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Wildfire modifies the short- and long-term exchange of carbon between terrestrial
ecosystems and the atmosphere, with impacts on ecosystem services such as carbon
uptake. Dry western US forests historically experienced low-intensity, frequent fires,
with patches across the landscape occupying different points in the fire-recovery
trajectory. Contemporary perturbations, such as recent severe fires in California, could
shift the historic stand-age distribution and impact the legacy of carbon uptake on the
landscape. Here, we combine flux measurements of gross primary production (GPP)
and chronosequence analysis using satellite remote sensing to investigate how the last
century of fires in California impacted the dynamics of ecosystem carbon uptake on
the fire-affected landscape. A GPP recovery trajectory curve of more than five thousand
fires in forest ecosystems since 1919 indicated that fire reduced GPP by 157.4 ± 7.3 g
C m−2 y−1(mean ± SE, n = 1926) in the first year after fire, with average recovery
to prefire conditions after ∼12 y. The largest fires in forested ecosystems reduced
GPP by 393.8 ± 15.7 g C m−2 y−1 (n = 401) and took more than two decades to
recover. Recent increases in fire severity and recovery time have led to nearly 9.9 ± 3.5
MMT CO2 (3-y rolling mean) in cumulative forgone carbon uptake due to the legacy
of fires on the landscape, complicating the challenge of maintaining California’s natural
and working lands as a net carbon sink. Understanding these changes is paramount
to weighing the costs and benefits associated with fuels management and ecosystem
management for climate change mitigation.

wildfire | carbon uptake | regeneration | GPP

Wildfire has the ability to greatly modify the short- and long-term fluxes of carbon
between the land surface and the atmosphere (1), impacting the provisioning of
key ecosystem services from natural lands upon which society relies (2). Globally,
fire emissions of 2.2 Pg C y−1—the equivalent of more than a fifth of global fossil
fuel emissions in 2019 (3)—transfer large amounts of carbon from vegetative carbon
pools to the atmosphere (4, 5). In the past, assumption of a fire–climate equilibrium
provided a convenient framework to account for legacy effects of fire on climate (4). In
a closed system at steady state, fire emissions of CO2 are compensated by net carbon
uptake from forest stands in different stages of postfire regeneration, making the impact
of fires on carbon budgets neutral over decadal timescales at large scales (4–7). This
assumption holds only if fire area and severity—and thus fire CO2 emissions—stay
relatively stationary (1). When severe enough to be lethal to vegetation, increasing fire
area will skew the age distribution of vegetation toward younger age classes; decreasing
fire area will result in a distribution with older age classes. Globally, a combination of
disturbance, land use change, and climate change has pushed forests toward younger age
classes over the last century, potentially resulting in a net change in carbon uptake (2).

Increasingly severe fires in forests are particularly concerning because of the important
role that forests and forest regeneration play in climate regulation (8). While historically
low-intensity, frequent fires in dry western North American forests (including indigenous
anthropogenic burning) presumably reached a nearly steady state with respect to climate,
contemporary changes to disturbance rate and intensity have altered the carbon cycle
across the landscape. The fire regimes of the forests of the western United States have
been greatly modified by a nearly century-long policy of fire suppression (9–12), leading
to overstocked forests and shifts in size distributions and species composition (13–15).
Interacting with these dynamics, anthropogenic climate change is making large, high-
severity fires more common (16–18) and potentially reducing biomass carrying capacity
on the landscape (2, 19–22). In addition, warmer and drier climatic conditions following
severe fires are limiting tree seedling recruitment and regeneration across the western
United States, further reducing the capacity of fire-prone forests to take up and store
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carbon (23–26). A changing fire regime and slowed postdistur-
bance regeneration could lead to reductions in cumulative carbon
uptake across the fire-impacted landscape.

California is a prime example of many of these challenges—
experiencing a majority of its largest modern fires in the last
half decade (27–29). Over the past century, fire suppression
and other management practices have led to California’s forests
becoming denser, with more small trees, less overall basal
area, and altered species composition (13, 14). Due to the
changing forest structure, along with hotter, drier conditions,
and shorter wet seasons, the area and severity of wildfire (often
highly correlated) have greatly increased (SI Appendix, Fig. S1)
(28). Understanding how this contemporary wildfire regime has
changed the legacy of carbon uptake on the landscape is critical
to weighing the costs and benefits of wildfire fuels management
and to account for wildfire impacts on California’s ambitious
climate change mitigation goals (30), which seek to maintain
natural and working lands as a net carbon sink (31). We define
“foregone carbon uptake” as the cumulative impact of reduced
productivity of burned lands compared to unburned, matched
control pixels. Because of a long history of fire suppression and
forest management throughout California, the unburned control
areas do not represent a stable, “natural,” or even desirable
baseline state. Instead, the comparison allows us to compare
the GPP in recovering fire perimeters with that in an otherwise
similar forest.

We set out to understand how the legacy of the last century
of California fires has impacted carbon uptake. Our aim was to
understand the first-order spatial patterns across a diverse array
of wildland ecosystems that comprise California. Previous work
has taken a space-for-time approach, with “snapshots” of eddy
covariance-measured ecosystem-scale productivity at differently
aged forests (32–34) or has observed ground-based recruitment
and species mix at a small sample of fires, usually at the plot
or patch scale (e.g., refs. 24, 35, 36). However, due to the
stochastic nature of fire ignitions, these approaches are unable
to capture a complete regional-scale estimate of the impact of
fires. To obtain a more comprehensive picture, we combine
three decades of medium-resolution satellite data, 90 site-years
of nearly continuous ecosystem-scale gross primary productivity
(GPP) observations from a range (SI Appendix, Fig. S3) of
California ecosystems and elevations and archival databases of
the timing and burn perimeters of fires (Materials & Methods) to
quantify the foregone carbon uptake of fires in California since
1919. We primarily utilize the State of California’s exhaustive
Fire and Resource Assessment Program (FRAP) dataset of
historical California fire perimeters. We supplement this with the
United States Forest Service (USFS) Vegetation Burn Severity
dataset, which contains a subset of the FRAP fires, split into
normalized burn severity polygons (37) (Materials & Methods).
We align fires by “years since fire” or recovery age to observe a
broad range of recovery periods.

We use this analysis to ask the following: 1) What is the
magnitude and spatial arrangement of foregone carbon uptake
associated with recent fires in California? 2) How long does
it take for recently burned areas to recover carbon uptake
capacity to that of unburned controls? 3) How has postfire
carbon uptake recovery changed over recent decades? Satellite-
based multispectral proxies of GPP are well established (e.g.,
ref. 38). In particular, a multispectral index of near-infrared
reflectance (NIRv) has been shown to serve as an effective proxy
for light capture, integrating aspects of canopy structure that
control photosynthetic uptake (39–42). We focus on gross carbon

uptake as an ecosystem service, as opposed to net carbon uptake,
which depends on high-confidence measurement or modeling of
ecosystem respiration, for which there are weaker proxies (38).
Our method allows us to quantify the carbon uptake legacy of
fire disturbance across broader spatial and temporal scales than
previous work. It also facilitates placing the legacy of wildfires in
the context of established theories of forest succession (43) and
management strategies into the future.

Results

Across the more than 5,000 fires (SI Appendix, Fig. S1) that
we analyzed from California forests since 1984 (27), annual
GPP fell 16.5 ± 0.5 % (mean ± SE,n= 1988) in the year
after fire, but with substantial variability between and within
fires and between years (Fig. 1A). Based on comparisons with a
set of undisturbed control pixel bins (Materials & Methods and
SI Appendix, Figs. S2 and S4), a fire’s impact on GPP (dGPP)
was usually (68.5% of all fires that occurred in predominantly
forestland) negative immediately postfire (Fig. 1B), indicating a
reduction in photosynthetic carbon uptake capacity related to
vegetation and leaf area lost in the disturbance (SI Appendix,
Fig. S5). The mean California forest wildfire (Fig. 2A) reduced
GPP by 157.4 ± 7.3 g C m−2 y−1 (mean ± SE,n= 1926) in
the first year after fire, with average recovery to prefire conditions
after ∼12 (10 to 12) y. About half of fires recovered carbon
uptake capacity within the first decade after fire. This reflects the
fact that the majority of fires in California are of low severity, are
small (especially due to the policy of fire suppression; SI Appendix,
Fig. S1), and have relatively short-lived effects. The other half
of fires in predominately forested ecosystems still experienced
a persistent GPP reduction, compared to unburned controls, a
decade postfire. After recovery of GPP—which we define as the
time at which dGPP flips from negative to positive—along with
the range of crossover considering the CI, many fires exhibited
enhanced uptake before trending back toward an undisturbed
equilibrium (Fig. 2A).

The historical predominance of small fires in California can
mask the implications of the more severe, larger forest fires
characteristic of the last two decades (18, 28) (SI Appendix,
Fig. S1), in which the average acre burned more intensely. In
forest-dominated fires, the largest magnitude and longest-lasting
GPP reductions occurred following the largest quintile of fires
−393.8± 15.7 g C m−2 y−1; 20 y (20 to 30); (n = 401) and fires
in the wettest quintile of climates (−234.8± 17.0 g C m−2 y−1;
21 y (19 to 24); (n = 348)) (Fig. 2 B and E). We used USFS
fire polygons (37), partitioned by normalized burn severity
across fires and years, to determine the impact of fire severity
on GPP recovery (Fig. 3A). The most severe burn areas in
this dataset resulted in −613.6± 10.4 g C m−2 y−1 (n = 916
polygons) in the first year since fire, compared to the least
severe fires which experienced an initial GPP reduction of
−214.4± 8.8 g C m−2 y−1; (n = 1262 polygons).

Burn severity leads to different amounts of foregone carbon
uptake depending on the forest type. High-severity burns led
to a large initial GPP reduction in the wetter Coastal Range,
Cascades, and Klamath ecozones, compared to the drier Sierra
Nevada, or Southern California Mountains (Fig. 3B). Across the
entire population of FRAP fires, postfire GPP reductions tended
to be larger in northern California, where forest carbon stocks
are greater, and climate is wetter than the statewide average. In
Southern California, where frequent and relatively low-severity
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Fig. 1. GPP (A) and change in GPP due to fire (dGPP) (B) across 2264 California fires that occurred in predominantly forested land cover types since 1984.
Each fire (row) is aligned as a chronosequence (years since fire). dGPP is calculated by comparing postfire GPP to a set of recently undisturbed control pixels
(Materials & Methods). (SI Appendix, Fig. S5 for forest fires since 1919).

shrub fires are more common, postfire GPP reductions were
generally smaller, and recovery was faster, in many cases with
GPP enhancements after just a few years (SI Appendix, Fig. S6).

To better understand the interactions among the complex set
of drivers contributing to GPP recovery postfire, we utilized a
generalized additive model with cubic spline smooths (Materials
& Methods) to derive the partial effects of predictor variables
(area, fire severity using percent dNBR change in the year postfire,
mean temperature, mean precipitation, elevation, percent of the
area that has reburned, prefire mean GPP, and fire start year) on
dGPP at 10 y postfire (r2 = 48.9%; all predictors significant)
(SI Appendix, Fig. S7). Holding other explanatory variables
constant, we derived residual response functions for each of the
eight recovery predictors. Consistent with binned recovery curves
(Fig. 2 B–E), fire disturbances with a large area (A), high severity
(B), and in locations with relatively high average precipitation (D)
each resulted in negative residuals, indicating the importance of
these variables in driving GPP reductions compared to unburned
controls a decade postfire. Residuals were also negative for low
elevation and low prefire GPP.

By grouping recovery by decade, we identified a systematic
fingerprint of the changing recovery trajectories over time, which

may be responding to global change drivers such as increasing
temperature and vapor pressure deficit. GPP recovery trajectories
from forest-dominated fires in the 1980s experienced smaller
postfire GPP reductions (1980s: −105.9 ± 19.4 g C m−2 y−1,
n = 264; 2010s: −183.9 ± 15.2 g C m−2 y−1 , n = 475) and
faster recovery (1980s: 7 y (5 to 11); 2010s: 14 y (12 to 18)
(Fig. 2D). On average, a stand one decade postfire in the 2010s
still experienced a GPP reduction, while a similar stand age in
the 1980s had recovered and exceeded the carbon uptake of its
unburned baseline.

We used the cumulative enhancement and reduction of GPP
over all fires since 1919, relative to the control pixels, to compute
the state-wide area-weighted cumulative GPP impact of the past
century of fire—what we call the landscape-scale fire legacy.
Fire led to a small net enhancement in GPP on fire-disturbed
lands during the 1980s. Over the last two decades, however,
GPP decreased dramatically across California’s fire-disturbed
landscape compared to unburned controls, resulting in 9.9± 3.5
MMT CO2 (3 y rolling mean and SE) of forgone carbon
uptake due to the legacy of fires on the landscape as of 2018
(Fig. 4C ). Most of this net reduction comes from fires in forests
(Fig. 4A), with fires in shrub-dominated ecosystems leading to
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Fig. 2. Mean dGPP and CI in each year since fire for (A) all forest wildfires in California since 1919, binned by quintiles of (B) area, (C) 30-y (1981 to 2010)
temperature, (D) decade of fire observation (note that the 1980 and 2010 decades are not complete; the 1980 decade includes 1984 to 1989 and the 2010
decade includes 2010 to 2018), and (E) 30-y (1981 to 2010) precipitation normals.

substantial variability in dGPP due to fire, but generally net
equilibrium (Fig. 4B).

Discussion

The mean dGPP fire recovery curve (Fig. 2A) generally follows
the idealized expectation of postdisturbance succession, based on
the idea that after a disturbance, reductions in carbon uptake
are followed by recovery through predisturbance equilibrium,
toward a temporary period of enhancement, and then a gradual
recovery to baseline conditions (43). In forests, this process occurs
on multidecade to century timescales.

In the year after fire, GPP in forest-dominated ecosystems
decreased by 157.4± 7.3 g C m−2 y−1 (mean± SE, n = 1926,
followed by rapid recovery to undisturbed baseline conditions
after more than a decade. There was a small (maximum of
71.0± 9.0 g C m−2 y−1 at 42 y since fire) GPP enhancement
that persisted to at least∼90 y (Fig. 2A). This medium-term GPP
enhancement is broadly consistent with other chronosequences
of long-lived ponderosa pine recovery, in which net primary
production increased to a maximum between 70 and 100 y (34).

Our results are consistent with previous work and, due to
the number and breadth of fires analyzed, may be more broadly
applicable. Previous work at the ecosystem scale employed eddy
covariance measurements of partitioned net ecosystem exchange
snapshots, using a space for time approach (32–34). Amiro et al.
(32) synthesized a chronosequence of ecosystem flux data from
four fire disturbance sites in North America, finding that the
boreal forest sites recovered carbon uptake capacity after about a
decade, while a drier Arizona site appeared to be on a much longer
trajectory. Goulden et al. (33) likewise found relatively short-term
(∼2 decade) suppression of GPP following fire but noted that
boreal forest recovery, facilitated by quickly resprouting herbs and
shrubs, may be much faster than in water-limited southwestern
forests that are not adapted to high-severity crown fires.

Evidence for this slow postfire GPP recovery in the southwest
United States was supported by data from a severely burned
ponderosa pine forest, where a decade following stand-replacing
fire, the burned site’s GPP was approximately 43% of an
unburned control (45). Despite lower ecosystem respiration than
a control site, the burned site was still a net source of CO2 to
the atmosphere. More recent landscape-scale work at coarser
resolution looked at postfire recovery of GPP over large fires in
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the Western United States, finding GPP reductions that stabilized
after 2 to 12 y postfire, except in the case of higher-severity fires
(46). We found that forests took about a decade to recover carbon
uptake capacity, on average, following a fire, which is consistent
with these other studies. Furthermore, we observe that forests
that experienced larger fires, in wetter sites, take substantially
longer to recover (i.e., more than two decades at least).

California’s contemporary fire regime is causing a growing
cumulative GPP reduction in fire-affected landscapes, compared
to otherwise similar unburned and overstocked controls. As
recently as the end of the 1980s, the cumulative area-weighted
GPP effect of California wildfires was near-neutral, meaning that
the landscape-scale fire legacy was in equilibrium, summed across
the population of patches in postfire regeneration (Fig. 4C ).
Since the turn of the century, however, the net GPP reduction
of forest fire-affected areas has increased rapidly (Fig. 4A)
to −14.6 ± 2.5 MMT CO2 by 2017. Initial postfire GPP
reductions are growing, and GPP recovery is slowing; postfire
recovery trajectories for forest-dominated wildfires recovering
in the 2010s were ∼7 y longer than the mean for fire in the
1980s. These changes have led to a reduction of carbon uptake on
the fire-affected landscape, dominated by fires in predominantly
forested ecosystems (Fig. 4A). Though not directly comparable,
the magnitude of this foregone carbon uptake is similar, in some

recent years, to the immediate CO2 emissions from wildfire
biomass incineration (shown for comparison in the unfilled bars
of Fig. 4C ) (44).

This landscape-scale foregone carbon uptake is a function of
both larger, higher-severity fires and a slower pace of recovery,
especially in the last two decades. This signal is also interwoven
with impacts of CO2 fertilization (47), hotter and drier condi-
tions (21, 48), and prolonged droughts (49). The evidence for
challenging recruitment and the potential for ecosystem state-
changes after high-severity fires is also increasing, with the clearest
signals from water-limited forests adapted to low-severity fire
(23, 35). In past research, regeneration after severe fire in the
mixed conifer/mixed evergreen forests of the Klamath Mountains
was characterized by substantial competition and short (∼4 y)
windows for recruitment, leading to protracted multidecadal
recovery when immediate recruitment was inhibited (24). In
a severely climate-changed California, large, severe fires in
combination with chronic drought and disease could serve to
catalyze wholesale biome shifts (48).

This study documents a shift in the effect of California’s fire
regime on cumulative GPP across the fire-affected landscape,
from net enhancement to net reduction over the last several
decades. Four considerations help put this result in context.
First, the effect on GPP does not necessarily translate directly to
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landscape-scale carbon balance. While we estimate the trajectory
of carbon gains through GPP, we do not estimate carbon releases
through direct combustion and ecosystem respiration. In many
cases, fire alters the long-term trajectory of soil respiration,
through mineralizing or protecting soil carbon and other nutrient
pools (32, 50, 51). In an Oregon ponderosa pine chronosequence,
however, soil-dominated heterotrophic respiration did not vary
substantially with stand age (34). The trajectory of ecosystem
respiration following fire depends on the quantity of dead biomass
not consumed in the combustion. Measurements of carbon
consumption in prescribed Sierra Nevada fires have demon-
strated substantial surface fuel carbon consumption (52), while
others have shown that common assumptions underestimate the
amount of remaining biomass after fire (53). To build a more
complete picture of the impact of fires on regional carbon balance,
further research should examine changes in ecosystem respiration
or net carbon storage following disturbance.

Second, our approach focuses on ecosystem function and does
not provide information regarding the species mix or life form of
the regenerating ecosystem. Rapid recovery of GPP could reflect
regrowth of the species originally present and/or species of a
similar life form, or it could indicate a transition to fast-growing

early successional species of a different life form, like shrubs (54).
Recent work on vegetation transitions in California points to a
postfire trend toward denser, smaller, and more oak-dominated
forests (14, 22). California forests, including their fire adaptations
and fire tolerance, are diverse. Future work could disentangle
the relative recovery patterns according to dominant species
assemblages, allowing managers to understand which California
forests are most at risk of delayed GPP recovery after high-severity
wildfire, and how changes in the spatial distribution of species
may affect this in the future.

Third, our experimental design, based on averaging annual
GPP over all pixels within a fire perimeter (or in the case of Fig. 3,
USFS fire severity polygons) and comparing this with the mean
GPP of ∼200 of the most similar (based on normal temperature
and precipitation, elevation, and latitude) undisturbed control
pixels (Materials & Methods), has benefits and limitations. GPP
recovery can be quite heterogeneous within a single fire perimeter;
we do not resolve the recovery of, for example, unburned islands
within fire perimeters or the severity impacts on different life
forms within the fire perimeter. These could act as important seed
sources that hasten forest recovery (e.g., ref. 55). We also do not
consider postfire management such as salvage logging or active
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replanting and shrub management. Both can dramatically impact
the course of succession in mixed conifer California forests (56).

The primary benefit of comparing fires with unburned control
pixels is to capture background changes in GPP related to
CO2 fertilization (2, 21) and interannual climate variability. The
main limitation is that, due to the length of the Landsat record,
we do not know the nonfire disturbance history of control pixels
before 1984. If some of the pixels we selected as controls had
experienced GPP-reducing disturbance (i.e., logging) before the
beginning of the Landsat record, they could have GPP either
higher or lower than truly undisturbed sites. And, of course, few,
if any, locations in California represent a precolonial baseline due
to cessation of indigenous management, pervasive harvesting,
and fire exclusion for the last century (57). This means that
our unburned control represents, in places that have experienced
intensive management and fire suppression, an unsustainable and
overstocked condition.

Due to over a century of fire suppression, California and the
western United States have a large-scale, largely unmet need for
fuel-reduction treatments in overstocked forests (57) to reduce
the risks of future catastrophic wildfires. Implementation of
widespread fuel-reduction treatments at scale, as called for in
California’s latest wildfire and forest resilience action plan (58),
could contribute to reversing the growing GPP reductions on fire-
effected landscapes, though these treatments come with their own
short-term carbon costs (59–62). While we do not differentiate
between “natural” (i.e., lightning ignition), human-ignited, and
prescribed fires, we do find a much smaller reduction in carbon
uptake, and a nearly instantaneous recovery, after relatively small
fires (Fig. 2B). Using the USFS fire severity-focused dataset,
we also find that lower-severity fires result in lower initial GPP
reductions (Fig. 3B). These findings are broadly consistent with
evidence of enhanced carbon stability and forest resilience when
fire-adapted forests experience thinning (63–65). In addition to
avoiding direct fire emissions and reducing understory fuel loads
that lead to severe crown fires, fuel reduction through prescribed
burns and thinning can reduce the multidecadal GPP reductions
associated with catastrophic fires and enhance long-term carbon
stocks by releasing large trees from competitive pressure from
understory vegetation.

Finally, in addition to changing carbon uptake capacity, fire
impacts other important ecosystem services such as climate,
water, and human health. Here, we have focused exclusively
on CO2, but wildfires also emit CH4, N2O, aerosols, and
precursors to ozone (5, 66), which can have diverse impacts on
vegetation productivity (67, 68) and negative impacts on human
health (69, 70). High-severity fires modify the surface energy
balance (71, 72), often leading to higher surface temperatures
and altered evapotranspiration, imperiling downstream water
security (73), quality (74), and quantity (75). Soil nitrogen
and carbon are generally reduced under frequent or severe fires,
leading to less hospitable soil environments for aboveground
productivity (50, 76). The diverse spatial and temporal scales
of these impacts warrant closer analysis of multidecadal postfire
legacies of ecosystem services as components of the complete
impact of fire on the landscape.

In this work, we quantified the landscape-scale impact of the
contemporary fire regime on California’s carbon uptake over
the last century, using an exhaustive fire disturbance dataset
and a wall-to-wall remote sensing chronosequence. The impact
of this changing fire regime on climate goes well beyond the
incineration emission of biomass carbon to atmospheric CO2.
We document the legacy effect that the fire regime imprints

on the landscape—leading to younger, less productive forests
that, over the last few decades, have led to foregone carbon
uptake of close to 10 MMT CO2 across fire-disturbed California
lands (Fig. 4). This trend has been compounded by larger, more
severe fires and longer time to recovery, potentially exacerbated
by the challenges of regeneration in a hotter and drier climate,
complicating the challenge of maintaining California’s natural
and working lands as a net carbon sink (15). Our work suggests
that forest management practices—such as prescribed low-
severity burns aimed at reducing large, severe, wildfires (77)—
not only preserve carbon stocks in live biomass but can slow the
trend toward net GPP reductions on the fire-affected landscape.
This work provides a unique window into evolving impacts of
California’s changing fire regime, and it points to the importance
of integrating ecosystem service recovery into the management
of California’s natural and working lands.

Materials and Methods

Overview. The three main datasets used were 1) monthly Landsat surface
reflectance index (NIRv); 2) data from nine eddy covariance flux tower sites
across a range of California ecosystems, constrained with gridded radiation and
temperature reanalysis products and gap-filled and summed to create an annual,
statewide GPP product between 1985 and 2018; and 3) fire perimeter datasets
that include a statewide 100+ year fire perimeter (FRAP) and a Landsat-era
fire severity class perimeter dataset (USFS). We utilized a change detection
algorithm, plus topographic and climate geospatial layers, to identify recently
undisturbed control pixels that matched with our fire perimeters. We computed
the impact of fire on GPP (dGPP) by subtracting the annual mean GPP of the
spatial control pixels from annual mean values of GPP from within each fire
perimeter. We indexed each fire observation by “year since fire,” or recovery age,
allowing us to construct a chronosequence that spans many decades, despite
only 33 y of Landsat observations. For example, for fires that occurred in 1984,
we were able to observe years 1 to 34 of recovery. But for fires that occurred
before the Landsat record, say in 1970, we could observe recovery for years
14 to 48. In this way, we observed different portions of postfire recovery for
different fires. Together, this allowed us to reconstruct a chronosequence, based
on time since disturbance, that spans nearly a century.

Remote Sensing Data and Harmonization. We accessed the Tier 1 surface
reflectance record from the Landsat series of Earth-observing satellites using
Google Earth Engine (78). We used established algorithms to homogenize the
Landsat 5 Thematic Mapper equivalent of Bands 1, 2, 3, 4, 5, and 7 from the
Landsat 7 Enhanced Thematic Mapper+ and the Landsat 8 Operational Land
Imager using established regression lines derived for the Continental United
States (79). We then combined the scenes from the Landsat 5, 7, and 8 to
create a 34-y chronosequence (1984 to 2018) (80). Landsat data were quality-
controlled by removing pixels using the USGS “pixel qa” mask based on FMask
(81) to remove snow, clouds with high confidence, and cloud shadows from
each Landsat scene. We calculated the mean Tasseled Cap Brightness (82) for
the full Landsat stack and removed pixels from each Landsat scene that were
anomalously (two SDs) bright (clouds or snow) or dark (shadows). For months
in which we had no quality-controlled Landsat data (usually wintertime), we
gap-filled using a harmonic fit to the monthly values.

NIRv, an effective proxy for light capture that integrates aspects of canopy
structure that control photosynthetic uptake, was computed as the product
of near-infrared reflectance (NIR) and the normalized difference vegetation
index (NDVI) (NIRv = NIR ∗ ((NIR − Red)/(NIR + Red)) (39, 40). The
normalized burn ratio (NBR) was used as a proxy for fire severity and computed
as the normalized difference of short-wave infrared reflectance (SWIR2) and
near-infrared reflectance (NBR = (NIR − SWIR2)/(NIR + SWIR2)) (83). For
SI Appendix, Fig. S7, we used the percent difference in mean NBR between the
year before and the year after the fire burn year to determine fire severity.
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Additional Geospatial Layers. We extracted supplementary geospatial layers
over California to assist in interpreting results. These included topographic
elevation, aspect, and slope (USGS National Elevation Dataset courtesy of
the US Geological Survey; https://www.usgs.gov/core-science-systems/national-
geospatial-program/national-map). We used 1981-2010 “PRISM” precipitation
(water-year sum) and temperature (water-year average of monthly maximum
temperature) (84), downscaled to 30 m. Though this product does not exactly
overlap with our observation period (1984 to 2018), the size of the quantile bins
used (Fig. 2) is much larger than the change in precipitation and temperature
associated with climate change over that period, so we do not expect changes
in climate during 2010 to 2018 to significantly influence our bins. We used
the Landsat-based eMapr 1987 to 2018 land cover product to determine
prefire landcover type (85), assigning pre-1987 fires to the dominant 1987
landcover type. Wildfire emissions are from the California Air Resources Board
(44) (https://ww2.arb.ca.gov/wildfire-emissions).

California Flux Tower Scaling. The eddy covariance method represents the
only continuous (measured at 10 to 20 Hz) ecosystem-scale (meaning integrated
over a spatial footprint of∼1 km2) measurement of net CO2 flux. The continuous
temporal resolution (averaged to 30-min data) allows us to capture seasonal
variation and interannual variability integrated across an assemblage of plant
functional types (depending on the species in the measurement footprint). We
leveraged a network of nine eddy covariance flux sites—together representing 90
site-years of data—across multiple California ecosystems and elevations (49, 86),
along with the Landsat record, to translate the near-infrared vegetation index
(NIRv) into gross primary production (GPP) at the 30-m scale over the past 34 y
(SI Appendix, Fig. S3).

The eddy covariance flux sites share the same instrumentation, data
processing, and maintenance (87). The eddy covariance systems include a
closed-path infrared gas analyzer (LI-7000, LiCor Biosciences) and a 3D sonic
anemometer(CSAT-3, Campbell Scientific). Data are corrected for sensor lag,
mean wind rotation, and energy budget closure. At each eddy covariance site,
we measured the net ecosystem exchange at 10 to 20 Hz, partitioned this
into GPP and respiration using light-response curves fit during periods with
sufficient turbulence and incoming solar radiation (K) less than 200 W m−2,
and summarized this at the 30-min timescale (86). Four eddy covariance towers
were located in the Sierra Nevada around the upper Kings River basin along a
west-to-east transect at ∼800 m elevation intervals beginning at 405 m. Four
towers were located in the San Jacinto Mountains at elevations ranging from 205
m to 1710 m. One tower was located in the Santa Ana Mountains at∼ 500 m. We
calculated monthly GPP by integration after gap-filling intervals with missing,
low turbulence, or otherwise unsuitable observations. All of the towers are well
documented in the literature (41, 49).

To scale Landsat-observed NIRv to eddy covariance-measured GPP (39–42),
we used a hybrid light use efficiency approach, in which the max NIRv–GPP
relationship under optimal growing conditions was down-regulated with scalars
of interpolated GRIDMET solar irradiance (88) (K) and PRISM temperature (84) (T).
First, we calculate GPPmax using linear relationships between growing season
NIRv (mean of nine upwind Landsat pixels adjacent to the tower) and GPP under
peak growing season conditions. We defined peak growing season conditions as
March, April, and May for shrub-dominated sites (AmeriFlux sites: CZ1, SCs, SCw,
SCc, and SCd) and June, July, and August for tree-dominated sites (AmeriFlux
sites: CZ2, CZ3, CZ4, and SCf). There was a strong association between monthly
growing season NIRv and GPP (r2 = 0.703). We computed downregulation
scalars (0 to 1) based on the relationships of a GPP residual with solar radiation (K)
and temperature (T) at each site to correct for K and T limitation on photosynthesis
(SI Appendix, Fig. S9). We calculated the GPP residual by dividing the observed
fluxtowerGPPbytheNIRvpredictedGPP.Wefilteredto includeonlyobservations
with monthly NIRv predicted GPP values greater than 0.5. We calculated a third-
degree polynomial fit for the nine flux tower sites to predict the monthly GPP
residuals using T (r2 = 0.0938). We calculated a linear fit to predict the
monthly GPP residuals using K (r2 = 0.0553). We multiplied these monthly
T and K downregulation scalars by the GPPmax prediction at each site to get
a final prediction of monthly GPP. Over all 90 site-years with twelve months
of data, we get an r2 of 0.86 between modeled and observed annual GPPs

(SI Appendix, Fig. S10). We then applied the linear relationship between NIRv
combined with the scalar corrections for K and T to convert monthly NIRv to GPP
across California at 30-m spatial resolution.

FRAP Fire Polygon Dataset. To determine the timing and location of fires
within California, we employed the Fire and Resource Assessment Program
(FRAP) dataset (https://frap.fire.ca.gov/mapping/gis-data/), which contains more
than a century of multiagency geospatial fire perimeters for California. The
dataset was ingested into Google Earth Engine (78) and filtered for fires that
occurred after 1919.

USFS Fire Severity Dataset. To determine the impact of fire severity on GPP
recovery, we employed the USFS Vegetation Burn Severity dataset (https:
//www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd596279.zip), which con-
tains USFS fire perimeters from 1984 to 2017. Each fire is separated into
up to four categories of pixel-wise fire severity (1 = unchanged, 2 = low severity,
3 = moderate severity, 4 = high severity) based on relative dNBR (RdNBR) (37).
The RdNBR values are then calibrated to fire severity categories (89, 90). All
pixels within each fire severity category are grouped into one polygon for each
fire event, with up to four polygons for each fire.

Matched Controls. To compute the GPP impact of fire, we utilized a spatial
control matching approach that takes into account interannual variability and
the changing background climate and environmental conditions over the past
century in California. Fire areas were matched with a group of pixels representing
similar geographic and climatic characteristics to each fire. Each set of control
pixels contained up to 200 pixels binned by latitude (0.25◦ bins), elevation
(100-m bins), long-term mean precipitation (200-mm bins), and long-term
mean temperature (5 ◦C bins) (SI Appendix, Fig. S2). Pixels were selected only
if they did not occur in a recent fire (according to FRAP) and were otherwise
not recently disturbed (since 1984, determined using the Continuous Change
Detection and Classification algorithm) (29, 91). To check the fit, we regressed
annual mean prefire GPP against the same year’s mean control GPP, with an r2

of 0.58 and an RMSE of 281.5 g C m−2 y−1 (SI Appendix, Fig. S8). We built an
annual time series of GPP from the mean of these 200 control pixels. Each year
of postfire GPP for each fire is compared to the same year’s mean GPP for the
matched control pixels. For example, a fire that burned in 2010 has its mean
2014 GPP (age = 4 y since fire) compared to the mean 2014 GPP of its 200
matched control pixels.

Uncertainty. We quantitatively propagate five sources of uncertainty in this
analysis. They include

• NIRv–GPP empirical model fit (root mean squared error; SI Appendix,
Fig. S10),

• spatial variability of fire polygon pixels (SE across all pixels that make up
GPPy,f ),

• spatial variability of matched control pixels (SE across all pixels that make up
GPPy,cf ),

• the quality of the spatial control match, measured by the linear fit of control
pixels vs. observed project pixels,during the prefire period (rootmean squared
error; SI Appendix, Fig. S8), and

• variation in dGPP across the population of fires for any given year since fire
(SE of the dGPP of each fire in a year since fire bin, dGPPysf,firen ).

Additional sources of uncertainty that are not explicitly treated are flux data
processing (gap filling and partitioning into GPP) as well as the uncertainty in
FRAP and USFS fire perimeters. We recognize that the fire perimeters pre-Landsat
era, and especially the oldest fire perimeters, may be subject to error. It was out
of scope for this paper to validate historic FRAP polygon accuracy (92).

To compute dGPP, we propagate the spatial error associated with the mean
estimate of GPP for the fire pixels and the matched control pixels as well as root
mean square error (RMSE) associated with the GPP model and control match:

dGPPy,f = GPPy,f − GPPy,cf ,
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where y = year, f = fire, and cf = matched control pixels for each fire. To compute
the SE of dGPPy,f :

SE(dGPPy,f ) =√
SE(GPPy,f )

2 + SE(GPPy,cf )
2 + RMSE(GPPmodel)

2 + RMSE(ControlMatch)2.

To compute the dGPP for any given—year since fire—in the chronosequence,
we take the mean of each fire’s dGPP in a particular year since fire “bin”:

dGPPysf = dGPPysf,f ,

where ysf = years since fire. To compute the SE of dGPPysf ,

SE(dGPPysf ) =√
SE(dGPPysf,fire1

)2 + SE(dGPPysf,fire2
)2 + ... + SE(dGPPysf,firen)

2/nfires.

Data, Materials, and Software Availability. Code and data have been
deposited at https://doi.org/10.5061/dryad.9w0vt4bkr.
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