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ABSTRACT

Supernova remnants (SNRs), as the major contributors to the galactic cosmic rays (CRs), are believed to maintain
an average CR spectrum by diffusive shock acceleration regardless of the way they release CRs into the interstellar
medium (ISM). However, the interaction of the CRs with nearby gas clouds crucially depends on the release
mechanism. We call into question two aspects of a popular paradigm of the CR injection into the ISM, according
to which they passively and isotropically diffuse in the prescribed magnetic fluctuations as test particles. First, we
treat the escaping CR and the Alfvén waves excited by them on an equal footing. Second, we adopt field-aligned CR
escape outside the source, where the waves become weak. An exact analytic self-similar solution for a CR “cloud”
released by a dimmed accelerator strongly deviates from the test-particle result. The normalized CR partial pressure
may be approximated as P(p, z, t) = 2[|z|5/3 + z

5/3
dif (p, t)]−3/5 exp[−z2/4DISM(p)t], where p is the momentum of

CR particle, and z is directed along the field. The core of the cloud expands as zdif ∝
√

DNL (p) t and decays in time
as P ∝ 2z−1

dif (t). The diffusion coefficient DNL is strongly suppressed compared to its background ISM value DISM:
DNL ∼ DISM exp (−Π) & DISM for sufficiently high field-line-integrated CR partial pressure, Π. When Π ' 1,
the CRs drive Alfvén waves efficiently enough to build a transport barrier (P ≈ 2/ |z|—“pedestal”) that strongly
reduces the leakage. The solution has a spectral break at p = pbr, where pbr satisfies the equation DNL (pbr) ) z2/t .

Key words: acceleration of particles – cosmic rays – diffusion – ISM: individual objects (W44, W51C,
IC 443, W28) – ISM: supernova remnants

Online-only material: color figures

1. INTRODUCTION

The generation of cosmic rays (CRs) in supernova remnant
(SNR) shocks by the diffusive shock acceleration (DSA) mech-
anism (e.g., Drury et al. 2001) is understood reasonably well
up to the point of their escape into SNR surroundings. But
making this mechanism responsible for the most of galactic
CRs requires understanding all stages of the CR production
including their escape from the accelerators. In fact, the best
markers for “CR-proton factories” are nearby molecular clouds
(MCs) illuminated by protons leaking from SNRs. CRs will be
visible in gamma rays generated by collisions with protons in
the cloud (Aharonian et al. 1994, 2008; Aharonian & Atoyan
1996; Gabici et al. 2009; Tavani et al. 2010; Abdo et al. 2010a,
2010b; Giuliani et al. 2011; Ellison & Bykov 2011; Torres et al.
2011). Whether this gamma radiation is detectable with current
instruments depends on the CR leakage rate from the source.
The recent surge in measurements of gamma-bright SNR sug-
gests that the sensitivity threshold have already been surpassed
for at least several galactic SNRs and it is becoming increas-
ingly timely to improve our understanding of the CR leakage
from these objects.

Without such improvement, it is also difficult to resolve the
ongoing debates about the primary origin of gamma emission
from some of the gamma-active remnants in complicated
environs, e.g., RX J1713 (e.g., Funk 2012; Inoue et al. 2012;
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Ackermann et al. 2013). In arguing for hadronic or leptonic
origin, one needs to know exactly how far the CRs are spread
from the source at a given time and with what spectrum. Indeed,
strong self-confinement of accelerated CRs may keep their flux
through a remote MC below the instrument threshold, primarily
(and counterintuitively) for powerful accelerators. Conversely,
self-confinement will enhance illumination of nearby MCs, thus
enhancing the odds of detecting the hadronic contribution to the
emission. Apart from the distance to the target MC, equally
important is its magnetic connectivity with the CR source.
Overall, the predictions for the emissivity of MCs near strong
CR sources can differ from the test-particle (TP) results by an
order of magnitude or more.

To better understand the physics of CR confinement to SNRs,
we consider the CR escape separately from their acceleration,
which is assumed to have faded because of the SNR age.
Specifically, we will formulate the problem as a diffusion
of a CR cloud (CRC) released from an accelerator into the
interstellar medium (ISM) and propagating through a “gas” of
self-excited Alfvén waves. At the scales larger than the initial
size of the cloud, the solution, after an adjustment to the local
environments, will become self-similar, depending only on the
background diffusivity DISM and the integrated CRC energy (cf.
the Sedov–Taylor (ST) solution for the point explosion).

The idea that the CRC confinement should be thought of as
a self-confinement is not new (e.g., Wentzel 1974; Achterberg
1981). However, the analytic solution for CR propagation being
uniformly valid in both the nearby and far zones of the initial
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CRC seems to be unknown. This paper is aimed at presenting
and analyzing such a solution. With some reservations, it may
also be applied to a late stage of CR acceleration in an SNR,
when the accelerated CRs become disconnected from the shock
and diffuse outward. Their pressure, however, is still sufficient
to drive strong Alfvén waves that limit the CR escape. We begin
with a brief discussion of the problems with the current escape
models, thus motivating the new one.

1.1. The Need for a New CR Escape Model

Traditionally, the transport of CRs is treated differently in-
side and outside a DSA accelerator. Outside, CRs are thought
to escape as TPs with a diffusion coefficient inferable from ob-
servations. This picture cannot be correct near the accelerator
because the CR transport must be in a self-confinement regime,
in which the CR streaming instability diminishes their diffusion
coefficient by orders of magnitude. This CR anisotropy instabil-
ity, and particularly its nonresonant extensions, macroscopically
driven by the CR current and the CR pressure gradient, has a po-
tential to generate magnetic field fluctuations well in excess of
the ambient magnetic field, δB ! B0 (e.g., Bell 2004; Drury &
Falle 1986; Bykov et al. 2009; Malkov et al. 2010). At the very
least, such strong fluctuations should justify the standard DSA
assumption about the Bohm diffusion regime with the mean free
path (mfp) of the order of the particle gyroradius, rg, achieved at
δB ∼ B0. Naturally, the transport is isotropic in this regime. The
ISM background turbulence, on the other hand, is much weaker
δB2/B2

0 " 10−5 at the CR relevant length scales, thus resulting
in the CR mfp !105rg (for GeV particles, rg ! 1012 cm). It
is important to emphasize that under these circumstances the
cross-field diffusion coefficient, κ⊥, is suppressed by a large
factor compared to the diffusion along the field line, κ‖, i.e.,
κ⊥/κ‖ ∼ (δB/B0)4 (see, e.g., Drury 1983).

It follows then that there is a problem of describing parti-
cle transport between the self-confinement (accelerator vicinity)
and the TP (far from accelerator) transport regimes. To circum-
vent this problem, the acceleration process has been treated
separately from the particle escape using one of two devices:
the upper cutoff momentum and the free-escape boundary (FEB;
see, e.g., Reville et al. 2009; Drury 2011, for recent discussions).
As the names suggest, accelerated particles escape instantly
upon reaching a prescribed boundary either in momentum or in
configuration space. Their escape is assumed to have no effect
on the acceleration other than through the modification of the
shock structure (Moskalenko et al. 2007). In a simplified visu-
alization of the DSA as a “box” process, suggested by Drury
et al. (1999), the upper cutoff and the FEB are two sides of the
box in the particle phase space. There were efforts to include
self-generated waves into the description of particle acceleration
and escape from strongly modified CR shocks (Malkov et al.
2002; Malkov & Diamond 2006), or in numerical treatments
(Galinsky & Shevchenko 2007, 2011; Fujita et al. 2011). In
most approaches, however, a sudden jump in the CR diffusion
coefficient in momentum space is introduced to set an upper
cutoff (e.g., Ptuskin & Zirakashvili 2005; Yan et al. 2012). A
similar jump in coordinate space would result in an FEB.

As long as the CR transport outside the accelerator is treated
in the TP approximation, no smooth transition between the
CR acceleration and their escape is provided, regardless of the
scenario for the latter. However, the diffusion coefficient rises
by roughly five orders of magnitude in a transition zone that
should be correspondingly large, unlike an infinitely thin FEB.
It is this zone where the CR escape flux and confinement time

are set by self-generated waves, thus rendering the FEB a rather
implausible concept. For many SNRs it is then not yet possible to
conclude whether the gamma emission is leptonic or hadronic,
should such a conclusion depend on the CR escape and on the
subsequent illumination of adjacent clouds. In a broader sense,
there is a missing link in galactic CR generation between the CR
acceleration (under a very strong self-generated wave–particle
scattering) and their subsequent propagation (in a very weak
interstellar turbulence). The goal of this paper is to establish
such a link.

Our treatment below is applicable to the following two situa-
tions. In one situation, a shock accelerates particles continuously
but some of them reach far enough or diffuse across the local
field to become disconnected from the shock front and have thus
chances to escape. While doing so, they drive their own waves
at a gyroradius scale, whose amplitudes gradually decrease out-
ward and so does the particle density. The second situation is a
clear-cut case for this paper that deals with a CRC released into
the ISM with no ongoing acceleration inside the CRC. Both situ-
ations correspond to a mesoscale transport regime, intermediate
between the Bohm diffusion inside the accelerator and a global,
quasi-isotropic CR diffusion in the Galaxy. The latter process
is, in turn, supported by a random large-scale component of
the galactic magnetic field at the scale of tens of parsecs super-
posed on the regular, spiral-arm-aligned toroidal field (Brunetti
& Codino 2000; Strong et al. 2007; Blasi & Amato 2012). In
the mesoscale transport regime, however, these components are
considered as an ambient field with a scale much larger than
the CR gyroradius and even larger than the CRC scale height.
Before we describe in the next section the physical setting of the
problem, it is worthwhile to emphasize some of the qualitative
results.

First of all, for sufficiently high initial CR pressure (higher
than magnetic pressure) and low ambient turbulence level,
δB & B0, the spreading of the CRC strongly deviates from
the oft-used TP solution. Instead of being controlled by only
one (diffusive) scale lD ∼

√
DISMt , the structure of the

expanding CRC is more complicated. Namely, it comprises
three zones, of which only the outermost has the above TP
scaling, but a significantly lower CR pressure than it would
maintain by diffusing through the ISM with the diffusivity
DISM. Conversely, the CR pressure in the innermost part
remains strongly enhanced. These two zones are connected by a
self-similar, 1/z-part of the CR pressure profile.

2. CR ESCAPE MODEL

After the ST expansion stage in which the shock radius
increases as Rs ∝ t2/5 and particularly in and after the so-
called pressure-driven snowplow stage with a slower expansion
at or below Rs ∝ t0.3 (e.g., Bisnovatyi-Kogan & Silich 1995;
Truelove & McKee 1999), the diffusive propagation of CRs
away from the shock becomes more important than their bulk
expansion driven by the overpressured SNR interior. Regardless
of the escape mechanism, one of the most important parameters
is the number of spatial dimensions involved (see, e.g., Drury
2011 for a recent discussion). Indeed, the three-dimensional
random walk is non-recurrent, so only the finite shock radius
gives the particle a chance to return to it. However, two- and
three-dimensional random walks are recurrent. Therefore, the
first important assumption to make is, indeed, about the process
dimensionality which immediately translates into the choice of
magnetic field configuration. Note that since particles recede
from the shock as R̄ ∝ t1/2, they escape already at the ST stage.
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Figure 1. CR escape along the magnetic field B0 from the two polar cusps of SNR with a stalled blast wave.
(A color version of this figure is available in the online journal.)

Contrary to the recent analytic (Drury 2011; Ohira et al. 2011;
Yan et al. 2012) and numerical (with self-driven Alfvén waves;
Fujita et al. 2011) treatments of the spherically symmetric
particle escape, we consider an escape through the local flux
tube. This choice is suitable for an SNR expansion in an ISM
with a distinct large-scale magnetic field direction that does
not change very strongly on the SNR scale. As we stated
in the Introduction, our goal is to fill the gap between the
weak scattering propagation far away from the remnant and
the Bohm diffusion regime near the shock, with κ = κB.
The perpendicular diffusion in the far zone is of the order
of κ⊥ ∼ (δB/B0)2 κB & κB & κ‖ ∼ (δB/B0)−2 κB, so we
may safely assume that in the unperturbed ISM the diffusive
propagation is one dimensional, along the field line.

Closer to and inside the accelerator (or rather in the region
of its past activity), κ⊥ ∼ κ‖ ∼ κB, which favors the isotropy
assumption. However, we may integrate (average) the equations
for the CR transport and wave generation across the magnetic
flux tube. Then, the problem becomes, again, formally one
dimensional. However, the lateral expansion of the integrated
flux tube may decrease CR pressure inside, thus making the CR
self-confinement in the field direction less efficient. To estimate
this effect we compare the “perpendicular” confinement time
τ⊥ ∼ a⊥/U⊥ with the “parallel” confinement time τ‖ ∼
a2

‖/Deff . Here, a⊥,‖ denote the respective sizes of the CRC,
U⊥ is the expansion velocity across magnetic field, and Deff is
the effective CR diffusion coefficient along the field. We may
estimate U⊥ from the balance of the CR pressure (assuming
PCR ' B2/8π ) and the ram pressure of the ambient medium,
U⊥ ∼

√
PCR/ρ. The effective diffusivity, associated with

the half-life of the CR against losses in the field direction,
is shown in Appendix B to be Deff ∼

√
DISMDNL, where

DNL is the CR diffusivity suppressed by the self-generated
Alfvén waves. Requiring τ⊥ ' τ‖ and estimating a⊥ ∼
RSNR, a‖ ∼ κB/Ush, we convert the inequality τ⊥ ' τ‖
into the following constraint on the CR acceleration efficiency
PCR/ρU 2

sh < (UshRSNR/κB)2(DNLDISM/κ2
B), where Ush is the

shock velocity. As both factors in the parentheses on the

right-hand side are larger than unity, the above requirement is
fulfilled. The CRs then indeed escape along the field line before
they inflate the flux tube significantly (cf., e.g., Rosner & Bodo
1996; Ptuskin et al. 2008, where the field-aligned propagation
from CR sources has also been adopted). A schematic example
of the basic configuration is shown in Figure 1. It should be noted
that our simplified CR propagation scenario does not include
possibly important perpendicular CR transport due to the CR
drifts, magnetic field meandering, or turbulence spreading.

The second important assumption to make is about the spatial
arrangement of the initial CR population. As shown in Figure 1,
we adhere to the idea that the acceleration is most efficient in
the quasi-parallel shock geometry. It can be advocated on the
theoretical grounds (Malkov & Völk 1995; Völk et al. 2003),
by in situ observations of heliospheric shocks, and hybrid simu-
lations (e.g., Burgess et al. 2012; Gargaté & Spitkovsky 2012).
More importantly, this acceleration preference is supported by
SNR observations (e.g., Reynoso et al. 2013). Therefore, we
may specifically assume that two “polar cusps” of accelerated
particles are left behind after the acceleration has either faded
out or entered its final stage when particles escape faster than
they are replenished by the acceleration. It is tempting to con-
sider SN 1006 as a prototype of such geometry, but the similarity
is physically not quite convincing, given the young age of the
latter source. On the other hand, older remnants, such as W44,
do show a bipolar CR escape (Uchiyama et al. 2012) that can
also be attributed to the field-aligned escape.

During earlier, more active stages of acceleration, CRs pre-
sumably fill up both the downstream and upstream regions
near the shock. Meanwhile, the contact discontinuity (CD) be-
hind the cloud of accelerated CRs must have undergone the
Rayleigh–Taylor instability with strong magnetic field enhance-
ment (Gull 1973). The CD expansion at late evolution stages
should thus act as a piston on the previously accelerated CRs.
Note that the CR reflecting piston was already employed in
numerical acceleration schemes, e.g., Berezhko (1996), which
might, however, overestimate the maximum CR energy (Kirk
& Dendy 2001). In the post-acceleration stage, however, given
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the significant field amplification at the CD, it is reasonable to
assume that CRs are partially coupled to the slowly expand-
ing flow with the reflecting magnetic piston behind, but while
escaping upstream they couple to the ISM and diffuse away.

2.1. Basic Equations, Initial and Boundary Conditions

Perhaps the most systematic quasi-linear (QL) derivation of
equations for the coupled evolution of CRs and Alfvén waves
is given by Skilling (1975). We use them in a simplified one-
dimensional (along the ambient field, z-coordinate, Figure 1)
form equivalent to that used by, e.g., Bell (1978) and, with an
interesting “beyond QL” interpretation, by Drury (1983),

d

dt
PCR (p) = ∂

∂z

κB

I

∂PCR

∂z
(1)

d

dt
I = −CA

∂PCR

∂z
− ΓI. (2)

Here, CA is the Alfvén velocity, and the time derivative is taken
along the characteristics of unstable Alfvén waves, forward
propagating with respect to the flow of speed U:

d

dt
= ∂

∂t
+ (U + CA)

∂

∂z
. (3)

Equation (1) above is essentially a well-known convection–
diffusion equation, written for the dimensionless CR partial
pressure PCR instead of their distribution function f (p, t). We
have normalized it to the magnetic energy density ρC2

A/2:

PCR = 4π
3

2
ρC2

A

vp4f, (4)

where v and p are the CR speed and momentum, and ρ is the
plasma density. The total CR pressure is normalized to d ln p,
similarly to the wave energy density I:

〈δB2〉
8π

= B2
0

8π

∫
I (k) d ln k = B2

0

8π

∫
I (p) d ln p.

Equation (2) is a wave kinetic equation in which the energy
transferred to the waves equals the difference between the
total work done by the particles, (U + CA) ∇PCR, and the work
done on the fluid, U∇PCR (Drury 1983). This interpretation of
the wave generation indicates that it operates in a maximum
efficiency regime. A formal QL derivation of this equation
assumes that the particle momentum p is related to the wave
number k by the “sharpened” resonance condition kp = eB0/c
instead of the conventional cyclotron resonance condition kp‖ =
eB0/c (note that here k = k‖; Skilling 1975). We have included
only the linear wave damping Γ and we will return to the
possible role of nonlinear saturation effects later. We assume that
∂PCR/∂z # 0 at all times, so that only the forward propagating
waves are unstable. The latter inequality is ensured by the
formulation of initial value problem in each of the following
two settings mentioned earlier in this section. In the first setting,
the initial distribution of the CRC is symmetric with respect to
z = 0, so we can consider their escape into the half-space z > 0.
The second setting is when the cloud is limited from the left by
a reflecting wall (CD). The appropriate boundary condition is
∂PCR/∂z = 0 at z = 0 in both cases.

Restricting our consideration to the case of coordinate-
independent damping rate Γ, we obtain the following (“QL”)

integral of the system of Equations (1) and (2):

PCR(z, t) = PCR0(z′) − κB

CA

∂

∂z
ln

I (z, t)
I0(z′)

. (5)

Here, PCR0 (z) and I0 (z) are the initial distributions of the CR
partial pressure and the wave energy density, respectively, and
z′ = z − (U + CA) t .

Using the QL integral, the system of Equations (1) and (2) can
be reduced to one nonlinear convection–diffusion equation for,
e.g., wave intensity I (z, t). We will use dimensionless variables
measuring the distance z in units of a‖, which is the initial size of
the CRC along the field line. The time unit is then a/CA. Note,
however, that, as the acceleration is assumed to be inactive, the
particle momentum p enters the problem only as a parameter
but, the initial scale height of the CRC a generally depends on
p. It is also convenient to introduce a new variable for the wave
energy density

W = CAa (p)
κB (p)

I (6)

and similar relations for I0 and W0. The equation for W then
takes the following form:

∂W

∂t
− ∂

∂z

1
W

∂W

∂z
= − ∂

∂z
P0 (z) . (7)

We have neglected the wave propagation along the character-
istics given by Equation (3) and the wave damping, assum-
ing that these processes are slower than the CRC diffusion:
U,CA, aΓ & κB/aI ∼ crg/aI . When the linear damping is im-
portant (e.g., in the case of Goldreich–Shridhar cascade, Farmer
& Goldreich 2004), it can be easily incorporated into the current
treatment by a simple change of variables indicated in Section 4.
The function P is defined similarly to W above,

P = CAa

κB (p)
PCR, (8)

and, again, the index 0 refers in Equation (7) to the initial CR
distribution PCR0 (z). Thus, according to Equation (5), for the
dimensionless CR partial pressure we have

P = P0 − ∂

∂z
ln

W

W0
. (9)

This quantity is governed by the equation

∂P
∂t

= ∂

∂z

1
W

∂P
∂z

, (10)

but its solution can be written down using the integral given by
Equation (9), after the solution to Equation (7) is obtained.

While letting CA → 0 in the wave–particle collective propa-
gation, we utilize the finiteness of CA in determining the bound-
ary condition for Equation (7) at z = 0 as follows. Returning
from the nonlinear diffusion Equation (7) to Equation (2), one
may see that the wave energy does not actually “diffuse” but
it is generated locally by particles that diffuse. Had the ne-
glected wave diffusion spread the waves to the point of their
stability, viz., z = 0, they would be convected away from it by
virtue of CA > 0. Recalling the symmetry (reflection) bound-
ary condition ∂PCR/∂z = 0 at z = 0 (no wave generation), we
thus set a fixed boundary value W (0, t) = W0, where W0 is
an initial (small) wave noise. It is instructive to investigate the
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case in which the initial noise is the same throughout the entire
half-space z > 0 (this limitation can be straightforwardly re-
laxed), so that the waves will be generated entirely by escaping
particles, thus emphasizing the self-confinement. The second
boundary condition is set by W → W0 for z → ∞, and all
t < ∞. Note that in general, W0 = W0 (p). These conditions
determine the boundary value problem given by Equation (7)
completely. However, we are interested primarily in diffusion of
CRs outside the region of their initial localization, viz., at z > 1,
where the source term in this equation vanishes. Therefore, the
problem given by Equation (7) can be split into two separate
problems, one in 0 # z # 1 and another in 1 < z < ∞ domain
with the following junction conditions:

∂

∂z
ln W

∣∣1+
1− = W

∣∣1+
1− = 0. (11)

These are the continuity conditions for both the wave en-
ergy density and pressure across the edge of the initial CR
localization.

2.2. Self-similar Solution Outside the
Region of Initial CR Localization

The nonlinear boundary value problem in the region z > 1
given by Equations (7) and (11) describes the CR propagation
outside the region of their initial localization. This problem can
be solved exactly using the following self-similar substitution:

W = 1
tα

w (ζ ) , where ζ = z

tβ
. (12)

Submitting this to Equation (7) with P0 = 0 yields α = 2β − 1.
The boundary condition at infinity (W → W0 2= 0, z → ∞),
on the other hand, requires α = 0, so that the equation for w
reads

d

dζ

1
w

dw

dζ
+
ζ

2
dw

dζ
= 0, (13)

with ζ = z/
√

t . It is interesting to observe that this equation
has a simple special solution w = 2/ζ 2 = 2t/z2. This
solution describes a stationary particle distribution P ∝ 1/z
that is obviously related to the Bell (1978) asymptotic particle
distribution in self-excited waves far away from a shock. In both
cases, this is a singular limit of the problem as it implies a zero
background turbulence level, W0 = 0, and thus the number of
particles in z > 0 half-space is infinite (Lagage & Cesarsky
1983; Drury 1983). Physically, this solution is different from
what we find below in that it requires a permanent source of
CRs at the origin so that their flux steadily drives waves that
linearly grow in time.8 As we shall see, this simple special
solution is an important singular limit of a more general and
completely regular solution.

The general solution to Equation (13) can be found in
quadratures by swapping ζ and w as dependent and independent
variables and introducing an auxiliary function V (w) by the
following substitution:

dw

dζ
= −

√
2w3/2V (w) . (14)

8 There is no convection with the flow toward the origin (U = 0) in our case,
which makes the solution unsteady, in contrast to the corresponding DSA
problem (Bell 1978) where the solution is steady because of the convection,
but the number of particles upstream is still infinite in both cases.

The equation for V (w) takes the following form:

w
d

dw
w

dV

dw
+

1
4

(
1
V

− V

)
= 0. (15)

This equation can be easily integrated, so that the function w (ζ )
can be subsequently found from Equation (14). The first integral
of Equation (15) is as follows:

(
∂V

∂ ln w

)2

= R(V ) ≡ 1
4

(V 2 − 2 ln V − q), (16)

where q is an integration constant. From Equation (14) and
from the boundary condition w → W0 at ζ → ∞ we infer that
V (W0) = 0, so that from Equation (16) we find

w = W0e

∫ V

0
dV ′√
R(V ′) . (17)

The function w (ζ ) is then determined by the following relation
for ζ (V ), Equation (14):

ζ = − 1√
2W0

∫
dV

V
√

R (V )
e
− 1

2

∫ V

0
dV ′√
R(V ′) . (18)

Using the identity 1/V = V − 2dR/dV and integrating
Equation (18) by parts, after some manipulations the last
equation simplifies considerably:

ζ =
√

2
w

(2
√

R + V ). (19)

It is useful to introduce an auxiliary constant V1 related to the
constant q and being the smaller of the two roots of R (V ), which
is R (V1) = 0. The requirement of a real zero of the function
R (V ) ensures mapping two “copies” of the domain of V onto
the full range 0 < ζ < ∞, whereby ζ → ∞ for V → 0.
Indeed, ζ (V ) in Equation (19) diverges at V = 0 as ∼

√
− ln V .

However, increasing V from V = 0 to V = V1 does not cover the
full range 0 < ζ < ∞ yet, as may be seen from Equation (19);
ζ decreases from ∞ only to ζ1 ≡ V1

√
2/w (V1) > 0. To

continue the integral curve to ζ = 0, it is necessary to switch
branches of

√
R at V = V1 in Equations (17) and (19) and

so continue the integral in Equation (17) back to V < V1
(along the second copy of the V-domain). Decreasing then V
from V = V1 to V = V0 ≡ exp (−q/2) brings the integral
curve to the point ζ = 0, w = wmax = w (ζ = 0) (Figure 2).
The explicit formal representation of the general solution of
Equation (13) is given in Appendix A along with a numerical
example (Figure 3). Equations (17) and (19) determine the
solution w (ζ ), where the integration constant V0 (or q) should
be obtained from the matching condition, Equation (11). This
can be done by considering Equation (7) inside the region of
initial CR localization, i.e., 0 < z < 1, where its right-hand side
is nonzero.

2.3. Solution Inside the Initial CR Cloud

Given an initial distribution P0 (z), Equation (7) can always
be integrated numerically in the finite domain 0 < z < 1, so that
the full solution will be obtained from the boundary conditions
and from the results of the previous section. However, according
to Equation (10), already for t ! W0, where W0 & 1, the initial
profile P0 (z) will be redistributed over the unity interval in such
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Figure 2. Two branches of function ζ (V ), Equation (A4), depicted for ε = 0.3.
Note that R (V = 0) = ∞, R (V0) = V0/4, R (V1) = 0, and ζ (V0) = 0 on the
lower branch of ζ (V ).

a way as to approach a quasi-steady state in which the flux
W−1

0 ∂W/∂z in Equation (7) through z = 0 will be balanced by
the source integral, P0 (0) (recall that P0 (1) = 0). The particle
flux through the z = 1 boundary decays as t−1/2 with time
(since |∂w/∂ζ | < ∞ at ζ → 0+; see the preceding section or
Equation (23) below). Therefore, for the self-similar stage of
the cloud relaxation we can write

ln
W

W0
=

∫ z

0
P0dz − B (t) z, (20)

where the “integration constant” B depends slowly (in the
above sense) on time. Using the first matching condition in
Equation (11), i.e., the CR pressure continuity, we can specify
B (t) as follows: B ∝ t−1/2 → 0 as t → ∞ (see Equation (23)
below). This determines the self-similar (outer, z > 1) solution
by the second matching condition in Equation (11):

w (0) ≡ lim
t→∞

w

(
1√
t

)
= wmax = W0e

Π. (21)

Here we have introduced the integrated partial pressure as
follows:

Π =
∫ 1

0
P0dz. (22)

The function B (t) and thus the internal solution W (z, t) in
Equation (20) may be obtained using this equation, the first
matching condition in Equation (11), and Equation (14),

B(t) = − 1√
t

∂

∂ζ
ln w

∣∣∣ζ=1/
√

t =
√

2w/tV
∣∣∣
ζ=1/

√
t
. (23)

Note that the particle pressure at z > 1 is completely determined
by the turbulence level w, Equation (9).

Now we can determine the integration constant q introduced
in the preceding section. From Equations (21) and (A3) we
obtain the following equation for q:

∫ V1

0
dV/

√
R (V ) +

∫ V1

V0

dV/
√

R (V ) = Π, (24)

where R (V1) = 0, R (V0) = −V0/2, while R (V ) is given by
Equation (16). In the most interesting case q ≈ 1, it is convenient

Figure 3. Analytic vs. numerical solution of Equation (14). The gap in the
analytical curve encloses the branching point of the solution at V = V1
(Equation (A1)). w0 = 0.19, wm = 0.9.
(A color version of this figure is available in the online journal.)

to use the constant ε2 = (q − 1) /2 in place of q. In this case,
Π ' 1, ε & 1, V1 ≈ 1 − ε, and

Π = 2
∫ V1

0

dV√
R

≈ 23/2
∫ 1−ε

0

dV
√

(V − 1)2 − ε2

≈ 23/2 ln
2
ε

+ O (1) ,

so that the turning point of the solution at V = V1 approaches
the critical point V = 1, where R has a minimum (Figure 2)

V1 = 1 − 2e−Π/2
√

2.

For Π & 1, we can write instead, V1 ≈ V0(1 + V 2
0 /2) where

V0 = exp(−q/2).
To conclude this section, the self-similar expansion of the

CRC described by Equations (7)–(10) is controlled by two
parameters. One parameter is the background turbulence level
W0(p) in the media into which the cloud expands. The second
parameter is the integrated pressure of the cloud, Π. Although
the initial wave energy density inside the cloud (z < 1) is likely
to be higher than W0, we have adopted the background value W0
also inside the cloud for simplicity, as this should not influence
the self-similar CR propagation outside the cloud. In addition,
efficient wave generation by a dense expanding CRC renders
the initial value for the wave energy density inside the CRC
unimportant.

3. ANALYSIS OF THE SOLUTION

Once we have the solutions outside and inside the region
of initial CR localization, we may precisely calculate how fast
particles escape from this region. Two convenient characteristics
of the escape process are the half-life time and the width of the
CR distribution. We begin our analysis of the solution from
computing these simple quantities and turn to the details of the
CR escape afterward.

3.1. Half-life Time and the Width of the CR Cloud

The most concise characterization of the escape may be given
by looking at the following two parts of the (conserved) integral

6
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particle pressure:

Π = Π0 + Π1 = const,

where

Π0 =
∫ 1

0
Pdz and Π1 =

∫ ∞

1
Pdz

refer to the regions inside and outside of the initial CRC,
respectively. Recall that at t = 0, Π0 = Π and Π1 = 0, while
at t = ∞, an opposite CR distribution is reached: Π0 = 0
and Π1 = Π. Note that Equation (21) specifies the total work
ultimately done by particles on waves, while they diffuse from
0 < z < 1 to 1 # z < ∞. As Π is conserved, it is natural to
define the CR confinement time as the time at which Π0 (Π1)
drops (raises) to a half of Π. Substituting W from Equation (12)
into Equation (9), we obtain

Π1 (t) = ln
w

W0

∣∣∣∣
ζ=1/

√
t

.

For the half-life time t = t1/2 we may use the following
equations:

Π1(t1/2) = Π0(t1/2) = 1
2

Π. (25)

In the simple TP case (Π & 1), the half-life time amounts to
(see Appendix B)

t1/2 ≈ 1
4σ

W0 (26)

with σ ≈ 0.23. In the opposite case Π ' 1, for t1/2 we obtain

t1/2 ≈ t1 = 1/ζ 2
1 ≡ w1

2V 2
1

≈ w1

2
(27)

(see Equation (19)). Note that for Π ' 1, V1 ≈ V1/2 (see
Appendix B), and for the half-life time we obtain

t1/2 = 1
2
W0e

Π/2. (28)

It is clear that the nonlinear delay factor exp (Π/2) slows down
the escape considerably, compared to the TP solution.

Another important characteristic of the particle escape is the
spatial width of their distribution. Formally, the self-similar
solution is scale-invariant ∼2/ζ , for Π ' 1 over the most
part of the spatial distribution of the partial pressure (see below).
Therefore, to characterize the width we use the point ζ1/2, related
to the half-time t1/2, as follows:

ζ1/2 = 1
√

t1/2
=

√
2

W0
e−Π/4.

In physical coordinate z, this point moves outward as z1/2 =
ζ1/2

√
t starting from z = 1 at t = t1/2. The expansion rate of a

dense CRC (Π ' 1) is thus exponentially low.

3.2. Spatial Distribution of the CR Cloud

Considering the spatial distribution of the spreading CRC in
detail, it is convenient to start with the region far away from the
source, where W → W0. This asymptotic behavior corresponds
to the case V & 1. Introducing an auxiliary function U (ζ ),

U = − ∂

∂ζ
ln w =

√
2wV, (29)

Figure 4. Squares: function V0 (Π), obtained from Equation (24). Line:
interpolation given by Equation (32).
(A color version of this figure is available in the online journal.)

that is related to the particle pressure through P = U (ζ ) /
√

t ,
and using Equations (16) and (19), we obtain for U the following
expression:

U (ζ ) =
√

2W0V0e
−W0ζ

2/4. (30)

Therefore, the asymptotic CR pressure depends on the follow-
ing two parameters: the ISM background diffusivity W−1

0 (p) ≡
W−1 (p, z = ∞) (see Equation (10)) and on the CR source pres-
sure Π (p), but only through the parameter V0 = exp (−q/2).
The latter grows linearly with Π & 1 but it saturates when
Π ' 1:

V0 ≈
{ 1√

2π
Π, Π & 1

exp
(
− 1

2 − 4e−Π/
√

2
)

, Π ' 1.
(31)

For practical calculations, it is more convenient to combine
both asymptotic regimes into the following simple interpolation
formula:

V0 =
[

(
√

2π/Π)5/2 +
(√

e +
3
2
e−Π/

√
2
)5/2

]−2/5

(32)

which not only recovers both Π & 1 and Π ' 1 regimes
but also reproduces the transition zone accurately. The latter
property is achieved by the choice of numerical parameters
of the interpolation, i.e., the powers 5/2, 3/2, and −2/5. The
quality of the interpolation may be seen from Figure 4, where the
formula in Equation (32) is shown against exact numerical points
calculated from Equation (24). The partial pressure P (z, t) is
then given by

P = U/
√

t =
√

2W0/tV0 (Π) e−W0z
2/4t . (33)

Note that for strong sources (Π ' 1) the CR density at large
distances becomes independent of the source strength. This
is the regime of an efficient ablative escape suppression in
which a small (and Π-independent!) number of leaking particles
leave behind enough Alfvén fluctuations to limit the leakage of
particles remaining in the source to exactly the rate given by
Equation (33).

The spatial distribution of the CRs becomes even more
universal closer to the origin where it falls off as P ≈ 2/z before

7
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it turns into an innermost flat-top part of the entire distribution
for ζ 2 < DNL (p). We have introduced the “self-confinement”
diffusion coefficient DNL as

DNL = 2
V 2

0

DISMe−Π = 2
V 2

0 wmax
(34)

with DISM = W−1
0 . To obtain this intermediate (DNL < ζ 2 <

DISM) part of the CR spatial distribution, we expand the analytic
solution given by Equations (17) and (19) in small V1 −V & 1.
Using the expression for the self-similar CR pressure U from
Equation (29) we obtain the following expansion near ζ = ζ1 ≡
ζ (V1):

U = 2
ζ

[

1 − 3ε
2

(
2
w1

)2−3/2

ζ−
√

2 − ε

2

(w1

2

)2−3/2

ζ
√

2 . . .

]

,

(35)

where w1 = 2V 2
1 /ζ 2

1 , and ε ≡ (q − 1) /2. Note that while
the solution has a branching point in auxiliary variable V at
V = V1, it is a regular and single-valued function of the physical
variable ζ , throughout the entire half-space ζ > 0, including
the branching point of ζ (V ) at V = V1, as it should be. We
also notice that while ζ decreases starting from ζ1, the solution
grows slower than 1/ζ , leveling off toward the origin. The above
expansion, however, becomes inaccurate for smaller ζ and we
alter it below.

Now we turn to this innermost part of the distribution where
the particle diffusion coefficient is most strongly decreased. It is
convenient to expand the solution in a series in ξ = V/V0−1 &
1. Using the representation of w given by Equation (A2), we
obtain

w = wmax

[
ξ − a +

√
ξ 2 − 2aξ + b2

b − a

]−2b

,

where a = (1−V 2
0 )/(1+V 2

0 ) and b = V0/
√

1 + V 2
0 . Then, using

the expression (A4) for small ζ and Equation (29), we obtain
for U (ζ ) = P

√
t the following simple result:

U ≈
√

2wmaxV0

1 + wmaxζ 2/4
≈

√
2wmaxV0e

−wmaxζ
2/4, (36)

valid for wmaxζ
2 " 1. Note that we have rewritten, with the

same accuracy, the denominator in the standard “diffusion”
form, exp(−wmaxζ

2/4), which shows that the CR diffusivity
is diminished by a factor W0/wmax = exp(−Π) & 1 compared
to its background level W−1

0 . If, however, wmax ! aCA/κB
(see Equation (6)), a better approximation would be to simply
replace the diffusion coefficient by its Bohm value, as the
neglected nonlinear wave interactions (see Section 4) should
render δB ∼ B0. The result in Equation (36) should then be
replaced by

U =
√

2aCA/κBV0 (Π) e−aCAz2/4κBt . (37)

Equations (30), (35), and (36) provide the explicit asymp-
totic representation of the exact implicit solution given by
Equations (17) and (19). This representation is rigorous but
somewhat impractical, so we provide, again, an interpolation
formula that accurately describes the solution U (ζ ) = P

√
t in

the entire range of 0 < ζ < ∞ (Figure 5),

U = 2[ζ 5/3 + (DNL)5/6]−3/5e−W0ζ
2/4, (38)

Figure 5. Spatial distribution of CR partial pressure (as a function of ζ = z/
√

t ,
multiplied by

√
t) shown for integrated values of this quantity Π = 3.6; 6.7; 10.1

and for the background wave amplitude W0 = 10−4. Exact analytic solutions
are shown with the solid lines while the interpolations given by Equation (38)
are shown with the dashed lines. For comparison, a formal linear solution for
Π = 10.1 is also shown with the dot-dashed line. Note the three characteristic
zones of the CR confinement: the innermost flat-top core, the scale-invariant
(1/ζ ) pedestal, and the exponential decay zone.
(A color version of this figure is available in the online journal.)

where DNL (Π) is defined in Equation (34) with V0 given by
the interpolation in Equation (32). The last formula recovers the
limiting cases given by Equations (30), (35), and (36) except
a slight modification of Equation (30) at large ζ , so that an
extra 1/ζ -factor is accepted in the interests of parameterization
simplicity. According to Figure 5, however, this deviation from
the correct asymptotic expansion of the exponential tail of the
distribution is not really noticeable.

The overall profile of the partial pressure presented in log–log
format (Figure 5) unveils the CR escape as a highly structured
process. It comprises a nearly flat-top core (Equation (36)), a
nearly 1/ζ pedestal (Equation (35)), and an exponential foot
(Equation (30)). We already noted that the escape rate of CR in
the foot saturates with the source strength for Π ' 1. This is
easy to understand as the foot is separated from the core (source)
by the flux controlling pedestal, where the CR transport is
self-regulated in such a way that a fixed CR flux streams through
it to the foot regardless of the strength of the CR source. The
solution is shown in Figure 5 as a function of ζ using the self-
similar variables U = P

√
t and ζ = z/

√
t . Remarkably, the

pedestal portion of the profile does not change with time also
in the physical variables, P, z: P ≈ 2/z. The core, however,
sinks in as P ∝ 1/

√
t , but in addition, it expands in z as√

DNLt , to conserve the integrated pressure contained in the
core at the expense of the pedestal that shrinks accordingly.
The latter disappears completely at t ∼ DISM/DNL, after which
the further escape proceeds in a TP regime but with a smaller
diffusion coefficient in the core–pedestal region, since waves
persist even after most of particles have escaped. At this point,
the wave damping should become important (see Section 4).

As the TP approximation is widely used in calculating the
CR escape from their sources, we also show, for comparison,
one such example in Figure 5. We plot the following simple TP
solution

U =
√

W0

π
Πe−W0ζ

2/4 (39)

that can be obtained from Equation (38) or Equation (33)
with V0 (Π) taken from Equation (31) or Equation (32) for
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Π & 1. To compare the self-regulated escape with the TP
one, we formally extend the above solution to large Π, as this is
normally done within TP approaches. Such an extension clearly
underestimates the nonlinear level of the CR pressure by a factor
∼Π−1 exp (Π/2) ' 1 in the core and in the most of the pedestal.
By virtue of lacking self-regulation, it also overestimates the
pressure in the exponential foot by a factor Π ' 1.

3.3. Control Parameters and Predicted
CR Flux in Physical Units

The integrated partial pressure Π is the most important
parameter that regulates the CR escape. Therefore, we consider
it in some detail, returning to the dimensionful variables and
rewriting Π as follows (see Equations (8) and (22)):

Π ) 3
CA

c

a (p)
rg (p)

P̄CR (p)
B2

0/8π
, (40)

where a (p) is the initial size of the CRC, rg is the CR gyroradius,
and P̄CR (p) is their average partial pressure inside the cloud.
Although the ratio of Alfvén speed to speed of light, CA/c, is
typically very small (∼10−5 to 10−4), the remaining two ratios
in the last equation may be fairly large. Indeed, a/rg should
amount to several c/UST ' 1, with UST being the shock speed
at the end of the ST stage, as a should exceed the precursor size
crg/UST. Indeed, a significant part of the shock downstream
region filled with CR, which have been convected there over the
entire history of CR production, may significantly contribute
to, if not dominate, the total size of the cloud a (Kang et al.
2009). This is particularly relevant to the CR release during
the decreasing maximum energy (reverse acceleration phase;
Gabici 2011). In the forward acceleration regime (growing
maximum energy) Bohm diffusion, the downstream CR scale
height is similar to that of the upstream. A reasonable estimate
for UST is c/UST ! 103. Finally, the CR pressure in the
source should considerably exceed the magnetic pressure as
both quantities are roughly in equipartition in the background
ISM. Alternatively, as is usually assumed, the accelerated
electrons are in equipartition with the magnetic energy inside
the source, since they should have lost their excessive energy via
synchrotron radiation. As electrons are thought to be involved
in the acceleration at ∼10−2 of the proton level, the last ratio in
Equation (40) is then ∼102, thus giving, perhaps, an upper bound
to the pressure parameter Π ∼ 102/MA, where MA = UST/CA.

One of a few other ways the parameter Π can be looked
at is to express it through the average acceleration efficiency
E = 2P̄CR/ρŪ 2, where Ū is the shock velocity, appropriately
averaged over the CR acceleration history (one may expect Ū '
UST). Then Π ) 3(Ū 2/cCA)(a/rg)E ) 3A(Ū 2/USTCA)E ,
where we have introduced a factor A = (a/rg)UST/c ! 1. In
this form, the estimate indeed boils down to the acceleration
efficiency E with the remaining quantities (A, Ū and UST)
being more accessible to specific models. Since the acceleration
efficiency E is believed to be at least !0.1 for productive SNRs,
we conclude that the control parameter Π is rather large than
small. The caveat here is that it might, in some cases, be too
large to limit the applicability of the above treatment. We return
to this issue in the Discussion section.

Once the major control parameter is known, we can calculate
the distribution function fCR of the CR, released into the ISM,
depending on the distance from the source z and time, using the
parameterization in Equation (38). It is convenient to rewrite it

in the form of the CR partial pressure P̂CR in physical units as
follows:

P̂CR

B2
0/8π

) 0.8
(
MA

A

104 yr
t

n

1 cm−3

E

1 GeV

)1/2(1 µG
B

)3/2

U (ζ ) .

(41)
Here, MA = UST/CA, n is the plasma number density, E is the
particle energy, and B is the magnetic field. The self-similar
coordinate ζ can be represented, in turn, in the following way:

ζ ) 17
(

MA

A

1 GeV
E

B

1 µG
104 yr

t

)1/2
z

pc
. (42)

Once this quantity is calculated for given z and t, the CR partial
pressure in Equation (41) can be obtained from Equation (38)
or from Figure 5. Note that the scale of the CR pressure is deter-
mined by the maximum of U = U (0) =

√
2W0V0 exp (Π/2),

where V0 is given by Equation (32). The CR partial pressure also
depends on the energy through W0 and Π, apart from the factor√

E in Equation (41), which will be discussed below. Finally,
the background diffusion coefficient of CR in physical units is
related to the dimensionless diffusivity W−1

0 as follows:

DISM = 6.6 × 1027 10−4

W0

a

1 pc
B

1 µG

(
1 cm−3

n

)1/2

cm2 s−1.

3.4. The Form of the Spectrum of Escaping CR

As the transition from the flat-top part of the normalized
(Equation (8)) partial pressure P (p) to the pedestal is described
by a function P ≈ 2{z5/3 +[DNL(p)t]5/6}−3/5, the pressure P(p)
is almost p-independent (the corresponding particle momentum
distribution fCR ∝ κBp−4/ẑ, in the physical units, ẑ =
az) for such momenta where DNL(p) < z2/t , for the fixed
dimensionless observation point z and time t. At p = pbr,
where DNL(pbr) = z2/t , the spectrum incurs a break. If we
approximate DNL ∝ pδ near p ∼ pbr, the break will have
an index δ/2, as may be seen from the above formula for P .
The index δ thus derives from the momentum dependence of
the DISM(p) and from that of the coordinate-integrated CR
pressure Π(p) (through the factor exp(−Π) in Equation (34)).
Furthermore, if we represent exp (−Π) ∝ p−σ and DISM ∝ pλ

at p ∼ pbr, so that δ = λ−σ , then P is flat at p < pbr for δ > 0
and steepens to p−δ/2 at p = pbr. Conversely, if δ < 0, P raises
with p as p−δ/2 at p < pbr and it levels off at p > pbr. Note,
however, that Π is momentum independent in the important case
of the p−4 distribution of the initial CRC with the scale height
a(p) ∝ κB. This case corresponds to the TP DSA spectrum,
∝p−4 with a scale height a estimated from the shock precursor
size. The break has then an index λ/2 and it is entirely due to
the DISM momentum dependence.

4. COMPARISON WITH OTHER APPROACHES

Given the variety of approaches to the CR escape, we extend
our brief discussion in the Introduction section by putting
our treatment into perspective. Most of the approaches can
be categorized into the following three kinds. First of all,
a simple TP approach is feasible for a rarefied CRC, when
wave generation is negligible (e.g., Aharonian & Atoyan 1996;
Drury 2011; Ohira et al. 2011). It solves the linear diffusion
equation for the CRs with a diffusion coefficient determined
by a given (e.g., background) turbulence. Next, there are
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modifications of this approach that include the wave generation
by escaping particles balanced by the MHD cascades (e.g.,
Ptuskin & Zirakashvili 2005; Ptuskin et al. 2008; Yan et al.
2012). The wave intensity, thus obtained, is then used to
calculate the particle diffusion coefficient and their distribution.
We call these approaches modified TP, as they do not evolve
waves but slave them to the instant particle distribution. The
third treatment is based on a QL mechanism, whereby the
wave stabilization primarily occurs through their back-reaction
on the particles (e.g., suppression of instability by pitch-
angle isotropization). The nonlinear effects may or may not
be significant during the QL stabilization. As the QL wave
saturation operates at the lowest order in wave energy, it is
imperative to consider it first, particularly where the waves
become weaker. This approach has been well tested on the
somewhat similar problem of a hot electron cloud expansion
into a plasma (Ryutov & Sagdeev 1970; Ivanov et al. 1970). In
the case of a CRC expansion into the ISM, there is an extended
region (i.e., “pedestal” self-confinement region) where the level
of turbulence significantly exceeds the background but is still
not high enough for the nonlinear effects to dominate over the
QL ones. As our results show, this is the most important domain
that determines the spectrum of escaping CRs. Simply put, the
dynamics is dominated by wave generation and self-regulated
particle escape, rendering the nonlinear wave dynamics and
MHD cascades less important. It should be noted, however, that
the instability driving pitch-angle anisotropy is supported by the
spatial inhomogeneity of the CRC, so that the full stabilization
occurs (under negligible damping) only when particles spread
to infinity.

It is nonetheless worthwhile to consider the possible effect
of wave damping we have neglected. For example, Ptuskin
et al. (2008), while neglecting dI/dt on the left-hand side of
Equation (2), balance the driving term with the damping term
on its right-hand side and assume a Kolmogorov dissipation
for Γ,

Γ = kCA

√
I/ (2CK )3/2 (43)

with CK ≈ 3.6 and k ) 1/rg(p) being the resonant wave
number. Therefore, only Equation (1) needs to be solved. The
CR density decays then at the source as ∝ t−3/2 and the
flat-topped, self-confined part of the CR distribution spreads
as z ∝ t3/2, both pointing at the superdiffusive CR transport.9
The reason is clearly in a very strong wave damping due to the
Kolmogorov dissipation. For the same reason this solution does
not recover the TP asymptotic PCR ∝ t−1/2 exp(−z2/4DISMt),
physically expected in z, t → ∞ limit in the ISM with the back-
ground diffusion coefficient DISM. While such a strong wave
damping may be justified in the core of the CRC during the
early phase of escape, the overall confinement is controlled by
the 1/z-pedestal, where the waves are relatively weak and the
Kolmogorov cascade can hardly be important. Moreover, since
the pedestal plays a role of a barrier enclosing the core, the
wave–particle interaction dynamics in the core is less important
than that in the pedestal. In this regard, the particle distribution
in the core is similar to the QL plateau on particle distribution
in momentum space. When established, the plateau does not
depend on the interaction of the waves that create it.

An alternative choice of damping mechanism is the Goldreich
& Sridhar (1997, hereafter GS) MHD cascade, which seems to
be more appropriate in I " 1 regime (Farmer & Goldreich

9 Recall that our results give for these quantities t−1/2 and t1/2, respectively.

2004; Beresnyak & Lazarian 2008; Yan et al. 2012) and may
play some role in the pedestal. The damping rate is

Γ = CA

√
k

L
, (44)

where L is the outer scale of turbulence which may be as
large as 100 pc. Not only is this damping orders of magnitude
(roughly a factor

√
L/rg) lower than the Kolmogorov one, but

it does not depend on I and can be considered as coordinate
independent. Then, the damping term does not violate the QL
integral, Equation (5). The dimensionless Equation (7) can thus
be rewritten simply as follows (outside the initial CRC):

∂W

∂t
= ∂

∂z

1
W

∂W

∂z
− Γ′W,

and the dimensionless damping Γ′ = a/
√

rgL ∼
(c/UST)

√
rg/L may be eliminated by replacing W exp(Γ′t) →

W ,
∫ t

0 exp(Γ′t)dt → t . Our results then remain intact in the
relabeled t and W.

The above three approaches to the CR escape are summarized
in Figure 6. The key ingredients are the CR particles and
Alfvén waves while the relevant physical phenomena are the
wave–particle and wave–wave interactions. Under the latter
one may loosely understand both weakly turbulent parametric
processes (such as wave decay) and turbulent cascades similar to
those described above. The wave–particle interactions comprise
the unstable growth of Alfvén waves together with their back-
reaction on the CRs. In principle, the wave–wave interactions
need to be included in the QL treatment, particularly in the core
of the CRC when wmax ! 1. However, as the wave dynamics in
the flat core is relatively unimportant, one may employ the Bohm
diffusion coefficient in this region, i.e., where z2/t " DNL by
setting DNL ∼ κB and thus obtain a result already given by
Equation (37). Formally, it is equivalent to the TP approximation
with the minimum diffusion coefficient set at the Bohm level.

To summarize our results, we have considered the self-
consistent relaxation of a CRC injected into a magnetized
plasma (ISM) under the assumption of an initially weak back-
ground turbulence, (δB/B0)2 & 1, so that the cross-field diffu-
sion is negligible, κ⊥ & κ‖ outside the cloud and the particles
escape largely along the field, i.e., in z-direction. The principal
parameter that regulates the CR escape from the cloud is iden-
tified to be the coordinate-integrated partial pressure Π, given,
e.g., in Equation (40). Resonant waves of the length ∼r−1

g (p),
driven by the run-away cloud particles, are found to confine the
core CRs very efficiently when Π ' 1.

The resulting normalized (Equation (8)) CR partial pressure
profile P comprises the following three zones: (1) a quasi-
plateau (core) at z/

√
t <

√
DNL of a height ∼(DNLt)−1/2,

which is elevated by a factor ∼Π−1 exp(Π/2) ' 1, compared
to the TP solution because of the strong QL suppression of
the CR diffusion coefficient with respect to its background
(TP) value DISM: DNL ∼ DISM exp (−Π); (2) next to the core,
where

√
DNL < z/

√
t <

√
DISM, the profile is scale invariant,

P ≈ 2/z. The CR distribution in this “pedestal” region is fully
self-regulated and independent of Π and DISM for Π ' 1; (3)
the tail of the distribution at z/

√
t >

√
DISM is similar in shape

to the TP solution but it saturates with Π ' 1, so that the CR
partial pressure is ∝(DISMt)−1/2 exp(−z2/4DISMt), independent
of the strength of the CR source Π, in contrast to the TP result
that scales as ∝Π.
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Figure 6. Three different approximations for studying injection of accelerated CRs into ISM: test particle (TP), modified TP (with unstable wave growth and nonlinear
wave evolution), and quasi-linear (QL; with self-consistent time-dependent wave–particle interactions).
(A color version of this figure is available in the online journal.)

Depending on the functions Π(p) and DISM(p), the resulting
CR spectrum generally develops a spectral break for the fixed
values of z and t such that z2/t ∼ DNL(p) ∼ DISM exp(−Π).

5. DISCUSSION AND OUTLOOK

The CR escape from both active and fading accelerators (old
SNRs) is being actively studied through direct observations of
CR-illuminated MCs (Aharonian et al. 2008; Abdo et al. 2010a;
Giuliani et al. 2011; Aleksić et al. 2012; Uchiyama et al. 2012;
Ackermann et al. 2013). To date, most of the information is ob-
tained from the old remnants and they consistently show a broad
spectrum of CR escape. This is clearly at odds with an intuitive
high-energy-biased escape, seemingly justified by the higher
mobility of energetic CRs. Indeed, as CR diffusion coefficient
grows with momentum, the TP solution predicts a low-energy
cutoff to be present due to the factor exp[−z2/4DISM(p)t] in
the CR distribution at a certain distance z from the source. In
a combination with a steep power law or a favorably placed
upper cutoff, the escape flux narrowly accumulates toward the
maximum energy. The momentum-dependent CR mobility un-
derlies most of the current CR escape models (e.g., Ptuskin &
Zirakashvili 2005; Zirakashvili & Ptuskin 2008; Gabici et al.
2009).

Although the same exponential factor is present in the QL
solution obtained in this paper, it pertains only to the farthermost
zone, where the CR partial pressure is much lower (by factor
Π−1 & 1) than the TP prediction for the same distance
from the source and time elapsed from the CR release. Closer
to the accelerator, in an extended scale-invariant zone where
the CR level is much higher and decays as slowly as 1/z,
the escape mechanism is different from the one controlled
by the mere energy dependence of the CR diffusivity. It is
self-regulated in such a way that, if particles leak excessively
in some energy range, they also drive stronger resonant waves
to reduce their leakage and vice versa. As a result, the overall
escape spectrum relaxes roughly to an equipartition of the CR
partial pressure in momentum, e.g., fCR ∝ p−4 (with important

deviations described in Section 3.4), which also balances the
driver (gradient of CR partial pressure) with the generated
waves. No low-energy leakage suppression therefore occurs.
The fundamental difference of this leakage mechanism from
the TP one is that it is entirely controlled by self-generated
rather than prescribed waves, or by waves derived from other
energy sources, such as ambient MHD cascades. That is why
it predicts energetically much broader leakage than many other
approaches do (e.g., Ptuskin & Zirakashvili 2005; Ellison &
Bykov 2011).

It should be admitted that the self-confinement solution
obtained in this paper is strictly valid for a stopped accelerator, so
that there is no CR energy growth and strong plasma flows, such
as those found near shocks. Therefore, care should be exercised
in comparing this solution with the standard DSA predictions. At
the same time, even if CRs were escaping from the DSA through
an FEB or an upper momentum cutoff, they would propagate
further out diffusively. Yet their escape is often enforced by
imposing an ad hoc sudden jump in the diffusion coefficient
D (p, z) at a specific momentum p (or FEB position z). Despite
this jump, the CR phase space density must be continuous,10

and for strong CR sources still high enough to drive waves
while the CRs escape. From this point on, the solution obtained
in this paper may be applied and compared with the DSA
predictions, as the waves are driven locally both in momentum
and in coordinate space. The only relevant requirement is that
particles do not interact with the shock, as implied in most
escape models in the first place. But, the feedback from the self-
generated waves on the CR escape is not included in the models
that predict a peaked energy escape.

Furthermore, the self-regulated escape solution shows a
gradual increase of the CR diffusion from a low (Bohm) to

10 This statement is strictly valid for an FEB imposed by enhanced diffusion
in coordinate space. In the case of a jump in momentum (e.g., Ptuskin &
Zirakashvili 2005), the situation is more complicated in that the particle
distribution should become increasingly anisotropic in pitch angle, as the
escape is assumed one sided (upstream). However, an introduction of weak
Fermi-II acceleration (diffusion in momentum) would validate this statement
also in this case.
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high (TP) regime, across the region where PCR ∝ 1/z and
the CR diffusion coefficient DCR ∝ z2, thus keeping the flux
−DCR∇P ≈ const. Both scalings are clearly inconsistent with
a sudden jump in DCR with the corresponding jump in ∇PCR.
Moreover, collapsing the scale-invariant region to a point (FEB)
would not only change the CR escape flux considerably but
also an extended region of enhanced CR pressure would have
been lost (see Figure 5). This region (which we loosely dubbed
“pedestal” by analogy with the improved confinement regimes
in magnetic fusion devices, primarily in tokamaks; e.g., Wagner
et al. 1982; Hinton & Staebler 1993; Diamond et al. 1995;
Malkov & Diamond 2008; Maggi 2010) may be detectable when
it overlaps with MCs. According to the TP theory, the CR density
decays as t−d/2 in the region of their initial release, with d being
the dimensionality of the escape (d = 1 for escape along the
field). In the self-regulated escape, the CR density stays constant
in time in the pedestal region, where PCR ∝ 1/z, until this
region is overwhelmed by the expanding central plateau where
PCR decays as 1/

√
t . Before it happens, the CR density is higher

than in the TP case (Figure 5), which is a prediction that may
soon become testable.

Recent detailed observations of the SNR W44, W51C, IC 443,
and W28, surrounded by MC, provide good examples to study
possible CR escape scenarios (Aharonian et al. 2008; Abdo et al.
2010a, 2010b, 2010c; Giuliani et al. 2011; Aleksić et al. 2012;
Uchiyama et al. 2012). First of all, they almost invariably show
spectral breaks that, however, may be understood in terms of
the interaction of accelerated protons with a partially ionized
dense gas (Malkov et al. 2005, 2011). The indices below
and above the breaks are consistent with the following two
scenarios. Namely, CR protons may reach the MC while still
being accelerated at an SNR shock, or they may escape with a
similar spectrum, p−4. As we have shown in the present paper,
such escape occurs via the CR interaction with self-generated
waves. Another important aspect of these observations regards
the morphology of the interaction. Of particular interest is
the recent analysis of Fermi-LAT results revealing two bright
spots of gamma emission adjacent to the central source in
W28 (Uchiyama et al. 2012). Their distinct bipolar appearance
may be indicative of a CR escape along the local magnetic
field.

Note that the anisotropic diffusion of CRs in the form of
bipolar CRC may result in quite specific morphologies of
extended gamma-ray images—the imprints of CRs interacting
with the surrounding diffuse gas are generally concentrated in
dense MCs. Since the gamma-ray flux is proportional to the
product of densities of CRs and the diffuse gas, we should
expect a rather general correlation between the gamma-ray
fluxes and the column densities of the interstellar gas. However,
it is obvious that in the case of propagation of bipolar CRCs
through an inhomogeneous clumpy gaseous environment, the
gamma-ray intensity contours can significantly deviate from the
CO and 21 cm maps characterizing the spatial distributions of
the molecular and atomic gases, respectively. At the same time,
the brightest parts of the spatial distribution of gamma rays
should correspond to the regions where the CRC overlaps with
dense gas clouds inside the magnetic flux tube connected with
the CR source.
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APPENDIX A

DETAILS OF SELF-SIMILAR SOLUTION

The full expressions for the solution w (ζ ) represented in a
short form by Equations (17) and (18) can be written as follows:

w = W0

{
e
∫ V

0 dV/
√

R(V ), ζ $ ζ1

e
∫ V1

0 dV/
√

R(V )+
∫ V1
V dV/

√
R(V ), 0 < ζ < ζ1.

(A1)

Throughout this Appendix, the positive branch of
√

R is used.
In some cases, it is convenient to represent w in the domain
0 < ζ < ζ1 as

w = wmaxe
−

∫ V

V0
dV/

√
R(V )

, (A2)

where V0 ≡ exp (−q/2), i.e., ζ (V0) = 0, and

wmax = W0e
∫ V1

0 dV/
√

R(V )+
∫ V1
V0

dV/
√

R(V )
. (A3)

For the coordinate ζ we have (Figure 2)

ζ =
√

2
w

{
V + 2

√
R (V ) ζ $ ζ1

V − 2
√

R (V ) 0 # ζ < ζ1.
(A4)

The function w (ζ ), implicitly defined by Equations (A1)
and (A4), is shown in Figure 3 (see Section 3.2 for approximate
explicit results). The partial CR pressure can be represented
according to Equation (9) as follows:

P (z, t) =
√

2w (ζ ) /tV (ζ )
∣∣∣
ζ=z/

√
t
, z > 1,

where V (ζ ) is defined by Equation (A4).

APPENDIX B

HALF-LIFE OF THE CR CLOUD

Equation (25) can be continued as

Π1(t1/2) = 1
2

Π = 1
2

ln
wmax

W0
≡ ln

w1/2

W0
, (B1)

where we have introduced a “half-life” amplitude w1/2, which
can also be associated with a point V1/2 (see Equation (17)),

ln
w1/2

W0
=

∫ V1/2

0
dV/

√
R (V ),

and with the corresponding self-similar coordinate ζ1/2 =
1/

√
t1/2. In other words, w1/2 = w(ζ1/2) = w(V1/2). Note that

w1/2 can be represented as a geometric mean w1/2 ≡
√

W0wmax
(cf. Equation (24)), so that in terms of the function ln w(ζ ), the
point ζ1/2 corresponds to the FWHM. The quantity V1/2 can thus
be obtained from the following equation:

2
∫ V1/2

0
dV/

√
R (V ) =

∫ V1

0
dV/

√
R (V ) +

∫ V1

V0

dV/
√

R (V ).

(B2)
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In the case of a weak CRC, Π & 1, we obviously have
V1/2 < V0 ∼ V1 & 1. Calculating the integrals in this limit
and substituting R from Equation (16), we have

erfc
(

ln
1

V1/2
− q

2

)1/2

= 1
2

or

V1/2 = e− q
2 −σ = V0e

−σ ≈ V1e
−σ /

(
1 +

1
2
e−q

)
,

where erfc(σ 1/2) = 1/2, so that σ ≈ 0.23. Substituting then
V1/2 into ζ1/2 from Equation (A4), we obtain the result given by
Equation (26).

In the case Π ' 1, the integrals on the right-hand side of
Equation (B2) are dominated by the upper limit, so the in-
tegral on the left-hand side must also be, and we deduce
V1/2 ≈ V1, from which we obtain the nonlinear CR half-life in
Equation (28).
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