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ORIGINAL ARTICLE
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ABSTRACT
The surrogate threshold effect (STE) is defined as the minimum treatment effect on a surrogate that is reliably predictive of a
treatment effect on the clinical outcome. It provides a framework for implementing a clinical trial with a surrogate endpoint. The
aim of this study was to update our previous analysis by validating the STE for change in total hip (TH) BMD as a surrogate for fracture
risk reduction; the novelty of this study was this validation. To do so, we used individual patient data from 61,415 participants in
16 RCTs that evaluated bisphosphonates (nine trials), selective estrogen receptor modulators (four trials), denosumab (one trial),
odanacatib (one trial), and teriparatide (one trial) to estimate trial-specific treatment effects on TH BMD and all, vertebral, hip, and
nonvertebral fractures. We then conducted a random effects meta-regression of the log relative fracture risk reduction against
24-month change in TH BMD, and computed the STE as the intersection of the upper 95% prediction limit of this regression with
the line of no fracture reduction. We validated the STE by checking whether the number of fractures in each trial provided 80% power
and determining what proportion of trials with BMD changes ≥ STE reported significant reductions in fracture risk. We applied this
analysis to (i) the trials on which we estimated the STE; and (ii) trials on which we did not estimate the STE. We found that the STEs
for all, vertebral, hip, and nonvertebral fractures were 1.83%, 1.42%, 3.18%, and 2.13%, respectively. Among trials used to estimate
STE, 27 of 28 were adequately powered, showed BMD effects exceeding the STE, and showed significant reductions in fracture risk.
Among the validation set of 11 trials, 10 met these criteria. Thus STE differs by fracture type and has been validated in trials not used
to develop the approach. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of
American Society for Bone and Mineral Research (ASBMR).
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Introduction

Surrogate endpoints such as low-density lipoprotein (LDL)
cholesterol and blood pressure help accelerate drug devel-

opment. In the field of osteoporosis, we have proposed that

change in bone mineral density (BMD) of the total hip could be
a surrogate outcome for fracture risk reduction,(1) a proposal that
has been made by others.(2) There are several approaches to
implementing surrogate endpoints in trials,(3) but one of the
most promising is the surrogate threshold effect (STE).(4)
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The surrogate threshold effect (STE) is defined as the change
in the level of a marker that would predict any improvement in
a disease outcome with 95% certainty. For example, a statin-
related decrease of at least 1.4 mmol/L (54 mg/dL) or more in
LDL cholesterol identified a reduction in cardiovascular mortal-
ity(5) and a decrease in systolic blood pressure of 7.4 mm Hg or
more predicts a reduction in the risk of stroke.(6)

In the Foundation for the National Institutes of Health (FNIH)-
ASBMR Study to Advance BMD as a Regulatory Endpoint (SABRE)
project we obtained a unique dataset of individual patient data
from randomized, placebo-controlled trials. Using this dataset,
we previously conducted a meta regression of the association
between treatment-related changes in BMD and fracture risk
reduction. We also calculated the STE, namely the change in
BMD that would predict a significant reduction in fracture.(1)

The purpose of the current study is to compute the STE for differ-
entmagnitudes ofminimum fracture risk reduction ranging from
0% to 50%. We also tested the STE against the trials we used in
themeta regression to determine whether the claims for fracture
risk would have been supported. Finally, we wanted to test the
application of the STE in trials not used in the meta regression
to further validate the STE method.

Subjects and Methods

As described,(1) we did a systematic search of published litera-
ture to identify randomized controlled trials (RCTs) of osteoporo-
sis drugs with fracture as the outcome. We checked databases
including PubMed, Embase, and Cochrane for publications

Table 1. Validation of STE Estimates in trials used for the derivation of STE

Study number
used in Fig. 1 Study name Drug TH BMD (%)

All Fx
(>1.83%)

Vertebral
Fx (>1.42%)

Hip Fx
(>3.18%)

Nonvertebral
Fx (>2.13%)

1 BZA PHASE 3(12) Bazedoxifene 1.29
2 MORE(13) Raloxifene 2.00 0.74 0.57
3 VERT-NORTH

AMERICA(14)
Risedronate 2.18 0.69

4 GENERATIONS(15) Arzoxifene 2.32 0.85 0.59
5 IBAN IV(16) Ibandronate (iv) 2.37 0.82
6 MEN’s Study(17) Alendronate 2.52
7 PEARL(18) Lasofoxifene 2.77 0.74 0.64
8 BONE(19) Ibandronate (oral) 3.01 0.79 0.52
9 FIT CLINICAL

FRACTURE(20)
Alendronate 3.12 0.85 0.55

10 FIT VERTEBRAL
FRACTURE(21)

Alendronate 3.69 0.65 0.49

11 LOFT(22) Odanacatib 4.56 0.60 0.46 0.52 0.76
12 ALN PHASE 3(23) Alendronate 4.57
13 HORIZON 2301(24) Zoledronic acid (iv) 4.69 0.55 0.32 0.59 0.75
14 FRX PREVENTION

TRIAL(8)
Teriparatide (SQ) 5.26 0.46 0.29

15 FREEDOM(25) Denosumab (SQ) 5.35 0.59 0.31 0.81
16 HORIZON 2310(26) Zoledronic acid (iv) 5.38 0.65

We estimated the number of subjects with fracture needed for 80% power based on the calculated hazard ratio of fracture risk. We then identified those
studies which did not reach at least 80% power (gray). Of the remainder, we did not have data on some (yellow), but in those for which we had data, we
checkedwhether the change in total hip BMDbetween active and placebo at 24 months exceeded the STE and, if so, whether the trial showed a nominally
significant reduction in fracture risk (p < 0.05). If the STE was exceeded and the trial was significant, the result is shown in green; if the STE was exceeded
and the trial was not significant and the result is shown in red. The numbers in the last four columns are observed relative risk of fracture (all p < 0.05).
Fx = fracture; SQ = subcutaneous; STE = surrogate threshold effect; THBMD = total hip BMD.

Table 2. Estimates of Change in Total Hip BMD at 24 Months on Treatment

Minimum fracture risk reduction

STE (% difference in TH BMD between active and placebo)

All fractures Vertebral fracture Hip fracture Nonvertebral fracture

Any 1.8 1.4 3.2 2.1
>10% 2.7 1.9 3.7 3.5
>20% 3.8 2.4 4.5 6.2
>30% 5.1 3.0 5.8 —
>40% 3.7 — —
>50% 4.6 — —

STE for any reduction in the four categories of fracture. STEs for different minimal treatment effects ranging from 10% to 50% are shown. The cells left
blank indicate those estimates where the 95% confidence interval upper bound exceeded 10%.
STE = surrogate threshold effect.
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between 1985 and 2018 in English using the search terms “frac-
ture, BMD, bonemineral density and required RCT or synonyms.”
We excluded small studies and studies of patients with certain
conditions (eg, glucocorticoid-induced osteoporosis).(1) Stron-
tium ranelate can artifactually increase BMD, which alters cal-
cium hydroxyapatite in bone, so we excluded such trials.(7,8) We
attempted to collect from trial sponsors the following: complete
data files, individual patient data, and study documentation. We
included trials of approved osteoporosis medications, as well as
trials of drugs for which approval was not sought or received.
We used a standardized template including uniform fracture def-
initions and standardized BMD conversions. Some studies were
not included in the FNIH-SABRE databases because the sponsor
was unable or unwilling to provide the data.

We created standardized fracture definitions across all trials.
We excluded fractures due to major trauma, by which we meant
trauma sufficient to cause a fracture in a young, healthy person.
However, we included all fractures reported when trauma infor-
mation was not available. We included all nonvertebral fractures
without exclusion except for one study in which the category of
fragility fractures had excluded more than half of nonvertebral
fractures due to trauma.(9) For vertebral fractures, we used the
individual study definitions based on comparing baseline with

follow-up lateral spinal radiographs. Vertebral fracture definition
was based on quantitative morphometry,(10) semiquantitative
assessment,(11) or a combination of these criteria. We added a
fourth category of fracture to this study that was not in our pre-
vious study,(1) namely “all fractures.” This is the composite of
nonvertebral and clinical or morphometric vertebral fractures.

Statistical analysis

We used Cox proportional hazard models for time to all, hip, and
nonvertebral fractures with the hazard ratio (HR) as the measure
of fracture reduction in order to estimate the effect of treatment
within each study,. We used logistic regression with the odds
ratio (OR) as the measure of fracture reduction for vertebral frac-
tures, where the time to event was unknown,. All analyses were
by intention-to-treat. The association between treatment and
fracture risk (eg, OR or HR) that we calculated differed from the
original published results in some studies, for various reasons
(eg, use of a different fracture definition, exclusion of trauma,
or updates to the final dataset after publication).

We conducted study-level analyses where the unit of analysis
is the study and not the individual. We plotted ORs or HRs against
the between-group difference in percentage change in BMD

Fig 1. Relationship between difference in the change in total hip BMD between active and placebo groups at 24 months and the hazard or odds ratio of
all, vertebral, hip and nonvertebral fractures. The red horizontal line is the ratio of 1 (no treatment effect) and the STE is the point where the upper 95%
prediction limits intersects this line; eg, 1.83% for the all fracture outcome. The class of drugs is indicated in the legend. For each trial, the point estimates
and 95% confidence intervals for relative risks are given and the numbers 1–16 relate to the studies listed in Table 1.
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showing the point estimate and 95% confidence interval (CI).
Next, we used a random effects meta-regression to estimate
the association of the mean percentage differences in BMD with
the log HR or log ORs, accounting for their standard errors, and
estimated the 95% prediction limits. The STE was defined as
the BMD difference (active – placebo) where the upper 95% pre-
diction limit crossed the relative risk of fracture of unity, 0.9, 0.8,
0.7, 0.6, or 0.5, reflecting fracture risk reductions of 0%, 10%, 20%,
30%, 40%, and 50%, respectively.

We evaluated our STE thresholds with observed BMD changes
and fracture risk reductions first in the studies used to derive the
STE thresholds (eg, studies in the FNIH-SABRE database), and
then in studies not included in the initial derivation set. For this
comparison, we first estimated the number of subjects with frac-
ture needed for 80% power based on the calculated HR of frac-
ture risk. We then identified those studies which did not reach
at least 80% power (Table 1, gray).(8,12-26) Of the remainder, we
did not have data on some (Table 1, yellow). In those for which
we had data, we checked whether the difference in the change
in TH BMD between active and placebo at 24 months exceeded
the STE and, if so, whether the trial reported a nominally signifi-
cant reduction in fracture risk (p < 0.05). If the STE was exceeded
and fractures were significantly reduced, the result is shaded
green in Table 1. In comparison, if the STE was exceeded and
the trial did not achieve a significant reduction in fractures, the
results are shaded in red (Table 1).

To further examine the validity of our approach, we repeated the
same evaluation discussed above for trials that were in our review of
published trials,(27) but that were not used as part of our develop-
ment of the STE estimates, as well as any other large clinical trials.
We did encounter a few challenges—in some studies we were
unable to use change in total hip BMD at 2 years because the study
duration was only for 18 months (abaloparatide(28)), there was mea-
surement of BMD at 3 years and sowe had to interpolate,(23) or there
was only femoral neck BMD (sodium fluoride,(29) etidronate(30)) or
only lumbar spine BMD (tiludronate(31) and calcitonin(32)). In the latter
cases, we used the STE estimates for change in femoral neck or
lumbar spine risk ratio from our previous work.(1)

Results

Estimating the STE

Change in total hip BMD at 24 months, required for the STE ana-
lyses, was available for 61,415 participants. The number of partici-
pants used in each analysis depended on the specific fracture
type (ie, “all,” vertebral, hip, or nonvertebral fractures). Mean net dif-
ferences (% change in activeminus% change in placebo groups) in
total hip BMD ranged from 1.3% to 5.4% across the studies.

We included 16 trials; these enrolled mostly women (exceptions
are the MENS(21) study and HORIZON 2310(20) [about 25% men]).
The drugs tested in these trials included alendronate,(14,17,19,21)

Table 3. Validation of STE Estimates in Trials Not Used for the Derivation of STEs

Study Active treatment
Control

treatment

BMD change
at 24 months

(active-control, %)

Relative risk
(odds ratio or
hazard ratio)

All Fx Vertebral Fx Hip Fx Nonvertebral Fx

Reginster and colleagues
(2001)(32)

Tiludronate PBO �0.80

Chesnut and colleagues
(2000)(33)

Calcitonin PBO 0.70

Greenspan and
colleagues (2007)(30)

PTH (1-84) PBO 2.11 0.42

Watts and colleagues
(1990)(34)

Etidronate PBO 2.90

McCloskey and
colleagues (2004)(35)

Clodronate PBO 3.00 0.54

Reid and colleagues
(2018)(23)

Zoledronate PBO 3.30 0.63 0.45 0.66

Miller and colleagues
(2016)(28)

Abaloparatide PBO 4.25 0.14

Riggs and colleagues
(1990)(29)

Sodium fluoride PBO 4.50 3.20

Saag and colleagues
(2017)(36)

Romosozumab!ALN ALN!ALN 3.70 0.73 0.52

Cosman and colleagues
(2016)(37)

Romosozumab!Dmab PBO!Dmab 5.90 0.67 0.25

We estimated the number of subjects with fracture needed for 80% power based on the reported hazard ratio of fracture risk. We then identified those
studies which did not reach at least 80% power (gray). Of the remainder, we did not have data on some (yellow) but in those for which we had data, we
checkedwhether the change in total hip BMDbetween active and placebo at 24 months exceeded the STE and, if so, whether the trial showed a nominally
significant reduction in fracture risk (p < 0.05). If the STE was exceeded and the trial was significant, the result is shown in green; if the STE was exceeded
and the trial was not significant the result is shown in red. The numbers in the last four columns are observed relative risk of fracture (all p < 0.05). We took
change in total hip at 2 years but there were some exceptions such as abaloparatide, which was 18 months total hip BMD; with clodronate there was a
measurement of BMD at 3 years so we had to interpolate; sodium fluoride, etidronate, which had 2-year femoral neck BMD; and tiludronate and calcitonin,
which had 2-year lumbar spine BMD.
ALN = alendronate; Dmab = denosumab; PBO = placebo; STE = surrogate threshold effect.
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risedronate,(16) ibandronate oral,(24) ibandronate iv,(26)

zoledronate,(20,25) denosumab,(12) bazedoxifene,(13) raloxifene,(15)

arzoxifene,(18) lasofoxifene,(22) odanacatib,(31) and teriparatide.(9)

We describe our results for the four STE estimates for the four
fracture categories in Table 2. These are illustrated in Fig. 1. Note
how the 95% CIs always included the regression line for all four
fracture types (with the exception of the ALN Phase 3 study(23)

and all fractures).

Validating the STE approach

We validated the STE approach by evaluating whether studies
that met the STE BMD threshold (and also had sufficient fracture
events) significantly reduced fracture risk (Table 1). Nearly all
(27/28) of the combination of study and fracture types that met
the STE threshold for BMD change had significant reductions in
fracture risk (shown in green in Table 1). One study, namely IBAN
IV, met the STE for vertebral fracture but did not significantly
reduce vertebral fractures in the trial (shown in red in Table 1).

We conducted a similar analysis for published trials that we
did not include in our meta-analysis (Table 3). These included tri-
als of tiludronate,(32) nasal calcitonin,(33) parathyroid hormone
1-84 (PTH 1-84),(30) etidronate,(34) clodronate,(35) zoledronate,(23)

abaloparatide,(28) sodium fluoride,(29) romosozumab compared
to alendronate,(36) and romosozumab compared to placebo.(37)

We again validated the STE approach by evaluating whether
those studies (for which we do not have individual data) that
met the STE BMD threshold (and also had sufficient fracture
events) significantly reduced fracture risk (Table 3). However,
we had to use femoral neck or lumbar spine in some cases to
identify the STE and we used the published (nominal) p value
to determine whether the fracture reduction was significant.
Nearly all (10/11) of the combination of study and fracture types
that met the STE threshold for BMD change had significant
reductions in fracture risk (shown in green in Table 3). One study,
namely sodium fluoride, met the STE for nonvertebral fracture
but did not significantly reduce nonvertebral fractures in the
trial.

Discussion

We identified the STE estimates for change in total hip at
24 months for four different fracture locations. The choice of
the threshold would be taken by the regulator, eg, US Food
and Drug Administration, and the study sponsor. For the valida-
tion of the approach, we have taken the 95% prediction limits
and we have taken any significant fracture risk reduction (requir-
ing no minimal fracture risk reduction). It may be more rigorous
to choose a minimal fracture risk reduction such as 30% for ver-
tebral fracture, because many of our licensed drugs reduce frac-
ture risk by more than this and so a lower reduction may not be
clinically important.

We found that in most cases (37/39), a significant fracture
reduction was observed when the BMD change exceeded the
STE threshold. Importantly, this concordance between STE
threshold and fracture reduction was seen both in studies that
were included and those that were not included in the meta-
regression used to establish the STE, providing robust evidence
for the validity of the STE approach.

There were only two studies that were not concordant. The
first was a trial using a dose of intravenous ibandronate(26) that
was lower than the licensed dose (0.5 and 1 mg as compared
to the licensed dose of 3 mg every 3 months). The study was

adequately powered to detect a decrease in vertebral fractures,
but not other fractures. There are two possible explanations. This
could be a false negative—we would not expect all 40 studies to
be concordant when we are using a p value of 0.05 as our nom-
inal level of significance. Alternatively, the explanation may lie in
the inconsistent decrease in bone turnover markers. Although
the total hip BMD increase (2.4%) was greater than the STE for
vertebral fracture (1.4%), the bone turnover markers were only
intermittently suppressed by the 3-monthly injection; the serum
and urinary cross-linked C-telopeptide (CTX) were only about
10% below the placebo response 3 months after injection.(38)

The secondwas a trial of sodium fluoride,(29) which had sufficient
power to detect a decrease in nonvertebral fracture (which actu-
ally increased). Sodium fluoride is known to impair bone miner-
alization in biopsies from humans(39) and minipigs(40) and to
reduce structural and material strength in chickens, rats, rabbits,
and minipigs.(41) Nowadays, the preclinical program as well as
bone biopsies taken during phase 3 would identify such a prob-
lem. Moreover, our proposal to use BMD as a surrogate endpoint
in future clinical trials would require preclinical evidence of the
expected positive association between bone mass and strength.

Precisely how to use the STE to gain regulatory approval for a
new drug in osteoporosis remains under discussion. However,
one option would be to use the STE method to identify “efficacy
thresholds” for a future placebo-controlled trial of a new anti-
osteoporosis drug that would predict a significant fracture
reduction. Results presented here indicate that a different “effi-
cacy threshold” of total hip BMD change (eg, % change: active
– placebo) is needed for each fracture type and that, as expected,
higher changes in BMD are required for greater fracture reduc-
tions. Thus, a new anti-osteoporosis drug could be approved
based on a placebo-controlled trial that exhibited a total hip
BMD increase that exceeded these thresholds, and perhaps,
depending on the magnitude of BMD change, with a statement
in the drug label indicating which fracture-specific thresholds
were met. Alternatively, for simplicity, the BMD threshold for all
different fracture types could be used. Finally, we have few stud-
ies of active comparators and so the application to such trials
needs further work.

In conclusion, these results provide strong support for using
the STE approach in the application of change in TH BMD as a
surrogate marker for identifying likely fracture benefits for future
clinical trials of osteoporosis treatment.
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