals even in a monolayer is 

crucial, since the leading edge of the biofilm is predominantly a monolayer (Seminara et al., 

2012) and constitutes the destination for electrochemical signaling (Figures 2A, S3).

To measure membrane potential of individual bacteria within biofilms during 

electrochemical signaling, we used the previously characterized fluorescent reporter 

thioflavin-T (ThT), which acts as a Nernstian membrane potential indicator (Prindle et al., 

2015). Specifically, the higher the membrane potential of the cell, the larger the amplitude of 

the fluorescent ThT signal. Single-cell resolution measurements of the biofilm show that 

only some cells exhibit pulses in electrical activity, while others do not appear to participate 

in signaling (Figures 2A, 2B, and S4). Analysis of all cells reveals a bimodal distribution of 

membrane potential amplitudes during signal propagation, with the fraction of signaling 

cells being ϕ = 0.43±0.02 (Figure 2B, STAR Methods), in agreement with the theoretically 

predicted percolation threshold. We then measured the spatial distribution of signaling 

(firing) cells and determined that they were clustered in space (Figure 2C). Moreover, the 

distribution of cluster sizes follows a power-law decay that extends across three decades and 

has an exponent of approximately 2 (Figure 2D). Both the fraction of firing cells and the 

distribution of firing cell cluster sizes are thus consistent with percolation theory predictions. 

These results suggest that the spatial organization of signaling cell within the bacterial 

community may be organized near the percolation threshold.

Signal transmission is inherently a dynamic process that unfolds over time. In our system, 

the signal propagates from one cell to the next, where each cell undergoes an excitable pulse 

(firing) in its membrane potential. The amplitude of the pulse must be sufficiently high to 

trigger a response in the neighboring cell. It is also important that the cell does not spend 

excessive time in the firing (and thus non-growing) state, as this would result in unnecessary 

cost (Figure 1B). In its simplest form, percolation theory is a statistical framework that does 

not account for such pulse durations and signaling dynamics of cells. Therefore, we created 

a model that takes into account both the spatial arrangement of firing cells and the single cell 

dynamics during signal transmission.

We described the single cell-level electrochemical signals in the biofilm with the FitzHugh-

Nagumo (FN) model of excitable dynamics (Figure 3A) (Tuckwell, 1988). This simple 

model, commonly used for studying action potential dynamics in neurons, accounts here for 

excitable dynamics in individual cells as well as for the transmission of signals between 

neighboring cells (Figure 3B, 3C). It contains three parameters: the first is the activation or 

firing threshold, u0, which defines the amplitude that an external signal has to exceed in 

order to trigger a response in the form of a pulse. The second parameter is the recovery time, 

T, which sets the pulse duration of a given response and thus governs the signaling 
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dynamics. The third parameter is the ratio Ɛ of excitation to cell-to-cell coupling strength, 

which when sufficiently high supports pulse-coupled wave propagation (see STAR Methods) 

(Mirollo and Strogatz, 1990). To account for heterogeneity in signaling, different fractions of 

cells can be assigned as firing cells by giving them a higher value for Ɛ than the other cells 

(Figure 3D). We integrated the FN model with percolation theory by evolving the dynamics 

on a two-dimensional lattice of excitable cells (Figure 3F). Simulations show that successful 

signal propagation through the lattice of cells depends on both the firing duration and the 

fraction of firing cells. Importantly, for the same dynamic parameters, a fraction of firing 

cells near or above the percolation threshold enables successful signal transmission, while a 

fraction below the threshold fails to propagate the signal (Figure 3D, 3E).

To experimentally investigate how biofilm dynamics and spatial structure jointly determine 

signal transmission and to integrate our findings with mathematical predictions, we utilized 

three gene-deletion strains that generate biofilms with altered structure and dynamics 

(Figure 4A, STAR Methods). We first focused on structural differences among biofilms and 

began by investigating the ΔtrkA strain, which lacks the gating domain of the YugO 

potassium ion channel and is known to be deficient in electrochemical signaling (Humphries 

et al., 2017; Liu et al., 2017; Prindle et al., 2015). Indeed, biofilms formed by the ΔtrkA 
strain contain a low fraction of firing cells, 0.13±0.04 (mean±SEM), compared to 0.43±0.02 

observed in wild-type biofilms (Figure 4B, 4D). We also utilized a strain that lacks the KtrA 

potassium pump (ΔktrA) and generates biofilms with a fraction of firing cells similar to 

wild-type biofilms (0.48±0.11). In contrast, deletion of SinR (ΔsinR), a transcription factor 

that represses expression of the YugO ion channel (Lundberg et al., 2013), results in biofilms 

with a higher fraction of firing cells, 0.74±0.04 (Figure 4B, 4D). Biofilms formed by these 

strains thus contain structural differences as defined by differences in the fraction of firing 

cells.

To characterize the signaling dynamics of each strain, we tracked hundreds of individual 

cells within the wild-type and genetically modified biofilms and measured their electrical 

activity during signal transmission (Figure 4C). We found that the wild-type biofilm has the 

shortest pulse duration, followed by ΔsinR and ΔtrkA biofilms (Figure 4E). The absence of 

the KtrA potassium uptake pump extends the pulse duration, presumably by delaying the 

recovery of intracellular potassium stores. Notably, wild-type and ΔktrA biofilms have a 

similar fraction of firing cells, despite their difference in average pulse durations. In contrast, 

ΔtrkA and ΔsinR biofilms have similar pulse durations, even though DtrkA biofilms contain 

the lowest and DsinR biofilms the highest fraction of firing cells (see Figure S5 for single 

cell traces from the model). Together, these strains show that the fraction of firing cells and 

average pulse durations can be separately modulated, allowing us to experimentally explore 

the phase space defined by the structure and dynamics of biofilms during signal transmission 

(Figure 4F).

The different combinations of biofilm structure and dynamics that are accessible through 

genetic perturbations provide an opportunity to investigate why the wild-type cell-to-cell 

heterogeneity is organized near the critical percolation threshold. Motivated by the notion 

that biological processes carry not only a benefit, but also a cost, we asked whether the 

observed spatial organization of wild-type biofilms could be explained by the balance 
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between the benefit and cost of signal transmission. The benefit is defined by the ability to 

successfully transmit the signal within the biofilm, since such signaling has been previously 

shown to increase the population-level fitness against chemical attack (Liu et al., 2015). 

Therefore, we can experimentally define the population-level benefit of signaling based on 

the fidelity of signal transmission. Specifically, we measure the relative fraction of cells that 

relay the signal at the two most distant locations within the field of view of our experimental 

set up (approximately 25 cell lengths in Figure 5B). We find that the wild-type and mutant 

biofilms that contain a fraction of firing cells that is near or above the critical percolation 

threshold can successfully transmit the signal without a decay in its amplitude (Figure 5A, 

5B). In contrast, the ΔtrkA strain, which has a fraction of firing cells well below the 

percolation threshold (Figure 4D, 4F), fails to transmit the signal (Figure 5A, 5B). We can 

now relate this experimentally determined benefit to the mathematical model based on the 

fidelity of signal transmission. In particular, the model predicts that as a function of ϕ, the 

benefit will sharply rise in a sigmoidal manner (Figure 5C). This sudden rise in the 

population-level benefit is due to the sudden transition in connectivity at the percolation 

threshold that enables signal transmission through the system. Beyond the percolation 

threshold, the benefit is predicted to saturate, since a fully connected conduit for singling has 

already been formed, and a further increase in the fraction of firing cells does not 

qualitatively alter signal transmission (Figure 5C). Our experimental data are consistent with 

the mathematically predicted benefit function (Figure 5C).

On the other hand, community-level benefit is also associated with a single-cell-level cost. 

Specifically, firing cells incur a metabolic burden during their electrical activity, as 

evidenced by the experimentally observed reduction in their cell elongation rate (Figure 1B). 

Therefore, we define population-level cost as the fraction of firing cells multiplied by their 

mean signaling duration (Figure 5D). The biofilm incurs greater cost with an increasing 

number of firing cells, or longer firing durations per cell. Consequently, the cost function 

increases gradually with the increase in the fraction of firing cells. While both the cost and 

benefit increase as a function of the fraction of firing cells, the gradual rise of the cost 

function and the sharp sigmoidal shape of the benefit function imply an intriguing cost-

benefit relationship (Figure 5C, 5D).

We find that the intersection of a nonlinear benefit function and a linear cost function gives 

rise to a non-monotonic benefit-to-cost relationship. Specifically, the cost rises at a constant 

rate independent of different dynamic parameter values (firing durations) (Figures 6A, 6B). 

In contrast, the benefit jumps at the percolation threshold and then saturates (Figure 6A). 

This suggests that the benefit-to-cost ratio would be highest near the percolation threshold. 

Indeed, when we plot the benefit-to-cost ratio from the model as a function of the fraction of 

firing cells, we find a well-defined peak near the percolation threshold (Figure 6D). The 

result does not depend on the specific way in which benefit and cost are compared: 

subtracting the cost from the benefit, for instance, also yields a peak near the percolation 

threshold (Figure S6). The experimentally determined values place the wild-type biofilm 

near this region defined by the peak, while the mutant biofilms are located away from this 

region (Figure 6D). These results indicate that the spatial organization of heterogeneity in 

the wild-type biofilm promotes efficient signal transmission by residing near the percolation 

threshold.
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We note that given a sharp rise in the benefit due to the critical phase transition, the benefit 

will outweigh the cost near the percolation threshold for a broad range of slopes of the cost 

function (Figures 6C, 6D inset). We also note that linearity is not required, for as long as the 

cost function increases gradually, the benefit-to-cost function will always be dominated by 

the jump in the benefit.

DISCUSSION

It has been suggested that biological systems across different scales exhibit properties 

consistent with critical phase transitions. This claim is often justified by the observation of 

scalefree behaviors such as power-law dependencies (Bialek et al., 2014; Dai et al., 2013; 

Steiner et al., 2016). However, two common concerns are that many biological systems lack 

an underlying theoretical justification of a critical phase transition, and that the biological 

purpose of operating near a phase transition is unclear (Mora and Bialek, 2011). Here we 

demonstrate that the spatial organization of a bacterial biofilm is consistent with percolation 

theory, which is well- known to exhibit a critical phase transition. Specifically, we observe a 

power law that arises at the predicted value (percolation threshold) and with the predicted 

exponent. Furthermore, we offer a biological rationale for why the system would be at 

criticality, by showing that the benefit outweighs the cost near the critical point. It is thus 

intriguing to speculate that a cost-benefit negotiation may be an organizing principle that 

drives the biofilm structure to the critical percolation threshold. Our findings suggest that the 

cost and benefit of signal transmission may thus play a role in promoting spatial 

heterogeneity that is organized near criticality. Consequently, the theory developed in 

statistical physics to describe criticality may also describe the spatiotemporal organization of 

diverse biological systems and provide a conceptual framework to uncover the functional 

pressures that drive these systems to phase transition points.

STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

B. subtilis NCIB 3610 Bacillus Genetic Stock Center,
(Irnov and Winkler, 2010)

BGSCID. 3A1

sacA::Pcitz-yfp (CmR) This study N/A

trkA ::NeoR (Prindle et al., 2015) N/A

sinR: :NeoR (Asally et al., 2012) N/A

ktrA::ErmR (Humphries et al., 2017) N/A

Software and Algorithms

Custom MATLAB and Fiji scripts This study

mT rackJ (Meijering et al., 2012)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Gürol M. Süel (gsuel@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Table of strains

Strain Genotype Source

Wild type B. subtilis NCIB 3610 (Irnov and Winkler, 2010)

Pctz-YFP sacA::PCitZ-yfp (CmR) this study

ΔtrkA trkA::NeoR (Prindle et al., 2015)

ΔsinR sinR..NeoR (Asally et al., 2012)

ΔktrA ktrA::ErmR (Humphries et al., 2017)

Bacillus subtilis strains—We conducted all experiments with B. subtilis NCIB 3610. 

Wild-type 3610 was a gift from W. Winkler (University of Maryland) (Irnov and Winkler, 

2010). All other strains were derived from it and verified by sequencing.

Biofilm growth conditions—We grew biofilms in MSgg medium containing 5 mM 

potassium phosphate buffer (pH 7.0), 100 mM MOPS buffer (pH 7.0, adjusted using NaOH), 

2 mM MgCl2, 700 μM CaCl2, 50 μM MnCl2, 100 μM FeCl3, 1 μM ZnCl2, 2 μM thiamine 

HCl, 2 mM sodium citrate, 0.5% (v/v) glycerol and 0.4% (w/v) monosodium glutamate. 

Media were made from stock solutions immediately before experiments, and the stock 

solution of glutamate made fresh every two days.

Microfluidics and Experimental Conditions—24 hours before experiments, we 

streaked strains from −80 C glycerol stocks onto LB agar platers and grew overnight at 37 C. 

The day of experiments, we inoculated single colonies from LB plates into 5 ml of liquid LB 

media and grew in a 37 C shaker for ~2.5–3 hours. We centrifuged LB-grown cultures at 

4800 rpm for 2 minutes and resuspended cell pellets in MSgg medium. We then immediately 

loaded cells into a Y04D microfluidic plate using the CellASIC ONIX microfluidic system 

(EMD Millipore) (Liu et al., 2015). After loading, we grew cells in the microfluidics at 37 C 

and 0.5 psi (~8 μm/s) flow for ~2 hours before changing temperature to 30 C and growing 

overnight under 1.5 psi flow (~24 μm/s). After 12 hours of growth in plain MSgg, ThT dye 

was flowed in at a concentration of 10 μM. Experiments were conducted under these 

conditions.

METHOD DETAILS

Percolation Theory

To describe the connectivity and clustering statistics of firing cells in the biofilm, we 

simulate cells on a regular triangular two-dimensional lattice. Because cells in the 

experimental biofilms have a modal value of six neighbors (Figure 1D), we use a triangular 

lattice, in which cells have six nearest neighbors to which they connect forming triangles 
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(Stauffer and Aharony, 1994). Other lattices that would be good approximations of the 

biofilm predict similar results to those of the triangular lattice (Figure S1). Percolation 

theory describes the statistics of lattices in which a fraction ϕ of cells are firing. Firing cells 

are positioned uniform randomly within the lattice.

Percolation theory predicts that for sufficiently large lattices there is a critical threshold ϕc at 

which several key features occur (Stauffer and Aharony, 1994). First, the probability of a 

connected path (a contiguous path of firing cells that spans from one side of the lattice to the 

other) transitions from 0 to 1 at ϕc (Figure 1G). Second, at ϕc the distribution of cluster sizes 

becomes a power law, p(n) a n-α (Figure S1), where a cluster is defined as a group of 

contiguous firing cells, and n is the number of cells in the cluster. For two-dimensional 

infinite lattices, the exponent is α = 187/91 ≈ 2.05 (Stauffer and Aharony, 1994). Below ϕc 

the distribution falls off exponentially (Figure S1), and above ϕc the distribution acquires 

weight near the lattice size due to the emergence of a giant cluster (Figure S1).

In all simulations we use a lattice size that corresponds to the approximate observation 

window in the experiments, L = 35 cell heights by W = 200 cell widths. Connectivity is 

determined along the shorter direction L, since this is the direction of signal propagation in 

the biofilm. The asymmetric geometry (L ≠ W) is responsible for the deviation of the 

percolation threshold (ϕc = 0.45) seen in the main figures from the predicted value for a 

symmetric triangular lattice (ϕc = 0.5) (Stauffer and Aharony, 1994). Figures 1G, 1H, and S2 

were generated using 2000 realizations of the lattice.

Dynamical Model

To model the single-cell dynamics of electrical pulses in the biofilm, we utilized the 

FitzHugh- Nagumo (FN) model (Figure 3A) (Tuckwell, 1988). The FN model is a minimal 

model of excitable dynamics and is commonly utilized for studying action potential 

dynamics in neurons. Here we use it to model the bucket-brigade mechanism of effective 

electrical activation of neighboring cells reported previously (Prindle et al., 2015). 

Specifically, we use a discretized Laplacian term to account for the cell-cell communication 

(Figure 3A, 3C). In general, the parameters of this phenomenological model do not have a 

precise mechanistic interpretation, but rather are calibrated from the experiments as 

described below.

In all dynamical simulations, cells in the first row are initialized with u = 1 to trigger the 

excitable wave; all other cells are initialized with u = 0. We use a lattice of L’ = 100 rows by 

W = 200 and record from a window of L = 35 by W = 200 that is positioned just after the 

first row. Choosing L̓ > L avoids boundary effects at the last row. We use an absorbing 

boundary at the last row and reflecting boundaries on the other three sides. To evolve the 

dynamics, we discretize the FN model in time using the fourth-order Runge-Kutta method 

with time step Δt = 0.02. For the cell-cell coupling we use gj = 1/2 and 1/4 (Figure 3A) for 

the two short-edge and four long-edge neighbors, respectively, corresponding to a 

rectangular cell with a 2-to-1 aspect ratio on a triangular lattice.

A fraction ϕ of cells are firing and are positioned randomly in accordance with percolation 

theory as described above. All firing cells have the same FN parameters, given below. Non-
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firing cells have the same parameters as firing cells, except that we reduce the recovery time 

τ by a factor of 60, which we find strongly reduces the firing propensity of these cells 

(Figures 3D, 3E).

Model Calibration

We calibrate the parameters of the model (Figure 3A) from the wild type (WT) data in the 

following way. The fraction of firing cells ϕ = 0.43 is obtained directly from the experiments 

(Figure 4D). The excitation strength Ɛ must be larger than 1 because otherwise diffusion 

outpaces excitation and the wave does not propagate; therefore we set Ɛ = 10 (note that 

because the model is phenomenological, the diffusion we describe here is effective and does 

not correspond to the diffusion of, say, the potassium ions between cells). The threshold uo 
must be significantly less than 1 because otherwise signal from a neighboring cell is 

insufficient to trigger an excitation and the wave does not propagate; we find that uo = 0.02 

suffices (Figure 3D). The recovery time of firing cells τ = 300 is set such that the mean 

wavelength over 10 simulations is equal to the approximate experimental wavelength of 35 

cells. Finally, we convert from dimensionless time t to minutes by equating the mean pulse 

duration in the simulations to the experimental value (Figure 4E). Pulse duration is averaged 

over all firing cells and defined as the time over which u > 0.6. See Figure S5 for single-cell 

time traces from model biofilms with parameters corresponding to each experimental strain.

Model Validation

We validate the model using one of the mutant strains, ΔsinR. This strain has a higher 

fraction ϕ = 0.74 of firing cells than WT. We anticipate that because structure and dynamics 

are connected in the integrated model, changing the fraction of firing cells will also change 

the mean pulse duration. We test this expectation in the model, setting ϕ = 0.74 and keeping 

all other parameters the same as WT. We observe in the simulations that the mean pulse 

duration rises from 18.1 min (WT) to 33.2 min (ΔsinR). In the experiments, we measure the 

mean pulse duration for ΔsinR to be 34.1 min, which agrees very closely with the value from 

the simulations. This validates the model and demonstrates that structure and dynamics are 

tightly connected in the integrated model.

Cost-Benefit Curves

To determine the cost and benefit curves in Figures 5 and 6, we use the following procedure. 

In Figures 5C, we vary ϕ while keeping all other parameters as calibrated above. For each ϕ 
value, we calculate the benefit as the average over 100 simulations of the ratio of the number 

of firing cells in the final five rows to that in the initial five rows. In Figure 6D, we calculate 

the cost as the average over 100 simulations of the product of the fraction of firing cells and 

the mean pulse duration. In Figure 6D, for each ϕ value, we vary τ in the range 5 to 1000 

and measure the mean duration and benefit-to-cost ratio over 30 simulations for each τ 
value. Then we use linear interpolation to find the benefit-to-cost ratio corresponding to a 

particular duration. This produces curves of benefit-to-cost ratio vs. ϕ at fixed duration. 

Finally, we smooth these curves using a Gaussian filter of width 0.01, producing the result in 

Figure 6D.
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Time-lapse Microscopy

We recorded phase-contrast and fluorescence images of biofilms at regular time intervals 

(between 3 and 10 minutes across experiments). For most experiments, we recorded phase, 

ThT fluorescence (for electrical signaling), and YFP fluorescence (for other analysis, see 

below). We used an Olympus IX83 inverted epifluorescence microscope with autofocus and 

a 40X, 0.6 NA or 100X, 1.4 NA objective, depending on the experiment. For each image, we 

used the minimum fluorescence exposure time that yielded good signal. For ThT images, 

exposure time was 17 ms and for YFP, exposure time was 150 ms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image Analysis

In order to segment single cells in each field of view, we took both ThT and YFP images 

with a 40X, 0.6 NA objective at the peak of each signal pulse as determined by the highest 

average ThT intensity of each field of view during signaling. Each field of view contained 

roughly 8000 bacteria. Cells expressed YFP from the citZ promoter, which gave a strong 

constitutive signal in each cell. From YFP images, we created thresholded binary images, 

from which we could identify the position and outline of each cell. We then thresholded ThT 

images at a fluorescence intensity value directly between the two peak peaks of the bimodal 

ThT intensity distribution (Figure 2B) to create a binary image with contiguous high ThT 

regions corresponding to clusters of firing cells (Figure 2C). Cluster sizes were measured by 

superimposing the high ThT cluster outlines on the binarized YFP image and counting the 

number of cells with a majority of their area inside each high ThT contour. The fraction of 

firing cells, ϕ, was computed by dividing the number of firing cells (high ThT) by the total 

number of cells in the field of view. All processing was performed with custom Fiji macros.

Dynamic Analysis

Pulse durations come from single-cell tracking measurements, where a cell was considered 

to be pulsing if its ThT level was above the threshold described above. Tracking was 

performed with the mTrackJ Fiji plugin by manually clicking on cells in each frame of a 

time lapse movie (Meijering et al., 2012). To measure single cell cost (Figure 1B) we 

measured elongation rate and ThT signal of single cells during a signal pulse with custom 

software written in MATLAB.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Biofilm cells exhibit heterogeneity (firing/non-firing) in electrical signaling

• Firing cells arrange themselves into a theoretically predicted percolated 

network

• Percolation model accounts for signal transmission in wild-type and mutant 

biofilms

• Cost-benefit balance can organize the community at the critical percolation 

point
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Figure 1. A percolation theory-based model for electrochemical signaling in biofilms.
(A)Biofilms undergo electrochemical signaling where the stressed biofilm interior 

periodically signals cells at the biofilm edge (arrows). Bottom cartoon depicts heterogeneous 

signaling where some cells participate in signaling (cyan), becoming hyperpolarized, while 

many cells do not participate (black). (B) Cell elongation rate is inversely correlated with 

membrane polarization, indicating a cost of electrical signaling activity to individual cells (N 

= 35 cells, error bars indicate ± SEM). (C) Percolation theory predicts the emergence of a 

connected path of firing cells (yellow line) when the fraction of firing cells exceeds a critical 

value (left) but not below this critical value (right). (D) Image illustrating a method for 

counting the number of neighbors for a given cell, highlighted in white (left). Scale bar, 2 

μm. Histogram (right) indicates the modal number of nearest neighbors is 6 (N = 100 cells). 

(E) Using the experimentally constrained nearest neighbor value of 6 (see also Figure S1), 

firing and non-firing cells are randomly positioned on a two-dimensional lattice with 

probability ϕ (0.5 in this image). (F) Representative snapshots showing lattice simulations at 

various values of ϕ (see also Figure S2). (G) Onset of connectivity (percolation) is predicted 

when ϕ exceeds 0.45. The ϕ values for the representative images in (F) are indicated on the 

graph by their respective colored circles. (H) Model-generated cluster size distribution at the 

percolation threshold (ϕ = 0.45), where clusters are distributed according to a power-law.
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Figure 2. Electrochemical signaling within biofilms is heterogeneous at the single cell- level.
(A) Membrane polarization is heterogeneous at the single cell level within signaling 

biofilms. Cyan overlay indicates fluorescence of Thioflavin T (ThT), a cationic membrane 

polarization reporter. Scale bar, 10 μm (see also Figure S3). (B) Histogram of individual cell 

ThT intensity (N = 14,936 cells) during a signal pulse. The bimodal shape of the histogram 

indicates that only a fraction of firing cells (cyan) participate in signaling (0.43±0.02, mean

+/−SEM). (C) Firing cells are spatially clustered within biofilms. Yellow lines indicate 

cluster edges identified by image analysis based on ThT fluorescence. Scale bar, 10 μm. (D) 

Cluster sizes (N = 7,034 clusters) are distributed according to a power-law decay across 3 

decades with an approximate exponent of 2. These properties indicate that the arrangement 

of firing cell clusters within the biofilm can be described by percolation theory.
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Figure 3. An excitable model for signal propagation in biofilms.
(A) Model equation combines excitation (blue) and cell-cell communication (orange) to give 

rise to excitable propagation. The geometric factor gj is 1/4 at the cell poles and 1/2 

otherwise. (B) A cartoon trace illustrates firing (blue-shading) followed by a refractory 

period (gray-shading) for a given excitable cell. (C) Cell-cell communication (arrows) 

allows directional signal propagation from one cell to another. Refractory cells are gray and 

excited cells are blue. (D) Example model snapshots depict complete signal propagation 

(direction indicated by arrow, Ɛ = 10 for active cells) in the regime above the percolation 

threshold (left, ϕ = 0.5) and incomplete signal propagation below the percolation threshold 

(right, ϕ = 0.2). Both cases have the same values for the dynamic parameters, uo = 0.01, τ = 

300. (E) Example amplitude profiles for the images shown in (D).
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Figure 4. Experimental tuning of firing cell fraction and pulse duration with mutant biofilms.
(A) A series of cartoons illustrates the function of genes deleted in the mutant strains. (B) 

Representative images from time points of peak signaling activity depicting the fraction of 

firing cells for each strain (cyan ThT fluorescence). Scale bar, 10 μm. (C) Heatmaps depict 

single cell ThT trajectories (N = 100) for all strains. Each column is one cell trace, with time 

progressing downwards. The color-scale varies across strains due to baseline fluorescence 

differences among experiments (see also Figure S5). (D) Mutant strains exhibit decreased 

(ΔtrkA, 0.13±0.04, N = 7, mean ± SEM) or increased (ΔsinR, 0.74±0.04, N = 4 and ΔktrA 
0.48±0,11, N = 4) fraction of firing cells relative to wild-type (0.43±0.02, N = 12). Wild-

type is near, but slightly below, the percolation threshold, ϕc = 0.45. The ΔtrkA strain 

(purple), which lacks the gating domain of the potassium channel YugO, is expected to 

exhibit reduced signaling activity. The ΔktrA strain (red) lacks a potassium uptake pump and 

is expected to remain hyperpolarized for longer than wild-type. The ΔsinR mutant (orange) 

lacks a transcription factor (SinR) that represses expression of YugO, resulting in higher 

signaling activity. (E) Pulse duration measurements, where pulse duration is defined as the 

amount of time membrane polarization remains above baseline level. All mutant strains 

(ΔtrkA 30.6±2.6, 124 cells, 3 biofilms, and ΔktrA 45.7±2.4, 204 cells, 3 biofilms, and ΔsinR 
34.1±2.0, 165 cells, 3 biofilms, mean ± SEM) have larger pulse durations than wild-type 

(18.1±1.0, 383 cells, 3 biofilms). (F) A phase plot of pulse duration and fraction firing for 

each strain. ΔtrkA lies below the percolation threshold (dotted line) and ΔsinR above, both 

with longer pulse duration than wild-type. Wild-type and ΔktrA lie near the threshold, but 

with different pulse times.
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Figure 5. Signal transmission occurs above the percolation threshold.
(A) Phase images with overlaid ThT intensity (cyan) during peak signaling show steady 

propagation in wild-type (top) and spatial signal decay in ΔtrkA (bottom). Scale bar, 10 μm. 

(B) Transmission amplitude measurements show that wild-type (N = 7), ΔktrA (N =4), and 

ΔsinR (N = 4) propagate the signal at a constant amplitude, while ΔtrkA (N = 5) does not. 

Transmission amplitude is defined as the fraction of firing cells at a given position divided 

by the firing fraction at the beginning of the field of view (error bars, ± SEM). (C) Collective 

benefit of signaling is defined as the ratio of transmission amplitudes at the biofilm edge and 

at the beginning of the field of view. Experimental data are shown by points. The model 

output for wild-type parameters (black curve) illustrates the non-linear nature of collective 
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benefit. (D) Collective cost of signaling is defined as the product of the firing cell fraction, ϕ, 

and mean pulse time. Experimental data are shown as points. Lines represent the cost that 

would be incurred for each strain given its mean pulse time.
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Figure 6. Cost-benefit negotiation in signal transmission.
(A) The benefit (transmission efficiency) is plotted for different dynamic parameters as a 

function of ϕ and resulting pulse time (green color scale). When plotted as a function of ϕ 
only, the curves line up with benefit rising near the threshold (inset). (B) The cost function is 

plotted for the corresponding benefit curves from (A). (C) Benefit/cost ratio is plotted as a 

function of ϕ for the different model curves in (A) and (B), illustrating that, no matter the 

dynamic model parameters, benefit/cost ratio has a peak near the percolation threshold. This 

comes from the fact that benefit is highly non-linear in ϕ while cost increases smoothly for 

any set of dynamic parameters (inset). (D) Measured benefit/cost ratio is plotted for each 

strain (dots), along with the model output given wild-type parameters (curve). The ratio 

exhibits a peak due to the linear cost but highly non-linear benefit, with wild-type near the 

maximum (see also Figure S6). Inset plot overlays cost and benefit on separate y axes.
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