
UC Berkeley
UC Berkeley Previously Published Works

Title
Vocal learning-associated convergent evolution in mammalian proteins and regulatory 
elements.

Permalink
https://escholarship.org/uc/item/5pg5k20w

Journal
The Scientific monthly, 383(6690)

Authors
Wirthlin, Morgan
Schmid, Tobias
Elie, Julie
et al.

Publication Date
2024-03-29

DOI
10.1126/science.abn3263
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5pg5k20w
https://escholarship.org/uc/item/5pg5k20w#author
https://escholarship.org
http://www.cdlib.org/


Vocal learning-associated convergent evolution in mammalian 
proteins and regulatory elements

Morgan E. Wirthlin1,2,†,‡, Tobias A. Schmid3,†, Julie E. Elie3,4,†, Xiaomeng Zhang1,§, 
Amanda Kowalczyk1,2, Ruby Redlich1, Varvara A. Shvareva5, Ashley Rakuljic5, Maria B. 
Ji6, Ninad S. Bhat5, Irene M. Kaplow1,2, Daniel E. Schäffer1,¶, Alyssa J. Lawler2,7,§, Andrew 
Z. Wang1, BaDoi N. Phan1,2, Siddharth Annaldasula1, Ashley R. Brown1,2, Tianyu Lu1, 
Byung Kook Lim8, Eiman Azim9, Nathan L. Clark10, Wynn K. Meyer11, Sergei L Kosakovsky 
Pond12, Maria Chikina13, Michael M. Yartsev3,4,*,#, Andreas R. Pfenning1,*,#

1Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA.

2Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705.

3Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA

4Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA.

5Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 
94708, USA.

6Department of Psychology, University of California, Berkeley; Berkeley, CA 94708, USA.

7Department of Biological Sciences, Carnegie Mellon University; Pittsburgh, PA 15213, USA.

8Neurobiology section, Division of Biological Science, University of California, San Diego; La 
Jolla, CA 92093, USA.

9Molecular Neurobiology Laboratory, Salk Institute for Biological Studies; La Jolla, CA 92037, 
USA

10Department of Biological Sciences, University of Pittsburgh; Pittsburgh, PA 15213, USA.

*Corresponding authors. apfenning@cmu.edu, myartsev@berkeley.edu.
‡Present address: Allen Institute for Brain Science; Seattle, WA 98109, USA.
§Present address: Broad Institute, Massachusetts Institute of Technology; Cambridge, MA 02142, USA.
¶Present Address: Massachusetts Institute of Technology; Cambridge, MA 02139
†These authors contributed equally to this work
#These authors jointly supervised the work 
Zoonomia Consortium Members listed at the end of the Main Text document
Author Contributions:
Conceptualization: ARP, MEW, TAS, JEE, MMY
Methodology: ARP, MEW, TAS, JEE, MMY, IMK
Resources: TAS, MMY, ARB, WM, EA, BKL
Data Curation: TAS, JEE, XZ, BNP, AZW
Investigation: MEW, TAS, JEE, VAS, AR, MBJ, NSB, TL, MMY, ARP
Software: MEW, XZ, IMK, DES, SA, JEE, APR
Formal analysis: MEW, XZ, IMK, DES, AJL, ARP, MMY, TAS, JEE, VAS, AR, MBJ, NSB
Funding acquisition: ARP, MMY
Supervision: ARP, MEW, MMY, TAS, IMK
Writing – original draft: MEW, JEE, TAS, ARP
Writing – review & editing: MEW, JEE, TAS, IMK, DES, AJL, MMY, ARP

Competing interests: ARP is founder and CEO of Snail Biosciences.

HHS Public Access
Author manuscript
Science. Author manuscript; available in PMC 2024 August 09.

Published in final edited form as:
Science. 2024 March 29; 383(6690): eabn3263. doi:10.1126/science.abn3263.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11Department of Biological Sciences, Lehigh University; Bethlehem, PA 18015, USA.

12Department of Biology, Temple University, Philadelphia, PA 19122, USA.

13Department of Computational and Systems Biology, University of Pittsburgh; Pittsburgh, PA 
15213, USA.

Abstract

Vocal production learning is a convergently evolved trait in vertebrates. To identify brain genomic 

elements associated with mammalian vocal learning, we integrated genomic, anatomical and 

neurophysiological data from the Egyptian fruit-bat with analyses of the genomes of 215 placental 

mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we 

discovered a vocal-motor cortical region in the Egyptian fruit-bat, an emergent vocal learner, and 

leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal 

learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers 

robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our 

research implicates convergent losses of motor cortex regulatory elements in mammalian vocal 

learning evolution.

One-Sentence Summary:

A bat vocal brain region is identified and leveraged in comparative genomic analyses to reveal the 

evolution of mammal vocal behavior.

Vocal production learning—the ability of an organism to modify the acoustic properties of 

its vocalizations as a result of social experience—is an example of convergent evolution, 

having evolved independently within multiple lineages of birds and mammals, including 

humans, where it manifests as speech (Fig. 1A) (1, 2). Vocal production learning 

(“vocal learning”) has been extensively studied in songbirds, highlighting numerous shared 

behavioral features of birdsong and speech learning, such as a dependence on auditory 

input during a critical developmental period and a juvenile babbling phase of sensorimotor 

exploration prior to the maturation of the adult vocalizations (1). Convergence between 

song-learning birds and humans extends to neuroanatomical specializations, including direct 

corticobulbar projections from the vocal motor cortex analog to the hindbrain motoneurons 

controlling the vocal apparatus (3) and shared transcriptional specializations in analogous 

speech- and song-specialized brain regions (4). Thus, songbirds have become a premier 

model for exploring the fundamental brain anatomical, molecular, and genomic features 

associated with vocal learning (1, 3). An expanding literature on vocal learning behavior 

across mammals suggests an underappreciated diversity in the phenotypic expression of 

vocal learning across the taxa traditionally thought to possess it (2, 5–8). Study of the 

diverse forms of mammalian vocal learning behaviors could broaden our understanding of 

the core molecular, anatomical and physiological brain mechanisms of vocal learning and 

of the mechanisms underlying the convergent evolution of skilled motor behaviors more 

broadly.

We evaluated evidence of convergent genomic specializations shared among four lineages 

of vocal learning mammals that independently evolved this trait — bats, cetaceans, 
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pinnipeds, and humans (Fig. 1A) — using whole-genome datasets and recently developed 

computational approaches. Specifically, we used protein-coding sequences from genomes 

generated by the Zoonomia Consortium (9, 10) and models of evolutionary rate convergence 

(11, 12) to identify protein-coding regions repeatedly associated with the evolution of 

vocal learning across mammals. Although we found 200 protein-coding genes significantly 

associated with vocal learning, none of them showed strong evidence of selection in all 

four mammalian clades and only five showed strong evidence of selection in three out 

of the four clades. Due to individual lineages contributing disproportionately to many 

of the protein-coding results, we hypothesized that noncoding regulatory elements might 

also be under constraint for the evolution of vocal learning.. We next profiled open 

chromatin, a proxy for regulatory element activity (13), in multiple brain regions and 

somatic tissues in the Egyptian fruit bat, a mammal with robust vocal plasticity (14–16) 

to identify vocalization-associated regulatory genomic specializations. We accomplished 

this by combining anatomical tracing and electrophysiological recordings in vocalizing 

bats to identify a region of motor cortex associated with vocal production. The vocalization-

associated epigenomic data collected from this region of this bat species — combined with 

hundreds of mammalian genomes (17, 18), their associated reference-free whole-genome 

alignments (19), and high-quality epigenomic data from the motor cortex of multiple 

additional mammalian species (20–22) — provided the foundation to apply a machine 

learning approach, the Tissue-Aware Conservation Inference Toolkit (TACIT) (23). This 

approach allowed us to identify putative enhancers, distal regulatory elements that tend to 

be highly tissue-specific, associated with the convergent evolution of vocal learning. In sum, 

we combined recently developed computational tools and neuroanatomical experiments in 

the Egyptian fruit bat and found evidence of convergent evolution in both protein-coding and 

noncoding DNA sequences.

Results:

Convergent Evolution in Protein Sequence Associated with Vocal Learning Behavior

To explore the possibility of shared genomic specializations associated with vocal learning, 

we first applied RERconverge (11) to recently released protein-coding alignments obtained 

for hundreds of mammals (10) to identify protein-coding genes whose relative rates of 

evolution differ between vocal learners and other mammals, and which may thus be under 

selection related to vocal learning (11, 24). We analyzed 16,209 high-quality protein-coding 

gene alignments across 215 boreoeutherian mammals, including 26 vocal learning species, 

164 vocal non-learners, and 25 species without confident annotations (Fig. 1A, Data S1; 

Materials and Methods). We found evidence for lower evolutionary rates in vocal learners 

compared to non-learners in 804 genes and evidence for elevated evolutionary rates in 102 

genes (Tau adj. p < 0.01 and permulations (24) adj. p < 0.01) (Data S2; Fig. S1). To 

identify which specific clades were driving the differential rates of evolution, we applied a 

Bayes Factor analysis that examines each clade individually for evidence of selection (18) 

(Data S2). Despite the large number of significant associations based on RERconverge, we 

found no single protein-coding gene with consistently lower or elevated evolutionary rates 

in all four vocal learning clades. Among the genes with reduced evolutionary rates in vocal 

learning species, we found only five out of 804 protein-coding genes with strong evidence 
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of selective pressure in three out of the four vocal learning clades: CENPC, CATSPERG, 

MGA, TREML2, and ZCWPW1 (Bayes Factor > 5) (Fig. 1B,C). None of these proteins 

reached the threshold for selection in the human lineage (Materials and Methods), which 

could indicate different mechanisms of evolution in the laurasiatherian vocal learning clades 

relative to humans. Our results suggest that the vast majority of protein-coding genes that 

we identify are evolving much faster or much slower in one clade, but are only weakly 

associated with vocal learning across the other lineages.

The most strongly associated genes were CENPC (Fig. S2A; Tau = −0.30; Tau adj. 

p = 8.7 × 10−6; permulations adj. p <= 0.001), and GRM8 (Fig. S2B, Tau = 0.26; 

Tau adj. p = 3.5×10−4; permulations adj. p <= 0.001). GRM8 represents an especially 

promising candidate because it has previously been linked to anatomical specializations for 

vocal learning in songbirds (25) and is a known target of the speech-associated FOXP2 
transcription factor (26). In primates and rodents, both GRM8 and FOXP2 are markers 

of a rare class of medium spiny neurons implicated in motor control that coexpress both 

DRD1 and DRD2 dopamine receptors (27–29). Overall, our results support a model where 

vocal learning behavior is only partially explained by differences in protein-coding gene 

evolutionary rates.

To further explore selection on these vocal learning-associated protein-coding genes, we 

applied an additional set of tools from the HyPhy package that compares non synonymous 

(dN) and synonymous (dS) substitution rates in the nucleotides of the amino acid sequence 

(30). Here, these sensitive evolutionary models of codon substitution formally compare 

selective regimes, modeled as dN/dS distributions, between branches annotated with the 

vocal learning phenotype and the rest of the phylogenetic tree (12, 30). The results were 

largely consistent with amino-acid level methods: the protein-coding genes with lower 

protein evolutionary rates in vocal learning clades also tended to be under higher constraint 

in vocal learning clades (Wilcoxon p = 2.5 × 10−4), and the genes with higher evolutionary 

rates in vocal learning species showed evidence of accelerated evolution in these same 

clades (Wilcoxon p = 7.9 × 10−9) (Fig. S3; Data S3). To further explore the functional 

trends of protein-coding genes associated with the evolution of vocal learning, we focused 

on the set of proteins that showed consistent behavior between RERconverge and the 

HyPhy RELAX model (Benjamini-Hochberg false discovery rate q < 0.05). This yielded 

a set of 126 proteins that were more slowly evolving in vocal learning clades and 74 

with an elevated rate of evolutionary changes relative to other species. The complementary 

approaches of RERconverge and HyPhy RELAX identify a total of 200 vocal learning-

associated genes and suggest that this behavior, vocal learning, is having a substantial impact 

on protein evolutionary rates.

We further interrogated evolutionary pressures across the vocal learning-associated genes 

by looking for evidence of diversifying position selection using the HyPhy BUSTED-PH 

model. Evidence of diversifying positive selection was found in 6.3% (13 transcripts, 9 

genes) within the set of genes with elevated rates of evolution in vocal learning species 

based on RER-Converge and the HyPhy RELAX model. As expected, we identified much 

lower rates of diversifying positive selection in the gene with lower rates of evolution in 

vocal learning species (1.0%) and within the set of randomly chosen transcripts (2.0%). 
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Among the 9 genes that showed evidence of positive selection, 8 have been associated with 

neurodevelopment (CCDC136, KIDINS220, LRRN1, RSG5, CYLD, GABRA5, NETO2, 

KIAA1109) (31–38). The gene CCDC136 has more directly been associated with multiple 

language-related phenotypes in humans(31, 39, 40). These results suggest that the vocal 

learning-associated genes across mammals may tend to play a role in human brain 

development and vocal behavior.

To more systematically explore the functional trends within these 126 and 74 protein-coding 

genes, we conducted a gene ontology analysis using EnrichR. Protein-coding genes with 

lower evolutionary rates in vocal learning species were associated with Regulation of 
DNA-templated Transcription (p=1.10×10−6, adj. p=1.9×10−5), Regulation of Canonical 
Wnt Signaling Pathway (p=5.1×10−5, adj. p=0.013), and the Autism human phenotype 

ontology (p=5.8×10−6, adj. p=0.0028) (Fig. 1F,G; Data S4). The genes with accelerated 

evolutionary rates were not enriched for any pathways at an adjusted p < 0.05 with at least 

5 genes contributing. The enrichment of autism-associated genes among the set of genes 

with greater levels of conservation in vocal learners (MECP2, RAD21, DYRK1A, SIM1, 

FTSJ1, MEIS2, FGFR1) is particularly interesting given prevalence of speech delay and 

early vocal production differences in human subjects with autism (41, 42) and the previous 

association between autism genes and the evolution of vocal behavior in birds and bats (43, 

44). Based on the association with autism, we further explored the function of the vocal 

learning-conserved gene set in the context of early vocal production differences. Although 

only four human loci have been associated with differences in early vocal production, 

protein-coding genes overlapping two of these loci show higher levels of conservation in 

vocal learning clades (INSC, DAPK3) (45).

Identification of a Vocal Production Region in Egyptian Fruit Bats

The enrichment of transcription factors in the set of vocal learning-associated proteins 

suggests that differences in gene regulation are likely to be a major factor in the evolution 

of vocal learning. Since gene regulation is often tissue-specific, we sought to identify motor 

regions of the brain involved in vocal production and contrast their epigenomic profiles 

with motor regions not involved in vocal production. We conducted this comparison in the 

Egyptian fruit bat, Rousettus aegyptiacus, a mammalian species with robust vocal plasticity 

(16, 46) and with data on its motor cortex mapping (47). To identify a candidate region, 

we were guided by the hypothesis that fine vocal-motor control, a key ability to vocal 

learning, may be associated with the anatomical specialization of the motor cortex (48–51). 

In particular, previous work suggested that a cortical region controlling complex vocal 

behavior would be characterized by a direct, monosynaptic projection onto the motoneurons 

controlling the vocal source (in mammals, the larynx) (48–52). Such a direct connection has 

been observed robustly in humans (53–56) and vocal learning birds (songbirds, parrots and 

hummingbirds, (57–59)), but has not been reliably found in vocal non-learning species such 

as chimpanzees (41) or mice (60)

We first determined whether a direct corticobulbar anatomical connection existed in R. 
aegyptiacus. Guided by cortical mapping experiments (47), we injected anterograde tracers 

into the part of the motor cortex that has been associated with orofacial motor control 
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(ofM1) and identified fluorescently labeled descending cortical fibers in the hindbrain 

region where the laryngeal motoneurons reside: the nucleus ambiguus (NA) (Fig. 2A, 

Fig. S4A-B and Movie S1). To test the existence of a direct monosynaptic projection, 

we also specifically identified laryngeal motoneurons in the NA by retrogradely labeling 

them through bilateral muscular injection of CTB (Cholera Toxin B) into the cricothyroid 

muscles of the bat larynx (Fig. 2A). We validated the colocalization of descending cortical 

fibers and local synaptic boutons with laryngeal motoneurons using two complementary 

labeling approaches: one relying on immunostaining of synapses (VGLUT1) and the other 

one using viral labeling of synapses (SYN) (Fig. 2B-F; Fig. S5). Across five bats, 79.2% 

of the retrogradely labeled motoneurons (61/77) colocalized with descending cortical fibers 

and 26% of them (20/77) colocalized with both cortical fibers and synaptic boutons, pointing 

to the existence of a robust direct corticospinal projection to laryngeal motoneurons (Fig. 

2G). This colocalization in the NA was consistent across the different techniques (Fig. 

2G, Fig. S5) and could not be found in any other brainstem motor nuclei, including the 

hypoglossal nucleus, which controls the tongue and neck muscles (Fig. S4C-E). We noted 

that the corticobulbar fibers crossed the midline anterior to the NA at the level of the facial 

nucleus, offering a direct contralateral path for the innervation of the NA (Fig. S4F). These 

anatomical findings highlight the bat ofM1 as a possible candidate region associated with 

vocal production.

To further corroborate the role of ofM1 in vocal control, we tested whether ongoing single-

cell neural activity in this area was associated with vocal production. We performed wireless 

electrophysiological recordings from four bats engaged in free vocal interactions with peers 

(Fig. 2H). Vocalizations were identified and recorded using wireless call detectors placed 

around the necks of the individual bats (see Materials and Methods, (46)). We found that 

about half of the recorded single units in ofM1 (115/237) showed a significant change 

in firing rates when the bats produced vocalizations as compared to staying quiet (Fig. 

S6A-C; ANOVA with a Poisson Generalized Linear Model per cell; p-value threshold 

= 0.001; Materials and Methods). In 25% of ofM1 cells that were excited during vocal 

production (26/104), the change of activity could not be accounted for by jaw or tongue 

movements, indicating that these cells were engaged in the motor control of movements 

specific to vocal production (Fig. S6D). Furthermore, many of the single units had a 

sustained increase of activity during production of vocalizations, but not during perception 

of vocalizations (Fig. 2I). To further assess this specific neural modulation during vocal-

motor production, we quantified the information between the time-varying firing rate and 

the amplitude modulation of the vocalizations. This analysis confirmed that ofM1 neurons 

had significantly higher motor than auditory information (Fig. 2J; likelihood-ratio test on 

LME models, N=219, LRStat = 62.515, df = 1, p = 2.6645×10−5; average d-prime change 

in information gain during motor production = 0.15 ± 0.13, corresponding to an increase of 

0.286 ± 0.035 bits/s). Combined, the results of the anatomical and electrophysiological study 

defined ofM1 as a motor cortical area associated with vocal production in R. aegyptiacus.
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Epigenomic Specializations in the Vocal Production Region of the Egyptian Fruit Bat Motor 
Cortex

We next sought to epigenomically profile candidate regulatory elements in vocal and 

non-vocal brain regions in R. aegyptiacus to identify vocal learning-associated regulatory 

genomic specializations. We generated a multi-tissue atlas of open chromatin data — 

indicative of regulatory activity — by performing ATAC-seq (assay for transposase-

accessible chromatin sequencing (61)) across 7 brain regions and 3 somatic tissues of 

R. aegyptiacus (Materials and Methods), including ofM1 (Fig. 3A). From a total set of 

88,389 noncoding, non-promoter open chromatin regions (OCRs) in primary motor cortex 

(M1), we identified 348 candidate enhancers with differential open chromatin between 

orofacial motor cortex (ofM1) and wing motor cortex (wM1) (p < 0.05; Fig. 3B, Data 

S5, Materials and Methods). Genes proximal to OCRs with differential open chromatin 

between ofM1 and wM1 were significantly enriched for functional association with neuronal 

projections and transcriptional regulation (Data S6). These included OCRs near the genes of 

51 known transcription factors (TFs), including FOXP2, a TF that has been extensively 

implicated in human speech and vocal learning (Fig. 3C) (62). Notably, genes near 

OCRs differentially open between bat ofM1 and wM1 included genes we had identified 

as being under convergent acceleration in vocal learners using evolutionary approaches: 

RERconverge analysis (n = 11) and the HyPhy RELAX analysis (n=3; GATA3, LRRN1, 

TNIP3) (Data S6). These specialized regions of open chromatin, coupled with an enrichment 

of transcription factors in the set of vocal learning-associated protein-coding genes, suggest 

that both cis and trans differences in gene regulation contribute to the evolution of vocal 

learning behaviors.

Convergent Evolution in Candidate Enhancer Sequences Associated with Vocal Learning 
Behavior

Since there is accumulating evidence that cis-regulatory differences in enhancer regions are 

driving the evolution of complex traits (63–65), we sought to identify OCRs whose tissue- 

and cell type-specificity would be shared across species of vocal learners. Detecting cis-

regulatory element differences associated with trait evolution is challenging because many 

enhancers can preserve the same regulatory function even when the underlying genome 

sequence is highly divergent, and many cis-regulatory elements have tissue-specific activity 

(66–68). Thus, methods for convergent evolution that rely on the alignment of individual 

nucleotides between species (e.g. (11, 69, 70)) are likely to miss a substantial proportion of 

key candidate enhancers.

We therefore sought to extend our search for cis-regulatory elements whose evolution 

is associated with vocal learning behavior using a recently developed machine learning 

approach, TACIT (Tissue-Aware Conservation Inference Toolkit (23)). Given that it is 

infeasible to map the brains and collect motor cortex tissue from each vocal learning and 

closely related non-learning species, the TACIT approach uses machine learning models 

(23) to predict motor cortex open chromatin across orthologous regions of the genome 

(66–68). TACIT then associates predictions with vocal learning in a way that corrects 

for phylogenetic relationships (Fig. 4A). We used the predictions from convolutional 

neural networks (CNNs) that were previously trained using DNA sequence-based M1 open 
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chromatin data obtained in this study for R. aegyptiacus with ATAC-seq and collected earlier 

for the mouse (21), the rat, and the macaque (20) to predict motor cortex open chromatin 

across 222 mammalian genomes (Materials and Methods, (23)). Given that parvalbumin has 

been shown to be a shared marker of brain areas critical for vocal learning in songbirds and 

humans (4), we also used CNNs trained to predict cell type-specific open chromatin using 

ATAC-seq data from mouse and human M1 parvalbumin-positive neurons (M1-PV+) (22, 

23, 71). We identified regions whose predicted open chromatin was consistently lower or 

higher in vocal learners relative to vocal non-learners using phylogenetic logistic regression 

(72, 73) with phylogenetic permutations (24) (permulations adj. p < 0.1; Fig. 4A, Materials 

and Methods, (23)). We identified 33 open chromatin regions from our M1 CNN models 

that had lower predicted open chromatin in vocal learning species and 11 that had higher 

predicted open chromatin in vocal learning species (Fig 4D; Table S1; Data S7). From 

the M1-PV+ predictions, we identified five candidate enhancers that had lower predicted 

activity in vocal learning species and one candidate enhancer that had higher predicted 

regulatory activity in vocal learning species. (Table S2; Data S7). Unlike the protein-coding 

genes, the majority of vocal learning-associated enhancers showed evidence of higher or 

lower activity in at least three out of the four vocal learning clades (Fig. 4B, C, D; Data 

S8). Consistent with the finding that convergent vocal learning-associated gene regulation 

is primarily repressive (4), we found that the majority of candidate enhancers (n = 38/50 

OCRs, 76%) had lower predicted open chromatin activity in vocal learning relative to vocal 

non-learning mammals (Fig. S7).

To interpret potential functions of the vocal learning-associated candidate enhancers, we 

annotated the nearest genes in the mouse (Data S9). In many cases, the genes closest to these 

putative enhancers have been associated with significant developmental delay or complete 

absence of speech when disrupted in humans (Tables S1-2). Four of the OCRs identified 

by the M1 model were proximal to genes—GALC, TCF4, TSHZ3, and ZNF536—that 

were also near OCRs with differential activity between bat ofM1 and wM1 (Data S6). Two 

of the vocal learning-associated M1 OCRs were proximal to genes—DAAM1 and VIP—

previously shown to have convergent gene expression between humans and song-learning 

birds (4). To further explore the function of the vocal learning-associated OCRs in the motor 

cortex, we annotated their cell type-specificity using publicly available mouse BICCN data 

(74). The cell type most enriched for OCRs predicted to be lower in vocal learning species 

was Layer V ET (extra-telencephalic) neurons, which have previously been implicated in 

vocal learning (75), but strong enrichments were also found for other cortical excitatory 

neurons (Fig. 4E,F; Data S10).

Among genes near vocal learning-associated OCRs, the DACT1 (TACIT adj. p = 0.0014; 

RERconverge Tau adj. p<0.0001) and CELF4 (TACIT adj. p < 0.023; RERconverge Tau 

adj. p<0.0034) proteins also displayed significantly lower relative evolutionary rates in vocal 

learners. Despite the lack of direct evidence in the literature for its role in speech production, 

CELF4 has been associated with autism in the human population (76) and its function in 

Layer V pyramidal neurons has been linked with seizures in mice (77).

Multiple M1-PV+ interneuron OCRs associated with vocal learning are near genes 

previously associated with autism. For example, an OCR that is negatively associated with 
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vocal learning evolution is in an intron of the gene CCSER1, which has nonsense mutations 

implicated in autism (78) and is in a locus associated with musical beat synchronization 

(79). An OCR that is positively associated with the evolution of vocal learning is in an 

intron of the gene CNTNAP4, whose deletions and copy number variation in humans and 

mice have been implicated in neurological disorders, including autism in humans (80, 81). 

To test whether these associations would have been identified by chance, we tested whether 

vocal learning-associated OCRs tended to be near genes associated with autism. We found 

the M1-PV+ OCRs with human orthologs near genes associated with autism (82) tend to 

be more significantly associated with vocal learning evolution than other OCRs with human 

orthologs (Wilcoxon p=0.0071).

Discussion:

Convergent evolution of vocal production learning has been associated with convergent 

evolution at the neuroanatomical level: cortical motor regions driving vocal production in 

humans and songbirds (human motor cortex and songbird RA) show increased connectivity 

with the brainstem and striatum (3). These same motor regions also show convergent 

evolution in patterns of gene expression, with commonly decreased gene expression found 

in both song-learning birds and humans (4). In this study, we investigated convergent 

evolution of vocal learning in mammals, both at the anatomical and the genetic level. 

First, we found a direct motor corticobulbar connection from a cortical region implicated 

in vocal production in a vocal learning bat. Second, we revealed widespread evidence 

of convergent evolution across vocal learning mammals in protein-coding sequences and 

candidate regulatory enhancers.

Our parallel study of both coding and noncoding regions linked with the vocal learning 

trait identifies many protein-coding genes (200) and a smaller number of noncoding regions 

(50), distal sites of open chromatin, that are associated with vocal learning. Although a 

larger number of significant protein-coding genes are identified, the vast majority of these 

are primarily driven by strong evidence in one of the vocal learning clades and only weak 

evidence in the other three. In contrast, the majority of significant noncoding regions show 

robust evidence of convergent selective pressure in at least three out of the four clades. The 

larger number of identified proteins relative to open chromatin regions could be due to better 

statistical power from being able to directly model nucleotide evolution in protein-coding 

sequence, which tend to be more stable than regulatory elements across species (11, 12). We 

note, however, that only 5/200 of the significantly associated protein-coding genes showed 

robust evidence of differential rates of evolution in at least three of four vocal learning 

clades. Out of these 200 proteins, many were neurodevelopmental transcription factors, 

which are among the most highly conserved genes in mammals (83) and thus likely to play 

roles in a broad range of contexts that could constrain their evolution. It is also possible 

that some of the identified proteins could be associated with other convergent traits that 

correlate with vocal learning across mammals, including echolocation (bats, cetaceans), 

marine adaptations (cetaceans, pinnipeds), or increased longevity (bats, cetaceans, humans).

In contrast, 33/50 vocal learning-associated OCRs had differential predicted open chromatin 

in at least three of four vocal learning clades; this independent convergence of gene 
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regulatory function suggests that these OCRs may be critical for the evolution of vocal 

learning. Enhancers tend to have functions that are much more context- and tissue-specific 

(68), making them less functionally constrained than protein-coding genes, which could 

perhaps allow more flexibility for an individual enhancer to evolve a new role for a specific 

trait like vocal learning. In sum, our results suggest that the evolution of mammalian vocal 

learning is largely driven by changes to the noncoding regulatory elements that orchestrate 

gene expression rather than to the protein-coding genes themselves.

Despite the different methodologies applied to identify convergent evolution in coding 

and noncoding regions, both protein coding- and regulatory element-focused approaches 

implicated gene functional pathways associated with human autism. In our protein-coding 

analyses, genes with lower evolutionary rates based on both RERconverge and HyPhy 

RELAX were enriched for autism function. Likewise, in our analyses of regulatory 

evolution, multiple autism-linked genes were near human orthologs of the vocal learning-

associated M1-PV OCRs. In humans, autism is often associated with speech delays and 

differences in social behavior, both of which could be related to the evolutionary trait of 

vocal learning ability(84). Broadly, this could be evidence that genomic loci associated with 

a complex trait across mammals may also be associated with variations in related traits 

within the human population.

The bulk motor cortex OCRs with lower predicted open chromatin in vocal learners show 

the strongest tendency to overlap with OCRs in Layer V ET neurons, which form long 

range projections (Fig. 4E). These results are consistent with our previous findings showing 

decreases in the expression of axon guidance genes in the motor cortex of vocal learning 

species (4). Among other functions, the Layer V ET neurons implicated by TACIT create 

the corticospinal projections that have been hypothesized as an anatomical landmark of 

vocal learners (2, 3, 48, 49, 56, 85, 86). Furthermore, the neuroethological and anatomical 

experiments we conducted in R. Aegyptiacus provide evidence that corticospinal projection 

neurons are present in the motor cortex of that bat species and that this motor cortical region 

participates in vocal production. Thus, consistent with previous literature, our results support 

a model in which the loss of regulatory element activity in the motor cortex influences axon 

guidance properties of long range projection neurons, which allow more robust connectivity 

between the cortex and the brainstem of vocal learning mammals (4, 85, 87). Alternatively, 

these genetic differences could relate to potential differences in the density of disynaptic 

connections that have been associated with skilled motor behavior, including vocalization in 

non-human primates (88, 89). Notably, these long range projection neurons have also been 

associated with predisposition to autism (90).

Methods Summary

To find vocal learning-associated convergent evolution in protein-coding sequences of 

the mammalian genome, we began with amino acid level multiple sequence alignments 

produced by the Zoonomia consortium (10). Those served as input to two classes of 

methods, RERconverge (11) and HyPhy (30). RERconverge with an additional permutations 

correction for phylogenetic structure (24) was used to find protein-coding sequences whose 

evolutionary rates were associated with the presence or absence of vocal learning. HyPhy 
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RELAX was used to find protein-coding sequences that were evolving more slowly, 

neutrally, or faster in vocal learning species. In addition, the HyPhy BUSTED-PH method 

(12) was applied to find evidence of diversifying positive selection. The gene ontology 

analysis was performed on the intersection of the RERconverge and HyPhy results using 

EnrichR (91). To control for false positives across all methods, Benjamini-Hochberg false 

discovery rate correction (92) was applied.

To examine the existence of a direct monosynaptic projection in a vocal learning mammal, 

the corticobulbar projections in Egyptian fruit-bats were mapped by tracing the projection 

from the orofacial motor cortex and from the cricothyroid muscles of the vocal cords. 

Performing immunohistochemistry in the brainstem revealed that synaptic boutons of 

cortical projection neurons overlapped with retrogradely-labeled motoneurons - confirming 

the existence of a direct monosynaptic projection. The role of the orofacial motor cortex 

during vocal production was then validated by quantifying the information between the 

vocalization amplitude and single cortical neuron activity measured wirelessly in vivo while 

the bats produced and listened to vocalizations.

To create an atlas of open chromatin regions in the bat motor cortex (M1), several brain 

regions, including wing-M1 and orofacial-M1, were separately dissected. The samples were 

cryopreserved, then the nuclei were isolated, and subsequently ATAC-Seq was performed to 

measure open chromatin. The open chromatin regions from this experiment were combined 

with previously published experiments in macaque, rat (23), and mouse (21) to create an 

atlas of cross-species motor cortex open chromatin.

To find vocal learning-associated convergent evolution in noncoding regions of the 

Boreoeutherian mammalian genome, the TACIT machine learning approach, was applied. 

Orthologous regions across genomes were found by combining the CACTUS whole genome 

multiple sequence alignment (19), halLiftover (93) and HALPER (94). Phyloglm (72) 

was then used to associate predicted motor cortex and parvalbumin-positive inhibitory 

interneuron open chromatin with binary annotations of vocal learning behavior. Phylogenetic 

permutations were applied to correct for phylogenetic tree structure and Benjamini-

Hochberg to correct for multiple hypothesis testing. To identify potential trends in the 

cell type-specificity of the implicated regions, permutations on the regions of the genome 

that were predicted to have significantly higher or lower open chromatin in vocal learning 

species were conducted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data and materials availability:

Egyptian fruit bat ATAC-seq data—including raw .fasta files, .bigWig files of genome-

aligned reads, processed open chromatin .narrowpeak files, and extensive sample metadata

—have been made available at GEO under accession ID GSE187366. Publicly 

available ATAC-Seq data was obtained from GEO GSE159815 and GSE161374. 

Single-nucleus open chromatin was downloaded from the NEMO archive: https://

data.nemoarchive.org/biccn/grant/u19_cemba/cemba/epigenome/sncell/ATACseq/mouse/. 

The code for the electrophysiology and functional components of the project are 

available here: https://github.com/NeuroBatLab/LoggerDataProcessing/ https://github.com/

NeuroBatLab/SoundAnalysisBats/ https://github.com/NeuroBatLab/LoggerDataProcessing/ 

https://github.com/julieelie/Kilosort2_Tetrode/configFiles/configFile16.m. The code for 

the convergent evolution analysis can be found in https://github.com/pfenninglab/

TACIT, https://github.com/veg/hyphy, and https://github.com/veg/hyphy-analyses/tree/

master/BUSTED-PH . The histological and electrophysiology source data from this study 

are available on FigShare under the DOI 10.6084/m9.figshare.25180430 (95). The code 
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for conducting and visualizing the RERconverge analysis can be found here: https://

zenodo.org/doi/10.5281/zenodo.10641176 (96). The code for conducting and visualizing the 

TACIT anlaysis can be found here: https://zenodo.org/doi/10.5281/zenodo.5952292 (97).
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Figure 1. Convergent changes in protein sequence associated with vocal learning evolution across 
215 mammalian species.
(A) A cladogram of mammalian species whose genomes were analyzed in this study 

highlights the convergent evolution of vocal learning species (in red) relative to non-learners 

(in black). The phylogenetic tree used in our analyses was derived from (98). Each of the 

genes implicated by RERconverge with lower (B) or higher (C) evolutionary rates in vocal 

learners are annotated based on whether or not they show a significant signature within the 

four vocal learning clades based on a Bayes factor ≥ 5 (18). All significant gene ontology 

categories (adjusted p < 0.10, EnrichR) are plotted for the 200 genes with conserved 

(D) and accelerated (E) selection in vocal learning clades, based on the combination of 

RERconverge and HyPhy RELAX. The points are colored by the odds ratio within the set of 

implicated genes relative to the genes outside of the set, which corresponds to the degree of 

enrichment within that set.
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Figure 2. Identification of an anatomically specialized motor cortical region targeting laryngeal 
motoneurons in the Egyptian fruit bat.
(A) Right: schematic of anatomical tracing approaches. Retrograde tracer cholera toxin 

B (CTB, purple) was injected bilaterally into the cricothyroid muscles to label brainstem 

motoneurons in nucleus ambiguus (NA). Simultaneously, an anterograde viral tracer 

(channelrhodopsin-2, ChR2, or Synapsin/synaptophysin dual-label, SYN; green) was 

injected bilaterally into the orofacial motor cortex (ofM1) to label corticobulbar projections 

into NA. Left: example coronal section showing cortical injection sites with anterograde 
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tracer (ChR2, green) and DAPI labeling (cyan). (B-F) Laryngeal motoneurons in the NA 

identified using a retrograde tracer (CTB, purple), cortical fibers labeled with ChR2 (green), 

corticobulbar synapses labeled with VGLUT1 (red), and DAPI (blue). B and C are overlaid 

images showing colocalization of fibers with a synaptic bouton on the retrograde labeled 

cell (white arrow). (G) Percentage of laryngeal motoneurons labeled with CTB that are 

colocalized with cortical fibers (blue) or with both cortical fibers and synaptic boutons (red). 

Note that both tracing techniques qualitatively yielded similar results: ChR2, n = 51 cells 

from 3 bats; Synapsin/synaptophysin dual-label virus (SYN), n = 26 cells from 2 bats. (H) 
Illustration of the experimental setup during which wireless electrophysiological recordings 

were conducted from the identified cortical region in freely behaving and vocalizing bats. (I) 
Spiking activity of an example ofM1 neuron aligned to the onset of vocalizations produced 

(bat’s own calls, orange) or heard (other bats’ calls, blue) by the bat subject. Top row, time 

varying mean firing rate and corresponding raster plot below. Colored lines in the raster 

plot show the duration of each vocalization. Note the increased firing rate during vocal 

production as compared to hearing. (J) Information (see Methods) between the time varying 

firing rate and the amplitude of produced (x-axis) vs. heard (y-axis) vocalizations for 219 

single units (marker shapes indicate bat ID, n=4 bats). The cell shown in (I) is highlighted in 

red. Inset shows the distribution of D-prime between motor and auditory information for the 

same cells. Note that the distribution is heavily skewed towards higher motor information 

rather than auditory information coded in the activity of the recorded neurons. Error bars are 

mean +/− SEM throughout the figure.
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Figure 3. Differential Open Chromatin in Bat Orofacial M1 relative to Wing M1.
(A) Open chromatin was profiled from 7 dissected brain regions of Egyptian Fruit bats. 

(B) Volcano plot of ATAC-seq OCRs with differential activity between the orofacial and 

wing subregions of primary motor cortex (ofM1 and wM1, respectively) of Egyptian fruit 

bat. (C) Genome browser showing ofM1 and wM1 ATAC-seq traces at the 3’ end of the 

FOXP2 locus. Reproducible M1 open chromatin regions (OCRs) are indicated in blue, with 

a differentially active OCR in ofM1 relative to wM1 highlighted in red.
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Figure 4. Vocal learning-associated convergent evolution in motor cortex open chromatin regions 
implicates specific neuron subtypes.
(A) Overview of applying the Tissue-Aware Conservation Inference Toolkit (TACIT (23)) 

approach to vocal learning. OCRs (left) identified in motor cortex (M1). Measured open 

chromatin from M1 (4 species) were used to train convolutional neural networks (CNNs) 

to predict M1 open chromatin from sequence alone. Red bars and corresponding arrows 

indicate the presence of a peak while the blue bars represent the absence. The same OCRs 

were then mapped across 222 mammalian genomes (left) and the identified sequences were 

used as input to the CNNs to predict open chromatin activity. TACIT identified OCRs whose 

predicted open chromatin across species was significantly associated with those species’ 

vocal learning status. (B-C) The 4-way Venn diagrams represent the number of OCRs 

implicated by TACIT (both M1 and PV+) as displaying low (B) or high (C) activity in each 

of the vocal learning clades based on a t-test. (D) The heatmap visualizes specific open 

chromatin regions along the rows (predicted higher in vocal learners in green; predicted 

lower in vocal learners in purple) across 222 mammals in the columns (vocal learner in red, 

vocal nonlearner in black, insufficient or conflicting evidence in gray). The color in each 

cell corresponds to the z-scored predicted open chromatin, with low open chromatin in blue, 

mean open chromatin in white, and high open chromatin in red. For open chromatin regions 

predicted to be significantly less (E) or more (F) open in vocal learning species (p<0.05), 
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the red point shows the number of overlapping regions (y-axis) across mouse cortical cell 

types (x-axis). The bar-plot shows the distribution across 1,000 permutations of the peaks 

implicated by TACIT. The notches extend 1.58 * IQR / sqrt(n), which gives a roughly 95% 

confidence).
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