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Using Global Code Motions to Improve the Quality of
Results for High-Level Synthesis

Sumit Gupta, Nick Savoiu, Nikil Dutt, Rajesh Gupta, and Alex Nicolau

Abstract—The quality of synthesis results for most high-level synthesis
approaches is strongly affected by the choice of control flow (through condi-
tions and loops) in the input description. This leads to a need for high-level
and compiler transformations that overcome the effects of programming
style on the quality of generated circuits. To address this issue, we have de-
veloped a set of speculative code-motion transformations that enable move-
ment of operations through, beyond, and into conditionals with the objec-
tive of maximizing performance. We have implemented these code trans-
formations, along with supporting code-motion techniques and variable
renaming techniques, in a high-level synthesis research framework called
Spark. Spark takes a behavioral description in ANSI-C as input and gen-
erates synthesizable register-transfer level VHDL. We present results for
experiments on designs derived from three real-life multimedia and image
processing applications, namely, the MPEG-1 and -2 and GNU image ma-
nipulation program applications. We find that the speculative-code motions
lead to reductions between 36% and 59% in the number of states in the
finite-state machine (controller complexity) and the cycles on the longest
path (performance) compared with the case when only nonspeculative code
motions are employed. Also, logic synthesis results show fairly constant crit-
ical path lengths (clock period) and a marginal increase in area.

Index Terms—Code motions, embedded systems, high-level synthesis,
parallelizing compilers, speculation.

I. INTRODUCTION

Recent years have seen the widespread acceptance and use of
language-level modeling (such as VHDL and Verilog) of digital
designs. Increasingly, the typical design process starts with design
entry in a hardware description language at the register-transfer level
(RTL), followed by logic synthesis. Furthermore, with the advent of
systems-on-a-chip, system level behavioral modeling in high-level
languages is being used for initial system specification and analysis.
All of these factors have led to a renewed interest in high-level
synthesis from behavioral descriptions [1]-[8].

However, current synthesis efforts have several limitations: synthe-
sizability is guaranteed on a small, constrained subset of the input lan-
guage and the language level optimizations are few and their effects on
final circuit area and speed are not well understood. The quality of syn-
thesis results (in terms of circuit delay and area) is adversely affected
by the presence of conditionals and loops. Designers are often given
minimal control over the transformations that effect these results. All
these factors continue to limit the acceptance of high-level synthesis
tools among designers.

To alleviate the problem of poor synthesis results in the presence
of complex control flow in designs, there is a need for high-level and
compiler transformations that can optimize the synthesis results irre-
spective of the choice of control flow in the input description. To ad-
dress this issue, several scheduling algorithms have been proposed that
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employ beyond-basic-block code motion techniques such as specula-
tion to extract the inherent parallelism in designs and increase resource
utilization [4]-[7].

Generally, speculation refers to the unconditional execution of op-
erations that were originally supposed to have executed conditionally.
However, we found that there are situations when there is a need to
move operations info conditionals. This may be done by reverse spec-
ulation, where operations before conditionals are duplicated into sub-
sequent conditional blocks and, hence, executed conditionally, or this
may be done by conditional speculation, wherein an operation from
after the conditional block is duplicated up into preceding conditional
branches and executed conditionally. Another code-motion technique
we developed, called early condition execution, evaluates conditional
checks as soon as their data dependencies are satisfied. In this way,
all of the operations in the branches of the conditional are ready to be
scheduled immediately.

A number of similar code transformations have been proposed
for compilers as well. Whereas compilers often pursue maximum
parallelization by applying speculative-code motions, in high-level
synthesis, such code transformations have to be selected and guided
based on their effects on the control, interconnect, and area costs.
An important contribution of our work is in heuristics that select the
code transformations so as to improve the overall synthesis results. In
some cases, our heuristics actually end up increasing the number of
operations by duplicating them into conditional blocks.

We, thus, present a priority-based global-list scheduling heuristic
that directs these code motion transformations and obtains significant
reductions in schedule lengths and controller complexity. Area over-
heads are kept in check by using a resource binding technique that
minimizes interconnect [9]. We implemented the code-motion trans-
formations, the scheduling heuristic, and control and binding passes in
a modular and extensible high-level synthesis framework called Spark
[10]. We also modified several parallelizing compiler transformations
[11], [12] for high-level synthesis and implemented them within our
framework. Spark produces synthesizable RTL VHDL and, thus, en-
ables evaluation of the effects of several coarse and fine-grain opti-
mizations on logic synthesis results. The input language for Spark is
ANSI-C, currently with the restrictions of no pointers, no unstructured
jumps (gotos), and no function recursion.

The rest of this paper is organized as follows. The next section re-
views previous related work. In Section III, we present the interme-
diate representation used by Spark. In Section IV, we describe a set of
speculative code motions that are useful in high-level synthesis. Next,
we present the Spark framework and, in Section VI, we describe the
scheduling heuristic. In Section VII, we present scheduling and logic
synthesis results for experiments using the code motions.

II. RELATED WORK

Early high-level synthesis work focused on data-flow designs and
applied optimizations, such as algebraic transformations, retiming,
and code motions across multiplexers for improved synthesis re-
sults [13]-[16]. Recent work has demonstrated the effectiveness of
speculation in improving schedule lengths for designs with control
flow. CVLS [4] uses condition vectors to improve resource sharing
among mutually exclusive operations. Radivojevic et al. [17] and
Haynal [6] present exact symbolic and automata-based formulation
for designs with control flow. The “Waveschedule” approach [18]
employs speculative execution to minimize the expected number of
cycles in the schedule of a design. Santos et al. [19] and Rim et al.
[20] support generalized code motions during scheduling of designs
with control flow.

0278-0070/04$20.00 © 2004 IEEE
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A range of code transformation techniques similar to those pre-
sented in our work have also been previously developed for high-level
language compilers (especially parallelizing compilers) [21]-[23].
Although the basic transformations (e.g., dead code elimination, copy
propagation) can be used in synthesis as well, other transformations
need to be modified for synthesis by incorporating ideas of mutual
exclusivity of operations, resource sharing, and hardware cost models.

The contributions of this work include: 1) three code-motion
transformations derived from speculative execution techniques that are
specifically targeted for high-level synthesis; 2) a heuristic approach to
drive the application of these transformations; and 3) a framework that
provides a toolbox of code transformations and supporting compiler
transformations. This enables the designer to apply heuristics to drive
selection and control of individual transformations under realistic cost
models for high-level synthesis. The synthesis framework provides a
path from an input behavioral description down to RTL code that is
synthesizable by logic synthesis tools.

III. DESIGN DESCRIPTION MODELING

The Spark synthesis framework accepts a behavioral description in
ANSI-C as input. However, we do not support pointers, unstructured
jumps (gotos), and recursive functions for synthesis. The input C code
is a sequential description of statements. Statements may be opera-
tion expressions, conditional constructs (if-then-else, switch-case), and
loop constructs (for, while, do-while loops).

Traditionally, control-data flow graphs (CDFGs) [15], [24] have
been the primary model for capturing design descriptions for
high-level synthesis. CDFGs consist of operation and control nodes
with edges for both data flow and control flow. CDFGs work very well
for traditional scheduling and binding techniques. However, we found
the abstraction level offered by CDFG the range of coarse-grain and
fine-grain compiler transformations that we proposed. In particular,
loop and conditional structures are not maintained, making it difficult
to apply coarse-grain optimizations.

To enable the range of optimizations explored by our work, we use a
hierarchical control-flow representation called hierarchical task graphs
(HTGs) [11], [25] that maintains the control and loop constructs in the
design such as if-then-else blocks, for-loops, and while-loops.

Of course, several other representation models have been proposed
for high-level synthesis [26]-[29]. However, HTGs are a convenient
representation for designs with considerable control constructs since
they maintain a structured view of the design. In fact, we maintain
HTGs in conjunction with control flow graphs (CFGs) and data flow
graphs (DFGs). Thus, whereas CFGs (and CDFGs) are efficient for
traversing the basic blocks in a design, HTGs enable higher order ma-
nipulation. For example, they enable coarse-grain code restructuring
(such as that done by loop transformations [12]) and also provide an
efficient way to move operations across large pieces of code [11] (see
Section V-A).

In the next two sections, we present the DFGs, CFGs, and the HTGs
maintained by our framework and how they all tie in together.

A. DFGs and CFGs

Data dependencies between operations create a partial ordering be-
tween the operations. If an operation op; reads the result of another
operation op,, then a flow dependency is said to exist between opera-
tions op, and op;. Hence, op, can start execution only after op, has
finished execution. We can define a DFG that captures flow dependen-
cies as follows.

Definition III.1: A DFG is a directed acyclic graph
Gore(Vora, Epra), where  the  vertices Vbra =
{op;|i =1,...,n0ps} are the operations in the design, and the edges

Epra represent the flow data dependencies between operations. A
directed edge e;; = (opl-,op]»), where op;,op; € Vbra, exists in
Epra if data produced by operation op; is read by operation op ;.

A sequence of statements or operations from the input description
with no conditionals or loops between them is aggregated into a basic
block. Whereas the input “C” description consists only of operations
that execute sequentially, the high-level synthesis scheduler can
schedule operations to execute concurrently. We aggregate operations
that execute concurrently into scheduling steps within basic blocks.
These scheduling steps correspond to control steps in high-level
synthesis [15] and to VLIW instructions in compilers [25].

This can be formally stated as follows.

Definition I11.2: A scheduling step step, ={op; | k=1,2,...,n}
is an aggregation of n operations that execute concurrently in the same
cycle or time step.

Definition IIL.3: A basic block bb; = {step] [7=1,2,. .., Naeps }
is a maximal sequence of n.ps consecutive scheduling steps, where
the flow of control enters at the beginning and leaves at the end without
halting or possibility of branching except at the end.

The presence of conditional and loop constructs in a design
description introduces the notion of control flow paths. Control flow
can branch into multiple control paths at fork (or branch) basic blocks
and merge back into a single control flow path at join (or merge) basic
blocks. We define a CFG that captures this control-flow information
as follows.

Definition 1I1.4: A CFG is a directed graph G(;k‘G(VCF(;, E(jy(;,),
where the vertices Vorg = {bb; |7 = 1,2,...,npbs} are the basic
blocks in the design and the edges Ecrq represent the flow of control
between the basic blocks. A directed edge e;; = (bb;, bb;), where
bb;,bb; € Vcora, exists in Ecra if the signifies that bb; executes
after bb; has finished execution. bb; is denoted as a predecessor
of bb; and bb; as a successor of bb;. There exists a unique initial
basic block bby € Vora from which all paths in Gorg originate;
FirstBB(Gora) returns bbg.

The mapping of operations in the DFG to basic blocks in the CFG is
given by the following definition.

Definition I11.5: There exists a many-to-one mapping of operations
in the DFG Gpra(Vbra, Epra) to the basic blocks in the CFG
Gera (Vera, Ecra) given by BBops: Vora +—  Vera. Thus,
Yop, € Vbra,BBoys(op;) gives the basic block bb; € Vera to
which operation op, is mapped.

B. HTGs: A Model for Control-Intensive Designs

Whereas CFGs are useful for maintaining the flow of control be-
tween basic blocks, we employ HTGs to maintain structure of the de-
sign description. We define a HTG as follows.

Definition 1I11.6: An HTG is a directed acyclic graphs
Gure (Vara, Eara), where the vertices Viarg = {h‘tgi i =
1,2,...,nhegs} can be one of three types Typeprq =
{SN,CN, LN}, corresponding to single, compound, and loop
nodes.

1) Single nodes represent nodes that have no subnodes and are used
to encapsulate basic blocks.

2) Compound nodes are recursively defined as HTGs, i.e., they
contain other HTG nodes. They are used to represent structures
like if-then-else blocks, switch-case blocks or a series of HTGs.

3) Loop nodes are used to represent the various types of loops (for,
while-do, do-while). Loop nodes consist of a loop head and a
loop tail that are single nodes and a loop body that is a compound
node.

The edge set Enrtg in Gurc represents the flow of control
between HTG nodes. An edge (htg; htg;) in Enrc, where
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(a) (b) (e)

Fig. 1. (a) Example C description. (b) Corresponding HTG representation.
(c) HTG representation with the control and DFGs overlaid on top. An empty
basic block bby is added to the CFG in the Join node of the If-HTG node.

htg,,htg; € Vura, signifies that htg, executes after htg, has
finished execution. Each node htg, in Vyr¢ has two distinguished
nodes, htgg;,., and htgg,,,,, belonging to Virra such that there exists
a path from htgg, . to every node in htg, and a path from every node
in htg; to htgg,,-

The htgg, .. and htgg,,, nodes for all compound and loop HTG
nodes are always single nodes. The htgg,,,, and htgg,,, nodes of a
loop HTG node are the loop head and loop tail respectively and those
of a single node are the node itself. For the rest of this paper, we will de-
note the top-level HTG corresponding to a design as the Design HTG.
The design HTG is constructed by creating a compound node corre-
sponding to each control construct in the design.

Consider the sample “C” code in Fig. 1(a). The HTG representation
for this code is given in Fig. 1(b). The HTG representation consists of a
compound design HTG (htg, ) that encapsulates the HTG nodes htg,
to htg- and the control flow edges between the HTG nodes (shown by
dashed arrows). The if-then-else control construct from the source code
is encapsulated in the compound If-HTG node htg,. The If-HTG node
consists of a single node for the conditional check, a compound node
for the true/then branch, a compound node for the false/else branch and
a single node for the Join node (containing only an empty basic block
as explained below). The htgg,. . node for an If-HTG is the single
node with the conditional check and the htgg;,,, node is the Join node;
in Fig. 1(b), these correspond to htg, and htg, respectively. Similarly,
htg; and htg, are the htgg, ., and htgg, ., nodes of the design HTG
htg,.

In Fig. 1(c), we show how the CFG and DFG can be overlaid onto the
HTG graph. Basic blocks are denoted by shaded boxes within the HTG
nodes (bbg to bbs) and operations are denoted by circular nodes with
the operator sign within (operations 1 to 8). Dashed lines denote control
flow between HTG nodes and solid lines denote data flow between
operations. A fork in the control flow (i.e., a Boolean condition check)
is denoted by a triangle (A) and a merge by an inverted triangle (V).

Note that, for clarity, the true and false branches in Fig. 1(c) are
shown as a single node encapsulating a basic block. In practice, the
single node is then encapsulated in the compound HTG node that forms
the true or false branch.

Also, during the construction of HTGs, we add empty “Join” basic
blocks where multiple control flow path merge. In Fig. 1(c), basic block
bb4 corresponds to a Join basic block that is encapsulated in the single
Join node htg,. Join HTG nodes serve as the htgg,,, nodes of com-

. Design Level Compound HTG

. For Loop HTG Node  Htg0
' BBO

¢ Loop Head Htgl

Single
Node

Htg2

Loop Body v
i Htg3

i<N | [False

T

Trug Higs | i

Compound i
HTG Node ‘

Empty BB

v Loop Exit

(a) (b)

Fig. 2. (a) HTG representation of the “waka” benchmark with the control and
DFGs overlaid on top. (b) HTG representation of a for-loop.

pound HTG nodes and enable an easier and more structured approach
to the hierarchical composition of nodes. Detailed notes on HTG con-
struction are presented in [25].

Fig. 2(a) illustrates the HTG for the synthetic benchmark “waka” [4]
along with the control flow and DFGs. This design contains an If-HTG
node, whose false/else branch contains another If-HTG node. bbg to
bbyo denote basic blocks.

We show a For-loop HTG in Fig. 2(b). The For-loop HTG htg, con-
sists of three subnodes: 1) Loop head (htg, ): consists of a single node
with an optional initialization basic block; 2) Loop body (htg, ): a com-
pound HTG node containing a single HTG node (htg, ) for the condi-
tional check basic block and a compound HTG node (htg,) for the
main body of the loop, and an optional single node (htg; ) for the loop
index increment basic block; 3) Loop tail/exit (htgg): a single node
with an empty basic block. There is a backward control flow edge from
the end of the loop body to the conditional check single node. Main-
taining the loop hierarchy allows us to treat the back edges as implicit
self-loops on composite nodes [25]. Therefore, at any hierarchy level,
the HTG is a directed acyclic graph.

The relationship between HTGs and CFGs is captured by the fol-
lowing definition.

Definition I11.7: Given Gerag (Vera, Ecre) and Gura (Virra,
By ), there exists a one-to-one mapping of the basic blocks in Gora
to the single nodes in GuTga given by: Htgy, @ Vera — Viarc.
Thus, Vbb; € Vora there exists a htg, € Vmrq, such that
Typeyrq(htg;) = SN.

We capture the input description using a design graph that is defined
as follows.

Definition I11.8: A design graph, DG(Vp, Ep, BBops, Htggg),
is a layered graph,! where the vertex set Vp = {Vprg U Verg U
Virra } consists of three layers of nodes corresponding to the nodes of
the graphs Gpra, Gera, and Gura and the edge set Epp = {Eppa U

I A k-layered graph is a connected graph in which the vertices are partitioned
into k sets L = [,,...,1, and edges run between the vertices of successive
layers, {; and I;_;.
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Ecrc U Eura} consists of the edges corresponding to the edges of
the graphs Gnra, Gora, and Gura. DG also contains the mapping
BBops between the operations in Gprc and the basic blocks in Gora
and the mapping Htg,, between the basic blocks in Gera and the
single nodes in Grra.

For clarity, in the rest of this paper, we make several simplifications
in the figures used for the examples. We omit the single HTG node that
encapsulates basic blocks. Control flow edges in HTG representations
are shown to originate from basic blocks and terminate at basic blocks
(i.e., these represent the edges from the CFG).

IV. CODE MOTIONS IN HIGH-LEVEL SYNTHESIS

Computationally expensive portions of several classes of appli-
cations—particularly multimedia and image processing applica-
tions—are characterized by the presence of a considerable number of
unpredictable branches. These control constructs limit the amount of
instruction-level parallelism that can be exploited from the input de-
scription [30], [31]. There are usually not enough operations available
for execution to utilize all the resources in each cycle or scheduling
step. Hence, there are a number of idle resources in a basic block.

A resource is said to be idle in a scheduling step if there is no oper-
ation scheduled to execute on that resource in that scheduling step (the
converse of an idle resource is a busy resource). Idle resources can be
utilized by moving and scheduling operations from subsequent or pre-
ceding basic blocks. The candidate operations for these code motions
are operations whose data dependencies are satisfied, but the conditions
under which they execute may not have been evaluated. One of the key
enabling transformations for such type of code motions is speculation.

A. Using Speculation in High-Level Synthesis

Speculative execution or speculation refers to the execution of an op-
eration before the branch condition that controls the operation has been
evaluated.? In our approach to speculation for high-level synthesis, we
store the result of a speculated operation in a new register. If the condi-
tion that the operation was to execute under evaluates to true, then the
stored result is committed to the variable from the original operation,
else the stored result is discarded.

We demonstrate speculation by the example in Fig. 3. In Fig. 3(a),
variables d and ¢ are calculated based on the result of the calculation of
the conditional c. Since the operations that produce d and g execute on
different branches of a conditional block, these operations are mutually
exclusive. Hence, these operations can be scheduled on the same hard-
ware resource with appropriate multiplexing of the inputs and outputs,
as shown by the circuit in Fig. 3(a).

Now, consider that an additional adder is available. Then, the oper-
ations within the conditional branches can be calculated speculatively
and concurrently with the calculation of the conditional ¢, as shown
in Fig. 3(b). The corresponding hardware circuit is also shown in this
figure. Based on the evaluation of the conditional, one of the results
will be discarded and the other committed. It is evident from the cor-
responding hardware circuits in Fig. 3(a) and (b) that as a result of this
speculation, the longest path gets shortened from being a sequential
chain of a comparison followed by an addition to being a parallel com-
putation of the comparison and the additions.

This example also demonstrates the additional costs of speculation.
Speculation requires more functional units and potentially more storage
for the intermediate results. Uncontrolled aggressive speculation can
also lead to worse results due to multiplexing and control overheads.
On the other hand, judicious use of speculation can improve resource
utilization.

2Data speculation is another type of speculation in which an operation is
executed with potentially incorrect operand values.
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Fig. 3. Extracting the inherent parallelism in a design by speculating the
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reduction in the longest path.
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Fig. 4. Reverse Speculation. (a) An example design. (b) Operation b is
reverse speculated into the branch of the If-HTG that uses its result, i.e., the
false branch. (c) Operation d is now speculated into basic block bbg. This
reduces the schedule length by one cycle.

B. Reverse Speculation

Reverse speculation refers to moving an operation op, from its basic
block bb; into the successors of bb;. We employ this code motion
to duplicate operation op, into the branches of an If-HTG when the
If-HTG is the successor of bb ;. Reverse speculation has been referred
to as lazy execution [20] and duplicating down in past literature [32].

Reverse speculation is useful in instances where an operation in-
side a branch of an If-HTG is on the longest path through the design,
whereas an operation before the If-HTG is not. We demonstrate this
by an example in Fig. 4(a). In this design, operation b, that is on the
shorter dependency path ({b, g, k)), is placed in the basic block be-
fore the If-HTG, whereas operation d, that is on the longer dependency
path ({d, e, f, 1)), is placed in the true branch of the If-HTG. If we re-
verse speculate operation b into the conditional branches, as shown in
Fig. 4(b), the adder in basic block bby is left idle (see next paragraph
for an explanation of why b is not duplicated). This enables us to spec-
ulatively execute operation d in bbg, as shown in Fig. 4(c). The dashed
lines in Fig. 4 demarcate the state assignments (S0 through S4) for the
three designs. Clearly, the final design in Fig. 4(c), after reverse specu-
lation of b and speculation of d, requires one state less than the original
design in Fig. 4(a).

Note that, while applying reverse speculation in the example above,
a data dependency analysis determines that the result of operation b is
used only in the false branch of the If-HTG. Hence, instead of dupli-
cating b into both branches, we move b only into the false branch of
the If-HTG, as shown in Fig. 4(b). In the general case, reverse spec-
ulation leads to duplication of the operation into both the branches of
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Fig. 5. Early condition execution. (a) Original design. (b) Comparison
operation ¢ is scheduled as soon as possible to evaluate the conditional check
early. All unscheduled operations before the conditional checks are reverse
speculated into the branches of the If-HTG.

an If-HTG. It is also important to make a distinction between moving
operations into a later scheduling step and the downward operation du-
plication done by reverse speculation. When an operation encounters
a fork node while being moved down, it has to be duplicated into all
the control paths that lead out of the fork node (unless its result is not
needed in one of the branches).

C. Early Condition Execution

We employ reverse speculation by using another novel transforma-
tion called early condition execution. This transformation attempts to
schedule operations such that the conditional check can be evaluated
or scheduled as soon as possible. Any operations before the condi-
tional check that are unscheduled are moved into the branches of the
If-HTG by reverse speculation. Evaluating a conditional check early
using early condition execution resolves the control dependency for op-
erations within branches of the If-HTG. These operations are, thereby,
available for scheduling sooner.

Early condition execution is demonstrated by an example in
Fig. 5(a). In this example, comparison operation ¢ computes a con-
ditional that is checked in basic block bb; (the Boolean conditional
check is denoted by a triangle). We can schedule this comparison
operation concurrently with operation a in state SO in basic block
bbg, as shown in Fig. 5(b). Now, the conditional check in basic block
bby can be executed “early” in state S1. However, operation b in
basic block bbo has not been scheduled as of yet. Therefore, this
operation is reverse speculated into basic block bbs (and not into bbs
since its result is used only in bbs). These code motions lead to an
overall shorter schedule length, as shown by the state assignments in
Figs. 5(a) and (b).

D. Conditional Speculation

Often design descriptions have instances where there are idle re-
sources in the scheduling steps of the basic blocks that comprise the
branches of an If-HTG. Speculating out of If-HTGs also leaves re-
sources idle in the basic blocks of the conditional branches. To uti-
lize these idle resources, we propose duplicating operations that lie in
basic blocks after the conditional branches up into the basic blocks that
comprise the conditional branches. We call this code motion condi-
tional speculation. This is similar to the duplication-up code motion
used in compilers and the node duplication transformation discussed
by Wakabayashi et al. [4].

Fig. 6.
speculated leaving resources idle in the conditional branches. (c¢) Operation z
is CS into the conditional branches (bb; and bby).

(a) HTG representation of an example. (b) Operations x and y are

‘We demonstrate conditional speculation by the example in Fig. 6(a).
In this example, operations « and y both write to the variable @ in the
conditional branches bb; and bb,. Consider that this design is allo-
cated one adder, one subtracter, and one comparator. Then, operations
x and y can be speculatively executed as shown in Fig. 6(b). The specu-
lation of these operations leaves the resources in basic blocks bb; and
bb, idle. Hence, the operation z that lies in basic block bb4 can be
duplicated up or conditionally speculated (CS) into both branches of
the If-HTG and scheduled on the idle adder, as illustrated in Fig. 6(c).
Operation =z is dependent on either the result of operation = or oper-
ation y, depending on how the condition evaluates (since operation z
is dependent on the variable a). Hence, the duplicated operations z1
and 22 directly read the results of operations = and y, respectively. We
have also shown the state assignments (50, S1, and 52) for the three
designs using dashed lines in Fig. 6. Clearly, for this example, this set
of code motions leads to a design that requires one less state to execute.

Note that, correctness issues place a number of constraints on the
kind of code motions that can be done. We have omitted these for
brevity, but they are detailed in [33] and are also dealt with to some
extent in [11] and [25].

V. SPARK HIGH-LEVEL SYNTHESIS FRAMEWORK

We have implemented the various speculative code motions in a
modular and extensible high-level synthesis framework called Spark.
Spark provides a range of coarse-grain and fine-grain transformations
and has been designed to aid in experimenting with new transforma-
tions and heuristics that optimize the quality of synthesis results, in
terms of circuit delay and area. Fig. 7 provides an overview of the
Spark framework. As shown in this figure, besides the input descrip-
tion, Spark also takes additional information as input, such as a hard-
ware resource library, resource and timing constraints, and user direc-
tives for the various heuristics and transformations.

The design flow through the Spark framework is as follows. Spark
accepts a behavioral description of a design in ANSI-C, creates the
intermediate representation that comprises of HTGs, CFGs, and DFGs,
runs a data dependency analysis pass, schedules the design, binds the
resources, performs control synthesis, and, finally generates an output
in RTL VHDL.

The core of the synthesis framework has a transformations toolbox
that consists of a data-dependency analysis pass, the Trailblazing par-
allelizing code motion technique [11], dynamic renaming of variables,
the basic operations of loop pipelining (or software pipelining), and
supporting compiler passes such as constant propagation and dead code
elimination. Passes from the toolbox are called by a set of heuristics
that guide how the code refinement takes place. Since the heuristics
and the underlying transformations that they use are fairly indepen-
dent, writing new heuristics can be as simple as making calls to the
toolbox. The use of transformations can be controlled by the designer
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using scripts, hence, enabling experimentation with different transfor-
mations and heuristics.

A scheduling heuristic employs the techniques from the transforma-
tions toolbox to create a scheduled design (described in Section VI).
The scheduling phase is followed by a resource-binding and control-
synthesis phase. This phase binds operations to functional units, ties
the functional units together (interconnect binding), allocates and binds
storage (registers), generates the steering logic, and generates the con-
trol circuits to implement the schedule. The focus of our resource-
binding approach is to minimize the interconnect (multiplexers and de-
multiplexers) between functional units and registers [9]. After binding,
we generate a finite-state machine (FSM) controller for the scheduled
and bound design.

The back-end of the Spark framework consists of an RTL VHDL
generator. This RTL VHDL belongs to the subset of VHDL that is syn-
thesizable by commercial logic synthesis tools and, hence, the Spark
framework integrates into the standard synthesis design flow. This com-
pletes the path from architectural design and specification in a high
level language such as “C” to synthesizable RTL VHDL code and then
down to the synthesized net-list.

A. Trailblazing: Hierarchical Code-Motion Technique

The speculative code motions employed by Spark are enabled by the
Trailblazing code motion technique [11]. Trailblazing exploits infor-
mation about the hierarchical structure of the design that is maintained
by HTGs [25] to perform efficient code motions across large pieces of
code. The Trailblazing algorithm returns a set of trails or control flow
paths that an operation will have to follow in order to move from one
basic block to another. To move the operation along these control flow
paths, the Trailblazing algorithm employs the use of the speculative
code motions presented earlier in this paper. Details about the Trail-
blazing algorithm are discussed in [11].

To understand the hierarchical moves performed by Trailblazing,
consider the example in Fig. 8. In this example, we want to move the op-
eration Op: y = e + f from basic block bbs to basic block bb;. While
moving this operation, Trailblazing encounters the htgy;,,, node of an
If-HTG node. It checks if the moving operation has any dependencies
with the If-HTG node. Since, in this example, there are no dependen-
cies, operation Op is moved across the If-HTG node to bb;, without
visiting each subnode of the If-HTG, as shown in Fig. 8(b).

cond=a<b | BB1 cond=a<b | BB1
b=e-f b=e-f
Op:y=e+f

Z=y+X

(a) (b)
Fig. 8. Trailblazing. Operation opl is moved from basic block bb to basic

block bb; across the if-then-else HTG node without visiting each basic block
inside the node.

1: m=a+b 1 1 3 I:tl=a+b; 3:t2=e=f
R %z %24 213=tl-¢ dtd=t2+e
3 m=e-f %3 (c) (d)
4 0=m+e 4 lim=a+b; 3:ml=e-f
(a) (b) Zin=m-c¢; 5:m=ml; 4i0=ml+e
(e)
Fig. 9. (a) Example C description. (b) Corresponding DFG. (c) DFG

after scheduling: Ops 1 and 3 and ops 2 and 4 are scheduled concurrently.
(d) Scheduled output code generated if only flow data dependencies are
maintained. (e) Output code generated if nonflow data dependencies are also
maintained. Concurrent operations are written in the same line.

B. Eliminating Data Dependencies by Dynamic Renaming

There are four types of data dependencies that can exist between
operations [32]: 1) flow (variable read after write); 2) anti (write after
read); 3) output (write after write); and 4) input (read after read). High-
level synthesis approaches have traditionally chosen to retain only flow
data dependencies. However, this means that the variable names from
the original description are discarded, thereby, impairing the ability to
correlate the input description with the intermediate representation and
the final output code generated after synthesis. This makes it difficult
to visualize the effects of applying the various transformations.

To understand the need for maintaining nonflow data dependencies,
consider the sample “C” description in Fig. 9(a) and its corresponding
DFG in Fig. 9(b). One possible schedule is shown in Fig. 9(c), where
operations 1 and 3 and operations 2, and 4 are scheduled concurrently.
The output code corresponding to this scheduled design, when non-
flow data dependencies are not maintained, is given in Fig. 9(d). In this
output code, we have to create new variables that store the result of
each operation in the scheduled design. Clearly, it takes some effort to
correlate the operation statements in this output code with the opera-
tion statements in the input code (especially operations 2 and 4).

If we maintain nonflow data dependencies as well, we can generate
the output code given in Fig. 9(e). In this code, the variables that each
operation writes to are maintained as per the original code. By in-
specting this code, we see that concurrent execution of operations 1
and 3 requires renaming the result variable of operation 3 to m1. Op-
eration 5 is inserted in the code to copy the new variable m1 to the
variable /n from the original code, as shown in Fig. 9(e). Thus, opera-
tion 4 can be executed concurrently with operations 2 and 5 using the
new variable m1 after employing dynamic variable renaming.

Although nonflow-data dependencies can restrict code motions,
these can often be resolved by dynamic renaming and combining
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y=z+1 y=y’ o x=z+l x=x’ 1\ z=x+1
| |
(a) (b (c)

Fig. 10. Moving an operation across another operation while eliminating (a) an
antidependency, (b) an output dependency, and (c) a flow dependency.

[34]. Fig. 10(a)—(c) demonstrate how one operation can be moved
past another one while dynamically eliminating data dependencies. In
Fig. 10(a), the operation that writes to variable y is scheduled at an
earlier time step by moving only the right-hand side of the operation.
The result is written to a new destination variable ¥’ and the original
operation is replaced by a copy operation from 3’ to y. Similarly, in
Fig. 10(b), an output dependency between two operations that write
to the same variable x can be resolved by creating a new destination
variable =, while moving the operation and replacing the original
operation with a copy operation. These copy operations can also
be circumvented by a technique known as combining. Combining
replaces the copy in the operation being moved by the variable being
copied. This is demonstrated in Fig. 10(c), where the operation
z = x + 1 is moved past the copy operation = = y. The variable =
is replaced with the variable y on the right-hand side of the moving
operation.

VI. PRIORITY-BASED GLOBAL LIST SCHEDULING HEURISTIC

Scheduling is the task of assigning operations to control steps or time
intervals, while respecting data dependencies and resource constraints
(if any) [15]. For the purpose of evaluating the various code motion
transformations, we have chosen a priority-based global list scheduling
heuristic, although the transformations presented here can be employed
by other scheduling heuristics as well. Priority-list scheduling works by
ordering and scheduling operations based on a priority or cost associ-
ated with them.

Our objective is to minimize the longest delay through the design.
Hence, the priority of an operation is determined by the length of the
data-dependency chain from the operation to the outputs of the design.
The priority of an operation is calculated as the delay of the resource
that the operation can be mapped to summed with the maximum of the
priorities of all the operations that use its result. A priority of zero is
assigned to operations that produce outputs. A priority of one (or two,
if the output operations are multiplications) is assigned to operations
whose results the output operations depend on and so on. The priority of
an operation that creates a conditional check is assigned the maximum
of the priorities of all the operations in the branches of the If-HTG.

Our scheduling heuristic is presented in Fig. 11. The inputs to this
heuristic are the unscheduled design graph DG and the list of resources
‘R. Additionally, we can specify a list of allowed code motions, C'M s,
(i.e., speculation, reverse speculation, conditional speculation, etc.).
This gives us control over the code motions employed, while sched-
uling the design by selecting and deselecting code motions from C' M s.
We can, thus, analyze the performance-area tradeoffs of individual code
motions.

The heuristic starts by assigning a priority to each operation in the
input description as explained above. Scheduling is done one sched-
uling step at a time while traversing the basic blocks in the design CFG

/* Schedules the Design Graph DG */
PriorityListScheduling(DG, R, CMs)

1: Pr « CalculatePriority( Gpre )

2: stepy, < First scheduling step in FirstBB(Gcre)
3: while (step, # ¢) {

4 foreach (resource res € R) {

5: A — GetAvailableOps(DG, stepy, res, CMs)
6: if (A #¢){

7 Pick Operation op € A with lowest cost

8: TrailblazeOp(op, res, step, DG, CMs)

9:
10:  } /* end foreach */

11:  stepy < GetNextSchedulingStep(Gura, Gora, stepk)
12: } /* end while */

Fig. 11.  Priority-based list scheduling Heuristic.

/* Gets ops for scheduling on res in stepy, */
GetAvailableOps(DG, stepy, res, CMs)
Returns: Available Operations List A

1: A « Unscheduled operations in Gopg
that can be scheduled on res
2: foreach (op; € A) {
3: if (data dependencies of op; cannot be satisfied)
4: A— A-op;
5: if (MovelsNotPossible(op;, stepy, CMs)
6: A— A-op;
7}
8

: Calculate cost of operations in A
9: return A

Fig. 12.  Algorithm to determine the list of Available operations.

Gora, starting with the first step in the first basic block of Gope (line
2 of the algorithm). For each scheduling step (stepy, ) in the basic block,
the scheduler iterates over each resource res in the resource list R and
calls the GetAvailableOps tunction. This function returns a list of avail-
able operations A that may be scheduled on res in step,,. (lines 4 and
5 in the algorithm in Fig. 11).

Available operations is a list of operations whose data dependencies
are satisfied and that can be moved in the design graph and scheduled
on the given resource at the current scheduling step. Pseudocode for
collecting the list of available operations is given in Fig. 12. Initially,
all unscheduled operations in the design that can be executed on the
resource type of res are added to the available operations list. The un-
scheduled operations are collected by traversing the basic blocks on the
control flow paths from the current basic block being scheduled. How-
ever, this basic block traversal algorithm skips over the loop body of
any loop nodes it encounters. This is because operations from within
loop nodes can only be moved outside the loop body by transforma-
tions such as loop-invariant code motion and loop pipelining. Opera-
tions whose data dependencies are not satisfied and cannot be satisfied
by variable renaming are also removed from this list (lines 3 and 4 in
Fig. 12).

The available operations algorithm then calls the MovelsNotPossible
function (presented in [33]). This function employs Trailblazing to de-
termine all the code motions required to move the operation op, from
its current position to the scheduling step step, under consideration.
Operations that require code motions that have not been enabled in the
list of allowed code motions CMs are removed from the available list
(lines 5 and 6 of the algorithm).

Finally, the available operations algorithm assigns a cost for each
remaining operation in 4. Currently, this cost is the negative of the
operation’s priority, i.e.,

cost(op;) = — Pr(op,;) Yop, € Gpra.
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Since the scheduler picks the operation op with the lowest cost from the
available operations list (line 7 of Fig. 11), this effectively means that
the operation with the highest priority in the available list is chosen.
Hence, operations that are on the longest path through the design are
favored for scheduling. In this way, the cost function attempts to mini-
mize the longest delay through the design.

It is important to note that minimizing a different cost function such
as average delay can be done by incorporating control-flow infor-
mation into the cost function. Also, if we have profiling information
about which control paths are more likely to be taken, then we can
give operations on those paths a higher priority than operations on
less taken paths. Future work entails enhancing the cost function to
include hardware (control, interconnect, and area) cost models of the
code transformations.

Next, the scheduling heuristic calls Trailblazing to move the chosen
operation op to the current scheduling step step, (line 8 of algorithm
in Fig. 11). This scheduling procedure is repeated for all resources in
each scheduling step as the basic blocks in the design are traversed from
top to bottom by calling function GetNextSchedulingStep (presented in
[35]). This function traverses the design using topological ordering.
Thus, when a fork node of an If-HTG is encountered, the branches of
the If-HTG are traversed (scheduled) first and then, the basic blocks
past the join node of the If-HTG are traversed [33].

Note that, since operations with higher priorities may be speculated
into a basic block, the (lower priority) operations that were originally
placed in that basic block by the designer may be left unscheduled.
Either new scheduling steps are added to the current basic block to
schedule them or if reverse speculation has been enabled, then these
operations are reverse speculated into the branches of the subsequent
If-HTG.

A. Scheduling Loops

Scheduling of loops is done by the same procedure outlined above.
However, user-specified loop transformations such as loop unrolling
are applied first. Also, the scheduler cannot move operations into or
out of the loop body. This can only be done by transformations such
as loop-invariant code motion or loop pipelining. Hence, the available
operations algorithm does not collect unscheduled operations from in-
side a loop body to schedule them outside the loop body. Also, while
scheduling the loop body of a loop node, available operations are col-
lected only from within the loop body.

The Spark framework can schedule all types of loops, including
those with unknown loop iteration bounds. Our FSM is generated such
that at the end of a loop body, the next state is either the first state in the
loop body or the state after the loop body, depending on whether the
loop condition is satisfied or not. Hence, loop bounds are not required
for generating correct, synthesizable VHDL. However, when the loop
bounds are unknown, several loop transformations cannot be applied to
the design and we cannot establish the number of cycles that the loop
takes to execute.

B. Heuristic to Determine Whether to Apply
Conditional Speculation

Experimental results have shown us that conditional speculation,
when applied unchecked, can lead to increased schedule lengths and
interconnect complexity, due to operation duplication. Hence, we have
developed a heuristic that determines if an operation op should be
CS. This heuristic AllowConditionalSpec, is outlined in Fig. 13. The
heuristic starts with the list of basic blocks (BBList) into which an
operation op will be duplicated, if it is scheduled in basic block bbcurr.
The heuristic returns a true result if it is possible to conditionally
speculate op in each basic block in BBList and a false result otherwise.

AllowConditionalSpec(op, BBList, bbeyrr)

Returns: True if op should be conditionally speculated
1: foreach (bb; in BBList) {

2: if (bb; is not scheduled)

3: return false

4: if (FindIdleResInBB(bb;, op) = ¢) {
/* Check if we can insert a new step in bb; */
5: if (NumSteps(bb;) > NumSteps(bbeyrr))
6: return false /* Cannot insert op in bb; */
T }
8: }
9: return true

Fig. 13. Heuristic to determine whether to schedule operation op into basic
block bb..,» by conditionally speculating (duplicating) into the basic blocks in
BBList.

The heuristic iterates over each basic block bb; in the list BBList
and returns a false result if any bb; € BBList is unscheduled. This is
because, without scheduling a basic block bb; first, it is not possible
to accurately determine if there is an idle resource in bb; on which to
schedule operation op. If bb; is scheduled, the AllowConditionalSpec
heuristic calls the FindldleResInBB (presented in [36]) to find an idle
resource on which operation op can be scheduled (line 4 in Fig. 13).

If there is no idle resource in bb;, then the heuristic checks if it is
possible to create a new scheduling step in bb; in which op can be
scheduled. We can add a new scheduling step in bb; when the number
of scheduling steps in bb; is less than the number of scheduling steps in
bbeurr. This check prevents basic block bb; from becoming the critical
path in the design with the most number of cycles (or scheduling steps)
among its mutually exclusive control paths. Thus, this check ensures
that the length of the longest path (path with the maximum number of
scheduling steps or cycles) through the If-HTG does not increase by
applying conditional speculation. The AllowConditionalSpec heuristic
returns a true result if it either finds an idle resource or if it is possible to
add a new scheduling in each bb; € BB List (line 9 of the algorithm).

VII. EXPERIMENTAL SETUP AND RESULTS

We used four designs as case studies to study the impact of the pro-
posed code motions. First on the scheduling and controller size results,
and then on the logic synthesis results. These four designs are derived
from three moderately complex real-life applications representative of
the multimedia and image processing domains. The designs are: the
predl and pred2 functions from the Prediction block of the MPEG-1
algorithm, the dpframe_estimate function from the Motion Estimation
block of the MPEG-2 encoder algorithm [37], and the tile function?
(with the scale function inlined) from the “tiler” transform of the GIMP
image processing tool [38]. Results for more designs are presented in
[33].

Table I lists the characteristics of the four designs in terms of the
number of if-then-else conditional blocks (If HTGs), loops (Loop
HTGs), nonempty basic blocks, and the total number of operations
in the input description. The number of If HTGs, Loop HTGs, and
basic blocks is indicative of the control complexity of the design. All
these designs have doubly nested loops. Typical runtimes of Spark
to produce the results for these designs are in the range of five user
seconds on a 1.6-GHz Linux PC.

Table I also lists the type and quantity of the resources used for
scheduling these designs: +— does add and subtract, == is a com-
parator, = a multiplier, / a divider, [] an array address decoder, and <

3Note that this floating point function has been arbitrarily converted to an
integer function for the purpose of our experiments. This does not affect the
nature of the data and control flow, but only the data that is processed.
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TABLE 1
CHARACTERISTICS OF THE FOUR DESIGNS USED IN OUR EXPERIMENTS,
ALONG WITH THE RESOURCES ALLOCATED FOR SCHEDULING THEM

H#|H | H#H | H# # Resources
Benchmark 15 155 | BBs | Ops | +— | *| /[ <<|==]]
Mpeg-1 predl 41 2 |17 1123 2 [1|-| 2 | 2 |2
Mpeg-1 pred2 111 6 | 45 |287| 2 |1|-]| 2 | 2 |2
Mpeg-2 dpframe|18| 4 | 61 |260| 4 |1|-| 2 | 2 |2
GIMP tiler 111 2 | 35 |1650| 3 |1|1]| 2 | 2 |2

TABLE 1I
SCHEDULING RESULTS AFTER APPLYING THE SPECULATIVE CODE
THE MPEG-1 PRED1 AND PRED2 FUNCTIONS

Allowed MPEG-1 predl MPEG-1 pred2

Code Motions # States | Long Path | # States Long Path
Within BBs 71 2009 125 4555

+across HTGs 14.3 %) | 1937(-3.6 %)| 111(-11 %) | 4409(-3.2 %)

60(- (- (-
+early cond exec| 61(+1.7 %) | 1937(0 %) | 113(-1.8 %) | 4409(0 %)
-++speculation 56(-8.2 %) | 1862(-3.9 %)| 104(-8.0 %) | 4178(-5.2 %)
+cond spec 40(-28.6 %) | 1091(-41 %) | 74(-28.8 %) | 2575(-38.4%)
Total Reduction | 42.9 % 45.7 % 40.8 % 43.5 %
TABLE III

SCHEDULING RESULTS AFTER APPLYING THE SPECULATIVE CODE
THE DPFRAME_ESTIMATE AND TILER DESIGNS

Allowed MPEG-2 dpframe GIMP tiler
Code Motions # States | Long Path # States Long Path
Within BBs 7 911 69 6144
+across HTGs | 72(-6.5 %) |863(-5.3 %) || 66(-4.3 %) |5944(-3.3 %)

(-
+early cond exec| 71(-1.4 %) |859(-0.5 %) || 63(-4.5 %) |5544(-6.7 %)
(-

-+speculation 58(-18.3 %) | 607(-29.3 %)| 54(-14.3 %) | 4734(-14.6 %)
“+cond spec 49(-15.5 %) | 571(-5.9 %) || 31(-42.6 %) | 2534(-46.5 %)
Total Reduction | 36.4 % 373 % 55.1 % 58.8 %

is a shifter. The multiplier (x) executes in two cycles and the divider
(/) in five cycles. All other resources are single cycle.

A. Effects on Performance and Controller Size

Tables II and I1I list the scheduling results for the four designs as each
code motion is enabled. These scheduling results are in terms of the
number of states in the FSM controller (denotes controller complexity)
and the cycles on the longest path in the design (i.e., execution cycles).
The longest path through an if-then-else construct is the number of
scheduling steps through the longest branch. For loops, the longest path
length of the loop body is multiplied by the number of loop iterations
(loop bounds are known for all four designs).

The rows in Tables II and III present results with each code motion
enabled incrementally, i.e., these signify the “allowed code motions,”
while determining the available operations (see Section VI) and do not
represent an ordering of code motions. We first allow code motions
only within basic blocks (first row) and then, then across hierarchical
blocks as well, i.e., across entire if-then-else conditionals and loops
(second row), then with reverse speculation and early condition execu-
tion also enabled (third row), then with speculation (fourth row), and,
finally, with conditional speculation enabled as well (fifth row). The
percentage reductions of each row over the previous row are given in
parentheses.

The results in Tables II and III demonstrate that enabling just the non-
speculative code motions across hierarchical blocks of code (second
row) leads to modest improvements: ranging from 4% to 14% in the
number of FSM states and 3 to 5% in the cycles on the longest path.
Early condition execution (that employs reverse speculation) also leads
to little or no improvements. (see third row in Tables II and III).

MPEG-1 Pred1 Function MPEG-1 Pred2 Function

12
4
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MPEG-2 DpFrame Function GIMP Tiler Function
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Fig. 14. Effects of speculative code motions on logic synthesis results for
PRED1, PRED2, DPFRAME_ESTIMATE, and TILER designs.

The largest improvements in performance (cycles) are obtained
by employing speculation and conditional speculation. Speculation
reduces the number of states and the number of cycles by 8 to 18%
and 3 to 29% respectively. Conditional speculation leads to even more
impressive improvements of 15 to 42% in the number of states and 5
to 46% in the number of cycles, as shown in the fifth row of Tables II
and III.

The total reductions for the two metrics with all the code motions
enabled over code motions only within basic blocks are given in the
last row of Tables II and III. These improvements are in the range of 36
to 55% and 37 to 58% in the number of states and cycles respectively.
These substantial gains demonstrate that speculative code motions are
essential in designs with moderate control-flow. We also find that to
be truly effective all the code motions must be applied together, thus,
giving the scheduler the maximum freedom to choose from among the
candidate operations. Note that, when code motions only within basic
blocks are enabled, our global list scheduling heuristic reduces to the
classical list scheduling approaches presented for data flow only de-
signs [15], [16].

B. Effects on Area and Clock Period

In order to gauge the control and interconnect costs of the code mo-
tions, we synthesized the RTL VHDL generated by Spark after sched-
uling and resource binding using the Synopsys Design Compiler logic
synthesis tool. We used the LSI-10K synthesis library for technology
mapping.

The logic synthesis results are summarized in the graphs in Fig. 14
for the four designs. We map three metrics in these graphs: 1) the crit-
ical path length (in nanoseconds); 2) the unit area (in terms of synthesis
library used); and 3) the maximum delay through the design. The crit-
ical path length is the length of the longest combinational path in the
netlist as reported by the static timing analysis tool. The critical path
length dictates the clock period of the final design. The maximum delay
is the product of the longest path length (in cycles) and the critical path
length (in nanoseconds) and signifies the maximum input to output la-
tency of the design.

The bars in the graphs in Fig. 14 present results for code motions
within basic blocks only (first bar), for code motions across hierarchical
blocks enabled as well (second bar), early condition execution enabled
also (third bar), speculation enabled as well (fourth bar), and finally
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TABLE IV
COMPARISONS WITH PREVIOUS WORK USING CLASSICAL HIGH-LEVEL
SYNTHESIS BENCHMARKS. NA { }=RESULTS ARE NOT AVAILABLE

Schedule Length
Benchmark U Resources |CVLS|HRA |Radiv|Santos| Spark
BBs W [ 2] (3 | [4 |Ous
kim [2] 7 12+,1-2==| 6 7 6 6 6
parker[5] | 20 |2+,3-5==| 4 | NA| 4 4 4
waka [1] | 9 [1+1-2==| 7 | 7 | 7 7|7
rotor [3] | 11 |24+-2%1[]| NA | NA | 8 8 8

with conditional speculation enabled as well (fifth bar). Thus, the fifth
bar represents the results with all the speculative and nonspeculative
code motions enabled and the second bar represents the results when
only the nonspeculative code motions are enabled.

The graphs in Fig. 14 show that the total delay is almost halved when
all the code motions are enabled over when code motions only within
basic blocks are allowed. The results in these graphs also show that the
critical path lengths remain fairly constant as the code motions are en-
abled. This means that the clock period does not increase by applying
these code motions. The constant critical path length, coupled with
large decreases in cycles on the longest path, leads to large decreases
in the total delay through the circuit.

However, code motions such as speculation and conditional specula-
tion can lead to an increase in area, as we can see from graphs in Fig. 14.
This area increase is due to the increasing complexity of the intercon-
nect (multiplexers and associated control logic) that is a product of the
shorter schedule lengths produced by the speculative code motions.
Shorter schedule lengths mean that resource utilization and resource
sharing increases and this leads to an increase in the complexity of the
multiplexers and associated control logic. This complexity increase is
particularly large due to conditional speculation because it duplicates
operations and, thus, more operations are mapped to the same number
of resources as before.

Note that critical path lengths remain fairly constant despite the in-
creases in interconnect complexity, since these increases are counter-
balanced by decreases in the controller size. We found that critical paths
in our designs typically start in the control logic that generates the
select signals for the multiplexers, continue through the multiplexers,
the functional unit, a demultiplexer, and finally write to an output reg-
ister. Even though the code motions increase the size and complexity
of the multiplexers and demultiplexers, they also lead to fewer states
in the FSM controller. Thus, the size and complexity of the controller
decreases.

We also keep area and critical path overheads in check by employing
an interconnect minimizing resource binding methodology [9] that aids
the logic synthesis tool to optimize away a lot of the complexity of the
interconnect. The area may still increase sometimes since we direct the
logic synthesis tool to sacrifice area in a bid to achieve shorter critical
path lengths.

C. Comparison With Previous Work

In Table IV, we compare our scheduling results with the CVLS
approach [4], the HRA approach [39], the exact approach presented
by Radivojevic [17], and the approach presented by Santos et al. [5].
The classical high-level synthesis benchmarks used for comparisons
in these works are used here as well. These are: kim [39], parker [40],
waka [4], and rotor [17]. The columns present the number of basic
blocks, the resources used for scheduling and the longest path length
(cycles) of the schedule produced by each approach. For these small
benchmarks, nearly all the approaches (including Spark) are able to

achieve the shortest scheduling length. We are unable to compare area
and control costs, since these have not been published in previous
work.

VIII. CONCLUSION AND FUTURE WORK

We presented a set of speculative code motions that reorder, spec-
ulate, and sometimes even increase the number of operations in a be-
havioral description so as to achieve a higher quality of synthesis re-
sults. These code motions are essential for minimizing the effects of the
choice of control flow or programming style in high-level languages.
We presented a scheduling heuristic that guides these code motions
and improves scheduling results (schedule length and FSM states) and
logic synthesis results (circuit area and delay) for moderately complex
real-life designs by up to 50% in performance and controller size, when
compared to list scheduling techniques that allow code motions only
within basic blocks. We implemented the code motions and heuristics
in the Spark high-level synthesis framework that provides a platform
for applying a range of coarse-grain and fine-grain code optimizations
aimed at improving synthesis results. Future work entails developing
more comprehensive cost models that incorporate the control and in-
terconnect costs of the code motions.
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Pitfalls of Hierarchical Fault Simulation

Sandip Kundu

Abstract—Certain circuit structures, such as self-loop, asynchronous
reset, and clock division, may not be visible in a hierarchical (mixed)
simulation system. Since the simulator does not know about their existence,
it cannot cope with them like it normally would in a flat circuit. If this
leads to a logic-simulation problem, users can usually discover them easily
during the validation process. However, if it only causes fault-simulation
inaccuracy, it is hard to find the problem. In this paper, we show examples
illustrating their existence. The examples negate an assumption that has
been used in many papers on mixed-mode simulation. The examples have
been abstracted from real industrial designs of microprocessors.

Index Terms—Fault, fault simulation, sequential circuit fault simulation,
sequential logic circuit testing, testing.

[. INTRODUCTION

Functional testing has remained a popular test method. It offers
several advantages that are not easily achievable with other test
approaches. First of all, it is done atport speed, allowing delay defects
to be exposed. Second, it is not done in a special mode. Therefore,
any signal race that may compromise functional operation is easily
uncovered. Thirdly, at speed application leads to reduced test time. At
today’s device and tester speed, it may be possible to apply several
million functional patterns in fraction of a second. Lastly, because it
is applied through chip input/outputs (I/Os), whose count does not
increase at the same rate as the chip size, the test-data volume problem
is largely contained. Today’s system-on-a-chip may easily contain
upwards of ten million transistor with hundreds of I/Os and more than
200 000 flip-flops. If each flip-flop is turned into a I/O cell through
scan operation, a single scan test vector will consist of more than
200000 x 2 = 400000 bits of data. This leads to an unacceptably
large tester data volume. Usually with functional test, test data volume
is not as large an issue.

Lack of design-for-testability (DFT) standard for cores has lead to an
even stronger adoption of functional test. This approach allows testing
of the whole system, hiding several problems such as those of internal
accessibility, assorted internal clocking schemes, varying degree of in-
ternal DFT support, and potential nonavailability all test modes through
test access ports. If each core has its own test protocol, test controller
design to support all of them also becomes a time-to-market issue.

However, functional test approach also suffers from several prob-
lems. The first and foremost of which is test development process,
which is, more often than not, a manual problem. The test writer needs
to have stopping criteria to know when to quit. The test writer also
needs feedback to know which areas to target. This is usually done by
single stuck-at fault simulation. Single stuck-at fault coverage ensures
that every signal has been exercised and observed.

Unfortunately, it is also a large problem. It is impossible to do fault
simulation of a design with five million gates and eight million faults
against ten million patterns, which may be a typical representative of
a microprocessor or a system on a chip today. While fault sampling
technique may cut the size of the problem down, it is not adequate.

This has lead several researchers to explore hierarchy as a way to
manage data volume and improve runtime. The key principle is to target
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