#### **UC Davis**

### **Orthopaedic Surgery**

#### **Title**

Patient characteristics, injury types, and costs associated with over-triage of isolated cervical spine fractures

#### **Permalink**

https://escholarship.org/uc/item/5pm1s976

#### **Authors**

Han, Gloria Wick, Joseph Le, Hai et al.

#### **Publication Date**

2021

#### **Data Availability**

The data associated with this publication are not available for this reason: N/A



Patient characteristics, injury types, and costs associated with over-triage of isolated cervical spine fractures

Gloria Han, BS<sup>1</sup>, Joseph Wick, MD<sup>2</sup>, Hai Le, MD<sup>2</sup>, Kranti Peddada, MD<sup>2</sup>, Adam Bacon, BS<sup>1</sup>, Eric Klineberg, MD<sup>2</sup>

UCDAVIS HEALTH Department of Orthopaedic Surgery

<sup>1</sup> UC Davis School of Medicine, Sacramento, CA <sup>2</sup> Department of Orthopaedic Surgery, UC Davis Medical Center, Sacramento, CA



# **INTRODUCTION**

- Approximately 5.7% of blunt traumas involve cervical spine (C-spine) injuries.<sup>1</sup>
- While spine fractures are often stable and treated non-operatively, lack of access to spine specialty care results in transfer to tertiary care facilities, placing substantial financial burden on both hospitals and patients.<sup>2,3</sup>
- Thus, identifying patient and injury characteristics associated with operative treatment of C-spine fractures may help reduce over-triage.

# **OBJECTIVES**

The goal of this study is to identify factors and describe costs associated with operative versus non-operative treatment in the acute setting among patients transferred with isolated C-spine fractures.

### **METHODS**

All patient transfers from January 1, 2015 to September 1, 2020 to the ED of our Level 1 trauma center were identified using the neurosurgery trauma and orthopaedic spine surgery consult records.

### Dens fracture characteristics

Dens displacement and angulation were measured using a previously published technique (Figure 1).4

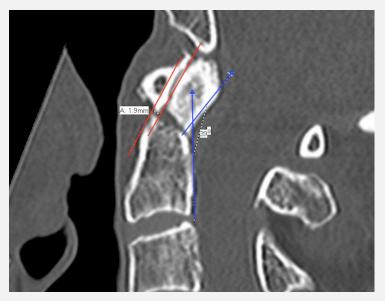



Figure 1. Standard measurement technique for dens displacement (red) and angulation (blue) established by the Spine Trauma Study Group.

### Cost data

Total hospital costs were obtained through review of hospital billing records.

### RESULTS

**Table 1:** Final multivariate regression models of demographic and injury variables associated with operative treatment for isolated cervical spine fractures. Model 1 for demographic and Models 2 and 3 for injury variables were performed separately.

Model 1: Assessment of demographic variables associated with operative treatment

| Demographic<br>Variable  | OR     | 95% CI       | p-value |
|--------------------------|--------|--------------|---------|
| ВМІ                      | 1.515* | 1.088-2.108  | 0.014   |
| Smoking status           |        |              |         |
| Never smoker (reference) |        |              |         |
| Previous smoker          | 0.82   | 0.289-2.333  | 0.711   |
| Not assessed             | 0.491  | 0.098-2.440  | 0.384   |
| Current smoker           | 5.397  | 1.978-14.736 | 0.001   |

Model 2: Assessment of injury variables associated with operative treatment

| Injury Variable          | OR     | 95% CI       | p-value |
|--------------------------|--------|--------------|---------|
| Any neurological deficit | 15.387 | 4.330-54.679 | <0.0001 |
| Post-transfer<br>MRI     | 2.80   | 1.212-6.472  | 0.016   |

Model 3: Assessment of injury variables associated with operative treatment, excluding all cord level deficits

| Injury Variable         | OR   | 95% CI     | p-value |
|-------------------------|------|------------|---------|
| Isolated root<br>injury | 9.52 | 2.43-37.35 | 0.001   |
| Post-transfer<br>MRI    | 2.68 | 1.15-6.25  | 0.022   |

OR = odds ratio; CI = confidence interval; BMI = body mass index; \*indicates increase in odds ratio per 20% increase in BMI.

# Table 2 shows cost analysis results.

- Patients treated surgically were charged a median of \$380,890 and patients treated non-operatively were charged a median of \$90,733.55.
- All patients accepted as trauma transfers incurred additional trauma transfer fees exceeding \$20,000.

**Table 1** shows multivariate model results.

- Current smoking status was the only significant demographic associated with surgical treatment in multivariate modeling (OR = 5.397).
- Neurologic injuries including both spinal cord and isolated spinal nerve root injuries (OR = 9.52), as well as patients undergoing cervical spine MRI after transfer (OR = 2.68), were significantly associated with surgical treatment.

**Table 2:** Charges to patients and total expenses incurred to hospital for select studies and services utilized in the workup of patients transferred for isolated cervical spine fractures.

| Item/service                          | Total charge to patient                 | Total hospital expense           |
|---------------------------------------|-----------------------------------------|----------------------------------|
| Patients treated non-<br>operatively* | \$90,733.55<br>(\$70,696-<br>\$115,671) | \$12,131 (\$8438-<br>\$18,588)   |
| Patients treated operatively*         | \$380,890<br>(\$321,463-<br>\$464,301)  | \$55,115 (\$40,797-<br>\$70,310) |
| Laboratory workup<br>estimate         | \$3008                                  | \$272                            |
| CT scan cervical spine                | \$5286                                  | \$306                            |
| MR imaging cervical spine             | \$10,419                                | \$590                            |
| CT angiogram neck                     | \$10,201                                | \$280                            |
| MR angiogram neck                     | \$6086                                  | \$487                            |
| Cervical spine radiographs            | \$1368                                  | \$142                            |
| CT scan thoracic spine                | \$5709                                  | \$203                            |
| CT scan lumbar spine                  | \$5517                                  | \$203                            |
| Trauma service<br>transfer fees       | \$20,007                                | \$272                            |
| *costs reported as med                | lian and interquartil                   | e ranges                         |

# CONCLUSIONS

- Nearly 75% of patients transferred for C-spine fractures were subject to secondary over-triage, as they were treated non-operatively.
- Injury characteristics, such as the presence of neurologic deficits and dens fracture pattern, are the most important determinant of need for surgical intervention.
- Having complete pre-transfer workup, including imaging, may reduce unnecessary transfers.
- Over 97% of transfers were accepted by general surgery, 99% of which were managed nonoperatively. Thus, involving a spine surgeon in pretransfer patient assessment may better inform whether a patient actually needs to be transferred.
- Over-triaging of isolated C-spine fractures substantially increases hospital resource expenditures and financial burden on patients.

# **REFERENCES**

- 1. Young AJ, Wolfe L, Tinkoff G, Duane TM. Assessing Incidence and Risk Factors of Cervical Spine Injury in Blunt Trauma Patients Using the National Trauma Data Bank. *Am Surg*. 2015;81(9):879-883. http://www.ncbi.nlm.nih.gov/pubmed/26350665.
- Con J, Long D, Sasala E, et al. Secondary overtriage in a statewide rural trauma system. *J Surg Res*. 2015;198(2):462-467. doi:10.1016/j.jss.2015.03.077
- 3. Lynch KT, Essig RM, Long DM, Wilson A, Con J. Nationwide secondary overtriage in level 3 and level 4 trauma centers: are these transfers necessary? *J Surg Res*. 2016;204(2):460-466. doi:10.1016/j.jss. 2016.05.035
- 4. Bono CM, Vaccaro AR, Fehlings M, et al. Measurement Techniques for Upper Cervical Spine Injuries. *Spine (Phila Pa 1976)*. 2007;32(5):593-600. doi:10.1097/01.brs.0000257345.21075.a7

# **ACKNOWLEDGEMENTS**

We would like to thank Drs. Yashar Javidan, Rolando Roberto, Kee Kim, Julius Ebinu for their contributions.