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Leveraging human tissue samples to investigate tumor heterogeneity 

in the context of cancer models, therapeutics, and patient outcomes 

Katharine Yu 

 

ABSTRACT 

 
Cancer is among the leading causes of mortality worldwide and the number of cancer-related 

deaths is expected to rise to 16.4 million by 2040. Given the wealth of publicly available cancer 

data that has been generated over the past few decades, it is now possible to investigate cancer at 

an unprecedented scale using bioinformatic approaches. This body of work covers three projects 

that leverage human tumor samples to evaluate cancer models, predict cancer therapeutics, and 

investigate the prognostic value of infiltrating B cell repertoires.  

 

In the first project, we compared gene expression profiles of human cell lines from the Cancer 

Cell Line Encyclopedia to human primary tumor samples from the Cancer Genome Atlas 

(TCGA) to evaluate how well each cell lines represents its primary tumors. We performed 

correlation analysis and gene set enrichment analysis to understand the differences between cell 

lines and primary tumors. We then built tumor subtype classifiers and predicted subtype 

classifications for individual cell lines to facilitate subtype-specific cell line studies. Lastly, we 

proposed a new pan-cancer cell line panel with the most representative cell lines across 22 tumor 

types and subtypes which we hope will be a valuable resource for cancer researchers who are 

interested in pan-cancer studies and screens.  



 ix 

In the second project, we worked closely with the researchers in the I-SPY 2 TRIAL, which is an 

adaptive phase II clinical trial of neoadjuvant treatment for women with locally advanced breast 

cancer, to identify compounds to sensitize drug resistant breast cancers. We generated drug 

resistance profiles for each molecular subtype and treatment arm using the gene expression 

profiles of patient tumors from the I-SPY 2 TRIAL and then identified compounds which can 

reverse these profiles using the drug perturbation profiles from the Connectivity Map data. We 

identified one drug hit, fulvestrant, which reversed 85% of the drug resistance profiles. We then 

performed experimental validation in paclitaxel-resistant cell lines and found that fulvestrant 

increased drug response in a triple-negative breast cancer cell line.  

 

In the third project, we extracted B cell repertoires from TCGA to better understand the role of 

tumor infiltrating B cells across a wide range of tumor types. We performed diversity and 

network analysis and identified differences across tumor types, between tumor subtypes, and 

between tumor and adjacent normal samples. We observed a trend towards greater clonal 

expansion in tumors compared to adjacent normal tissue and we found significant associations 

between the repertoire features and mutation load, tumor stage, and age. Our V gene usage 

analysis identified similar V gene usage patterns in colorectal and endometrial cancers. Finally, 

we evaluated the prognostic value of these repertoire features and identified significant 

associations with survival in a subset of tumor types.  

 

Taken together, these projects demonstrate how publicly available datasets can be leveraged to 

extract new insight into cancer biology, therapeutics, and outcomes. 
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CHAPTER 1: INTRODUCTION 
 

Cancer is a group of diseases defined by uncontrollable cell growth. It can affect almost any 

tissue in the human body and, in addition to the terrible burden it places upon individual patients 

and their families, it is a tremendous public health and economic issue. In the United States 

alone, the estimated national cost for cancer care was $150.8 billion in 20181. Cancer was 

responsible for almost 10 million deaths worldwide in 2020 and it is expected to grow to 16.3 

million deaths by 20402. Cancer incidence and mortality is increasing globally, reflecting growth 

of the human population and aging as well as national socioeconomic development3. While 

advances in treatment, early detection, and decreased smoking rates have led to a decline in 

overall cancer death rates in the United States since the early 1990’s, a number of tumor types 

are still associated with poor prognosis and there is still much to be understood about cancer 

biology and the most effective treatment strategies for each patient. 

 

1.1 Publicly available genomic cancer datasets  
 

With the development of genomic technologies over the past two decades, there has been an 

explosion in the amount of publicly available genomic data for cancer researchers to leverage for 

the systematic study of the cancer genome. A preliminary search on the Gene Expression 

Omnibus4 returns almost one million samples related to cancer when filtering for expression 

profiling by arrays or high throughput sequencing, and many more samples are available if other 

molecular assays are taken into account. A subset of the most commonly used genomic cancer 

datasets are described in this section. 
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Perhaps the largest molecular cancer dataset is The Cancer Genome Atlas (TCGA)5, which was a 

joint effort between the National Cancer Institute (NCI) and the National Human Genome 

Research Institute (NHGRI). The project launched in 2005 with a $100 million 3-year pilot study 

to map lung, brain, and ovarian cancers using a suite of genomic characterization technologies. 

In 2010 the National Institutes of Health (NIH) expanded TCGA to 20 tumor types and the 

project has since surpassed that goal, generating data from 33 tumor types, 10 of which are rare 

cancers.  Throughout the course of the project, great strides had been made in sequencing 

technologies, allowing for deep characterization of the cancer genome. TCGA performed whole-

exome sequencing, whole transcriptome sequencing, and whole-genome sequencing in addition 

to using microarray technologies for copy-number variants, methylation, and protein expression 

to capture tumor biology at multiple levels. Over 2.5 petabytes of data were generated 

throughout the course of the 12-year project, all of which is now publicly available and an 

invaluable resource for the research community to use to further our understanding of cancer. 

 

The Cancer Cell Line Encyclopedia (CCLE) project is a collaboration between the Broad 

Institute and the Novartis Institute for Biomedical Research. The goal of this project was to 

generate detailed genomic profiles of a large panel of human cancer cell lines to facilitate studies 

leveraging cancer cell line models. This dataset contains almost 1,000 human cancer cell lines 

spanning 36 tumor types. Each cell line was characterized for gene expression, chromosomal 

copy number, and mutation status in approximately 1,600 genes. The study was later expanded 

to include RNA sequencing, whole-exome sequencing, whole-genome sequencing, reverse-phase 

protein array, reduced representation bisulfate sequencing, microRNA expression profiling, and 

global histone modification profiling6. Multiple studies have shown the robustness of this dataset 
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for biomarker studies and identifying cancer vulnerabilities7, 8 and it is a valuable resource for 

researchers using cancer cell lines. 

 

The Connectivity Map (CMap)9 is a large drug perturbation dataset which contain the expression 

profiles of cultured human cancer cell lines which have been treated with over a thousand 

compounds. Specifically, the dataset is made up of treatment-control pairs at varying 

concentrations and timepoints which were profiled using an Affymetrix microarray platform to 

measure gene expression. This expression data was then processed to generate instances, which 

describes the fold change difference in gene expression between treatment and control samples at 

a specific time point and concentration. CMap contains 6,100 instances of 1,309 compounds and 

5 cell lines. The CMap project was followed by the Library of Integrated Network-based Cellular 

Signatures (LINCS) project10, which contains over one million gene expression profiles but only 

978 landmark genes were directly measured and the remaining genes were imputed. The goal of 

CMap and LINCS projects was to provide a resource to help researchers connect disease-

modifying genes to drugs with therapeutic potential. This approach involves first generating a 

disease signature, which is typically a set of significantly upregulated and downregulated 

disease-modifying genes, followed by using a pattern-matching strategy based on the 

Kolmogorov-Smirnov statistic to identify compounds from the collection of drug perturbation 

profiles in CMap or LINCS that have the opposite expression profile as this disease signature. 

The hypothesis behind this approach is that reversing the disease-modifying genes may have a 

therapeutic effect. While this approach can be applied to a variety of diseases, it has shown 

particular promise in cancer11, 12.  
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Many other molecular cancer datasets exist such as the International Cancer Genome 

Consortium13, which contains molecular data for 50 tumor types, and others are currently being 

generated, such as the Human Tumor Atlas Project14 which seeks to use single-cell genomics 

technologies and spatial multiplex in situ methods to generate a three-dimensional cancer atlas. 

However, we focused on the datasets described above as they are the main datasets that were 

used in this body of work. 

 

1.2 Integrating genomic datasets for cancer research 
 

Large-scale publicly available molecular datasets allow researchers to use computational 

approaches to investigate cancer at scale. One area that this approach can be applied to is in the 

evaluation of cancer models. Cancer models are an essential part of cancer research as they allow 

researchers to perform molecular experiments and drug screens to better understand cancer 

biology and treatment responses without involving patients. Cancer models themselves span a 

wide range of systems with varying complexity and cost, from patient-derived xenograft models 

where human tumor tissue is implanted in immunocompromised mice15 to 3D cell cultures such 

as spheroid16 or organoid models17. The most commonly used preclinical cancer models are 

cultured human cancer cell lines. The first human cultured cancer cell line was established from 

Henrietta Lacks in 195118 and they have since become the mainstay of cancer research because 

of their relatively low cost and ease of manipulability. However, not all cancer cells are equal 

and many candidate drugs which have shown efficacy in cancer cell lines fail in clinical trials19. 

Identifying the cell lines which are most representative of human tumors and using these in 

preclinical studies may increase the translatability of preclinical findings. While previous studies 

have mainly focused on evaluating the relevance of cancer cell lines in a single tumor type20, 
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publicly available pan-cancer datasets allow for a comprehensive analysis of cancer cell lines 

across many tumor types. We leveraged the TCGA and CCLE datasets to perform this analysis 

in the first project discussed in this dissertation. 

 

Drug resistance is another area in which computational approaches can be used to extract insight 

from large scale molecular datasets. Drug resistance is the main reason for failure in cancer 

treatments and it can be intrinsic, when the drug resistance exists before treatment, or acquired, 

when the drug resistance is induced by treatment. The biological mechanisms behind drug 

resistance are complex and can involve a wide range of different factors such as genetic 

mutations, epigenetic changes, upregulated drug efflux, physical barriers, tumor heterogeneity, 

and the tumor microenvironment21 22. It is one of the greatest challenges in cancer today and new 

approaches are needed to address this problem. One method to combat drug resistance is to use a 

computational drug repositioning approach to identify compounds that can induce sensitivity. 

Similar to the method described in the previous section, this method involves first generating a 

drug resistance signature which includes significantly upregulated and downregulated genes 

involved in drug resistance and then identifying compounds that can reverse this resistance 

signature using a library of drug perturbation profiles such as CMap. We leveraged the CMAP 

dataset to identify compounds to reverse drug resistance in breast cancer in the second project in 

this dissertation. 

 

Computational approaches are necessary to study the complexities of the immune repertoire at 

scale. The adaptive immune system, which is the subset of the immune system composed of cells 

that are highly specific to particular pathogens, plays an important role in antitumor immune 
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responses. Tumor cells can accumulate many mutations which can lead to the generation of 

tumor-associated antigens23,24. These antigens can then be presented on the cell surface and 

recognized by the adaptive immune system, which can target them for elimination. T cells have 

been the central focus of studies about harnessing the adaptive immune system to combat cancer 

and research into T cell-mediated therapies has led to new strategies such as checkpoint 

inhibitors and adoptive T cell transfer therapy25. However, the role of B cells, which are another 

major component of the adaptive immune system, has been much less studied within the context 

of cancer. While the amount of tumor infiltrating B cells tend to be lower than the number of 

tumor infiltrating T cells26, 27, a relatively small number of plasma cells are capable of generating 

a large number of cytokines and antibodies28. This can lead to antibody-dependent cellular 

cytotoxicity and phagocytosis of tumor cells29, complement activation, and enhanced 

presentation of tumor-associated antigens by dendritic cells30. However, B cells can also exert 

protumor effects and a number of mouse studies have shown that tumor growth can be slowed by 

B cell depletion31 and response to chemotherapy can be improved by B cell depletion32. There is 

also conflicting evidence for the prognostic value of B cells in different tumors types and further 

study is needed to understand the role of B cells in different cancer contexts33, 34, 35, 36. In the third 

project of this dissertation, we once again leverage the TCGA dataset to investigate the B cell 

repertoires across a wide range of tumor types and within tumor subtypes. 

 

In summary, this dissertation demonstrates how computational approaches allow researchers to 

integrate large-scale genomic datasets to evaluate cancer models, identify potential therapeutics 

for drug resistant breast cancer, and investigate the prognostic value of B cell repertoire features. 

Each of these topics will be discussed in detail in the following chapters. 
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CHAPTER 2: COMPREHENSIVE TRANSCRIPTOMIC ANAYSIS 

OF CELL LINES AS MODELS OF PRIMARY TUMORS ACROSS 22 

TUMOR TYPES 

 

2.1 Abstract 

Cancer cell lines are a cornerstone of cancer research but previous studies have shown that not 

all cell lines are equal in their ability to model primary tumors. Here we present a comprehensive 

pan-cancer analysis utilizing transcriptomic profiles from The Cancer Genome Atlas and the 

Cancer Cell Line Encyclopedia to evaluate cell lines as models of primary tumors across 22 

tumor types. We perform correlation analysis and gene set enrichment analysis to understand the 

differences between cell lines and primary tumors. Additionally, we classify cell lines into tumor 

subtypes in 9 tumor types. We present our pancreatic cancer results as a case study and find that 

the commonly used cell line MIA PaCa-2 is transcriptionally unrepresentative of primary 

pancreatic adenocarcinomas. Lastly, we propose a new cell line panel, the TCGA-110-CL, for 

pan-cancer studies. This study provides a resource to help researchers select more representative 

cell line models. 

2.2 Introduction 
 

Cancer cell lines are an integral part of cancer research and are routinely used to study cancer 

biology and to screen anti-tumor compounds. While they are relatively inexpensive and easy to 

grow under laboratory conditions, cell lines have known limitations as preclinical models of 
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cancer and many promising candidate drug compounds have failed to show utility among patient 

populations1,2. Prior studies in ovarian cancer3, liver cancer4, and breast cancer5,6 have shown 

that cell lines differ in their ability to represent the primary tumors they were derived from, 

suggesting that using more appropriate cell lines for cancer studies may increase the 

translatability of preclinical findings. While these previous studies are valuable resources for 

researchers studying these select tumor types, there is a need for a comprehensive pan-cancer 

analysis of cell lines and primary tumors. 

 

The generation of large public molecular datasets has allowed researchers to investigate cancer 

biology at a scale that was unheard of a decade ago. In particular, The Cancer Genome Atlas 

(TCGA)7 research group has collected and characterized the molecular profiles of tumors from 

over 11,000 patients across 33 different tumor types. They provide clinical, transcriptomic, 

methylation, copy number, mutation, and proteomic data to facilitate the in-depth interrogation 

of cancer biology at multiple molecular and clinical levels. Additionally, the Broad Institute’s 

Cancer Cell Line Encyclopedia8 is another large-scale research effort which characterized over 

1,000 human-derived cancer cell lines across 36 tumor types and provides transcriptomic, copy 

number, and mutation data. 

 

Previous studies have integrated data from both of these datasets to evaluate cell lines as models 

of specific tumor types. For example, Domcke et al. focused primarily on copy number 

alterations and mutation data to evaluate cell lines as models of high grade serous ovarian 

carcinomas (HGSOC)3. They created a cell line suitability score using features of HGSOC and 

discovered that the most commonly used cell lines do not seem to resemble HGSOC tumors and 
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the cell lines most representative of HGSOC have very few publications. Similarly, Chen et al. 

compared hepatocellular carcinoma primary tumor samples to cell lines using transcriptomic 

data and found that nearly half of the hepatocellular carcinoma cell lines in CCLE do not 

resemble their primary tumors4. In breast cancer, Jiang et al. compared gene expression, copy 

number alterations, mutations, and protein expression between cell lines and primary tumor 

samples5. They created another cell line suitability score by summing the correlations across all 

four molecular profiles, although it is notable that only gene expression and copy number 

alterations had a substantial effect on their score as mutations and protein expression had 

extremely low correlations across all cell lines (R < 0.1). In another breast cancer study, Vincent 

et al. compared transcriptomic data between cell lines and primary tumor samples and identified 

basal and luminal cell lines that were most similar to their respective breast cancer subtypes6. 

While these studies provide insight into specific tumor types, here we hope to provide 

researchers with a pan-cancer resource that is, to the best of our knowledge, the most 

comprehensive to date. Additionally, unlike previous studies, we adjust for tumor purity which 

can be a significant confounder in primary tumor transcriptomic data9.  

 

Cancer is an incredibly heterogeneous disease that can often be stratified into clinically relevant 

subtypes with different prognosis and responses to treatments. While specific genomic 

alterations or histological markers have been used to stratify tumors, gene expression is 

commonly used to group tumors into molecular subtypes 10, 11, 12. Breast cancers, for example, 

can be divided into five intrinsic molecular subtypes based on gene expression profiles with 

distinct clinical outcomes13. While much progress has been made in separating primary tumors 

into biologically distinct subtypes, few publications have attempted to apply these subtypes to 
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cell line models. Our study seeks to provide subtype classifications for cell lines to aid 

researchers interested in subtype specific studies or drug screens. 

 

The National Cancer Institute’s NCI-60 cell lines are perhaps the most well studied human 

cancer cell lines and have been in use for nearly three decades by both academic and industrial 

institutions for drug discovery and cancer biology research14. The NCI-60 panel contains 60 

human tumor cell lines representing nine human tumor types: leukemia, colon, lung, central 

nervous system, renal, melanoma, ovarian, breast and prostate. Over 100,000 anti-tumor 

compounds have been screened using this cell line panel, generating the largest cancer 

pharmacology database worldwide. While this cell line panel has provided valuable insight into 

mechanisms of drug response and cancer biology, new large public molecular datasets allow us 

to compare the NCI-60 cell lines to primary tumor samples and propose more representative cell 

lines for an improved cancer cell line panel.  

 

In this study, we compared transcriptomic profiles from cell lines and primary tumor samples 

across the 22 tumor types covered by both TCGA and CCLE. We observed the confounding 

effect of primary tumor sample purity in our analysis and we adjusted for purity in our 

correlation analysis and differential expression analysis of cell lines and primary tumor samples. 

We found that cell-cycle related pathways are consistently upregulated in cell lines while 

immune pathways are consistently upregulated across the primary tumor samples. Next, we 

classified cell lines into subtypes across tumor types. We then present our analysis of pancreatic 

adenocarcinoma (PAAD) cell lines and primary tumor samples and show that we are able to 

identify a cell line that originated from a different cell type lineage compared to the primary 
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tumor samples. Although only our PAAD analysis is presented in the main text, we also 

analyzed the other 21 tumor types and present our results as a web application and a resource to 

the cancer research community (http://comphealth.ucsf.edu/TCGA110CL). Lastly, we selected 

the cell lines that were the most correlated to their primary tumor samples across 22 tumor types 

and propose a new cell line panel, the TCGA-110-CL, as a more appropriate and comprehensive 

panel for pan-cancer studies. 

 
2.3 Methods 
 

Data collection and normalization 

CCLE cell lines were manually matched to TCGA tumor types using the CCLE Cell Line 

Annotations file (CCLE_sample_info_file_2012-10-18.txt), which contains histological 

information for each cell line. While 934 CCLE samples were available in the OSF open-access 

repository, we were able to match approximately 70% of the samples (n = 679) to their 

respective TCGA tumor type. We used these matched CCLE cell lines for comparison with 

TCGA primary tumor samples. These samples encompass the following 22 tumor types: BLCA, 

BRCA, CHOL, COADREAD, DLBC, ESCA, GBM, LGG, HNSC, KIRC, LAML, LIHC, 

LUAD, LUSC, MESO, OV, PAAD, PRAD, SKCM, STAD, THCA, UCEC. For the correlation 

analysis based on cell line tissue of origin, all 934 CCLE samples were used.  

TCGA and CCLE RNA-seq samples for the 22 tumor types above were downloaded from the 

Google Cloud Pilot RNA-Sequencing for CCLE and TCGA project in the OSF open-access 

repository15 (https://osf.io/gqrz9/ ). This repository contains 12,307 RNA-seq samples from both 

the CCLE and the TCGA databases which have been uniformly processed from raw data. 

Transcript alignment and quantification were performed using kallisto (version 0.43.0) and both 
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transcript per million (TPM) values and transcript counts are available in the repository. The 

transcript counts were downloaded and summarized to the gene-level for this analysis. We then 

performed upper-quartile normalization and log transformed the data. Because two different 

sequencing platforms (GAII and HiSeq) were used by TCGA to sequence 5 tumor types (UCEC, 

COADREAD, LAML, STAD, UCEC), we used ComBat to correct for these sequencing 

platform differences (Supplementary Figure 2.1).  

 

We collected tumor purity estimates for all TCGA samples using the ABSOLUTE16 method 

from the TCGA PanCan site (https://gdc.cancer.gov/about-data/publications/pancanatlas). We 

then computed tumor purity using ESTIMATE17 for all of the TCGA tumors and averaged the 

ABSOLUTE and ESTIMATE values. The purity estimates using ABSOLUTE were highly 

correlated with the purity estimates using ESTIMATE (Supplementary Figure 2.2). 

 

Correlation Analysis 

We analyzed 18,151 protein-coding genes in our correlation analysis. To correct for the 

heterogeneous cellular composition of the primary tumor samples, we removed genes that have 

high correlations with tumor purity (R > -0.4, adjusted p-value < 0.01) and adjusted for tumor 

purity in the primary tumor samples using linear regression. For each tumor type, we then 

selected the 5000 most variable genes ranked by interquartile range across the primary tumor 

samples only. We decided to use 5,000 genes based on previous studies4, although we tried 

increasing the number of genes (10,000 genes, all genes) and found our results to be remarkably 

robust (Supplementary Figure 2.3). Additionally, we performed Gene Ontology analysis on the 
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top 10% (500) of the genes with the highest interquartile range to understand which biological 

processes are captured.  

 

 Differential Expression and GSEA 

We identified differentially expressed genes using limma and voom with quantile normalization. 

We added tumor purity estimates of the primary tumor samples as covariates and we set the 

tumor purity estimates of all the cell lines as 1. We considered a gene to be differentially 

expressed if the false discovery rate < 0.01 and the absolute log fold expression change > 2.  

 

For our GSEA analysis, we ranked our genes by their log fold-change values. We then used the 

GSEAPreanked18 software with the classic setting, which was recommended for RNA-seq data 

in the GSEA manual. The enrichment score (ES) reflects the degree to which a gene set is 

overrepresented at the top or bottom of the ranked list of genes. We downloaded the 50 Hallmark 

gene sets from the MSigDB Collections19 and created our own gmx file for the Hallmarks of 

cancer pathways using gene sets from the Oncology Models Forum20. 

 

Tumor subtype analysis 

We used the Broad Institute’s Nearest Template Prediction (NTP)21 method for our subtype 

analysis. To generate the subtype templates for each tumor type, we collected subtype 

information from TCGA publications. We then randomly split the TCGA samples into training 

(80%) and test set (20%). We used the training set to generate the templates for the NTP method 

by performing differential expression analysis between each subtype versus all other subtypes 

with voom and quantile normalization. We selected template genes that had LFC > 1 and FDR < 
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0.01 for each subtype. To enrich for cell line relevant genes, we then removed genes that were 

differentially expressed between cell lines and primary tumors with LFC > 2 and genes that were 

not in the top 50% of expression in at least two cell lines. Next, we used these filtered subtype 

templates to predict the subtypes of the primary tumors held out in the test set using the NTP 

method. If the classification accuracy in the test set was greater than or equal to 80%, we then 

applied it applied it to the cell lines to predict the cell line subtypes.  

 

Data Availability  

All data used in this study are publicly available. The TCGA and CCLE RNA-seq count matrixes 

were originally downloaded from the Google Cloud Pilot RNA-sequencing for CCLE and TCGA 

open-access repository: https://osf.io/gqrz9. The normalized expression data used in this study is 

available on SynapseSynpase (https://www.synapse.org) under Synapse ID syn18685536. Tumor 

purity estimates for all TCGA samples using the ABSOLUTE method were downloaded from 

the TCGA PanCanAtlas publications website: https://gdc.cancer.gov/about-

data/publications/pancanatlas. GSEA hallmark gene sets were downloaded from the GSEA 

MSigDB Collections website: http://software.broadinstitute.org/gsea/msigdb/collections.jsp. The 

hallmarks of cancer gene sets were downloaded from the Oncology Model Fidelity Score GitHub 

page: https://github.com/tedgoldstein/hallmarks.  

 

Code Availability  

The code for normalization and comparing the TCGA and CCLE gene expression profiles is 

available at https://github.com/katharineyu/TCGA_CCLE_paper. 
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2.4 Results  
 

Pan-cancer comparison of expression profiles  

We compared RNA-seq profiles from 8,282 primary tumors from TCGA with 666 cell lines 

from CCLE across 22 overlapping tumor types. Primary tumors were used in all tumor types 

except for SKCM, in which case the metastatic tumors were included because the SKCM TCGA 

cohort was primarily focused on metastatic tumors. We normalized counts using the upper-

quartile method and corrected for batch effects related to different sequencing platforms using 

ComBat22 (Supplementary Figure 2.1).  For each tumor type, we then adjusted for tumor purity 

in the primary tumor samples and calculated correlation coefficients between primary tumor 

samples and cell lines using the 5000 most variable genes, as these genes are the most likely to 

be biologically informative (see Methods). To understand the biological processes captured by 

the 5,000 most variable genes, we performed gene ontology analysis on the top 10% of genes 

driving the correlations in each tumor type and found that many developmental pathways were 

enriched. This is consistent with the view that developmental pathways are often altered in 

cancer24, 25, 26.  

 

The median correlation coefficients between cell lines and their matched tumor samples were 

relatively consistent across tumor types, from 0.66 in head and neck squamous cell carcinoma 

(HNSC) to 0.49 in liver hepatocellular carcinoma (Figure 2.1). Within tumor types, the 

correlation coefficient ranges were largest in PAAD (0.29-0.76), LUSC (0.32-0.79), and LIHC 

(0.26-0.72), which likely reflect the amount of heterogeneity within each tumor type and suggest 

that some primary tumor samples are well matched with cell lines while others may lack 

representative cell line models.  
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Our clustering analysis of cell line and primary tumors correlation coefficients largely captures 

known biological relationships between the tumor types (Figure 2.1). The first split in our 

clustering analysis depicts the large difference between hematopoietic tumor types and solid 

tumor types previously shown in other studies3. Within the solid tumor cluster, tumor types from 

similar cell of origin generally clustered together such as ovarian serous cystadenocarcinoma 

(OV) and uterine corpus endometrial carcinoma (UCEC), glioblastoma (GBM) and lower grade 

glioma (LGG), and esophageal carcinoma (ESCA) and head and neck squamous cell carcinoma 

(HNSC). Interestingly, we observe that sometimes the highest correlation coefficients are not 

necessarily between cell line and primary tumor samples from the same tumor type. In fact, in 

8/22 tumor types, primary tumor samples have higher correlation coefficients with other tumor 

cell lines than their own. These tumor types are: BLCA (highest correlation with HNSC), CHOL 

(highest correlation with LIHC), ESCA (highest correlation with HNSC), LGG (highest 

correlation with GBM), STAD (highest correlation with COADREAD), LUSC (highest 

correlation with HNSC), LUAD (highest correlation with PAAD), and UCEC (highest 

correlation with OV). While this may indicate poor differentiation in the cell lines or primary 

tumor sample or lack of appropriate cell line models, many of these tumor types have higher 

correlations with a related tumor type (e.g. LGG and GBM, STAD and COADREAD, UCEC 

and OV, ESCA and HNSC).  

 

To verify that the results of our transcriptomic-based correlation approach were consistent with 

previous publications, we compared our cell line rankings for OV to the cell line rankings in 

Domcke et al. which evaluated high grade ovarian cancer cell lines based on copy number 
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alterations and selected mutations3. Our results were highly correlated (Spearman’s rho = 0.59, 

p-value = 5.837e-05), which suggests that our cell line rankings capture much of the same 

information as more curated ranking methods that use genomic alterations. 

 

Tumor purity drives primary tumor and cell line differences 

To explore the differences between cell lines and primary tumor samples, we initially performed 

our correlation and differential gene expression analysis across all 22 tumor types without 

accounting for tumor purity of the primary tumor samples (Figure 2.2). In our correlation 

analysis, we compared the cell line correlations with primary tumor samples in the top quartile of 

tumor purity to the cell line correlations with primary tumor samples in the bottom quartile of 

tumor purity for the 20 solid tumor types for which we have tumor purity information (Figure 

2.2). In 75% (15/20) of these tumor types, the cell lines were significantly more correlated with 

primary tumor samples in the top quartile of purity compared to the primary tumor samples in 

the bottom quartile of purity, suggesting that the individual correlation coefficients are reflecting, 

to a certain extent, the amount of non-tumor cells present in the primary tumor samples. 

Similarly, we found a significant positive relationship (R=0.17, p-value < 2.2e-16) between 

primary tumor sample purity and the cell line-primary tumor correlation coefficients, suggesting 

that tumor purity is a confounder in our correlation analysis. Furthermore, when we performed 

Gene Set Enrichment Analysis (GSEA) on the differential expression results using the hallmark 

gene sets from the MSigDB Collections19 and the hallmarks of cancer pathways20, we saw that 

the gene sets involved in immune processes are consistently upregulated in primary tumor 

samples, suggesting that the largest biological signal from the TCGA samples can likely be 
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attributed to the immune cell infiltrate that are present in the primary tumor samples and absent 

in the pure cell line populations (Supplementary Figure 2.2).  

 

After adjusting for primary tumor sample purity in our correlation analysis, we confirmed that 

there was no longer a significant positive relationship between primary tumor sample purity and 

cell line-primary tumor correlation coefficients (R=-0.02, p-value < 2.2e-16). Additionally, we 

found that only one tumor type (LGG) retained significantly higher correlations between cell 

lines and the primary tumor samples in the top quartile of purity compared to cell lines and 

primary tumor samples in the bottom quartile of purity (Supplementary Figure 2.2). Even 

among these tumor types, the difference in median correlation coefficients between high purity 

and low purity samples was greatly reduced after adjusting for tumor purity. We then performed 

differential expression analysis using tumor purity as a covariate to explore differences in cancer 

cell biology while minimizing the influence of tumor infiltrating cells. The number of 

differentially expressed genes ranged from 1,157 in esophageal carcinoma (ESCA) to 4,076 in 

low grade glioma (LGG) (Supplementary Table 1). We identified 87 genes that were 

upregulated in primary tumor samples across 20 of the tumor types analyzed and we found a 

significant number of interactions among these genes (PPI enrichment p-value < 1.0e-16) 

(Figure 2.2). This PPI network was enriched for genes in the immune response pathway (false 

discovery rate = 5.51e-06), suggesting that we were not fully able to remove the contribution of 

the immune infiltrate. However, the GSEA results show a much weaker enrichment of 

immunological pathways upregulated in the primary tumor samples (Figure 2.2).  

 



 23 

No individual genes were significantly upregulated in cell lines across 90% of the tumor types 

analyzed. However, gene sets involved in cell cycle progression (e.g. E2F targets, G2M 

checkpoint, Myc targets) and genome instability were significantly enriched in cell lines in our 

GSEA of MSigDB Hallmark Gene Sets and the Hallmarks of Cancer pathways (Figure 2.2). 

These results demonstrate how GSEA can be more informative than analyzing individual 

upregulated genes alone. Additionally, the enrichment of proliferative gene sets in cell lines 

across the tumor types suggests a common response to in vitro culturing conditions.  

 

Predicting subtypes in cancer cell lines 

In order to predict the subtype of individual cancer cell lines, we used the Broad Institute’s 

Nearest Template Prediction (NTP) method21 which has previously been used to predict the 

subtypes of cancer cell lines27. Briefly, this method involves generating gene templates for each 

subtype by identifying genes that are upregulated in each subtype compared to the other 

subtypes. The distances between the sample to be classified and each subtype template is then 

calculated and the sample is predicted to belong to the subtype with the smallest template 

distance (Figure 2.3). 

 

Like Sveen et. al, we modified this method to create a classifier that can be applied to cancer cell 

lines after training the classifier on primary tumor samples27. We began with the 18 TCGA tumor 

types for which we had subtype information from TCGA publications28-43.  and randomly 

divided these samples into training sets (80%) and test sets (20%). After generating our initial 

subtype templates using the training set of primary tumor samples, we removed genes that are 

differentially expressed between primary tumors and cell lines as we wanted to enrich our 
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subtype templates for genes that are consistent between primary tumors and cell line models. We 

also filtered out genes that are not highly expressed in at least a subset of the cell lines as we 

wanted to retain genes that are robust and informative in cell lines. This filtering step can also 

enrich for cancer-intrinsic genes since cell lines are pure populations of cancer cells. To verify 

that our classifier is still able to predict tumor subtypes after enriching for cell line-relevant 

genes, we applied the classifier to the test set of held out primary tumor samples. 9/18 tumor 

types had a classification accuracy greater than or equal to 80% in the test set. We then applied 

the classifiers of these 9 tumor types to their respective cell lines and predicted the subtypes of 

the individual cell lines (Figure 2.3). While all the primary tumor subtypes are predicted to be 

present in their respective cell lines, the proportions of subtypes significantly differ between 

primary tumors and cell lines in BRCA (chi-squared p-value < 2.2e-16), LUAD (chi-squared p-

value = 9.5e-4), and SKCM (chi-squared p-value = 4.7e-5). This is likely because certain tumor 

subtypes have a higher rate of cell line generation than others due to their biology.  

 

Case study: Evaluating pancreatic adenocarcinoma cell lines 

Pancreatic adenocarcinoma (PAAD) is often diagnosed at an advanced stage and is predicted to 

become the second leading cause of cancer mortality by the year 2030. PAAD tumors can be 

divided into basal or classical molecular subtypes, with significantly lower survival associated 

with the basal subtype44. We utilize these subtypes in our study of PAAD presented here. While 

only the analysis for PAAD is shown, analysis of the other tumor types are available in our web 

application (http://comphealth.ucsf.edu/TCGA110CL). For each tumor type, we adjusted for 

primary tumor purity and compared the expression profiles of the primary tumor samples to the 

932 cell line expression profiles in a correlation analysis. We included tumor subtype predictions 
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for the 9 tumor types where the prediction accuracy in the test set was greater than or equal to 

80%.  

 

We compared the correlations between PAAD primary tumor samples and all 932 cell lines 

grouped by cell line tissue of origin (Figure 2.4). The PAAD primary tumor samples are most 

correlated with cell lines originating from the pancreas, which contains all the PAAD cell lines. 

The correlation coefficients between PAAD primary tumor samples and cell lines from the 

pancreas, however, are not significantly higher than the correlation coefficients between PAAD 

primary tumor samples and cell lines from the second most correlated tissue of origin, the biliary 

tract. This suggests that pancreatic cell lines and biliary tract cell lines share a large amount of 

biology, perhaps because of their ductal nature or close anatomical proximity. We next compared 

individual PAAD cell lines to the PAAD primary tumor samples (Figure 2.4). The median 

correlation coefficients of the cell lines ranged from 0.67 to 0.49, suggesting that some cell lines 

are less suitable as models of primary tumor samples than others. Within the cell lines, however, 

the standard deviations of the correlation coefficients are relatively low (0.08 – 0.03). This 

suggests that between cell line differences are larger than within cell line differences, the latter of 

which reflects the variability of the primary tumor samples. Interestingly, we found that the cell 

line with the second lowest median correlation, QGP1, is derived from a pancreatic 

neuroendocrine tumor rather than a pancreatic adenocarcinoma, and the cell line with the lowest 

correlation, MIA PaCa-2, was derived from an adenocarcinoma but has been shown to also 

express neuroendocrine differentiation45. This suggests that our correlation approach is able to 

distinguish between cell lines derived from different cell types or cell lines that may not be 

representative of pancreatic adenocarcinomas. Of potential concern, the cell line with the lowest 
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median correlation coefficient, MIA PaCa-2, is commonly used as an adenocarcinoma cell line 

model and has over 1,000 PubMed citations.  

 

Next, we incorporated primary tumor subtype information from Moffit et al. (2015) which 

classified the pancreatic adenocarcinoma primary tumor samples into two molecular subtypes44. 

We did not see strong clustering by primary tumor subtypes in our primary tumor versus cell line 

correlation matrix (Figure 2.4). This suggests that our correlation approach using the 5,000 most 

variable genes, while useful in showing global differences between cell lines and primary tumor 

samples, may not be adequate for distinguishing between specific tumor subtypes.  

 

We then used the Nearest Template Prediction method to predict the subtypes of the pancreatic 

cancer cell lines (Figure 2.4). After deriving the subtype template genes from a training set 

(80%) of the PAAD TCGA tumors and applying our filtering criteria, we tested these subtype 

templates on a test set (20%) of held out PAAD TCGA tumors. We achieved a classification 

accuracy of 96%, suggesting that our classifier is able to successfully predict pancreatic subtypes 

even after applying our filtering criteria to enrich for cell line relevant genes. We then used our 

classifier to predict the subtypes of the PAAD cell lines. 15 cell lines were predicted to belong to 

the basal subtype, 10 cell lines were predicted to belong to the classical subtype, and 16 cell lines 

had an FDR > 0.05 and could not be assigned a subtype (Figure 2.4). 15 PAAD cell lines in our 

study were also analyzed by the Moffit et. al publication44. Out of these 15 cell lines, 10 cell 

lines passed our subtype prediction FDR cutoff of 0.05. While the Moffit et al. publication 

predicted all 10 of these cell lines to belong to the basal subtype, we predicted that 8 of these cell 

lines belong to the basal subtype and 2 belong to the classical subtype. Interestingly, the 2 cell 
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lines that we predicted to belong to the classical subtype (CAPAN-1 and HPAF-II) have been 

noted to produce high or moderate amounts of mucin46, 47, which the Moffit et. al paper found to 

be present in increased levels in the classical subtype44. Additionally, the Collison et. al. 

publication, whose classical subtype genes significantly overlapped with the Moffit et al. 

classical subtype genes (20/22), predicted that both CAPAN-1 and HPAF-II belong to the 

classical subtype48. This suggests that these two pancreatic cell lines may indeed reflect the 

classical subtype despite the Moffit et al. publication classifying them as basal44.  

 

Correlations between the pancreatic cell lines and the primary tumors in each individual subtype 

were also calculated (Supplementary Figure 2.4). The rankings of the pancreatic cell lines 

compared to the primary tumors in the individual subtypes were similar to the rankings of the 

pancreatic cell lines compared to all of the pancreatic primary tumors, suggesting that global 

differences between the samples outweigh the subtype specific differences for PAAD. 

   

TCGA-110-CL: a comprehensive pan-cancer cell line panel 

The NCI-60 panel of human tumor cell lines has been used in cancer research for almost 30 

years to screen chemical compounds and natural products. It contains cell lines from the 

following 10 tumor types: BRCA, COADREAD, GBM, KIRC, LAML, LUAD, LUSC, OV, 

PRAD, and SKCM. We wanted to determine if the NCI-60 panel could be improved by using 

cell lines with higher correlations to their primary tumor samples. We analyzed the cell lines that 

overlapped between the NCI-60 panel and the CCLE database and found that the cell lines in the 

NCI-60 panel did not have the highest correlations with their primary tumor samples based on 

gene expression profiles (Figure 2.5). We created an improved NCI-60 panel by selecting the 
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same number of cell lines per tumor type as the original NCI-60 panel, but choosing the cell lines 

with the highest correlations per tumor type. The correlations in our improved NCI-60 panel 

were significantly higher than the original NCI-60 panel, which suggests that the integration of 

primary tumor data can be used to guide cell line selection for more representative models of 

cancer. 

 

We furthermore propose a new expanded panel of cell lines, which we name TCGA-110-CL, to 

be used as a pan-cancer resource for cancer research and drug screening (Figure 2.5). We 

selected the 5 cell lines with the highest correlations to their primary tumor samples from each of 

the 22 tumor types analyzed in this paper to generate our TCGA-110-CL panel. For the 9 tumor 

types for which we have tumor subtype predictions of the cancer cell lines, we select the cell 

lines with the highest correlation within each tumor subtype to maximize the diversity of tumor 

subtypes within the panel. By using TCGA primary tumor data to guide our cell line selection, 

we hope that our new panel will be more comprehensive and representative of primary tumor 

samples than the NCI-60 panel.  

 

2.5 Discussion 
 

While cell lines are commonly used as models of primary tumors in cancer research, cell lines 

differ from primary tumors in biologically significant ways and not all cell lines may be 

appropriate models for their annotated tumor type. Previous studies of ovarian cancer, breast 

cancer, and liver cancer have shown that the molecular profiles of cell lines from the same tumor 

type can differ widely and some cell lines more closely model their primary tumors than others. 

In this study, we leveraged publicly available transcriptomic data to perform a comprehensive 
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pan-cancer analysis across 22 tumor types and provide a resource for researchers to select 

appropriate cell lines for their tumor-specific studies. 

 

Our analysis reveals that primary tumor and cell line correlations vary widely across tumor 

types, with the hematopoietic tumor types having relatively good cell line models and thyroid 

carcinomas having particularly poor cell line models. Based on previous studies, the thyroid 

carcinoma cell lines likely model a more dedifferentiated form of resource thyroid carcinomas 

than the papillary form that was collected for the TCGA study. Clustering tumor types by 

correlations between primary tumor samples and cell lines generally grouped similar tumor types 

together. Of note, the primary tumor samples in 8/22 tumor types have higher correlation 

coefficients with cell lines from other tumor types than cell lines from their own tumor type. 

These tumor types may contain poorly differentiated samples, which would make it difficult to 

distinguish them from other tumor types using transcriptomics alone. 

 

We identified primary tumor sample purity as a significant confounder in our correlation and 

differential expression analysis and show that we are largely able to remove the confounding 

effect of tumor purity in our analysis. After correcting for primary tumor purity, we found a 

significantly lower enrichment of immune pathways among the primary tumor samples in our 

GSEA analysis. We found that cell-cycle related pathways are consistently upregulated in cell 

lines across all tumor types, perhaps reflecting in vitro culturing conditions.  

 

In our case study comparing pancreatic cell lines to pancreatic primary tumor samples, we found 

that the pancreatic cell lines are more representative of pancreatic primary tumor samples than 
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cell lines from other tissues of origin. We also found a group of cell lines with significantly 

lower correlations with the primary tumors, suggesting that these cell lines may not be 

appropriate models of primary pancreatic adenocarcinoma tumors. Indeed, the pancreatic cancer 

cell line with the worst median correlation was shown to express neuroendocrine differentiation45 

and the second lowest cell line was derived from a neuroendocrine tumor rather than an 

adenocarcinoma. Lastly, we predicted tumor subtypes for 60% of the pancreatic cell lines and 

predicted 15 basal subtype cell lines and 10 classical subtype cell lines to be present in the 

CCLE. While we presented our analysis of pancreatic cancer here, we also analyzed the other 21 

tumor types and present the results in our web application 

(http://comphealth.ucsf.edu/TCGA110CL). Finally, we propose the TCGA-110-CL cell line 

panel as a resource for pan-cancer studies. It encompasses 22 different tumor types and contains 

the cell lines most correlated with their primary tumor samples. Although some tumor types have 

higher correlations than others, our aim was to propose a comprehensive cell line panel and we 

did not set a correlation coefficient cutoff for cell line inclusion. We hope that using more 

representative cell lines in our pan-cancer panel will improve our ability to translate cell line 

findings into patients.  

 

There are several limitations of our study that should be recognized. Although we were not able 

to match all of the cell lines from CCLE to primary tumor samples in TCGA, we were able to 

match a majority of the cell lines (71%) to a corresponding primary tumor type and we provide 

analysis for less common tumor types whose cell lines have not been well studied. Additionally, 

although our cell line findings lack experimental validation, our findings were highly correlated 

to previous publications3 and we were able to identify a pancreatic cell line that was derived 
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from a neuroendocrine tumor rather than a pancreatic adenocarcinoma. Lastly, the focus of our 

study was on transcriptomics which is only one potential metric for determining cell line 

suitability depending on the research question being asked. However, we believe this study is 

still a valuable general resource for researchers who can, for example, use it to identify 

potentially problematic cell lines that may not be representative of the primary tumors they are 

studying. 

 

In future studies, we hope to integrate other types of molecular data such as mutation, copy 

number alteration, and methylation profiles to provide a multi-omic comparison of cell lines and 

primary tumor samples. In particular, genomic alterations are important for targeted therapies 

which act on specific mutant isoforms and we hope to incorporate this information in our future 

cell line studies. 

 

By leveraging expression profiles from thousands of primary tumor and cell line samples, our 

study has created a comprehensive pan-cancer resource to aid researchers in selecting the most 

representative cell line models. We hope that using more appropriate cell line models for cancer 

studies will allow the research community to better understand cancer biology and translate more 

in vitro findings into clinically relevant therapies. 
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2.6 Figures 
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Figure 2.1 Pan-cancer analysis of cell lines and matching primary tumor samples. A. Study 
Design. RNA-seq data was downloaded from the Google Cloud Pilot RNA-sequencing for 
CCLE and TCGA [1] project for 22 cancer types that overlapped between the CCLE and TCGA 
datasets. The data was normalized, batch corrected, and adjusted for tumor purity during the 
analysis. B. Correlation analysis of the CCLE and TCGA data. Each sample in the violin plot 
corresponds to the Spearman correlation between one cell line and one primary tumor sample 
using the 5,000 most variable genes. C. Heatmap of median correlations between all tumor types 
in CCLE compared to all tumor types in TCGA.
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Figure 2.2 Primary tumor sample versus cell line correlations driven by tumor purity. A. 
Correlations between cell lines and high purity primary tumor samples (red) are significantly 
higher than correlations between cell lines and low purity primary tumor samples (turquoise) in 
18/20 tumor types, motivating our adjustment for tumor purity in subsequent analysis. B. 
STRING analysis of protein-protein interactions for the 95 genes upregulated in primary tumor 
samples in all 20 of the analyzed tumor types (PPI enrichment p-value < 1.0e-16). Line thickness 
denotes confidence of the interaction and only high confidence interactions are shown. The PPI 
network is enriched for immune response pathway genes (5.51e-06). C. Gene Set Enrichment 
Analysis (GSEA) of differential expression between primary tumor samples and cell lines in 
hallmark gene sets from MSigDB. NES are shown for pathways with FDR < 5%. Gene sets 
related to cell cycle progression are enriched in cell lines across all tumor types and immune 
pathways are enriched in primary tumors. D. GSEA of hallmarks of cancer pathways. Genome 
instability is enriched in cell lines across all tumor types and tumor promoting inflammation is 
enriched in primary tumors.
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Figure 2.3 Cell Line Tumor Subtype Predictions. A. Overview of the tumor subtype 
prediction method used in the study. TCGA tumors are divided into a training (80%) set to 
identify genes that are upregulated in each tumor subtype compared to the other tumor subtypes 
(LFC > 1, FDR < 0.01). Subtype templates are then filtered to remove genes that are 
differentially expressed between primary tumor samples and cell lines (LFC > 2) and genes that 
are not robustly expressed in at least 2 cell lines to generate cell line relevant subtype templates. 
These subtypes of the TCGA test set (20%) are then predicted using the Nearest Template 
Prediction method and if classification accuracy is greater than 80%, the gene templates are then 
applied to the CCLE cell lines to predict the cell line subtypes. B. The proportion of tumor 
subtypes within the TCGA cohort (left) and the predicted tumor subtypes in the CCLE cell lines 
(right) for tumor types with prediction accuracy greater than 80%. The tumor types in red 
(BRCA, LUAD, SKCM) have significantly different proportions of subtypes when comparing 
the TCGA subtypes to the CCLE predicted subtypes. 
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Figure 2.4 Correlative analysis of pancreatic adenocarcinoma tumor samples and cell lines. 
A. Violin plot of Spearman correlations between primary pancreatic adenocarcinoma samples 
and all CCLE cell lines using 5,000 most variable genes. The correlations are separated by cell 
line tissue of origin (x- axis) and the red line is the median correlation coefficient. Primary 
pancreatic tumor samples are most correlated with cell lines from the pancreas followed by the 
biliary tract. B. Correlations between PAAD cell lines and PAAD tumor samples, separated by 

PAAD  correlation matrix
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cell lines (x-axis). The median correlation coefficients range from R = 0.346 to R = 0.478. C. 
Heatmap showing the Spearman correlations between PAAD cell lines (x-axis) and PAAD 
primary tumor samples (y-axis). The color bar on the y-axis indicate the subtype of the TCGA 
primary tumor samples and the color bar on the x-axis indicates the predicated subtype of the 
CCLE cell lines. D. Heatmaps show the expression of the PDAC template genes for the basal 
and classical PAAD subtypes. Top graph shows the TCGA PAAD test set (20% of total TCGA 
PAAD samples) with annotation color bars showing actual subtype, predicted subtype, and FDR 
for the subtype predictions. Bottom graph shows PAAD cell lines with annotation color bars 
showing predicted subtype and FDR for the subtype predictions.  
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Figure 2.5 The TCGA-110-CL: an improved cell line panel integrating TCGA and CCLE 
data. A. Heatmap of correlations between cell lines in the NCI60 panel and primary tumor data. 
Only 36 cell lines which are shared between NCI60 panel and CCLE are shown. The tumor types 
of each cell line are indicated by the annotation bar to the left of the heatmap. B. Heatmap of 
improved NCI60 panel. Improved panel has the same number of cell lines and tumor types as the 
original NCI60 panel, but the cell lines with the highest correlations with their matched primary 
tumor samples were selected. C. Boxplot showing that the improved NCI60 panel has 
significantly higher correlations (two-sided Wilcoxon test p-value = 7.6e-07) with their matched 
primary tumor samples compared to the original NCI60 panel. The center line in the boxplot 
depicts the median, the box limits depict the upper and lower quartiles, and the whiskers depict 
1.5 times the IQR. D. Proposed TCGA-110-CL panel. An improved cell line panel that includes 
5 cell lines with the highest correlations to their matched primary tumor samples across 22 tumor 
types. For the tumor types with subtype predictions, cell lines with the highest correlations 
within each subtype were chosen to maximize subtype representation in the panel.
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Supplementary Figure 2.1 ComBat corrected expression data. Sequencing platform batch 
effects were corrected for using ComBat in the following tumors types: COAD (A), LAML (B), 
READ (C), STAD (D), and UCEC (E). Samples sequenced on Illumina’s Genome Analyzer II 
Platform (GAII) are in red and samples sequenced on Illumina’s HiSeq platform are in turquoise. 
The plots on the left shows PC1 and PC2 of the samples before ComBat correction and the plots 
on the right shows the samples after ComBat correction
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Supplementary Figure 2.2 Confounding effect of tumor purity on GSEA and correlation 
analysis. A. Purity estimates calculated using ESTIMATE (x-axis) and ABSOLUTE (y-axis) are 
highly correlated (R = 0.6, p-value < 2.2e-16). B. Violin plots showing the purity estimates of the 
primary tumors separated by tumor type. C. (left) Gene Set Enrichment Analysis (GSEA) of 
differential expression results without purity as a covariate between primary tumor samples and 
cell lines in hallmark gene sets from MSigDB. NES are shown for pathways with FDR < 5%. 
Before adjusting for tumor purity, immune related pathways are strongly enriched in primary 
tumor samples. (right) Gene Set Enrichment Analysis (GSEA) of differential expression results 
without purity as a covariate between primary tumor samples and cell lines in hallmarks of 
cancer pathways. NES are shown for pathways with FDR < 5%. D. After adjusting for tumor 
purity, correlations between cell lines and high purity primary tumor samples (red) are 
significantly higher than correlations between cell lines and low purity primary tumor samples 
(turquoise) in only 1/20 tumor types using the one-sided Wilcoxon rank sum test. P-values are 
indicated by symbols above the violin plots with ns corresponding to p-value > 0.05and four 
stars corresponding to p-value <= 0.0001.
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Supplementary Figure 2.3 Varying the number of genes used in the correlation analysis 
does not significantly affect the results. A. Correlations calculated using 10,000 most variable 
genes (left) separated by tumor type do not differ significantly from correlations calculated using 
5,000 most variable genes. The median correlation coefficients of each cell line compared to 
their primary tumor samples (right) are highly correlated when using 5,000 IQR genes (x-axis) to 
10,000 IQR genes (y-axis) (Pearson correlation = 0.94, p-value < 2.2e-16). B. Correlations 
calculated using all genes (left) do not differ significantly from correlations calculated using 
5,000 most variable genes. The median correlation coefficients of each cell line compared to 
their primary tumor samples (right) are highly correlated when using 5,000 IQR genes (x-axis) to 
all genes (y-axis) (Pearson correlation = 0.90, p-value < 2.2e-16.
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Supplementary Figure 2.4 PAAD subtype correlations. Spearman’s correlations between 
PAAD cell lines and PAAD basal primary tumors (left) and PAAD classical primary tumors 
(right) using the 5,000 most variable genes. The correlations are separated by cell lines (x-axis). 
In the overlaid boxplot, the red center line displays the median, the box limits display the upper 
and lower quartiles, and the whiskers display 1.5 times the interquartile range.
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2.7 Tables  
 
 
Supplementary Table 2.1 Number of differentially expressed genes between primary tumor 
samples and cell lines 
 
Disease Genes upregulated 

in TCGA 
Genes upregulated 
in CCLE 

Total DEG 

BLCA 1088 866 1954 
BRCA 1076 864 1940 
CHOL 1002 1112 2114 
COADREAD 1074 780 1854 
DLBC 1644 1343 2987 
ESCA 697 460 1157 
HNSC 773 532 1305 
GBM 1621 1401 3022 
KIRC 1661 1586 3247 
LAML 755 769 1524 
LGG 2030 2046 4076 
LIHC 1829 1772 3601 
LUAD 1110 884 1994 
LUSC 1079 716 1795 
MESO 1144 1116 2260 
OV 1238 852 2090 
PAAD 1369 1000 2369 
PRAD 1299 1343 2642 
SKCM 790 565 1355 
STAD 1023 551 1574 
THCA 1685 1677 3362 
UCEC 1207 854 2061 
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CHAPTER 3: COMPUTATIONAL DRUG REPOSITIONING FOR 

THE IDENTIFICATION OF NEW AGENTS TO SENSITIZE DRUG-

RESISTANT BREAST TUMORS 

 

3.1 Abstract 
 

 Drug resistance is a major obstacle in cancer treatment and can involve a variety of different 

factors. Identifying effective therapies for drug resistant tumors is integral for improving patient 

outcomes. In this study, we applied a computational drug repositioning approach to identify 

potential agents to sensitize drug resistant breast cancers. We extracted drug resistance profiles 

from the I-SPY 2 TRIAL (Investigation of Serial studies to Predict Your Therapeutic Response 

with Imaging And molecular anaLysis 2) by comparing gene expression profiles of responder 

and non-responder patients stratified by treatment and molecular subtype. We found that few 

individual genes are shared among the drug resistance profiles. At the pathway level, however, 

we found enrichment of immune pathways in the responders and estrogen response pathways in 

the non-responders. We then used a rank-based pattern-matching strategy to identify compounds 

in the Connectivity Map database that can reverse these signatures. We hypothesize that 

reversing these drug resistance signatures will resensitize tumors to treatment and prolong 

survival. Although most of our drug predictions are unique to treatment arms and molecular 

subtypes, our drug repositioning pipeline identified the estrogen receptor antagonist fulvestrant 

as a compound that can potentially reverse resistance across a majority of the treatment arms and 

molecular subtypes. While fulvestrant showed limited efficacy when tested in a panel of 
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paclitaxel-resistant breast cancer cell lines, it did increase drug response in combination with 

paclitaxel in HCC-1937, a triple negative breast cancer cell line. 

 

3.2 Introduction 
 

Breast cancer is the most common cancer diagnosis in women worldwide and is expected to 

make up 15.3% of all new cancer cases in the United States in 20201. While the prognosis for 

women with stage I or stage II breast cancer is excellent, 10-15% of newly diagnosed breast 

cancers are locally advanced cancers which have significantly poorer outcomes2. Additionally, 

breast cancer is an incredibly heterogenous disease and research has shown that breast cancers 

with different molecular features can have different treatment responses3. Breast cancers can be 

stratified into molecular subtypes based on immunohistochemistry markers for ER, PR, and 

HER2, which are commonly used for therapeutic decision making4. Several of these molecular 

subtypes, which include triple negative and HER2+ tumors, represent patient populations with a 

widely recognized need for improved treatment5. 

 

While the design of breast cancer treatments has advanced, no treatment is effective in 100% of 

breast cancer patients. Drug resistance in cancer is a multi-faceted problem that involves a 

variety of biological determinants such as tumor heterogeneity, tumor burden and growth 

kinetics, physical barriers, the immune system, and the tumor microenvironment6. While there 

has been much research into understanding and overcoming drug resistance, it remains one of the 

largest challenges in cancer today and new approaches are needed to tackle this problem.  
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The I-SPY 2 TRIAL (Investigation of Serial studies to Predict Your Therapeutic Response with 

Imaging And molecular anaLysis 2) is an adaptive phase II clinical trial of neoadjuvant treatment 

for women with locally advanced breast cancer. The trial uses an adaptive design to accelerate 

the clinical trial process with the goal of identifying optimal treatment regimens for patient 

subsets based on their molecular subtype. While the I-SPY 2 trial has been successful in 

graduating 7 drugs, not all patients respond to treatment during the course of the trial. Patients 

who fail to respond or progress with their treatment frequently leave the trial and receive another 

treatment from their clinician. In order to offer these patients the chance to receive another 

treatment within the trial, the I-SPY team has proposed the I-SPY 2 Plus project. This program 

would allow non-responder patients to be re-randomized into a rescue therapy block where they 

would be given the opportunity to receive an additional treatment before surgery.  

 

We applied a computational drug repurposing approach to identify potential agents to include in 

the rescue therapy block for non-responder patients. Drug repurposing offers advantages over 

traditional drug development by greatly reducing development costs and providing shorter paths 

to approval, as drug safety has already been established during the drug’s original regulatory 

process. Our group has previously developed and applied a computational drug repositioning 

approach which involves generating a disease gene expression signature by comparing disease 

samples to control samples, and then identifying a drug that can reverse this disease signature7. 

Potential drug hits can be found by using datasets such as the Connectivity Map (CMap) and the 

Library of Integrated Network-Based Cellular Signatures (L1000) which have generated 

thousands of drug perturbation expression profiles. This gene expression based computational 

drug repurposing approach has previously been used to identify effective treatments for a 
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number of different indications, including cancer8,9. It has also been used to predict agents to 

induce sensitivity in drug resistant tumors such as acute lymphoblastic leukemia and non-small 

cell lung cancer10,11.  

 

In this study, we leveraged I-SPY 2 patient samples to extract drug resistance signatures by 

comparing the expression profiles of responders to non-responders within each molecular 

subtype and treatment arm. We found that while very few genes overlap across multiple drug 

resistance signatures, there was a significant amount of overlap among signatures at the pathway 

level. We then applied a computational drug repositioning approach to identify agents which can 

reverse these drug resistance signatures. Fulvestrant was identified as our top drug hit, capable of 

significantly reversing 85% of the drug resistance gene lists. We experimentally tested 

fulvestrant in a panel of paclitaxel-resistant breast cancer cell lines and found that it had limited 

efficacy. However, it was able to increase drug response to in a triple-negative breast cancer cell 

line when used in combination with paclitaxel. 

 

3.3 Methods 
 

I-SPY 2 Gene Expression and Clinical Data 

We used pre-treatment biopsy samples from the closed arms of the ISPY2 trial (n=990), which 

were assayed using custom Agilent array designs (15746 and 32627).  Normalized data for each 

array was generated by centering the log2 transformed gMeanSignal of all probes within the 

array to the 75th percentile of the ~21.1K probes shared between the two Agilent custom 

designs.  A fixed value of 9.5 was added to avoid negative values. Genes with multiple probes 

were averaged and ComBat was applied to adjust for platform-biases. 
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We define drug resistant patients as patients with Residual Cancer Burden (RCB) III measured at 

time of surgery and drug sensitive patients as patients with RCB 0 or I at time of surgery. While 

we initially included RCB II patients in the drug resistant group, we removed the RCB II patients 

in our final analysis as it was unclear whether or not these patients had some response to 

treatment based solely on the RCB at time of surgery. We kept molecular subtype and treatment 

arms with at least three patients in the resistant and sensitive groups, resulting in 19 molecular 

subtype and treatment arm groups. 

 

Differential Expression to Identify Drug Resistance Genes 

We used limma to perform differential expression between the drug resistant and drug sensitive 

samples within treatment arms and molecular subtypes. We then filtered the differential 

expression results by p-value and log-fold change to generate the resistance gene lists. We chose 

a p-value threshold of 0.01 because the differences between the resistant and sensitive tumors 

were relatively subtle and very few genes met the typical q-value cutoff of 0.05. To identify the 

optimal log fold change cutoff for each differential expression gene list, we selected the log fold 

change value that best separated the drug resistant and drug sensitive samples after filtering for 

p-value < 0.01. Specifically, we iterated over a range of potential log2 fold change cutoffs (start 

= 1, end = 0, step size = 0.1) and applied k-means clustering (k=2) at each cutoff to identify two 

clusters of samples. We then calculated the Mathew’s correlation coefficient (MCC) to evaluate 

how well the k-means derived clusters match the actual clinical labels of drug resistant and drug 

sensitive samples. We used the log2 fold change cutoff with the highest MCC value to generate 

our drug resistance gene lists.  
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Gene Set Enrichment Analysis 

For the GSEA analysis, the drug resistance profiles were ranked by their log fold-change values. 

We used the fgsea R package12 to calculate normalized enrichment scores (NES) and FDR values 

from these ranked lists. The NES reflects the degree to which a gene set is overrepresented at the 

top or bottom of the ranked list of genes (the enrichment score) divided by the mean enrichment 

score for all dataset permutations. Normalizing the enrichment score allows for comparison 

across gene sets. We downloaded the 50 Hallmark gene sets from the MSigDB Collections13. 

 

Computational Drug Repositioning 

We applied our previously published drug repositioning pipeline7 to identify potential 

therapeutics to reverse drug resistance in breast cancer patients. At a high level, the method 

works by identifying drugs that have opposite gene expression profiles compared to the drug 

resistance profile. We hypothesize that reversing the drug resistance genes will drive the tumor 

towards a drug sensitive state.  

 

To prioritize drugs that have the potential to reverse the drug resistance genes, we used drug 

perturbation profiles from CMap V2, which includes 6100 profiles consisting of 1309 distinct 

chemical compounds. We applied a filtering step previously described by Chen et al. (2017) to 

keep high quality drug perturbation profiles. We further subset this dataset to include only drug 

profiles that were tested in a breast cancer cell line (MCF7), resulting in a final dataset of 756 

profiles.  
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Our drug repositioning pipeline uses a non- parametric, rank-based pattern-matching strategy 

based on the Kolmogorov-Smirnov (KS) statistic to assess the enrichment of drug resistance 

genes in a ranked drug perturbation gene list. We calculate a reverse gene expression score 

(RGES) of each drug by matching resistance gene expression and drug gene expression using the 

KS test. Significance of the score is assessed by comparing with scores generated from 100,000 

random permutations, and further corrected by the multiple hypothesis test. FDR < 0.05 was 

used to select drug hits. 

 

Validation experiments for fulvestrant 

To validate fulvestrant as a compound to overcome drug resistance, we first selected paclitaxel-

resistant breast cancer cell lines because paclitaxel was used as the standard therapy in the ISPY2 

trial. We selected three paclitaxel-resistant and three paclitaxel-sensitive cell lines from Daemen 

et al. (2015)  from within the HR+HER2- and HR-HER2- molecular subtypes. Daemen et al. 

only identified 2 Paclitaxel-sensitive cell lines and 2 Paclitaxel-resistant cell lines for the 

HR+HER2- subtype, so we included all four HR+HER2- cell lines in our validation experiment. 

Additionally, since Daemen et al. did not identify any Paclitaxel-resistant HR-HER2+ cell lines 

in their study, we did not include any HR-HER2+ cell lines in our validation experiment.  

 

We ordered 16 cell lines from ATCC (Table 3) which were recovered using the cell media 

recommended for each cell line by ATCC. We failed to recover three cell lines: MDA-MB-134-

VI, BT-483, UACC-812. Cell line density was determined by seeding cell lines at the following 

densities (625, 1250, 2500, 5000, 10000, 20000) and then monitoring their growth curves for 72 

hours. For the drug treatment experiments, the cell lines were seeded at the optimal density 
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determined in the previous cell line density experiments and incubated overnight before 

treatment. For the single agent experiments, the cell lines were treated in triplicate with a top 

dose of 10uM in 1:3 dilutions for a total of 12 doses with paclitaxel (Sigma-Aldrich Product 

Number T7191), fulvestrant (Sigma-Aldrich Product Number I4409), and staurosporine which 

was used as a positive control. After 72hr, cell line viability was measured using the CellTiter-

Glo Luminescent Cell Viability Assay following the manufacturer’s instructions. For the 

sequential treatment experiments, 1uM of fulvestrant was added to each well 6 hours before 

treatment with paclitaxel. The 1 uM dose and 6 hour time point were chosen based on the dose 

and time point used to generate the CMAP profile for fulvestrant. For the combination treatment 

experiments, the cell lines were treated with paclitaxel as described above in combination with 

10uM fulvestrant. 

 

3.4 Results 
 

Study design and datasets 

I-SPY 2 is a multicenter, phase II adaptive clinical trial for women with high-risk stage II/III 

breast cancer. Patients are classified into molecular subtypes based on hormone-receptor, HER2, 

and MammaPrint status and assigned to one of several investigational therapies or the control 

regimen using an adaptive randomization engine which gives greater weight to treatment arms 

that have been successful in the patient’s tumor subtype. The primary endpoint is pathologic 

complete response (pCR, no residual disease in breast or nodes) at the time of surgery.  

 

Pre-treatment samples from 990 patients in the closed arms of the trial were profiled using the 

Agilent 44K array. Three patients were removed due to unresolved quality concerns in the 
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samples. The clinical data for these samples includes the molecular subtype of each sample and 

residual cancer burden (RCB) information. RCB scores are a continuous variable based on the 

primary tumor dimensions, the cellularity in the tumor bed, and the axillary nodal burden14. The 

raw RCB score can then be divided into discrete RCB classes (0, 1, 2, 3) based on predefined 

cutoffs.  An RCB of 0 indicates pathologic complete response while an RCB of 1-3 indicates 

increasing amounts of residual cancer. 109 samples were missing RCB information and excluded 

from the analysis. An overview of the study (Figure 3.1) and a summary of the clinical data is 

provided (Supplementary Table 3.1). 

 

Drug resistance gene profiles overlap at the pathway level and include previously implicated 

drug resistance genes 

We first classified each pretreatment biopsy sample from the ISPY 2 trial as drug sensitive or 

drug resistant using the RCB class from the clinical data. We define drug sensitive tumors as 

having an RCB of 0 or I and we define drug resistant tumors as having an RCB of III. We 

remove the RCB II tumors to generate a cleaner signal. We found that removing the RCB II 

tumors improved the separation between the resistant and sensitive samples during clustering 

(Supplementary Table 3.2, Supplementary Figure 3.1). 

 

We performed differential expression analysis between drug sensitive and drug resistant patients 

within the molecular subtype and treatment arms. We define molecular subtype by the hormone 

receptor and HER2 status of the tumor. We kept only the molecular subtype and treatment arms 

with a minimum of 3 samples in both the drug sensitive group and the drug resistant group, 

which resulted in a total of 17 molecular subtype and treatment arms (Table 1). Of note, there 
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was an insufficient number of HR- HER2+ tumors for our analysis and this molecular subtype 

was excluded in our study.  

 

We generated drug resistance gene profiles for each molecular subtype and treatment arm by 

filtering the differential expression analysis results by p-value (0.01) and then selecting the 

optimal log-fold change cutoff to achieve maximal separation between the drug resistant and 

drug sensitive tumors (see Methods). We also attempted to generate a more general drug 

resistance profile by comparing all resistant tumors to all sensitive samples while adjusting for 

molecular subtype and treatment arm, but this profile achieved poor separation of resistant and 

sensitive tumors (Supplementary Figure 3.2). 

 

We found that few individual genes are shared across the molecular subtype and treatment arm 

drug resistance gene profiles (Figure 3.2). However, many of the genes that have at least some 

overlap across the different molecular subtype and treatment arm profiles have been implicated 

in drug resistance or drug response based on the literature. For example, SERPINA3, which was 

present in five of the drug resistance gene profiles, has been implicated in drug resistance in 

TNBC cells15. Additionally, STC2, which was in four of the drug resistance gene profiles, has 

been implicated in drug resistance in cervical cancer16. 

 

We then performed Gene Set Enrichment Analysis (GSEA)17 to investigate the differences 

between the drug sensitive and drug resistant tumors at the pathway level with the 50 hallmark 

pathways from MSigDB (Figure 2C). We found an enrichment of immune pathways in drug 

sensitive tumors compared to drug resistant tumors, which has been previously described18, 19. 
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We also found an enrichment of estrogen response pathways enriched in the hormone-receptor 

positive molecular subtypes, which has likewise been previously implicated in 

chemoresistance20.  

  

Prediction of drug sensitizing agents based on expression identifies fulvestrant as a potential 

therapeutic    

We applied a transcriptomics-based drug repositioning pipeline to compare the drug resistance 

gene profiles to a public dataset of drug perturbation profiles to identify compounds which have 

the opposite gene expression profiles compared to the drug resistance gene profiles. We 

hypothesize that reversing the gene expression profile of the drug resistance genes with our 

predicted compounds will induce chemosensitivity in resistant breast cancer tumors. The median 

number of significant drug hits (q-value < 0.05 and RES < 0) per molecular subtype and 

treatment arms was 49 (min: 1, max: 256).  

 

Although the number of individual genes that overlap across the drug resistance gene profiles of 

the different molecular subtype and treatment arms was limited, we observed 22 drugs that 

appeared as hits in at least 9/17 of the drug resistance gene profiles (Figure 3.3 and 

Supplementary Figure 2).  

 

Of note, we identified fulvestrant as a drug hit in 13/17 of the drug resistance profiles. 

Fulvestrant is a selective estrogen receptor degrader used in the treatment of hormone-receptor 

positive and HER2- advanced breast cancer in post-menopausal woman who have not previously 

been treated with endocrine therapy. We performed GSEA on the fulvestrant drug perturbation 
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signature from the Connectivity Map to investigate the pathways which are reversed by 

fulvestrant (Figure 3.3). Unsurprisingly, fulvestrant seems to downregulate the estrogen 

response pathways and cell cycle pathways. A previous study also showed that fulvestrant may 

reverse drug resistance in multidrug-resistant breast cancer cell lines independent of estrogen 

receptor expression21.  For these reasons, we selected fulvestrant for further validation 

experiments. 

 

Fulvestrant validation experiments demonstrate limited efficacy in breast cancer cell lines 

In order to validate fulvestrant as a drug candidate that can reverse drug resistance, we first 

identified a panel of drug-resistant breast cancer cell lines. We selected cell lines that are 

resistant to paclitaxel because paclitaxel is the standard therapy in the I-SPY 2 trial. The Daemen 

et al. study screened 90 experimental and approved drugs, including paclitaxel, in a panel of 70 

breast cancer cell lines. Based on the drug response data from this study, we selected paclitaxel-

resistant and paclitaxel-sensitive breast cancer cell lines within each molecular subtype. The cell 

lines selected for the validation experiments are listed in Table 3 and were ordered from ATCC. 

We were unable to recover three of the cell lines (MDA-MB-134-VI, BT-483, UACC-812), 

which were excluded from the drug response experiments. 

 

Next, we treated the breast cancer cell lines with paclitaxel to validate the drug responses from 

the Daemen et al. study. We used the mean EC50 response as the cutoff to separate the resistant 

and sensitive cell lines. We identified five cell lines that were resistant to paclitaxel based on this 

cutoff, two of which were also found to be resistant in the Daemen et al. study (Table 3). The 

discrepancy between our drug responses and the drug responses in the Daemen et al. study may 
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be due in part to the different drug response metrics that were used. The Daemen et al. study 

used GI50 while we used EC50 to measure drug response. Out of the five cell lines that we 

determined to be resistant to paclitaxel, two were HR-HER2-, two were HR+HER2-, and one 

was HR+HER2+. 

 

We then tried two different treatment strategies for testing fulvestrant in the paclitaxel resistant 

cell lines. In the first treatment strategy, we treated the paclitaxel resistant cell lines with 

fulvestrant for 6 hours before adding paclitaxel. This sequential treatment approach gives the cell 

lines time to become sensitized by fulvestrant before being treated with paclitaxel. This 

sequential treatment approach (Supplementary Figure 4) did not result in a change in response 

to paclitaxel in the paclitaxel-resistant cell lines. In the second treatment strategy, we treated the 

paclitaxel-resistant cell lines with both fulvestrant and paclitaxel in combination for 72 hours. 

Out of the five paclitaxel-resistant cell lines, this combination treatment strategy resulted in an 

increase in response in one cell line, HCC-1937, with an EC50 shift from 3.09e-8 to 5.17e-9 M 

(Figure 3C). Interestingly, HCC-1937 is a triple negative breast cancer cell line, suggesting 

perhaps an estrogen receptor independent mechanism of action.  

 

3.5 Discussion 
 

Drug resistance is the primary factor that limits cures in cancer patients. In this study, we applied 

a computational drug repositioning approach to identify potential FDA-approved agents for 

patients with drug-resistant tumors in the rescue therapy block of the I-SPY 2 Plus project.  
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We generated drug resistance profiles for each molecular subtype and treatment arm by 

comparing the expression profiles of responder to non-responder patients. While we were unable 

to identify genes that were present in every drug resistance profile, many of the genes which 

appeared in multiple drug resistance profiles have been previously implicated in drug resistance. 

SERPINA3, which was upregulated in multiple drug resistance profiles, has been shown to 

reduce sensitivity of TNBC cells to cisplatin upon overexpression15. Similarly, STC2, which was 

also upregulated in multiple drug resistance profiles, has been found to be significantly elevated 

in cisplatin resistant cervical cancer cells16. We were able find literature support for a number of 

genes that were present in multiple drug resistance profiles, suggesting that our drug resistance 

profiles are capturing aspects of known biology about drug resistance.  

 

When we performed gene set enrichment analysis on the drug resistance profiles, we identified 

enrichment of estrogen response and metabolic pathways in resistant tumors compared to 

sensitive tumors. This is in line with previous studies which have shown that estrogen can 

promote resistance to chemotherapeutic drugs in ER+ human breast cancer cells through 

regulation of the Bcl-2 proto-oncogene20. Unsurprisingly, the estrogen response pathways were 

primarily enriched in the HR+ groups in our analysis. Previous studies have also shown that 

metabolic pathways are key mediators of drug resistance in breast cancer. Fatty acid metabolism, 

which was enriched in resistant tumors across multiple molecular subtype and treatment arms in 

our analysis, has previously been implicated in drug resistance through mechanisms such as 

increased fatty acid oxidation, which can generate energy for cancer cells, or decreased 

membrane fluidity, which can affect drug uptake22. Oxidative phosphorylation was also found to 

be enriched across multiple molecular subtype and treatment arms, similar to previous studies 
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which have shown that tamoxifen-resistant MCF-7 breast cancer cells display increased levels of 

oxidative phosphorylation23. 

 

We identified potential drug candidates by searching for drugs in the CMAP dataset that can 

significantly reverse these drug-resistance profiles. Fulvestrant was our most common drug hit 

and it was predicted to significantly reverse 85% of the drug resistance profiles. An in vitro study 

using multi-drug resistant breast cancer cell lines showed that fulvestrant can induce sensitivity 

to doxorubicin21. Interestingly, they found that this response was independent of the ER status of 

the breast cancer cell lines and may involve an interaction with P-glycoprotein. Sirolimus, also 

known as rapamycin, was another drug that appeared across multiple drug resistance profiles. 

Previous studies have shown that sirolimus may enhance the effects of chemotherapies in breast 

cancer cell lines24 and osteosarcoma cell lines25. While we selected fulvestrant to test in vitro 

because it appeared as a hit in the greatest number of drug resistance profiles, the other drug hits 

may be promising candidates for reversing drug sensitivity in breast cancer.  

 

For the validation experiments, we first selected breast cancer cell line that were either sensitive 

or resistant to paclitaxel based on the Daemen et al. study (2015). We then validated the drug 

responses by treating these cell lines with paclitaxel and we identified five cell lines that are 

paclitaxel-resistant. We treated these paclitaxel-resistant breast cancer cell lines with fulvestrant 

and paclitaxel, both sequentially and in combination. While fulvestrant showed limited efficacy 

in a majority of the cell lines, fulvestrant in combination with paclitaxel did increase drug 

response in one triple negative cell line, HCC-1937, suggesting the potential of fulvestrant as a 

combination treatment for drug-resistant tumors within specific genetic contexts. 
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Our study has several limitations which we discuss here. First, the primary tumor expression 

profiles from the I-SPY 2 study are from pre-treatment samples only. Thus, the drug resistance 

profiles that we generated primarily reflect intrinsic drug resistance rather than adaptive drug 

resistance, the latter of which would require post-treatment samples. Additionally, after 

stratifying the I-SPY 2 patient samples by molecular subtype and treatment arm, the number of 

samples within some groups were relatively small, limiting the power of the study. Similarly, our 

validation experiments were performed in a limited number of breast cancer cell lines. Future 

experiments should incorporate more patient samples, including post-treatment samples, to 

generate more robust drug resistance profiles. We also hope to test additional drug hits in a larger 

panel of breast cancer cell lines, such as the panel used in Daemen et. al, to better understand the 

genomic context contributing to drug response.  

 

In summary, we used a computational drug repurposing approach to identify potential agents to 

sensitize drug resistant breast cancers. We generated drug resistance profiles for each molecular 

subtype and treatment arm in the I-SPY 2 trial and found that estrogen response and metabolic 

pathways are enriched in resistant tumors and immune pathways are enriched in sensitive 

tumors. We then compared these drug resistance profiles to the drugs in CMAP and identified 

drug hits for each resistance profile. We tested fulvestrant in a panel of five paclitaxel-resistant 

breast cancer cell lines and found that it increased drug response in combination with paclitaxel 

in the cell line HCC-1937.
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3.6 Figures 

Figure 3.1 Study Overview. Drug resistance gene lists were generated for each subtype and 
treatment arm by performing differential expression between responders (RCB 0/I) and non-
responders (RCB III). We then compared these drug resistance gene profiles to the Connectivity 
Map drug perturbation profiles for the MCF7 breast cancer cell line to identify drugs that can 
reverse these drug resistance genes. We tested our top hit, fulvestrant, in paclitaxel-resistant 
breast cancer cell lines. 
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Figure 3.2 Drug resistance gene profiles overlap at pathway level, but not individual gene 
level. A. Chord diagram of shared genes across drug resistance profiles. The colored segments 
around the edges of the circle indicate the genes in the drug resistance profile of each treatment 
and molecular subtype arm. The red and blue lines connecting the segments indicate shared 
upregulated (red) genes or downregulated (blue) genes B. Heatmap of significant differentially 
expressed genes in treatment and molecular subtype arms. Color indicates log-fold change and 
white indicates gene was not differentially expressed in specific treatment and molecular subtype 
arm. C. Gene Set Enrichment Analysis of drug resistance signatures in treatment and molecular 
subtype arms using MsigDB’s 50 hallmark pathways. Significant (p-value < 0.05) NES values 
are shown.  
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Figure 3.3 Drug hits and validation experiments. A. Heatmap of the 22 most common drug 
hits (q-value < 0.05 and RES < 0) across treatment and molecular subtype arms. Color indicates 
strength of reversal score and white color indicates that drug is not a significant hit in the specific 
treatment and molecular subtype arm. B. GSEA analysis comparing fulvestrant perturbation 
profile (first column) to the drug resistance profiles using 50 hallmark pathways. Only pathways 
that were significant (q-value < 0.05) in the fulvestrant perturbation profile are shown. C. Drug 
response of paclitaxel alone (black) and fulvestrant and paclitaxel in combination (red) tested in 
the HCC-1937 cell line. The vertical lines indicate the EC50 values. 
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Supplementary Figure 3.1 Removing RCB II samples improves separation of drug sensitive 
and resistant samples. PCA of drug resistant and sensitive samples using drug resistance profile 
genes generated with and without RCB II samples. Drug resistant samples are red and drug 
sensitive samples are turquoise. Removing the RCB II samples improves the separation of the 
drug resistant and drug sensitive samples in 13/17 of the molecular subtype and treatment arm 
groups.
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Supplementary Figure 3.2 Drug resistance profile using all samples. A. Volcano plot of 
differential expression results comparing all resistant tumors to all sensitive tumors (adjusted for 
molecular subtype and treatment arm). B. PCA plot showing the optimal log-fold change cutoff 
for the differential expression analysis results using all sensitive and resistant samples. MCC is 
0.31, suggesting poor separation of resistant and sensitive samples. 
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Supplementary Figure 3.3 All drug hits across molecular subtype and treatment arms. 
Heatmap of all drug hits (q-value < 0.05 and RES < 0) across treatment and molecular subtype 
arms. Color indicates strength of reversal score and white color indicates that drug is not a 
significant hit in specific treatment and molecular subtype arm. 
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Supplementary Figure 3.4 Cell line responses to sequential fulvestrant and paclitaxel 
treatment. Paclitaxel-resistant breast cancer cell lines were treated with fulvestrant for 6 hours 
before treating with paclitaxel for 72 hours. Paclitaxel alone (black) and fulvestrant pre-treatment 
with paclitaxel (red) EC50’s are indicated by the vertical colored lines. Fulvestrant pre-treatment 
does not seem to affect cell line response to paclitaxel. 
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3.7 Tables 
 
 
Table 3.1 Summary of molecular subtype and treatment arms. 
 

Treatment Arm Molecular 
Subtype 

Sensitive Resistant # of genes in resistance 
profile 

Paclitaxel + ABT 888 + 
Carboplatin 

HR0_HER20 28 4 109 

Paclitaxel + ABT 888 + 
Carboplatin 

HR1_HER20 10 7 182 

Paclitaxel + AMG 386 HR0_HER20 30 5 55 

Paclitaxel + AMG 386 HR1_HER20 19 13 165 

Paclitaxel + Ganetespib HR0_HER20 24 4 124 

Paclitaxel + Ganetespib HR1_HER20 12 9 85 

Paclitaxel HR0_HER20 31 9 69 

Paclitaxel HR1_HER20 22 23 531 

Paclitaxel + MK-2206 HR0_HER20 18 3 201 

Paclitaxel + MK-2206 HR1_HER20 7 7 593 

Paclitaxel + Neratinib HR0_HER20 16 6 146 

Paclitaxel + Neratinib HR1_HER20 3 3 147 

Paclitaxel + Neratinib HR1_HER21 17 7 88 

Paclitaxel + Pembrolizumab HR1_HER20 17 7 217 

Paclitaxel + Pertuzumab + 
Trastuzumab 

HR1_HER21 12 3 170 

Paclitaxel + Trastuzumab HR1_HER21 7 3 176 

T-DM1 + Pertuzumab HR1_HER21 19 4 157 
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Table 3.2 Table of genes in drug resistance profiles. 
 

Gene Symbol # of drug resistance 
profiles 

Description References 

POU2AF1 5 Transcriptional coactivator   

SERPINA3 5 Member of the serpin family of proteins (27) 

EPHX2 4 Member of the epoxide hydrolase family (28) 

STC2 4 Secreted, homodimeric glycoprotein  (29) 

CHST8 4 Member of the sulfotransferase 2 family  

CXCL11 4 CXC chemokine, chemotactic for interleukin-activated 
T-cells 

(30) 

HAPLN3 4 Member of the hyaluronan and proteoglycan binding 
link protein gene family 

(31) 

CXCL13 4 CXC chemokine, lymphocyte B chemoattractant (32) 

EVL 4 Actin-associated proteins (33) 

HSD11B1 4 Microsomal enzyme, reversibly catalyzes conversion of 
cortisol to cortisone 

 

IDO1 4 Heme enzyme, catalyzes tryptophan catabolism (34) 

IL21R 4 Cytokine receptor for interleukin 21 (35) 

SEL1L3 4 Protein coding gene  

SLC22A5 4 Organic cation and sodium-dependent high affinity 
carnitine transporter 

(36) 

TNFRSF17 4 Receptor for TNFSF13B/BLyS/BAFF and 
TNFSF13/APRIL 

 

ZBED2 4 Transcriptional regulator  (37) 

ANKRD22 4 Protein coding gene  

LPPR3 4 Member of the lipid phosphate phosphatase (LPP) 
family 
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Table 3.3 Summary of breast cancer cell line responses to paclitaxel. 

Cell line Recovered Molecular 
Subtype 

–log10(EC50) Paclitaxel 
status 

HCC-1937 Yes HR-HER2- 5.24 resistant 

MDA-MB-231 Yes HR-HER2- 5.46 resistant 

MCF-7 Yes HR+HER2- 6.77 resistant 

MDA-MB-415 Yes HR+HER2- 6.83 resistant 

BT-474 Yes HR+HER2+ 7.44 resistant 

MDA-MB-436 Yes HR-HER2- 7.69 sensitive 

BT-549 Yes HR-HER2- 7.99 sensitive 

HCC-38 Yes HR-HER2- 8.11 sensitive 

MDA-MB-361 Yes HR+HER2+ 8.15 sensitive 

ZR-751 Yes HR+HER2- 8.26 sensitive 

HCC-1143 Yes HR-HER2- 8.56 sensitive 

T-47D Yes HR+HER2- 8.84 sensitive 

ZR-7530 Yes HR+HER2+ 9.48 sensitive 

MDA-MB-134-V1 No HR+HER2- NA NA 

BT-483 No HR+HER2- NA NA 

UACC-812 No HR+HER2+ NA NA 
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Supplementary Table 3.1 Summary of clinical data. 
 

Patient Characteristics N = 987 
Treatment 

Paclitaxel 179 
Paclitaxel + ABT 888 + Carboplatin 72 

Paclitaxel + AMG 386 115 
Paclitaxel + AMG 386 + 

Trastuzumab 
19 

Paclitaxel + Ganetespib 93 
Paclitaxel + Ganitumab 106 

Paclitaxel + MK-2206 60 
Paclitaxel + MK-2206 + 

Trastuzumab 
34 

Paclitaxel + Neratinib 115 
Paclitaxel + Pembrolizumab 67 

Paclitaxel + Pertuzumab + 
Trastuzumab 

44 

Paclitaxel + Trastuzumab 31 
T-DM1 + Pertuzumab 52 

Molecular Subtype 
HR- HER2- 362 

HR- HER2+ 89 
HR+ HER2- 380 

HR+ HER2+ 156 
RCB Class 

0 306 
I 127 

II 310 
III 135 

NULL 109 
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Supplementary Table 3.2 Removing RCB II increases the MCC of most molecular subtype 
and treatment arms 
 

Treatment arm and molecular subtype MCC with RCB II MCC without RCB II 
Paclitaxel_HR0_HER20 0.68 1.00 
Paclitaxel_Ganetespib_HR1_HER20 0.57 0.72 
Paclitaxel_Ganitumab_HR0_HER20 0.85 0.85 
Paclitaxel_Ganitumab_HR1_HER20 0.55 1.00 
Paclitaxel_MK-2206_HR0_HER20 0.33 1.00 
Paclitaxel_MK-2206_HR1_HER20 0.70 1.00 
Paclitaxel_Neratinib_HR0_HER20 0.94 0.77 
Paclitaxel_Neratinib_HR1_HER20 1.00 0.71 
Paclitaxel_HR1_HER20 0.33 0.52 
Paclitaxel_Neratinib_HR1_HER21 0.89 1.00 
Paclitaxel_Pembrolizumab_HR1_HER20 0.68 0.80 
Paclitaxel_Pertuzumab_Trastuzumab_HR1_HER21 0.71 1.00 
Paclitaxel_Trastuzumab_HR1_HER21 1.00 1.00 
T-DM1_Pertuzumab_HR1_HER21 1.00 1.00 
Paclitaxel_ABT888_Carboplatin_HR0_HER20 0.91 1.00 
Paclitaxel_ABT888_Carboplatin_HR1_HER20 0.61 1.00 
Paclitaxel_AMG386_HR0_HER20 0.75 0.90 
Paclitaxel_AMG386_HR1_HER20 0.72 0.75 
Paclitaxel_Ganetespib_HR0_HER20 0.81 0.78 
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CHAPTER 4: ANALYSIS OF TUMOR-INFILTRATING B CELL 

REPERTOIRES IN HUMAN CANCERS  

 

4.1 Abstract 
 

The role of tumor-infiltrating B cells is not as well understood as tumor-infiltrating T cells and 

their presence has been associated with both improved and decreased survival. In this study, we 

extracted the B cell receptor repertoires from 9487 samples across 28 tumor types in the Cancer 

Genome Atlas (TCGA) project and performed diversity and network analysis. We identified 

differences in diversity and network statistics across tumor types and subtypes and we observed a 

trend towards increased clonality in primary tumor samples compared to adjacent normal tissues. 

We also found significant associations between the repertoire features and mutation load, tumor 

stage, and age. Our V gene usage analysis identified similar V gene usage patterns in colorectal 

and endometrial cancers. Lastly, we evaluated the prognostic value of the repertoire features and 

identified significant associations with survival in a subset of tumors. This study has implications 

for better understanding the role of tumor-infiltrating B cells across a wide range of tumor types. 

 

4.2 Introduction 
 

While B cells are well-established as an integral part of the adaptive immune system, only 

recently have studies began to elucidate their role in cancer. The number of studies on tumor-

infiltrating B cells is vastly eclipsed by the number of studies on tumor-infiltrating T cells, the 

latter of which have largely been the focus of researchers and play a central role in modern 
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immunotherapies such as checkpoint inhibitors. However, B cells hold great potential for the 

development of new immunotherapies and as biomarkers for immunotherapy response.    

 

A main function of B cells is to recognize specific antigens with the immunoglobulins (Ig), or B 

cell receptors (BCR), on their cell surface. These Igs are made up of two heavy chains (IGH) and 

two light chains, the kappa (κ) chains or the lambda (λ) chains. Igs are generated through a 

process called somatic recombination where variable (V), diversity (D), and joining (J) gene 

segments are randomly combined to create a diverse collection of antigen receptors which can 

recognize a wide range of pathogens. Additionally, B cells undergo a process called somatic 

hypermutation upon antigen binding which introduces additional mutations into the variable 

regions of the Ig genes, further diversifying the receptors.  

 

The collection of diverse B cell receptors within an individual, or the B cell repertoire, can be 

interrogated using high-throughput technologies such as RNA-seq. Tools such as MiXCR1 have 

been developed to extract BCR reads from bulk RNA-seq data and align them to the V, D, and J 

gene segments, allowing for the characterization of the immune repertoire from sequencing data. 

These tools have been especially useful in mining publicly available datasets to extract insight 

into the adaptive immune system. 

 

The Cancer Genome Atlas (TCGA) is the largest publicly available dataset of molecularly 

characterized human tumors2. The data generated by the TCGA research group includes clinical, 

transcriptomic, methylation, mutation, copy number, and proteomics data. This dataset has 

greatly advanced our understanding of tumor biology and has led to improvements in cancer 
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diagnosis, treatment, and prevention3, 4, 5, 6. More recently, studies have leveraged the TCGA 

dataset to investigate the role of the immune system in cancer7.  

 

Characterization of the tumor microenvironment is vital for understanding cancer biology and 

developing new immunotherapies as well as predicting which patients will respond to 

immunotherapies. B cells in particular can play an important role in the antitumor immune 

response. They can produce antibodies which can drive antibody-dependent cellular cytotoxicity 

and phagocytosis of tumor cells8 and they can also present antigens to T cells and may be 

involved in the formation of tumor-associated tertiary lymphoid structures9, 10. However, the 

presence of tumor-infiltrating B cells has also been associated with poor outcome in renal cell 

carcinoma11, bladder cancer12, prostate cancer13, suggesting that B cells play a complex role in 

the tumor microenvironment. Further study is needed to better understand how tumor-infiltrating 

B cells behave in different tumor contexts.  

 

We extracted the B cell repertoires from 28 tumor types in the TCGA dataset and performed 

diversity and network analysis to investigate the differences and commonalities across tumor 

types and subtypes, and between tumors and adjacent normal tissue. We then compared these B 

cell repertoire features to clinical and tumor features and found significant associations with 

mutation load, tumor stage, and age. In our V gene analysis, we found similar V gene usage 

patterns in colorectal and endometrial cancers.  Lastly, we investigated the prognostic value of 

each repertoire feature and found significant associations with survival in a subset of tumor 

types. 
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4.3 Methods 
 

Data acquisition 

We used the GDC Data Transfer Tool (https://gdc.cancer.gov/access-data/gdc-data-transfer-tool) 

to download every available TCGA RNA-Seq FASTQ file from the GDC Legacy Archive 

(https://portal.gdc.cancer.gov/legacy-archive/search/f). We then used MiXCR1 to extract the 

reads that align to the VDJ region of the IGH, IGK, IGL, TRA, TRB, TRD, and TRG chains 

using the MiXCR pipeline for processing RNA-seq and non-targeted genomic data 

(https://mixcr.readthedocs.io/en/master/rnaseq.html). We filtered out reads with missing CDR3 

sequences. We used the R package GenomicDataCommons14 to annotate the samples with their 

TCGA barcodes and extracted the sample type from the TCGA barcode. We then filtered for 

primary tumor samples and adjacent normal samples for all the tumor types except for SKCM, 

where we included metastatic samples as well. If there were multiple vials from the same tumor 

sample, we selected the first vial (e.g. -01A).  

 

We downloaded the TCGA clinical data from the TCGA Pan-Cancer Atlas Hub hosted by the 

UCSC Xena platform (https://pancanatlas.xenahubs.net). We downloaded the leukocyte fraction 

data and mutation load data from the PanCanAtlas Publications page on GDC for The Immune 

Landscape of Cancer (https://gdc.cancer.gov/about-data/publications/panimmune). We used the 

R package TCGAbiolinks15 to download the TCGA subtype data and we used the 

“Subtype_Selected” column for the subtype information if there were multiple subtype 

classifications.  
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Expression and diversity analysis 

We calculated BCR expression by dividing the number of reads that align to each IGH, IGK, or 

IGL chain by the total number of reads in each sample. We defined clones as groups of reads that 

share the same V and J genes, the same CDR3 length, and at least 90% shared nucleotide 

identity. To quantify the clonal diversity of each sample, we calculated Shannon entropy (H) 

using the following formula:  

𝐻 =	−&𝑝(𝑙𝑜𝑔,

-

(./

𝑝(	 

 

N is the number of unique clones in the sample and pi is the proportion of clone i in the sample. 

Shannon entropy can range from 0, for samples with only one clone, to log2N, for samples with 

a uniform distribution of clones.  

 

We then calculated the evenness of each sample using Pielou's evenness index, which is:  

𝐽 =
𝐻

𝐻123
 

 

Where H is the Shannon entropy and Hmax is the maximum possible value for H. Evenness is 

constrained between 0 and 1 and a higher evenness value indicates a more even distribution of 

clones. 

 

Network analysis  

We generated networks for each sample using a previously published method16, 17. Each vertex in 

the network is a unique BCR sequence and the size of the vertex corresponds to the number of 

reads with that sequence. Edges are drawn between vertexes with the same V and J genes, the 
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same CDR3 length, and at least 90% sequence similarity (our clone definition). We used the R 

package igraph to generate network plots for each sample. 

 

We used the Gini index to quantify different repertoire network parameters. The Gini index 

measures the inequality in a frequency distribution and it ranges from 0, which indicates 

complete equality, to 1, which indicates complete inequality. We quantified clonal expansion by 

calculating the Gini index using the distribution of vertex sizes for each sample (vertex Gini 

index). This measures the unevenness in the number of unique BCR sequences and having a 

higher vertex Gini index indicates more clonal expansion in a sample.  We quantified clonal 

diversification by calculating the Gini index using the distribution of the number of vertexes in 

each cluster (cluster Gini index). Having a higher cluster Gini index indicates a sample with 

expanded cluster sizes.  

 

For the downsampling analysis, we randomly sampled 500 reads each for IGH, IGK, and IGL 

and then calculated the vertex Gini index and the cluster Gini index using these subsamples. We 

repeated this procedure 10 times and then took the mean for the final analysis presented in the 

paper. 

 

Statistical analysis  

We used R version 4.3 to perform the statistical analysis and generate the figures in this paper. 

For the association analysis between B cell repertoire features and clinical and tumor features, 

we used Spearman’s correlation for continuous variables and the Wilcoxon rank-sum test for 

categorical variables. We used the R package survival to perform the Cox regression analysis 
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and we used the R package survminer to generate the Kaplan-Meier plots. For analysis involving 

multiple B cell repertoire features for each tumor type, we adjusted for multiple comparisons 

within tumor types using the Benjamini-Hochberg procedure. 

 

4.4 Results 
 

Study Overview 

We analyzed the B cell repertoires across the TCGA tumor samples corresponding to 28 tumor 

types with a total of 8854 tumor and 633 adjacent normal samples (Figure 4.1, Supplementary 

Table 1). We used MiXCR1 to extract BCR sequences from RNA-seq data and align the 

sequences to the VDJ region of the immunoglobulin heavy chain (IGH), immunoglobulin κ chain 

(IGK), and immunoglobulin λ chain (IGL). As a quality control check, we verified that the 

number of immune repertoire reads extracted by MiXCR was not correlated with the total 

sequencing depth of each sample (rho=0.085, Supplementary Figure 4.1) and was correlated 

with estimated leukocyte fraction (rho=0.637, Supplementary Figure 4.1), which was estimated 

by the TCGA group from methylation data7. We defined expression of IGH, IGK, and IGL as the 

number of reads aligned to each chain divided by the total number of sequenced reads in each 

sample. We defined clones as groups of reads that have the same V and J gene, the same CDR3 

length, and at least 90% nucleotide similarity as in previous publications16, 18. Figure 4.1 and 

Supplementary Table 1 shows the sequencing summary of BCR reads for all tumor types.  

 

Many of the tumor types that have the highest IGH, IGK, and IGL expression such as lung 

squamous cell carcinoma (LUAD), lung adenocarcinoma (LUAD), head and neck squamous cell 

carcinoma (HNSC), and skin cutaneous melanoma (SKCM), are also the tumor types that have 
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high leukocyte fractions and are most responsive to checkpoint inhibitors7, perhaps suggesting a 

beneficial effect of tumor-infiltrating B cells in promoting antitumor T cell responses (Figure 

4.1). Likewise, the tumor types with the lowest expression of IGH, IGK, and IGL, such as uveal 

melanoma (UVM) and adrenocortical carcinoma (ACC), tend to have low leukocyte fractions 

and poor responses to immunotherapies19, 20.  

 

We also found that the CDR3 reads derived from IGK are more abundant than IGH and IGL 

across nearly all of the tumor types (Figure 4.1). This is similar to a previous study which 

analyzed Ig repertoires across 53 human tissues and found that CDR3 sequences account for 

54% of the entire B-cell population on average21.  

 

Shannon entropy and evenness of BCR repertoires differs across tumor types and trends to be 

higher in adjacent normal samples 

In order to quantify the diversity of BCR clones within each sample, we calculated the Shannon 

entropy within each Ig chain. Shannon entropy reflects both the number of clones as well as the 

frequency of the clones in each sample. We found that LUAD and LUSC have the highest 

Shannon entropy compared to the other tumor types (Figure 4.2), which was unsurprising given 

the overall high BCR expression in these two tumor types. ACC, LGG, and UVM had the lowest 

Shannon entropy, which likely reflects the low expression of BCR’s in these tumor types. 

Overall, Shannon entropy was positively correlated with expression across all tumor types in the 

IGH, IGK, and IGL chains (Supplementary Figure 4.2). Interestingly, the correlation between 

Shannon entropy and expression was higher in IGH compared to IGK and IGL in 27/28 of the 

tumor types. For example, the correlation (Spearman’s rho) between entropy and expression in 
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LUAD is 0.69 for IGH but 0.27 and 0.35 for IGK and IGL, respectively. This suggests that there 

may be more clonal expansion in IGK and IGL compared to IGH, which is reflected in IGK and 

IGL having lower Shannon entropy despite having higher expression than IGH. 

 

We then compared the Shannon entropy of primary tumor samples to adjacent normal samples to 

better understand the tumor microenvironment. We analyzed the 14 tumor types (BLCA, BRCA, 

COAD, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, READ, THCA, UCEC) that 

had at least 10 adjacent normal samples and found that Shannon entropy was significantly higher 

in adjacent normal samples compared to tumor samples in 6/14 (BRCA, COAD, KIRP, LIHC, 

READ, THCA) tumor types for IGH, 7/14 (BRCA, COAD, HNSC, KIRP, LIHC, READ, 

THCA) tumor types for IGK, and 6/14 (BRCA, COAD, KICH, KIRP, LIHC, READ) tumor 

types for IGL (Figure 2B). This trend could reflect a higher number of clones or a more even 

distribution of clones in the adjacent normal samples compared to the tumor samples for these 

tumor types. Conversely, Shannon entropy was higher in tumor samples compared to adjacent 

normal samples in only 3/14 (KIRC, LUAD, UCEC) tumor types for IGH, none for IGK, and 

2/14 for IGL (KIRC, THCA).  

 

We then calculated Pielou’s evenness index for each chain type, which reflects the evenness of 

the clone distributions within each sample (Figure 4.2). This evenness index is calculated by 

dividing Shannon entropy by the maximum possible Shannon entropy index, essentially 

normalizing the Shannon entropy index by the number of unique clones in each sample. The 

differences between LUAD and LUSC compared to the other tumor types is greatly reduced 

when evaluating evenness rather than Shannon entropy. ACC, LGG, and UVM have low 
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evenness compared to the other tumor types, suggesting that they have higher clonal expansion 

despite their overall lower BCR expression. 

 

Next, we compared evenness between primary tumors and adjacent normal samples across the Ig 

chains (Figure 4.2). We found that evenness was significantly higher in adjacent normal samples 

compared to tumors in 7/14 (BRCA, COAD, HNSC, LIHC, LUAD, LUSC, READ) tumor types 

for IGH, 5/14 (BRCA, HNSC, KIRC, LUAD, LUSC) for IGK, and 6/14 (BRCA, HNSC, KIRC, 

LUAD, LUSC, UCEC) for IGL. While evenness was consistently higher in adjacent normal 

samples for IGH, some tumor types had higher evenness in tumors samples in IGK (COAD, 

READ) and IGL (COAD). 

 

Network analysis reveals differences in clonal expansion and diversification across tumor types 

and between tumor and adjacent normal samples  

We generated networks for each sample using a previously published method16, 17, 22 (Figure 

4.3). Each vertex in the network is a unique BCR sequence and the size of the vertex corresponds 

to the number of reads with that sequence. Edges connect vertexes that have the same V and J 

genes, the same CDR3 length, and at least 90% sequence similarity, and clusters are groups of 

connected vertexes. Clonal expansion of unique BCR sequences can be measured by calculating 

the Gini index of the vertex sizes. A high vertex Gini index indicates clonal expansion of unique 

BCR sequence(s) and a low Gini index indicates a more even distribution of vertex sizes. Clonal 

diversification can be measured by calculating the Gini index of the cluster sizes, which are the 

number of vertexes in each cluster. A high cluster Gini index indicates a sample with unequal 

cluster sizes and a low cluster Gini index indicates a sample with even sized clusters. 
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We calculated the vertex Gini index and cluster Gini index on each sample’s network across the 

tumor types (Figure 4.3). LUAD, LUSC, TGCT, and SKCM had the highest mean vertex Gini 

indexes across the Ig chains, indicating higher levels of clonal expansion in these tumor types. 

LUAD, LUSC, and TGCT also had the highest mean cluster Gini indexes across the Ig chains, 

suggesting high levels of clonal diversification in these tumor types. Interestingly, the cluster 

Gini indexes are lower in IGH compared to IGK and IGL across the tumor types, suggesting that 

IGH has lower clonal diversification.  

 

We then compared the vertex Gini index and cluster Gini index between tumor samples and 

adjacent normal samples for the tumor types with at least 10 adjacent normal samples (Figure 

4.3). The vertex Gini index was significantly higher in tumor samples in 6/14 tumor types for 

IGH, 7/14 for IGK, and 7/14 for IGL. This suggests that the tumor samples generally have higher 

clonal expansion compared to the adjacent normal samples. Similarly, the cluster Gini indexes 

was higher in tumor samples compared to adjacent normal samples in 7/14 tumor types for IGH. 

However, adjacent normal samples had higher cluster Gini indexes in 6/14 tumor types for IGK 

and 4/14 tumor types for IGL. This suggests that there is a trend towards higher clonal 

diversification in tumor samples for IGH and a trend towards higher clonal diversification in 

adjacent normal samples for IGK and IGL.  

 

We generated plots for each sample and for each chain to visualize the networks. Example plots 

for an example BRCA tumor sample and an example BRCA adjacent normal sample are shown 

in Figure 4.3 with data for the IGK chain. The BRCA tumor sample has a higher vertex Gini 
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index and more clonal expansion of individual reads, which can be seen in the large vertexes in 

the plot. The BRCA adjacent normal sample has a higher cluster Gini index, which can be seen 

in the increased connectivity of some of clusters in the plot. 

 

To account for differences in sequencing depth in the network analysis, we carried out sensitivity 

analysis downsampling to 500 IGH, IGK, and IGL reads and recalculated the vertex Gini indexes 

and cluster Gini indexes for each chain. Samples were removed if they did not have at least 500 

reads in each chain, which removed a significant number of samples with low infiltration 

(Supplementary Figure 4.3). The original analysis and the downsampled analysis were highly 

correlated for both vertex Gini indexes (ρ = 0.72-0.75) and cluster Gini indexes (ρ = 0.56-0.81) 

(Supplementary Figure 4.3). The downsampled analysis comparing tumor and adjacent normal 

samples also held the same general trends as the original analysis (Supplementary Figure 4.3). 

 

Case study: Diversity and network analysis across BRCA subtypes 

While our previous analysis made comparisons between tumor types, cancer is an incredibly 

heterogenous disease and each tumor type can often be divided into subtypes with different 

molecular characteristics and prognosis. We were interested in investigating the differences 

between tumor subtypes and we performed subtype-specific analysis for the following 14 tumor 

types with subtype information curated by TCGAbiolinks15: ACC23, BLCA24, BRCA25, COAD26, 

GBM27, HNSC28, KIRC29, KIRP30, LIHC, LUAD31, LUSC32, PAAD33, SKCM34, THCA35. 

While the subtype analysis for all the tumor types listed are available in Supplementary Figure 

4.4, we present here the results for BRCA. 
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Globally, breast cancer is the most common cancer in women and it is estimated that there will 

be 284,200 new cases of breast cancer in the United States in 202136. Previous studies have 

shown that breast cancer be divided into subtypes with different treatment responses and 

outcomes based37, 38. These subtypes include: luminal A, luminal B, HER2-enriched, basal, and 

normal-like. Luminal A and normal-like breast cancers tend to have higher entropy compared to 

the other subtypes across the chain types (Figure 4.4). The basal and HER2-enriched subtypes 

have lower evenness compared to the luminal A, luminal B, and normal-like subtypes across the 

chain types (Figure 4.4). In the network analysis, the basal and the HER2-enriched subtypes 

have higher vertex Gini indexes across the chain types, indicating higher clonal expansion in 

these subtypes (Figure 4.4). The basal and HER2-enriched subtypes also have higher cluster 

Gini indexes compared to the luminal subtypes across the chain types, indicating that there may 

be higher clonal diversification in these subtypes (Figure 4.4). This analysis revealed differences 

in diversity, evenness, and network features across the BRCA subtypes. 

 

B cell receptor repertoire features associated with clinical features and mutation load 

We were interested in investigating associations between the B cell repertoire features and 

mutation load, which was defined as the number of non-silent mutations per megabase, as well 

as other clinical features available in TCGA 7, 39. 

 

First, we correlated the B cell repertoire features with mutation load and found that mutation load 

was not significantly correlated with immune features in a majority of the tumor types analyzed. 

However, in the tumor types with significant correlations, mutation load seems to be largely 

negatively correlated with entropy and evenness (Figure 4.5). This suggests that having a more 
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diverse, even B cell repertoire seems to be associated with tumors that have lower mutation load. 

The one exception was UCEC, which had a positive correlation between mutation load and 

entropy. Similarly, when comparing mutation load to the vertex Gini indexes and cluster Gini 

indexes, few tumor types had significant correlations. However, among the tumor types with 

significant correlations, mutation load is positively correlated with the vertex and cluster Gini 

indexes. This suggests that higher clonal expansion and higher clonal diversification is 

associated with higher mutation load, perhaps because tumors with higher mutation loads can 

generate more neoantigens which can drive a better immune response. Indeed, previous studies 

have shown that a higher non-synonymous mutation burden in tumors was associated with 

improved response to immunotherapies40, 41.    

 

We were also interested in investigating associations between the B cell repertoire features and 

tumor stage. We compared the lower stage tumors (Stage I-II) to higher stage tumors (III-IV) and 

found that there was no significant difference in a majority of the tumor types (Figure 4.5). In 

the 5 tumor types with significant associations, having a higher tumor stage is associated with 

higher vertex and cluster Gini indexes in 4/5 tumor types, suggesting that there may be slightly 

increased clonal expansion and clonal diversification in tumors with higher stages. 

 

Next, we correlated age at diagnosis with the B cell repertoire features and found significant 

associations in 8 tumor types (Figure 4.5). Age at diagnosis was negatively correlated with 

Shannon entropy in BRCA, KIRC, and KIRP, similar to a previous study42.  We also found a 

negative correlation between age and evenness and a positive correlation between age and the 
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vertex Gini indexes in BLCA, HNSC, KIRC, and PRAD. The overall correlation strengths were 

relatively low, suggesting a possible slight increase of clonal expansion in older patients.  

 

Lastly, we compared the B cell repertoire features in females compared to males 

(Supplementary Figure 4.5) and found very few significant associations across tumor types and 

repertoire features. Females have significantly higher entropy than males in BLCA and BRCA, 

but the log fold difference between the mean female entropy value and the mean male entropy 

value was relatively small. Additionally, there were very few male BRCA samples so this 

comparison was not very robust.  

 

Overall, the B cell repertoire features were not significantly associated with mutation load or 

clinical features in a majority of the tumor types. However, there did seem to be some consistent 

trends among the tumor types with significant associations, suggesting that there may be a subtle 

signal in these tumor types. 

 

V gene usage reveals similarities in COAD, READ, and UCEC repertoires  

Previous studies have shown that V gene usage may differ in tumor tissues43. We wanted to 

investigate differences in V gene usage across the tumor types analyzed in this study. We define 

V gene usage here as the percent of clones in each sample that use a particular V gene. 

 

We used principal component analysis (PCA) to reduce the dimensionality of the V gene usage 

data and plotted the first two principal components to visualize the data (Figure 4.6). We found 

that COAD, READ, and UCEC form a cluster separate from the other tumor types in PC2 for the 
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IGH chain, suggesting that these tumor types have a similar V gene usage pattern (Figure 6A). 

Interestingly, a recent study that predicted tumor type from BCR sequences found that COAD 

samples were likely to be predicted as UCEC in their model, supporting the idea that these tumor 

types may have similar B cell repertoires44. We also performed hierarchical clustering on the 

IGH V gene usage data and found a cluster of four V genes that have relatively high usage 

compared to the others (IGHV3-21, IGHV3-23, IGH30-30, IGHV1-18), which is consistent with 

previous studies45,46.  

 

Next, we performed a similar analysis for the IGK and IGL chains. We identified a group of 

THYM samples that separated out from the other tumor samples in PC1 for both IGK and IGL 

(Figure 4.6). These samples had significantly lower V gene usage (Wilcoxon rank-sum test p-

value = 7e-07) compared to the other samples, although we could not find significant 

associations with clinical features such as tumor site or having a history of myasthenia gravis. 

After performing hierarchical clustering on the IGK V gene usage data, we identified a cluster of 

eight IGK V genes (IGKV3-20, IGKV1-5, IGKV1-33, IGKV2-28, IGKV4-1, IGKV1-39, 

IGKV3-11, IGKV3-15) with relatively high usage compared to the other V genes. Similarly, the 

hierarchical clustering results for IGL identified a cluster of 13 IGL V genes with relatively high 

usage (IGLV6-57, IGLV1-44, IGLV1-36, IGLV1-47, IGLV3-19, IGLV3-25, IGLV1-51, 

IGLV3-1, IGLV3-21, IGLV2-11, IGLV2-23, IGLV1-40, IGLV2-8). Interestingly, the IGLV2-14 

V gene formed its own cluster separate from every other IGL V gene and seems to have 

relatively high usage across many tumor samples. IGLV2-14 has been previously associated with 

chronic lymphocytic leukemia47, multiple melanoma48, and it is the most common IGLV gene in 

human cord blood49.  
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B cell repertoire features are prognostic in select tumor types 

We built Cox proportional hazard models for each B cell repertoire feature to investigate 

associations with survival while adjusting for age, gender, and tumor stage (Figure 4.7). We 

selected tumor types with at least 40 events to have at least 10 events per predictor variable50. 

After FDR correction, we found significant associations in 6/17 of the tumor types analyzed.  

 

In the three tumor types that have significant associations with Shannon entropy (BRCA, HNSC, 

SARC), having a higher entropy value is associated with improved survival. However, in the 

three tumor types that have significant associations with evenness, having a higher evenness is 

associated with improved survival for the IGH chain in SARC and for the IGK chain in GBM 

but it is associated with decreased survival across all chain types in SKCM as seen in a previous 

study51 (Figure 4.7). This suggests that B cells may be playing different roles in these tumor 

types. Vertex and cluster Gini indexes are significantly associated with survival in at least one 

chain type in CESC, GBM, HNSC, SARC, and SKCM. In CESC, HNSC, SARC, and SKCM, 

having a higher vertex and cluster Gini index is associated with improved survival, suggesting 

clonal expansion may be beneficial in these tumor types. However, having a higher Gini index is 

associated with worse survival in the IGL chain for GBM, suggesting that clonal expansion may 

be detrimental in this tumor type. 

 

We also stratified the tumors by subtype and repeated the analysis to see if specific subtypes 

reveal different behaviors (Supplementary Figure 4.6). Only three subtypes (HNSC atypical, 

KIRC mRNA cluster 4, and SKCM BRAF hotspot mutants) had significant associations with 
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survival, most likely because stratifying by subtype reduced the number of samples and power in 

each comparison. 

 

4.5 Discussion 
 

Many studies have established the importance of T cells in immunosurveillance and 

immunotherapy response in cancer. However, the role of B cells has not been as well studied and 

tumor-infiltrating B cells have been shown to have both protumor and antitumor effects. Current 

bioinformatic tools allow us to interrogate the composition of B cell repertoires from RNA-seq 

data, offering more detailed insights into the B cell response to tumors. In this study, we 

extracted and analyzed the B cell repertoires of 9,442 tumor and adjacent normal samples across 

28 tumor types using TCGA RNA-seq data.  

 

We found the highest expression of IGH, IGK, and IGL chains in LUSC and LUAD, which is 

similar to previous studies which found an abundant and diverse B cell population in non-small 

cell lung cancers52. Many of the tumor types with the highest Ig chain expression also have the 

highest overall leukocyte fraction and are most responsive to checkpoint inhibitors, suggesting 

that B cells may help promote response to immunotherapies. Indeed, several studies have shown 

that an enrichment of B cells in tertiary lymphoid structures was predictive of response to 

immune checkpoint inhibitors in melanoma, soft-tissue sarcoma, and renal cell carcinoma53, 54.  

 

We also found a significant positive correlation between expression and Shannon entropy in all 

the tumor types analyzed, similar to previous studies51. Interestingly, we found that the Shannon 

entropy indexes in IGK and IGL have lower correlations with expression compared to IGH, 
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suggesting that there may be more clonal expansion in these chain types. Adjacent normal 

samples tend to have higher Shannon entropy and evenness compared to primary tumor samples, 

suggesting more diversity and less expansion compared to tumors. 

 

We also generated network visualizations for each sample and found high levels of clonal 

expansion and diversification in LUAD, LUSC, and TGCT compared to the other tumor types. 

We also found that the cluster Gini indexes for IGH were lower than IGK and IGL, suggesting 

that IGH has lower clonal diversification compared to the other chains. Tumor samples tend to 

have higher vertex Gini indexes compared to adjacent normal samples, suggesting more clonal 

expansion in tumors. However, adjacent normal samples tend to have higher cluster Gini indexes 

in IGH but not IGK or IGL, suggesting differences in clonal diversification based on the chain 

type.  

 

In our tumor subtype analysis, we analyzed 14 tumor types but focused on BRCA as a case study 

in the main text. The basal and HER2-enriched subtypes have lower evenness and higher vertex 

Gini indexes and cluster Gini indexes, suggesting more clonal expansion in these subtypes. 

Interestingly, previous studies have shown that the basal and HER2-enriched subtypes tend to 

have high immune infiltration55, 56 and were the only subtypes where increased expression of B 

cell signatures was associated with metastasis-free survival57.  

 

We found that few tumor types had significant associations between their B cell repertoire 

features and mutation load, tumor stage, and age. Among the tumor types with significant 

associations, we found that the repertoire features associated with higher clonal expansion and 
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clonal diversification were positively correlated with mutation load. This is in line with previous 

studies which have shown that a higher mutation burden is associated with improved 

immunotherapy responses40, 41. We also found that age tends to be negatively correlated with 

evenness and positively correlated with vertex and cluster Gini indexes, suggesting that older 

patients have greater clonal expansion than younger patients. This reflects previous observations 

of decreased B cell diversity and increased clonal expansion in normal aging58.  

 

Our V gene usage analysis reveals that COAD, READ, and UCEC seem to have similar IGH V 

gene usage patterns. We also identified a subset of THYM patients with overall low V gene 

usage, although we could not find significant associations between this subset of patients and any 

clinical variables. In our hierarchical clustering analysis, we identified clusters of V genes in 

each chain that had higher overall usage across the tumor types which were largely consistent 

with previous studies45 46. 

 

Lastly, we built Cox proportional hazard models for each B cell repertoire feature to investigate 

the prognostic value of each feature. After correcting for age, gender, and tumor stage, we were 

unable to find significant associations for a majority of the tumor types analyzed. However, in 

the tumor types with significant associations, we found some opposing trends such as evenness 

being associated with decreased survival in SKCM but increased survival in GBM and SARC. 

Previous studies have shown that B cells can differentiate into plasmablast-like cells in SKCM59 

while they may act primarily as antigen-presenting cells in GBM60, supporting the idea that B 

cells play different roles in these tumor types.  
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One limitation of our study is the use of RNA-seq data rather than targeted sequencing data (e.g. 

BCR-seq). While RNA-seq data has lower sequencing depth compared to targeted sequencing 

data, we chose to use RNA-seq data because we wanted to leverage the large number of tumor 

samples in the TCGA dataset. Another limitation of this study is the limited number of adjacent 

normal samples and the lack of true healthy samples, as previous studies have shown that 

adjacent normal samples tend to have more inflammatory-associated cell types compared to 

healthy samples61. Additional analysis using datasets with both tumor and healthy samples would 

be informative for validating the results of this study. Third, our study is unable to perform 

analysis within individual types of B cells, which single-cell sequencing would allow, or to 

analyze the localization of B cell populations within the tumor, which new technologies such as 

spatial transcriptomics would allow. However, the amount of data generated using these newer 

technologies is limited compared to the amount of publicly available RNA-seq data currently 

available, making it more feasible for future studies.  

 

In summary, our study characterizes the B cell repertoire of 28 tumor types and reveals 

differences across tumors and tumor subtypes, as well as between adjacent normal and tumor 

samples. These results help further our understanding of the role of B cells in the tumor 

microenvironment with implications for the development of novel B cell immunotherapies, 

therapeutic strategies, and patient stratification.    

  



 104 

4.6 Figures 

 

 

Figure 4.1 Summary of study. A. BCR reads were extracted from TCGA RNA-seq data across 
28 tumor types using MiXCR and we called clones based on sequences having the same V and J 
gene, the same CDR3 length, and at least 90% sequence similarity. We then performed diversity 
analysis, network analysis, V gene analysis, and survival analysis to investigate differences in the 
B cell immune repertoire across tumor types and between tumor and adjacent normal samples. B. 
Boxplots showing the log10 expression of IGH, IGK, and IGL. Expression is defined as the 
number of reads for each chain divided by the total number of reads in the sample. The box plot 
depicts the median as well as the upper and lower quartiles, and the whiskers depict 1.5 times the 
interquartile range.
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Figure 4.2 Entropy and evenness analysis across tumor types and between tumor and 
adjacent normal samples. A. The heatmap depicts the mean Shannon entropy value for each 
tumor type in each chain. B. The boxplots show the Shannon entropy indexes for tumors (green) 
and adjacent normal samples (blue) for the 14 tumor types with at least 10 adjacent normal 
samples. Statistical significance was calculated using the Wilcoxon rank-sum test. Significant p-
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values are indicated by symbols above the box plots with one star corresponding to p-
value < = 0.05, two stars corresponding to p-value < = 0.01, three stars corresponding to p-
value < = 0.001, and four stars corresponding to p-value < = 0.0001. C. The heatmap shows the 
mean Pielou's evenness index for each tumor type in each chain. D. The boxplots show the 
evenness index for tumors (green) and adjacent normal samples (blue) and statistical significance 
was calculated as described above.
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Figure 4.3 Network analysis across tumor types and between tumor and adjacent normal 
samples. A. Schematic describing how the networks were generated for each sample. The vertex 
Gini index and the cluster Gini index were used to quantify clonal expansion and clonal 
diversification. B. A heatmap showing the mean vertex Gini index and cluster Gini index across 
tumor types in each chain. C. A heatmap showing the log2 fold ratio between the mean 
vertex/cluster Gini index in tumor samples and the mean vertex/cluster Gini index in the adjacent 
normal samples. Red indicates a higher mean value in tumors and blue indicates a higher mean 
value in adjacent normal samples. Significance was computing using the Wilcoxon rank-sum test 
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and the asterisks indicate an FDR < 0.05. D. Network plots for a BRCA primary tumor sample 
on the left and a BRCA adjacent normal sample on the right. Vertexes depict unique BCR 
sequences and sizes indicate the number of reads. Edges are drawn between vertexes that have 
the same V and J genes, the same CDR3 length, and at least 90% sequence similarity. 
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Figure 4.4 Differences in B cell repertoire features across BRCA subtypes. A. Boxplots 
depict the Shannon entropy index in each BRCA subtype for IGH, IGK, and IGL. Brackets 
indicate significant comparisons using the Wilcoxon rank-sum test and p-values are placed above 
each bracket. B. Boxplots depict Pielou's evenness index in each BRCA subtype. C. Boxplots 
depict the vertex Gini index in each BRCA subtype. D. Boxplots depict the cluster Gini index in 
each BRCA subtype. 
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Figure 4.5 Associations between B cell repertoire features and tumor and clinical features. 
A. A heatmap depicting Spearman’s correlation coefficient for mutation load, which is the 
number of non-silent mutations per megabase, and each B cell repertoire feature. Significant 
correlations (FDR < 0.05) are marked by an asterisk. B. A heatmap showing the log2 fold ratio 
between the mean of the stage I-II tumors and the mean of the stage III-IV tumors. Significance 
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B Log2 FC

ρ

C ρ
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was computing using the Wilcoxon rank-sum test and the asterisks indicate an FDR < 0.05. C. A 
heatmap depicting Spearman’s correlation coefficient between age at diagnosis and each B cell 
repertoire feature. Significant correlations (FDR < 0.05) are marked by an asterisk. 
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Figure 4.6 Analysis of V gene usage. A. PCA plot using IGH V gene usage data. Each point is a 
sample and the color of the point corresponds to a tumor type. A dashed circle is drawn around a 
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cluster of COAD, READ, and UCEC samples. On the right is a heatmap with hierarchical 
clustering performed on the samples and the IGH V gene usage data. The intensity of the 
heatmap corresponds to the percent of clones using each V gene. B. PCA plot using IGK V gene 
usage data. A dashed circle is drawn around a cluster of THYM samples. On the right is a 
heatmap with hierarchical clustering performed on the samples and the IGK V gene usage data. 
C. PCA plot using IGL V gene usage data. A dashed circle is drawn around a cluster of THYM 
samples. On the right is a heatmap with hierarchical clustering performed on the samples and the 
IGL V gene usage data. 
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Figure 4.7 Survival analysis using B cell repertoire features. A. Heatmap showing the hazard 
ratio from a Cox proportional hazards model for each B cell repertoire feature adjusted for age, 
gender, and tumor stage. Red indicates a hazard ratio greater than 1 and green indicates a hazard 
ratio less than 1. Significant associations (FDR < 0.05) are marked by an asterisk. B. Kaplan-
Meier curves for samples with high and low evenness. The mean evenness value was used as the 
cutoff. 
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Supplementary Figure 4.1 Ig reads versus total sequencing depth and leukocyte fraction.  
A. Plot showing the number of BCR reads extracted by MiXCR (x-axis) and the total number of 
reads in each sample (y-axis). B. Plot showing the number of BCR reads extracted by MiXCR 
(x-axis) and the leukocyte fraction of each sample (y-axis). 

7.0

7.5

8.0

2 4 6
log10(IR reads extracted by MiXCR)

lo
g1

0(
to

ta
l s

eq
ue

nc
in

g 
de

pt
h)

Spearman's rho: 0.085

0.00

0.25

0.50

0.75

1.00

2 4 6
log10(IR reads extracted by MiXCR)

Le
uk

oc
yt

e 
Fr

ac
tio

n

Spearman's rho: 0.637
A B



 117 

 
 
Supplementary Figure 4.2 Correlation between entropy and expression. Heatmap showing 
Spearman’s correlation coefficient for Shannon entropy and expression (e.g. the number of 
IGH/IGK/IGL reads divided by the total number of reads in the sample). The value in each cell is 
the correlation coefficient.
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Supplementary Figure 4.3 Downsampling analysis results. A. Barplot showing the number of 
samples used in the original analysis (turqoise) and in the downsampled analysis (red). The 
downsampled analysis removed samples with fewer than 500 IGH, IGK, and IGL reads. B. Plots 
showing the original vertex or cluster Gini indexes (x-axis) versus the downsampled indexes (y-
axis). C. Heatmap showing the log2 fold ratio between the mean tumor value and the mean 
adjacent normal value. Statistical significance was calculated using the Wilcoxon rank-sum test 
and comparisons with FDR < 0.05 are marked by an asterisk.
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Supplementary Figure 4.4 B cell repertoire features between tumor subtypes. A-M.  Boxplots 
depicting the Shannon entropy index, evenness, vertex Gini index, and cluster Gini index in each 
subtype for IGH, IGK, and IGL. P-values are from the Kruskal-Wallis test.  
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Supplementary Figure 4.5 Associations between repertoire features and gender. Heatmap 
showing the log2 fold ratio between the mean value in females and the mean value in males. The 
Wilcoxon rank-sum test was used to calculate significance and significant comparisons with 
FDR < 0.05 are marked by an asterisk. 

Log2 FC
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Supplementary Figure 4.6 Survival analysis of tumor subtypes. Heatmap showing the hazard 
ratio from a Cox proportional hazards model for each B cell repertoire feature. Columns are 
individual tumor subtypes. Red indicates a hazard ratio greater than 1 and green indicates a 
hazard ratio less than 1. Significant associations (FDR < 0.05) are marked by an asterisk. 
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4.7 Tables 
 
Supplementary Table 4.1 Summary of samples 
 

Tumor Primary 
Tumor 

Normal 
Solid 

Metastatic Total Reads 
Median (min-max) 

Ig Reads 
Median (min-max) 

Ig clones 
Median (min-max) 

ACC 0 68 0 62615525 (26994182-
93796872) 

11 (0-9315) 8 (0-1025) 

BLCA 0 407 19 59954267 (24027361-
149204452) 

1725 (0-288348) 319.5 (0-5261) 

BRCA 0 1094 113 74886056 (24300451-
187467995) 

4908 (1-375918) 735 (1-15259) 

CESC 0 303 3 66304315 (23950932-
134684782) 

4964.5 (9-230219) 657 (8-9865) 

CHOL 0 35 8 55903461 (34208102-
80520806) 

636 (3-107785) 281 (2-11086) 

COAD 0 456 41 51458173 (5271052-
105993154) 

4891 (8-120525) 795 (8-15477) 

GBM 0 154 0 64703272.5 
(44781738-
120534895) 

59.5 (1-19445) 41 (1-4285) 

HNSC 0 520 43 69392642 (26296551-
116430322) 

4979 (3-327687) 647 (3-12053) 

KICH 0 64 24 83461233 (46035744-
106405236) 

86 (0-48683) 50 (0-10999) 

KIRC 0 532 72 78820886 (28668344-
183724655) 

1301 (1-430697) 360.5 (1-13868) 

KIRP 0 288 32 67009890 (20901900-
124057557) 

186 (0-177328) 103 (0-20524) 

LGG 0 438 0 72715489.5 
(33127787-
123178193) 

4 (0-11434) 4 (0-1845) 

LIHC 0 371 50 62932505 (25893240-
153281376) 

270 (0-85163) 104 (0-3682) 

LUAD 0 515 58 57627892 (24146547-
136132651) 

17614 (15-315639) 1555 (12-16139) 

LUSC 0 499 51 70169407.5 
(21586543-
199864020) 

24190.5 (6-
396978) 

1976.5 (5-20364) 

MESO 0 87 0 66384473 (33578727-
90149604) 

1728 (1-141587) 379 (1-8101) 

PAAD 0 176 4 61316968.5 
(23986132-
108982216) 

4413.5 (1-145633) 827 (1-7829) 

PCPG 0 175 3 63274692.5 
(37828408-
118310186) 

99 (1-47885) 64 (1-5045) 

PRAD 0 497 52 67457442 (26403224-
136690954) 

394 (1-178640) 161 (1-10817) 

READ 0 166 9 52522554 (19755698-
117000539) 

3741 (37-152400) 752 (21-10615) 
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Tumor Primary 
Tumor 

Normal 
Solid 

Metastatic Total Reads 
Median (min-max) 

Ig Reads 
Median (min-max) 

Ig clones 
Median (min-max) 

SARC 0 258 2 63648060.5 
(27256451-
119791812) 

130 (0-203957) 49.5 (0-11146) 

SKCM 365 103 1 71509610 (8861327-
134998914) 

3849 (0-346317) 385 (0-12236) 

TGCT 0 150 0 58327829.5 
(27368204-
107291085) 

13119 (4-233460) 676 (3-5501) 

THCA 0 337 23 79288399 (28396686-
155154872) 

722 (0-276438) 226.5 (0-17713) 

THYM 0 120 2 63706807.5 
(35195055-
102344058) 

1395 (0-301724) 327.5 (0-9985) 

UCEC 0 545 23 34218459 (10058251-
87154384) 

1070.5 (1-261103) 278 (1-10145) 

UCS 0 56 0 64390139.5 
(43664951-75567157) 

249 (2-123177) 63 (2-1789) 
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CHAPTER 5: CONCLUSIONS  
 

Advances in genomic technologies over the past two decades have led to a wealth of molecular 

cancer datasets which can be leveraged using computational approaches to achieve a deeper 

understanding of cancer biology. In this dissertation, we leveraged molecular cancer datasets in 

three main projects: to evaluate cancer cell line models, to predict therapeutics for drug-resistant 

breast cancers, and to investigate the prognostic value of B cell repertoire features.  

 

In the cell evaluation project described in Chapter 2, we compared the cell line expression data 

from CCLE to the primary tumors data in TCGA to generate a resource to help cancer 

researchers select the most representative cell line models. We performed correlation analysis to 

generate cell line rankings for each tumor type. We also performed gene set enrichment analysis 

to understand the differences between cell lines and primary tumors. Unsurprisingly, we found 

that cell lines are enriched for cell cycle pathways and primary tumors are enriched for immune 

pathways. We also generated tumor subtype classifiers and we predicted subtype classifications 

for cancer cell lines in 9 tumor types. Lastly, we proposed the TCGA-110-CL as a pan-cancer 

cell line panel containing the most representative cell lines in 22 tumor types. While our study 

focused on transcriptomics data because it should reflect upstream genomic alterations (e.g. 

mutations, copy number alterations), future studies incorporating other omics data would be 

informative to fully capture the different aspects of cell line biology. Additionally, future studies 

integrating single cell data for both cancer cell lines and primary tumor samples would allow for 

more detailed investigation into how much intratumor heterogeneity cancer cell lines are able to 

capture. 
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In Chapter 3, we worked with the I-SPY 2 research group to identify compounds that can induce 

sensitivity in drug-resistant breast cancers. We generated drug resistance profiles by comparing 

the expression profiles of drug resistant and drug sensitive tumors within treatment arms and 

molecular subtypes. We found that estrogen response and metabolic pathways tended to be 

enriched in resistant tumors and immune pathways tended to be enriched in drug sensitive 

tumors. We then applied our computational drug repositioning pipeline to identify drug 

perturbation profiles from CMap that can reverse these drug resistance profiles. We identified 

fulvestrant as a drug hit across multiple resistance profiles and we performed validation 

experiments by first identifying paclitaxel-resistant cell lines and then treating these cell lines 

with fulvestrant and paclitaxel. Fulvestrant increased drug response in one out of four paclitaxel-

resistant cell lines, suggesting that its effect may be dependent on the genomic context of the cell 

lines. Future studies incorporating a larger panel of resistant breast cancer cell lines would be 

informative for better understanding the genomic contexts of treatment response. Additionally, 

testing the other drug hits in this study could help identify additional potential treatment options 

for patients with drug-resistant breast cancer. 

 

In Chapter 4, we investigated the B cell repertoires in 28 tumor types by extracting B cell 

receptor reads from the TCGA dataset. We identified differences in diversity and network 

statistics across tumor types and between tumor subtypes. We also found trends towards higher 

clonal expansion in tumor samples compared to adjacent normal samples. We integrated clinical 

and tumor features and found significant associations between the repertoire features and 

mutation load, tumor stage, and age. In our V gene usage analysis, we identified similar V gene 

usage patterns in colorectal and endometrial cancers, suggesting that these tumor types have 
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similar B cell repertoires. Lastly, we generated survival models for each repertoire feature and 

identified significant associations with survival in a subset of tumor types and subtypes. While 

we focused on adjacent normal samples in this study because they were collected by the TCGA 

researchers, future studies incorporating true healthy tissues would be informative for better 

understanding differences in B cell repertoires between tumor and healthy tissue. Additionally, 

future studies incorporating single cell immune profiling technology would allow for a more 

comprehensive analysis of paired receptors, surface protein expression, and gene expression of 

each cell.  

 

The three projects described in this dissertation demonstrate how integrating publicly available 

datasets with computational approaches can reveal new insights into cancer biology, 

therapeutics, and patient outcomes. 
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