Lawrence Berkeley National Laboratory
Recent Work

Title
ON THE GRAPHIC DESIGN OF PROGRAM TEXT

Permalink
https://escholarship.org/uc/item/5pg2h27n

Authors

Marcus, A.
Baecker, R.

Publication Date
1982-05-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5pg2h27n
https://escholarship.org
http://www.cdlib.org/

LBL-14810

C.

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

4 Sorence D
& . e WRENCE
/1 Computing Division BERKELEY LaBrmaTomy
b MAR 14 1984
DOCLBRARYAND
Presented at Graphics Interface '82, Togggggis%ﬁ%QQio,
Canada, May 17-21, 1982; and published in the
Proceedings
ON THE GRAPHIC DESIGN OF PROGRAM TEXT
A. Marcus and R. Baecker
- e
May 1982) 'Y o
WO-WEEK LOAN COF
P
. L - ing Co
i A . 5 Library Circulating s ks
VOIS This Is a . - for two week>
_ b e AT be.borrowed or g
& \which may P . n copy, call.
ro, For ap f Division Ext. 6782. .
2 [}
Tech. Inf0O '
b
-~ ;c
/‘Q“ 2._‘\:

Prepared fc;r the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

. This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

303

ON THE GRAPHIC DESIGN OF PROGRAM TEXT

Aaron Marcus
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720 USA

Ronald Baecker
Human Computing Resources Corporation
10 St. Mary Street
Toronto, Ontario M4Y 1Pp9

ABSTRACT

Computer programs, like literature, deserve attention not only to conceptual and ver-
bal (linguistic) structure but also to visual structure, i.e., the qualitities of al-
phanumeric text fonts and other graphic symbols, the spatial arrangement of isolated
texts and symbols, the temporal sequencing of individual parts of the program, and the
use of color (including gray values). With the increasing numbers of programs of ever
greater complexity, and with the widespread availability of high resolution raster
displays, both soft copy and hard copy, it is essential and possible to enhance signi-
ficantly the graphic design of program text.

The paper summarizes relevant principles from information-oriented graphic design,
especially book design, and shows how a standard C program might be translated into a
well-designed typographic version. The paper's intention is to acquaint the computer
graphics coOmmunity with the available and relevant concepts, literature, and exper--
tise, and to demonstrate the greéeat potential for the graphic design of = computer pro-
grams.

INTRODUCTION Three other relevant developments should
- ' be noted. First, many programs have

After three decades of continucus and in grown longer, more complicated, and im-
some cases revolutionary development of penetrable to even skilled programmers.
computer hardware and software systems, Second, programmers themselves have con-
one aspect of computer technology has tinued to be nomadic, often shifting
shown resilience to change: the presenta- jobs, inheriting programs from others and
tion of computer programs themselves. passing on a legacy of programs to still
Even though computer graphics systems others. Third, the number of non-
have achieved dynamic, color, and multi- professional programmers, i.e., hobby-
font display capabilities, the wvisual ists, occasional programmers, Or thoge
qualities of alphanumeric and graphic without formal dJdegrees in computer sci-
symbols of program code has remained re- ence, has increased considerably. Thus
latively simple. There are limited exten- there is an increasing need for more ef-
sions of symbols in some languages, e.qg., fective, more productive means to greate
in APL, and some attempts to visually and maintain programs. Software englneer-
structure the page with simple indenta- ing has recognized in a number _of ways
tions for control statements and groups that programming is a kind of literature
of code lines. There are also more ela- which requires good writing. The most
borate schemes such as Nassi-Schneiderman widespread development has been the con-
diagrams ([Nassi], Warnier-Orr diagrams cern with the logical structure and ex-
{Higgins], contour diagrams (Organick], pressive style of programs. Out of this
and SADT diagrams [Ross]; however, the - concern have emerged many o§ the .modern
typographic repertoire. and appearance of software development technlques,_lnclud—
programs often remains little changed ing top-design design and stepwise re-
from the manner in which teletypewriters finement [Wirth], structured programming
first printed out programs. {Dahl], modularity [Parnas], and sqftware
tools [Kernighan}. Another kind of

Reprinted with permission from the National Computer Graphics Association,Fairfax, VA.

Graphics Interface ‘82

development has occurred in the organiza-
tion of the editoral and production team

that produces the writing, for example,
the concepts of Chief Programmer Teams
[Baker] and Structured Walkthroughs

[Yourdon]}. A third more recent develop-
ment 1is the increase of interest in
enhancing the technology to support the
writing and maintaining of good programs,
by providing, for example, integrated
software development environments
[Wwasserman] and high-performance personal
workstations specialized to the task of
program development [Teitelman, Deutsch,
Gutz].

Unfortunately, there is yet another ap-
proach to improving program writing and
maintenance which also recognizes . pro-
grams as literature but which has been
systematically ignored. This approach
concerns the visible language in which
textual information is embodied.

Books embody literature. Graphic
designers of books are concerned with le-
gibility and readability, i.e., func-
tionality and appeal
seems reasonable . that computer programs
viewed as literature can be reformulated
in typographic and graphic formats to
better convey the content of well-written

programs. By adopting the model of book
literature, computer science can adapt
and apply the expertise available from
graphic design.

GRAPHIC DESIGN AND COMPUTER GRAPHICS
Graphic design is a discipline concerned
with portraying facts, concepts, and emo-

tions, as well as the logic of space and
time (structure and process) in effective
visible 1language. Information-oriented
graphic design in particular is familiar
with the concept of algorithms, for much
of 1its work involves specifying algo-
rithms for visual parameters to convey
complex information. Traditionally,
graphic designers have worked in printed
media such as books, charts, diagrams,
and maps. There is considerable profes-
sional literature ([Tinker, Zachrisson,
dartley, Williamson] dealing with the
subjects of typographic legibility, spa-
tial composition, sequencing of pages,
organization of content, use of color,
and use of 1illustrative material. This
discipline and its literature have
knowledge appropriate to and helpful for
the task of designing verbal/visual
displays for computer technology.

to the reader. It .

304

A potentially symbiotic relationship ex-
ists Dbetween graphic design and computer
graphics in creating the "three faces" of
computer systems: outer-faces, inter-
faces, and inner-faces {[Marcus 1981b]}.
Outer-faces are the end display products
of data processing: images of information
such as texts, tables, charts, maps, and
diagrams. Inter-faces are the user-
oriented human-machine interfaces used to
create outer-faces. These inter-faces are
comprised of frames (online) and pages
(offline) of process control, data struc-

tures, and their documentation. Inner-
faces are the frames and pages of source
code programs and documentation which

builders and maintainers of computer sys-

tems require in order to support the
inter-faces and outer-faces. Bv combin-
ing intuitive, practical skills and

scientific knowledge, graphic designers
can help synthesize prototype solutions
for any of the three faces and assist in
analyzing and developing finished
displays which are not merely ‘'pretty',
but which communicate information better.

In other articles ([Marcus 1980, Marcus
1981a]l, +the primary author has explained
the relationship of graphic
outer-faces and inter-faces. This present

article extends the relevance of graphic
design to inner-faces, to the design of
programs as texts, and suggests further

directions for research in program visu-
alization. In order to -emphasize book-
oriented graphic design principles that
are most relevant to the graphic design

of inner-faces, most of the discussion

will focus on the display of a single
frame or page rather than the
viewer/reader's response to an interac-
tive display.

VISUAL PARAMETERS

FOR PROGRAM VISUALIZATION

The graphic design of programs reqguires
the designer to select symbols and for-
mats for the primary components of pro-
grams: variables, constants, logical
structures, processes, commentary, and
documentation aids. Numerous choices ex-

ist for layout grids, typographic styles,
size and spacing of text lines, organiza-
tion of lists, and other means of wvisual
emphasis, Explicit decisions on these
matters are usually unspecified in the
original conception of programming
languages. The graphic designer can now
specify them wusing the principles of
similarity, proximity, clarity, con-

Graphics Interface '82

design to

sistency, and simplicity [Marcus 1980] as
a guide to organizing all the visual
parameters into effective and attractive
frames or pages.

These graphic design specifications con-
stitute a visual/verbal algorithm for the
construction of frames and pages. Program
visualization should facilitate learning
of the program text, aid memorization of
its features, encourage concentrated at-
tention, and assist in revealing a clear
conceptual structure, especially in si-
tuations where the viewer/reader may be
distracted or poorly motivated. -

Traditional literature on typographic le-
gibility [Rehe] and book design [Hartley,
Williamson] concern printed texts rather
than computer graphics displays. However,
many of the principles would appear to be
transferable to the computer graphics en-
vironment. The following principles are
based on this literature and the primary
author's own professional experience as a
graphic designer in both traditional and
computer~based media.

"BASIC PRINCIPLES

The Layout Grid

Programs often appear with no particular
attention to position in the frame or
page. However, horizontal and vertical
axes in the composition can b~ specified
to create limits for the columns of text,
margins, and documentation apparatus such

as page numbers, special headings, etc.
The grid determines the extent of por-
tions of the program text, tab stops,

areas for other
the display, and
these areas.

standard components of
the space in between

Typography

While fixed-width characters are wusually
used for program depiction, current
typesetting equipment and a growing
number of high resolution hardcopy dev-
ices (e.g., Xerox 9700) and display ter-
minals (e.g., Three Rivers Perq, Xerox

Star) can display variable-width charac-
ters. This has a significant impact on
typefont variation, size of characters
and width of text lines. General practice
suggests the following:

Font variation should usually be 1limited
to a single typeface or at most two, ex-
cept for special mathematical needs.

305

Within a typeface family, regular (ro-
man), italic, and bold roman are standard
means of increasing emphasis. Unless a

great amount of effort is expended on the
design of characters, adaptions of well-
established typefaces such as Times Ro-
man, Helvetica, Garamond, Universe, etc.
should be used. Frame presentations allow
for reversed video characters, blinking,
variable intensities, and other means of
emphasis. These should be used sparingly
because of their strength of differentia-
tion from normal text. Type size varia-
tion should be limited to at most three
sizes for text materials, and these sizes
should be quickly and easily dis-
tinguished. Generally 9 or 10 point type
for a 14 inch viewing distance 1is stan-
dard printed text size. Optimum size
will vary with the detailed characteris-
tics of a display device and. the viewing
situation. Column widths should be limit-
ed to allow 40-60 characters per line
[Rehe]. In the interrupted texts of 'pro-
grams, lines are usually unjustified on
the right and a 'ragged right' approach
to overall page composition is appropri-
ate, i.e., titling, headings, and other
elements should usually be flush left and
ragged. right.

Line spacing Of text 1lines varies with
display devices, but should usually pro-
duce greater space between lines of text
than between words. Spacing variations
should be limited to a maximum of three
variations and should be used consistent=-
ly to signify changes in content. Like-
wise tab settings should be limited to a
few reqular horizontal positions.

With

respect to capitalization, all-
capital settings should be avoided for
continuous text materials. All capital
words are more uniform in the shape of
their outline and may slow reading speed
by as much as 13% [Rehe, 36]; however
they may be used for isoclated keywords
and phrases.
Sequencing
Page sequencing and organization in book
literature has evolved specific com-
ponents of complicated text structures,

e.g., title pages, tables of contents,
abstracts, indices, and running heads
which appear on every page. Programs

often appear without this standard docu-
mentation apparatus, but large programs
viewed as literature should contain these
items. In book literature, their exact
form varies dramaticly depending on con-

Graphics Interface '82

tent. While there are no universal stan-
dards, certain technical conventions ar-
ise, and it would seem reasonable to as-

sume that conventions for programs could

be established.

AN EXAMPLE: TYPESETTING A SHORT C PROGRAM

The above summary is not meant to be an
operational specification, only a clarif-
ication of what more detailed principles
might involve., Principles are often best
seen in application. Those presented here
are worked out in the accompanying illus-
trations. Figures 1 and 2 present a ‘'be-
fore and after' version of typographic
program visualization.

Figure 1 presents a program in an elemen-
tary typographic form using fixed-width
characters of a single font with limited
horizontal spacing variation. There is
little typographic hierarchy. The program
is more readable than those presentations
which use all-capital typography and mul-
tiple commands per line, but there are
still ways in which it can be made more
readable.

Figure 2, a protypical black-and-white
visualization, requires a very high reso-
lution bit map display terminal or a very
high gquality hardcopy device. The actual
images of Fiqure 2 were generated in
Times Roman type using a computer-
controlled phototypesetter. Figures 1
and 2 are part of a series of experimen-
tal prototypes pages for online or off-
line documentation which illustrates the
full potential of a graphic design ap-
proach to textual program visualization.
Spatial 1location, typographic symbol
heirarchies, figure-field enhancements,
indexes, abstracts, etc. are combined to
create a clear, consistent, explicitly

structured page that is legible and ap-
pealing to the reader. The following
paragraphs detail the features of this

design and elaborate upon the basic prin-
ciples suggested above.

Spatial Organization

The entire page/frame is a mosaic of con-
tent units with standrad locations but in
some cases variable size. In an interac-
tive environment, each of these areas
could be a window to a higher or lower
level of information.)

The upper part of the first page (or
frame of a high resolution terminal) is

306

intended to be a standard documentation
cluster of header units grouped in a na-
tural order. These include a documenta-
tion source, a program title, program
subtitle(s), revision or 1last update,
unique code number, chapter reference and
page number, The items are then repeated

on every frame/page.

In a strong titling ,banner below the
headers, the title is presented in a size
larger than all of the others and on a
field of 50% gray to distinguish it
clearly but not in an overpowering way
from the rest of the text. The version
date and unique code numbers are intended
to advise the reader of the particular

version of this program. There may be
others similar to it that must be dis-
tinguished. The abstract is intended to

be a 100 word summary of the function and
significance of the program. It appears
in italic to set it off from other ele-
ments. The author/quide and 1location
band are intended to identify specific
persons at the installation site who can
be contacted for assistance in interpret-
ing or using the program. Note the use
of a tab setting at approximately half
the width of the main column of text for
presenting two columns of information. -

Modules of the program are
unique 50% gray bands with bold roman
module names. Their size is the largest
of three standard sizes of type for the
textual material of the program. Bold

indicated by

type 1is used to keep the type legible on
a gray background.

Comments appear in 7 point type as
separate marginalia to the left of the
main column of text. These are intended

to be single line phrases that can help
the reader to understand individual code
lines. The comments c¢olumn is approxi-
mately 40 characters wide and appears in
the smallest of the three text sizes. As
phrases, the comments appear without ini-
tial capital or periods. In keeping with
all clusters of text, they are flush
left, ragged right.

Footnotes appear as 8 point type in a
separate band of space at the bottom of
the page/frame set off by a thin rule as
wide as the main text. They are more de-
tailed and complete explanations of the
significance of code lines (or any other
element such as a title). They appear as
full sentences with initial capitals and
closing periods.

Graphics Interface ‘82

™

v

A

Spatial Grid

Because of variable-width typesetting, a
given phrase is approximately one third
narrower than its typewritten equivalent.
To usefully divide the page/frame, the
main text column allows approximately 60
characters of 10 point type. The wide
column permits code to be indented in 1/2
inch increments several hierarchical lev-
els while still maintaining approximately
40 or more characters per line.

Code Conventions

within the 10 point type of the primary
column of code, the following typographic
conventions are used. The first time that
a function (e.g., "calc®) is defined
within the program, it is set off by re-
peating the
point bold type followed by a thin rule.
In order to call attention to local func-
tions, these functions defined within the
program are shown in bold while global
functions appear in reqular roman. Con-
stants are often digits; therefore, to
keep them all similar' in appearance,
named constants are shown in all-
capitals. -Variables appear as italic.
The standard C symbol syntax has been al-

tered slightly, e.g., */*" and "*/" are
not used to surround comments, and "{"
and "}" as procedural symbols are not

used because of explicit spatial struc-
ture which makes them redundant. These
redundant symbols have been centatively
removed to reduce visual clutter.

CONCLUSIONS

The intention of the prototype in Figure
2 1is not to establish standards but to
demonstrate how explicit typographic
specifications based on graphic design
principles might affect the presentation
of computer programs. The prototype is
intended only to focus attention on this
approach, to raise expectations of pro-
gram readability, and to raise interest-
ing questions which further research in
the visible language of computer programs
might explore.

These questions can be clustered into six
categories,

The first research topic deals with the
appropriate use of typography to reveal
formal syntactic, semantic, and pragmatic
properties of programs and program ele-
ments. For example, what is the ap-

name of the function in 12

307

propriate use of boldface and italic?
Should multiple fonts be used? How
should color be employed?

A second concern is with the design and
layout of program elements on the page
using systems of grids, overlays, and

windows. How important is redundancy, as
for example in the use of brackets plus
horizontal spacing? How should secondary
text (comments and commentaries) be
clustered around the primary text (code)?

A third area for research is the possi-
bility of substituting a set of well-
designed icons or symbols (pictograms or
ideograms) for certain combinations of
alphanumerics that occur repetitively in
program code., What should these icons or
symbols be? To what extent can program
documentation become more diagrammatic,
and rely less on the linear text forms of
current programming languages?

A fourth set of questions arise out of
the possibilities that interactive com-
puter graphics offer in the inclusion of
movement, blinking, and other kinds of
change into program documentation. More
fundamentally,
tionship between static paper and dynamic
screen representations of computer pro-
grams.

A fifth problem area is in the depiction
of 1large directed graphs of great com-
plexity, networks in which nodes are not
single points but entire frames (combina-
tions of signs) and in which 1links are
explicitly stated or implied connections
between nodes. The spatial 1layout and
user navigation problems that occur may
be seen, for example, in the enhancement
of program text into Nassi-Schneiderman
diagrams, Warnier-Orr diagrams, contour
diagrams, and SADT diagrams.

The final research topic concerns the
ability of a program visualization to fa-
cilitate the integration of the various

conceptual levels at which a program may
be described. What relation should exist
between high resolution detailed views

and low resolution overview images of the
same program? What is an optimal se-
quence for the basic units of a "program
book*? What would its other parts such

as tables of contents and indices look
like? How are they to be used?
Finally, what 1is the relation between

reading and writing such complex visual
representations?

Graphics Interface "82

we must explore the rela-

If Figure 2 has some merit as a workable
format for c programs and other
languages, it is the authors' hope that
designing a visible language scheme will
be recognized as a distinct and demanding
task requiring the assistance of graphic

design. Other researchers and design pro-

fessionals may be moved to explore the
subject further with the goal of turning
computer graphics capabilities back on

their sources in computer programming to
develop more effective and humane pro-
gramming literature.

ACKNOWLEDGEMENTS

The authors acknowledge the work of Mr.
Richard Sniderman of Human Computing
Resources Corporation in executing the
typesetting. They would also 1like to
thank John McCarthy, Mike 0'Dell, and
Dennis Hall of Lawrence Berkeley Labora-
tory for their helpful advice. This work
was suppor ted by Human Computing
Resources Corporation, and by the Applied
Mathematics Sciences Research Program of
the Office of Energy Research of the
Department of Energy under contract W-
7405-ENG-48. ‘ : ' ,

REFERENCES
Baker, F.T., Chief Programmer Team

Management of Production Programming, IBM
Systems Journal 11:1 (1972), 56-73.

bahl, 0.-J., Dijkstra, E.W. and Hoare,
C.A.R., Structured Ptggzamming, Academic
Press, London, .

Deutsch, L. Peter and Taft, Edward A.,
"Requirements for an Experimental Pro-
gramming Environment,"” Xerox Palo Alto
Research Center Report CSL-80-10, June

1980.

Gutz, S., Wasserman, A.I. and Spier,

M.J., Personal Development Systems for

the Professional Programmer, Computer,

April 1981, 45-53.

Hartley, J., Designing Instructional

Text, Nichols, New York, 197F8,

Higgins, David A., Program Design and

Construction, Prentice~-Hall, nglewood
1fts , 1979,

Kernighan, Brian W. and P.J. Plauger,

Software Tools, Addison-Wesley Publishing
Company, Reading, 1976.

308

" Teitelman, Warren,

Marcus, Aaron, “Computer-Assisted Chart
Making from the Graphic Designer's Per-
spective", Computer Graphics, 13:3, 1980,
247-254.

Marcus, Aaron, "Designing the Face of an
Interface", Proceedings, NCGA-81, Nation-
al Computer Graphics Associlation National
Conference, 1981, 207-215.

Marcus, Aaron, "Graphic Design and Com-
puter Design: Know Business is Show Busi-
ness”, Centerline, Center for Design, San

Francisco, July 1981, 6-7.

Nassi, I. and Schneiderman, B.,
"Flowcharting Techniques for Structured
Programing,” ACM Sigpan Notices, August
1973.

Organick, E. and Thomas, J.W., Computer-
generated Semantics Displays, Proc. IFIP

Congress, Applications Volume, 1979,
Parnas, D.L., On the Criteria to be Used
in Decomposing Systems into Modules,
Comm. of the ACM 15:12 (December 1972),

1053-13587

' Rehé, Rolf} T oéra hy: How to Maké‘ it

Most Legible, Design Reseach Internation-
al, Carmel, Indiana, 1974.

Ross, Douglas T., Structured Analysis
(SA): A Lanquage for Communicating Ideas,
IEEE Transactions on Software Engineering
SE-3:1, January 1977, I6-34.

"A Display Oriented
Programmer's Assitant," 1Int. Jour. Man-
Machine Studies, 11, 1979, I[57-I87.

Tinker, M.A., Legibilit of Print, Iowa
State University Press, Ames, 13693.
Wasserman, A.I., Tutorial: Software

Development Environments, IEEE Computer
Socliety Press, Los Alamitos CA, 198l.

Williamson, Hugh, Methods gg Book Design,
Oxford University Press, New York, 1966.

Wirth, N., Program Development by Step-
wise Refinement, Comm. of the ACM 14:4
(April 1971), 221-227.

Yourdon, E., Structured

Walkthroughs,
Prentice-Hall, Englewcod Clifts N4, 1379.

Zachrisson, B. Legibilit of Printed
Text, Algvist an§ W1E5e¥l, Stockholm,

Graphics Interface '82

z8. eo8pe] soydeID

Finclude <stdio.h>
#define MAXQOP 20

ddefine NUNBER '0O'
#define TOOBIG '9°

calc()
L4

int type;

Figure 1A

/% max size of operand, operator &/
/¢ signal that number found e/
/¢ signal that string is too big #/

/% reverse Polish desk calculator #/

char sINAXOP);
double opZ, atoft), popl), pushi);

while ((type = getop(s, NAXOP)) 1= EOF)
switch (ype)d(
case NUNBER:

Case

Case®

case

case

Case®

Case

pushlatof(s));
break;

l*l:
pushlpop() ¢ pop());
break;

l.!:)
pushipop() & popi))}
break;

l-lx
opl = popl)}
pushipopl) - op);
break;

VAN
op2 ‘= {)3;
if (opgok 0.0)

push (popt) /7 opl);
else

'break;
l::
printf("%F0, pushipop(l));
break;
‘el
cleart);
break;
YOOBIG:
printf("2.20s ... is too long0, s);
break; default:
printfl"unkrnown cormand %ZcQ, type)s
break;

¥

printf{”zero divisor popped0);

s
:

4
”n

Figure 1B

#define MAXVAL 100

int sp
€

doubl

0
1

Vi

;
CMAXVALY;

double push(?)

deuble
A

3

}

clear()

£
g

f3
if
el

if

el

{sp < MRIVAL)
return {
se (
printf("err
clear(); .
return(0);

~double popl).
{

(sp > 0)

/* manimom depth of vl stack #/

/% stuck pointer ®/
/% value stack #/

/% push ¢ onto value stack #/

Vallspetd = £);

ori stack fullo);

/% pop top value from stack #/

return{vall--sgl);

se (

clear();
return(Q);

printf("error£ stack emply();

/% clear stlack #/

60€

Z8, 9oepeI] $HYARID

Fig e 1C " XY/ Mesearch I
Amytown, Anywhere

Figure 2a

ek ¢ aculstor b Augun 1901 hapter -8
Contral Module [PRLEY] Page 1 ol)

etop(s, lim) /¢ get next operator or operand &/ 1
Shar st1y ¢ v Desk Calculator
in lim)
¢
int 1, ¢} ”
while ((c = getch()) == * ¥ }} ¢ =3 " (| ¢ =3 '(Q) Version of | August 1981 Ref. No. 12.345.67
' .
g This program implements a simple desk calculator which uses
10 fc b= .0 &8 (c € 'O" 41 c > '9')) mfrz ﬁolixh n”:)‘;fﬂan. Opemnlj: are"l‘mxhed onto a stack. When
returnic)y an operator arrives its operands are popped. the operator is
sf0) = ¢; applied, and the result is pushed onto the siack.
for (i = 1 tc = getchar()) >s 0" && ¢ <= '9") it+) }
it (3 < dim) For Assistance Call: . Aaron Mascus Ronald Baccker & Richard Sniderman
sfi) = ¢} . Lawrence Berkeley Lab Human Computing Resources Corp.
e 0T D catnnet mraction o TN
it (1 ¢ lim) 415-486-5070 416-922-1937
sli) = ¢}
for (feey (c 3 getchar()) >= '0" && ¢ <= "9'} {+¢+)
it (i < lim)
- b
N si1) = 3 : . Control Module
it (1 < Him) /% nusber is ok ¥/
ungetchic)y ' #include <sidio.h>
si1} = * s abre of operand, operaioe #dcfine MAXOP 20
return(NUNBER) ; signal that Aumbe fournd #define NUMBER '0°
Y} else (/¢ {1's teo bigy skip rest of line #/ sigal that wiring i 100 big #define TOOBIG *9
while (c 1= '0 && ¢ 1= EOF)
¢ 3 getchar(); calc
sflim - 11 2 ' 13 reverse Polinh desk cakulstos cale()
return(YOOBIG); . int ype,
} char s (MAxop];
b] double op2, atof(), pop (). push();

#define BUFSIZE 100

char buf[BUFSIZE)};
int bufp = 03

/¢ buffer for ungetch #/
/% next free position in buf &/

goich() /% get & (possibly pushed bauck) character &/
{
returnt{bufz > 0) ? bufl--bufpl) 3 getchar());
}
ungetchic) /¢ push character buck on input #/
:nt c}

if (bufgp > BUFSIZE)

printfeungetch: too many charactersQ);
else

bufltufpetd = ¢;

while ((ype = getop (s, MAXOP)) != EOF)

switch (ppe}

case NUMBER:
push {atof (s));
break:

case ‘4"
push (pop() + pop());
break;

case **"
push (pop() * pop());
break;

case *-
op2 = pop();
push (pop() - op.’)’;
break;

This program was authored by Brian Kernighun and Dennis Ritchic of Bell Laboratories,
Mursray Hill, New fersey. These prototype visual enhancements to the C program

were designed by Aacon Marcus with the assistance of Ronald Baecker and Richard Sniderman.

Because + and * are commutative operaiors, the order in which the popped operands are
bi is i . For the - and / the lef) and right opcrands must be
distinguished.

A
)

0LE

T8. sdupey) soydesd

. ® & ~¢
Figure 2B Figure 2C
xy/s IM‘ = ek Cakcutasar 1 Auguwt 1981 Chapres &8 XY/ Researchs inc ek Cakuteos 1 Muguw 1988 Chaprer 9.3
Aepews, Amyuhers Contros Module 1236801 Pege 1ol) _ Adtown. Aoy whers Ingut Modale 2.8 61 Poge Vol)
case */":
op? = pep(); .
if (op2 1= 00) Input Module
push (pop() / 0p2);
clse getop
peintfl (*“zero divisor popped\n); :
break; « . gel neas opacatos of operend setep (5, Um)
tmt char],
intf (“\%f\n™, push (pep0)’); int lins,
break; int4 g
case ‘c": - —— e e\ e = A
deas(); while ((¢ getch () le e \n}
break, -t <Olc> 9
case TOOBG: if (¢! mu:‘t(:()c 0 ic > 9))
printf (*%.208 ... I8 (oo long\n", 8); slol = ¢ '
break: for (1= 1; (c = gotchar() > = 0 8& ¢ <= %; H+)
default: . ") if U < lim)
printl (“unknown command %c\n"’, ppe); sld=¢
beeak; cotlers fraction flcmm’) ’
' —— — — T if(l<lll|n‘)
; - Stack Managemont Module R sld=c
: . _ SR i i for (i++; {c = getchar()) > = 0 && ¢ <=9 1+ +)
. i< im -
matimn depth of v sack #define MAXVAL 100) s{d = ¢
wach pointes intgp=o T eumber la ok i< tim
velue wach double wal [MAXVAL]; ungetch (9;
st = o
push © return (NUMBER); -
. '5100 big: skip rest of Nne clse :
oush { ome velue vach :ubk push ()) while (¢ != ‘\n' && ¢ != EOF)
uble /. ¢ = getchar();
if (5p < MAXVAL) sltim-1] = "o
rewrn (wl [sp+ +] = A, return (TOOBIG);
eclse
printfl (*eccor; stack full\n'");
clear(); #define BUFSIZE 100
retura (o), Rbultas for ungesch char byf [BUFSIZE]Y;
eat free position in buf int byp = 0;
pop
Pop sop vaue from siack double pop() . setch
. if (sp> 0) © b e chanscies geich () :
" return (vl [--spl); return ((oufp > 0) T buyf {--busfpl : getchar(0);
else
printf (*“‘error: stack empty\n"); ungetch
clear();
rewra (o), sk character back oo lagut ::::.gc. @
clear if (bwfp > BUFSIZE)
cton st :.;e::(: e printf (“ung 100 many \n"');

3} The stack and stack pointer which sre shared by push, pep. snd cleas are defined in the
Siack Management Module and ate not referred (10 by mals. Thus this piece of code
eramincs the 10p of the stack without disturbing is.

bf [bufpt +1 = ¢,

A singlc characters tather than an srray could have been used since in (his program it is
never the case that more than one cxtrs character ihan nocessary is read. Thisis o
more general implementation.

bt

.

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

