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Abstract
Over	the	years,	theoreticians	and	empiricists	working	in	a	wide	range	of	disciplines,	
including	physiology,	ethology,	psychology,	and	behavioral	ecology,	have	suggested	
a	variety	of	reasons	why	individual	differences	in	behavior	might	change	over	time,	
such	 that	 different	 individuals	 become	 more	 similar	 (convergence)	 or	 less	 similar	
(divergence)	 to	 one	 another.	 Virtually	 none	 of	 these	 investigators	 have	 suggested	
that	convergence	or	divergence	will	continue	 forever,	 instead	proposing	 that	 these	
patterns	will	 be	 restricted	 to	 particular	 periods	 over	 the	 course	 of	 a	 longer	 study.	
However,	to	date,	few	empiricists	have	documented	time-	specific	convergence	or	di-
vergence,	in	part	because	the	experimental	designs	and	statistical	methods	suitable	
for	describing	these	patterns	are	not	widely	known.	Here,	we	begin	by	reviewing	an	
array	of	influential	hypotheses	that	predict	convergence	or	divergence	in	individual	
differences	over	timescales	ranging	from	minutes	to	years,	and	that	suggest	how	and	
why	such	patterns	are	likely	to	change	over	time	(e.g.,	divergence	followed	by	main-
tenance).	Then,	we	describe	experimental	designs	and	statistical	methods	that	can	be	
used	to	determine	if	(and	when)	individual	differences	converged,	diverged,	or	were	
maintained	at	the	same	level	at	specific	periods	during	a	longitudinal	study.	Finally,	we	
describe	why	the	concepts	described	herein	help	explain	the	discrepancy	between	
what	theoreticians	and	empiricists	mean	when	they	describe	the	“emergence”	of	indi-
vidual	differences	or	personality,	how	they	might	be	used	to	study	situations	in	which	
convergence	 and	 divergence	 patterns	 alternate	 over	 time,	 and	 how	 they	might	 be	
used	to	study	time-	specific	changes	in	other	attributes	of	behavior,	including	individ-
ual	differences	 in	 intraindividual	variability	 (predictability),	or	genotypic	differences	
in	behavior.
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1  |  INTRODUC TION

Empiricists	 studying	 animal	 personality,	 coping	 styles,	 and	 behav-
ioral	 syndromes	have	documented	hundreds	of	 cases	 in	which	 in-
dividuals	 differ	 in	 the	 levels	 of	 behavior	 that	 they	 express	 (Bell	
et al., 2009; Carter et al., 2013;	 Dougherty	 &	 Guillette,	 2018; 
Franklin	et	al.,	2022),	and	similar	patterns	have	been	described	for	
physiological	traits	(Fanson	&	Biro,	2018;	Nespolo	&	Franco,	2007; 
Taff	et	al.,	2018;	White	et	al.,	2013).	Now,	theoreticians	and	empir-
icists	are	beginning	to	ask	second-	order	questions	about	individual	
differences	in	behavior.	One	such	question	is	whether	individual	dif-
ferences	might	change	as	a	function	of	time	(or	age,	number	of	trials,	
etc.),	and	if	so,	when	those	changes	might	occur.	Although	individual	
behavior	can	differ	in	many	respects	(e.g.,	see	the	discussion	of	indi-
vidual	differences	in	intraindividual	variability	at	the	end	of	this	arti-
cle),	to	date	most	empirical	and	theoretical	studies	have	focused	on	
individual	differences	in	expected	(mean)	levels	of	behavior.	Hence,	
we	also	focus	on	such	differences	in	this	article.	Changes	over	time	
in	the	expected	values	of	an	individual	are	indicated	by	its	“tempo-
ral	reaction	norm”.	When	different	individuals	are	monitored	over	a	
particular	period	of	time,	their	temporal	reaction	norms	might	con-
verge	toward	one	another	(a	“fanning	in”	pattern,	Figure 1a),	diverge	
from	one	another	 (a	“fanning	out”	pattern,	Figure 1b),	or	be	main-
tained	over	that	period	(“maintenance,”	Figure 1c).

More	important,	as	we	describe	in	the	following	section,	a	wide	
range	 of	 theoretical	 and	 empirical	 studies	 suggest	 that	 if	 conver-
gence	 or	 divergence	 patterns	 do	 occur,	 they	 will	 be	 restricted	 to	
specific	periods	of	time.	This	is	true	of	situations	in	which	temporal	
changes	in	behavior	are	largely	attributed	to	the	subjects'	exposure	
to	external	stimuli	 (as	 in	habituation),	and	those	in	which	temporal	
changes	in	behavior	are	largely	attributed	to	changes	in	the	subjects'	
internal	state	(as	in	changes	in	behavior	around	the	time	of	puberty).	
We	illustrate	two	simple	scenarios	of	such	patterns	in	Figure 2.

As	a	result,	empiricists	interested	in	studying	temporal	changes	
in	 individual	differences	should	consider	experimental	designs	and	

statistical	methods	which	allow	them	to	determine	when,	over	the	
course	of	a	longer	study,	those	changes	occurred.	At	present,	how-
ever,	many	of	those	individuals	are	unfamiliar	with	the	experimental	
designs	 and	 statistical	methods	 that	 are	 appropriate	 for	 this	 task.	
Hence,	 in	this	article,	we	not	only	outline	many	of	the	hypotheses	
that	predict	time-	specific	convergence	and	divergence,	but	also	de-
scribe	and	provide	detailed	worked	examples	of	experimental	pro-
tocols	and	statistical	methods	that	empiricists	might	use	to	describe	
those	patterns.	These	worked	examples	are	used	to	introduce	read-
ers	 to	 experimental	methods	 and	 analytical	 approaches	borrowed	
from	quantitative	genetics	and	other	disciplines	that	can	be	used	to	
analyze	 temporal	 changes	 in	 individual	 differences.	Our	 goal	 is	 to	
show	how	fitting	different	models	to	a	dataset	can	provide	insights	
into	the	temporal	patterns	in	that	data;	our	aim	was	not	to	evaluate	
the performance	 of	 different	models	 in	 capturing	 temporal	 trends	
in	datasets,	as	 that	would	 require	extensive	simulations	which	are	
beyond	the	scope	of	this	article	(see	also	Section	5).	The	ability	to	
determine	 if	 and	when	 temporal	 changes	 in	 individual	 differences	
occur	 is	 not	 only	 required	 to	 test	 existing	 hypotheses	 about	 the	
evolution	and	adaptive	significance	of	time-	specific	convergence	or	
divergence	in	individual	differences,	but	it	is	also	a	prerequisite	for	
studies	of	the	proximate	processes	and	mechanisms	that	might	be	
responsible	for	generating	them.

2  |  WHY AND WHEN WE MIGHT 
E XPEC T TO OBSERVE TIME- SPECIFIC 
CONVERGENCE OR DIVERGENCE

Convergence	and	divergence	patterns	can	be	described	over	mul-
tiple	timescales,	ranging	from	minutes	to	hours	(e.g.,	in	studies	of	
habituation	 or	 sensitization)	 to	 a	 lifetime	 (e.g.,	 in	 studies	 of	 the	
development	 of	 personality).	 To	 date,	 behavioral	 ecologists	 in-
terested	in	convergence	and	divergence	patterns	have	mostly	fo-
cused	on	changes	in	 individual	differences	across	developmental	

F I G U R E  1 Illustration	of	three	ways	that	individual	differences	in	expected	(mean)	levels	of	behavior	might	change	over	a	specific	period	
of	time.	Depicted	are	the	temporal	reaction	norms	(temporal	trendlines)	of	six	individuals.	Panel	(a)	illustrates	convergence,	a	pattern	in	
which	individual	differences	in	expected	values	decrease	over	the	period.	Panel	(b)	illustrates	divergence,	a	pattern	in	which	individual	
differences	in	expected	values	increase	over	the	period.	Panel	(c)	illustrates	maintenance,	a	pattern	in	which	individual	differences	in	
expected	values	are	largely	maintained	over	the	period.
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or	 ontogenetic	 timescales.	 The	 extensive	 recent	 literature	 on	
animal	personality	is,	at	least	in	part,	responsible	for	some	of	this	
attention.	Indeed,	phrases	such	as	“the	development	of	personal-
ity,”	“the	emergence	of	individual	differences,”	or	“the	emergence	
of	personality”	 implicitly	assume	that	divergence	occurs	during	a	
specific	 period	 during	 ontogeny.	 Thus,	 Sih	 et	 al.	 (2015)	 devoted	
a	 review	 to	 “understanding	 the	emergence	of	personality	differ-
ences,”	and	focused	on	theoretical	models	which	predict	“fanning	
out”	patterns	for	behavioral	 traits	 (see	below).	Other	theoretical	
models	predict	convergence	over	ontogenetic	timescales,	for	ex-
ample,	situations	in	which	substantial	individual	differences	in	be-
havior	exist	at	birth,	hatching,	eclosion,	sexual	maturity,	or	other	
important	life-	history	landmarks,	but	decline	later	in	life	(Stamps	
&	 Krishnan,	 2014a).	 Convergence	 and	 divergence	 patterns	 over	
ontogenetic	 timescales	 were	 briefly	 reviewed	 in	 Stamps	 and	
Biro	(2016).	Since	then,	a	few	empiricists	have	looked	for	conver-
gence	or	divergence	patterns	in	longitudinal	studies	of	behavioral	
development	(e.g.,	Class	&	Brommer,	2016; Laskowski et al., 2022; 
Sakai,	2020,	see	also	below).

While	 interest	 in	 temporal	 convergence	 and	 divergence	 pat-
terns	 is	 relatively	new	 to	behavioral	 ecology,	 this	 topic	has	 long	
attracted	the	attention	of	scientists	interested	in	individual	differ-
ences	in	the	physiology	and	behavior	of	humans.	Nearly	100 years	
ago,	Wilder	(1931)	proposed	the	“Law	of	Initial	Values,”	primarily	
based	 on	 descriptions	 of	 convergence	 in	 human	 psychophysical	
responses	(e.g.,	changes	in	heart	rate	or	skin	conductance)	 in	re-
sponse	to	various	stimuli.	The	Law	of	Initial	Values	predicts	neg-
ative	covariance,	across	subjects,	between	their	initial	scores	and	
the	extent	and	direction	of	changes	in	their	scores	in	response	to	
repeated	exposure	to	the	same	stimuli.	The	Law	of	 Initial	Values	
provided	impetus	for	many	empirical	studies	in	the	first	half	of	the	
last	century	(see	review	in	Wilder,	1965),	but	it	fell	out	of	favor	as	
a	 result	 of	 statistical	 issues,	 in	 particular,	with	 problems	 related	
to	“regression	to	the	mean”	 (see	below).	Convergence	and	diver-
gence	patterns	have	also	attracted	attention	 from	psychologists	
interested	 in	 how	 humans	 learn	 skills.	 Thus,	 Ackerman	 (2007)	

considered	“two	enduring	issues	associated	with	skill	acquisition:	
whether	 individuals	 become	more	 alike	 in	 performance	 or	more	
different	over	the	course	of	skill	acquisition.”

However,	demonstrating	that	individual	differences	converge	or	
diverge	as	a	function	of	time	or	of	the	number	or	rate	of	previous	
experiences	 is	 just	the	first	step	in	describing	temporal	changes	 in	
individual	differences.	This	is	because	virtually	no	one	assumes	that	
convergence	or	divergence	will	continue	“forever.”	Instead,	empiri-
cists	and	theoreticians	alike	are	interested	in	identifying	periods	in	
which	convergence,	divergence,	or	maintenance	might	occur.	For	in-
stance,	models	of	personality	development	 in	animals	assume	that	
convergence	or	divergence	in	expected	trait	values	occurs	early	 in	
ontogeny,	and	that	maintenance	occurs	later	in	ontogeny.	Similarly,	
empirical	 studies	 of	 learning	 have	 shown	 that	 if	 individuals	 who	
begin	with	very	different	scores	are	subjected	to	the	same	training	
regime,	their	scores	typically	become	more	similar	to	one	another,	
but	that	modest	individual	differences	in	scores	may	be	indefinitely	
sustained	even	after	extensive	training.	Indeed,	there	may	even	be	
situations in which convergence and divergence patterns alternate 
with	one	another	over	time,	for	example,	when	individuals	who	have	
similar	expected	values	at	one	time	of	year	have	very	different	ex-
pected	values	at	another	time	of	year	(see	Section	5).

2.1  |  Conditions favoring convergence

On	any	timescale,	convergence	occurs	when	individual	differences	
in	 the	 expected	 values	 of	 a	 behavioral	 or	 physiological	 trait	 exist	
at	 the	 beginning	 of	 a	 period,	 and	 these	 differences	 are	 reduced	
by	the	end	of	that	period.	Convergence	of	expected	values	 is	pre-
dicted	 by	 many	 learning	 models	 (e.g.,	 Rescorla	 &	 Wagner,	 1972; 
Tarantola et al., 2017;	 Trimmer	 et	 al.,	2012),	 and	 empiricists	 have	
demonstrated	convergence	patterns	for	many	types	of	learning.	In	
such	cases,	convergence	ceases	when	the	subjects	approach	asymp-
totic	 scores	 for	 the	 type	of	 learning	 in	question.	 For	 instance,	 re-
searchers	studying	habituation	often	report	substantial	differences	

F I G U R E  2 Two	possible	ways	in	which	patterns	of	temporal	change	in	individual	differences	in	expected	(mean)	levels	of	behavior	might	
change	over	time.	Depicted	are	the	temporal	reaction	norms	(temporal	trendlines)	of	six	individuals,	showing	(a)	a	period	of	maintenance	
followed	by	a	period	of	convergence,	and	(b)	a	period	of	maintenance	followed	by	a	period	of	divergence.
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among	their	subjects	 in	their	 responses	the	first	 time	they	are	ex-
posed	 to	 the	 stimulus,	 but	 find	 that	 their	 responses	 converge	 on	
more	similar	scores	after	repeated	exposure	to	the	stimulus	(review	
in	 Ogorman,	 1977,	 see	 also	 Avery	 &	 Blackford,	 2016; Cavanagh 
et al., 2018;	Colombo	&	Mitchell,	2009).	Empiricists	studying	other	
types	of	learning	also	frequently	report	that	individuals	express	dif-
ferent	initial	scores	at	the	onset	of	the	study,	but	that	their	scores	
later	converge	as	a	result	of	repeated	exposure	to	the	same	training	
regime	 (e.g.,	Anglim	&	Wynton,	2015;	Fatima	et	al.,	2016; Langley 
et al., 2018; Tarantola et al., 2017).	Convergence	patterns	are	also	
regularly	observed	when	humans	learn	simple	repetitive	motor	skills	
in	which	performance	 is	measured	by	speed	and	accuracy	 (review	
in	Ackerman,	2007).	 Learning	 from	conspecifics	 can	 also	promote	
convergence	in	behavior,	as	has	been	described	for	vocal	signals	in	
bats	(Knοrnschild et al., 2012)	and	foraging	behavior	in	birds	(Franks	
et al., 2020).

Over	ontogenetic	timescales,	Bayesian	models	of	development	
predict	 convergence	 in	 certain	 circumstances.	 These	models	 con-
sider	situations	in	which	the	behavior	expressed	by	an	individual	is	
directly	related	to	its	information-	state	(e.g.,	antipredator	behavior	
expressed	in	response	to	estimates	of	predator	density),	when	indi-
viduals	 initially	differ	with	respect	 to	 their	 information-	states,	and	
when	 all	 of	 the	 subjects	 are	 repeatedly	 or	 continuously	 exposed	
to	 cues	which	provide	 them	with	 the	 same	 information	about	 the	
external	 environment	 (Fawcett	 &	 Frankenhuis,	 2015;	 Stamps	 &	
Frankenhuis,	 2016;	 Stamps	 &	 Krishnan,	 2014a).	 In	 such	 cases,	 if	
every	subject	is	reared	in	the	presence	of	the	same	moderately	reli-
able	cues,	these	models	predict	convergence	in	the	subjects'	behav-
ior	over	time.	Moreover,	they	predict	that	the	rate	of	convergence	
will	 gradually	 decline	 over	 ontogeny,	 such	 that	 following	 a	 period	
of	convergence,	different	 individuals	may	either	express	 the	same	
levels	 of	 behavior	 (no	 individual	 differences,	 e.g.,	 see	 Fawcett	 &	
Frankenhuis,	2015)	or	they	may	consistently	express	different	levels	
of	behavior	 (maintenance,	e.g.,	Stamps	&	Krishnan,	2014a, 2014b).	
Other	 models	 based	 on	 feedback	 loops	 between	 behavioral	 and	
state	variables	also	predict	convergence	during	specific	periods	of	
time	 (Sih	et	 al.,	2015).	However,	 since	most	of	 these	models	have	
focused	on	divergence	patterns,	we	defer	discussion	of	them	to	the	
next	section.

2.2  |  Conditions favoring divergence

On	 any	 timescale,	 divergence	 occurs	 when	 individuals	 who	 ex-
press	 similar	 expected	 values	 of	 behavioral	 or	 physiological	 traits	
at	 the	 beginning	 of	 a	 period	 express	 different	 expected	 values	 at	
the	 end	 of	 that	 period.	Over	 100 years	 of	 carefully	 controlled	 ex-
perimental	 studies	 of	 learning	 and	 other	 forms	 of	 developmental	
plasticity	have	shown	that	initially	similar	subjects	often	develop	dif-
ferent	phenotypes	 if	 they	are	continuously	or	 repeatedly	exposed	
to	 different	 stimuli	 or	 experiences	 (reviewed	 by	 Pigliucci,	 2001; 
Shettleworth,	2010;	West-	Eberhard,	2003).	However,	such	studies	
typically	do	not	report	 that	divergence	continues	forever;	 instead,	

it	usually	declines	and	eventually	ceases	when	the	subjects	reach	a	
particular	age	or	stage	of	life.

There	are	at	least	two	possible	reasons	why	free-	living	animals	
born	at	the	same	time	and	locality	might	be	consistently	exposed	
to	different	environment	conditions	over	 the	course	of	develop-
ment.	First,	individuals	might	differ	in	their	preferences	for	partic-
ular	types	of	microhabitats,	social	situations,	food	items,	or	other	
features	 in	 the	 local	 environment	 (“niche-	picking,”	 or	 “selection	
of	 the	environment”),	 and	 second,	 individuals	might	 consistently	
differ	with	respect	to	traits	that	affect	the	social	or	physical	en-
vironments	 in	which	 they	will	 subsequently	 develop	 (i.e.,	 “niche	
construction”	or	“adjustment	of	the	environment,”	see	Edelaar	&	
Bolnick,	2019;	Fokkema	et	al.,	2021;	Plomin	et	al.,	1977;	Scarr	&	
McCartney, 1983; Trappes et al., 2022).	 In	 turn,	 if	 individual	dif-
ferences	in	preferences	or	behavior	 increase	the	probability	that	
different	individuals	will	be	consistently	exposed	to	different	en-
vironmental	 conditions	 during	 specific	 periods	 during	 ontogeny,	
and	 if	consistent	exposure	to	different	environmental	conditions	
during	 those	 periods	 encourages	 the	 development	 of	 different	
phenotypes,	one	would	expect	to	observe	the	divergence	in	phe-
notypes	during	those	periods.	For	instance,	experimental	studies	
of	red	knots	(Calidris canutus islandica)	suggest	that	individual	dif-
ferences	in	dietary	preferences	may	be	responsible	for	the	devel-
opment	of	individual	differences	in	both	gizzard	size	and	foraging	
behavior	(patch	resident	times;	Oudman	et	al.,	2016).	Historically,	
much	 of	 the	 literature	 on	 niche-	picking	 and	 niche-	construction	
has	 focused	 on	 situations	 in	 which	 initial	 differences	 in	 prefer-
ences	 or	 behavior	 have	 a	 genetic	 basis,	 leading	 to	 correlations	
between	genotypes	and	 the	environments	 in	which	 those	geno-
types	will	develop	(Fokkema	et	al.,	2021;	Plomin	et	al.,	1977, 2016; 
Saltz	&	Nuzhdin,	2014;	Scarr	&	McCartney,	1983).	However,	 it	 is	
clear	 that	 prior	 experiences,	 parental	 effects,	 differences	 in	 in-
ternal	 state,	 and	 other	 nongenetic	 factors	 could	 also	 encourage	
initial	 differences	 among	 individuals	 in	 preferences	 or	 trait	 val-
ues	which	would,	 in	 turn,	 contribute	 to	differences	among	 them	
in	experiences	affecting	 their	 subsequent	development	 (Davis	&	
Stamps,	2004;	Edelaar	&	Bolnick,	2019;	Perkeybile	&	Bales,	2017; 
Ventura	&	Worobey,	2013;	Wilson	&	McLaughlin,	2007).

One	 often-	overlooked	 type	 of	 niche-	construction	 occurs	
when	individuals	in	the	same	population	vary	with	respect	to	traits	
that	 evoke	 different	 types	 of	 social	 behavior	 from	 conspecifics	
(Moore	et	al.,	1997;	Plomin	et	al.,	1977;	Stamps	&	Groothuis,	2010; 
Stamps	&	Luttbeg,	2022).	For	instance,	in	mosquitofish	(Gambusia 
holbrooki),	a	focal	male's	color	affects	the	social	behavior	it	elicits	
from	 other	 adults.	When	 males	 were	 first	 introduced	 to	 estab-
lished	social	groups,	silver	males	were	chased	more	frequently	by	
the	resident	males	and	followed	nonaggressively	more	by	the	res-
ident	 females	 than	were	melanic	males	 (Horth,	2003).	 In	 turn,	 if	
different	phenotypes	in	focal	individuals	elicit	different	social	be-
haviors	from	conspecifics,	one	would	expect	divergence	over	time	
in	 the	 focal	 individuals	 in	 any	 trait	 whose	 development	 was	 af-
fected	by	those	behaviors.	Thus,	it	is	suspected	that	at	least	some	
of	the	differences	in	the	social	behavior	expressed	by	melanic	and	
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silver	males	 in	both	the	 laboratory	and	the	field	might	be	due	to	
consistent	 differences	 in	 the	 social	 behavior	 that	 each	 of	 those	
morphs	elicited	earlier	in	life	from	conspecifics	(Kraft	et	al.,	2016, 
2018).

The literature on social niche specialization posits that diver-
gence	 in	 behavior	 over	 the	 course	 of	 ontogeny	 occurs	 as	 a	 re-
sult	 of	 niche-	construction,	 niche-	picking,	 or	 both	 (Bergmuller	 &	
Taborsky,	 2010; Montiglio et al., 2013).	 That	 is,	 initially	 similar	
individuals	might	 gradually	 adopt	 different	 behaviors	 as	 a	 result	
of	 receiving	different	behaviors	 from	conspecifics,	 as	a	 result	of	
their	preferentially	adopting	different	social	 roles,	or	some	com-
bination	of	 these.	Again,	 it	 is	assumed	that	divergence	 in	behav-
ior	 as	 a	 result	 of	 social	 niche	 specialization	would	 not	 continue	
indefinitely,	 but	 that	 it	 would	 be	 followed	 by	 a	 period	 in	which	
different	 individuals	 consistently	 expressed	 different	 behaviors	
(i.e.,	maintenance).

Divergence	patterns	for	mean	trait	values	can	also	occur	even	if	
initially	similar	 individuals	are	all	exposed	to	the	same	experiences	
or	environmental	conditions.	For	 instance,	divergence	patterns	for	
learning	and	cognitive	skills	have	been	described	when	 individuals	
who	 begin	 with	 similar	 initial	 scores	 approach	 different	 asymp-
totic	 scores	 in	 response	 to	 the	 same	 training	 regime	 (e.g.,	 Burki	
et al., 2014;	 Rast	 &	 Zimprich,	 2009).	 Ackerman	 (2007)	 suggested	
that	with	respect	to	skill	development,	divergence	patterns	are	most	
likely	 for	 complex	 skills	 in	which	performance	depends	heavily	on	
domain-	specific	knowledge,	attentiveness,	and	use	of	working	mem-
ory.	 In	other	words,	even	 if	different	subjects	were	all	exposed	to	
an	identical	training	regime,	differences	among	them	in	a	variety	of	
traits	which	affect	their	performance	might	encourage	divergence	in	
their	scores	over	time.	Thus,	longitudinal	studies	of	advanced	chess	
players	have	shown	that	for	the	same	amount	of	practice	(number	
of	games	played),	ranking	scores	indicative	of	performance	in	tour-
naments	 diverged	 across	 the	 players	 across	 a	 period	 of	 decades	
(Howard,	 2009).	 More	 broadly,	 scores	 for	 reading,	 mathematical,	
and	other	complex	 skills	 in	humans	often	diverge	as	a	 function	of	
age	in	children	(Geary	et	al.,	2009;	Lohman,	1999;	Stanovich,	1986),	
although	 in	 such	 cases	 uncontrolled	 experiences	 outside	 of	 the	
classroom	(e.g.,	the	amount	of	recreational	reading)	might	also	differ	
among	the	subjects.

Over	ontogenetic	timescales,	Bayesian	models	of	development	
predict	 divergence	 patterns	 under	 certain	 circumstances,	 even	 if	
every	subject	is	repeatedly	exposed	to	the	same	moderately	reliable	
cues.	In	particular,	if	different	individuals	begin	with	similar	estimates	
of	conditions	in	the	external	environment	(e.g.,	they	begin	with	sim-
ilar	estimates	of	mean	predator	density)	but	differ	with	respect	to	
their	uncertainty	about	 the	accuracy	of	 those	 initial	estimates	 (in-
dicated	 by	 the	 variance	 of	 the	 individual's	 initial	 prior,	 Stamps	 &	
Frankenhuis,	2016),	 these	models	 predict	 divergence	 patterns	 for	
both	their	estimates	of	predator	density	and	any	behaviors	related	
to	 those	estimates.	That	 is,	 these	models	predict	 that	plasticity	 in	
response	to	the	same	experience	will	differ	among	individuals,	de-
pending	on	differences	 among	 them	 in	 the	 variance	of	 their	 prior	
distributions	 at	 the	onset	of	 that	 experience.	 In	 such	 cases,	 these	

models	predict	that	a	period	of	strong	divergence	early	in	ontogeny	
will	be	followed	by	a	period	approximating	maintenance	later	in	on-
togeny	(Stamps	&	Krishnan,	2014a, 2014b).

Fisher	et	al.	(2018)	recently	suggested	that	divergence	patterns	
for	mean	values	over	ontogenetic	timescales	might	occur	as	a	result	
of	chaotic	dynamics.	They	argued	that	even	minor	variation	across	
individuals	early	in	development	could,	as	a	result	of	nonlinear,	mul-
tiplicative	 interactions	 during	 development,	 encourage	 a	 gradual	
divergence	 in	mean	values	 for	behavior	 later	 in	 life.	This	hypothe-
sis	was	suggested	by	 reports	 indicating	 that	 individual	differences	
in	behavior	are	observed	even	after	iso-	genetic	subjects	have	been	
reared	 in	 virtually	 identical	 social	 and	physical	 environments	 (e.g.,	
Bierbach	 et	 al.,	 2017;	 Polverino	 et	 al.,	 2016).	 However,	 although	
chaotic	dynamics	might	account	 for	divergence	 in	 the	behavior	of	
initially	nearly	identical	subjects,	Fisher	et	al.	note	that	one	must	add	
assumptions	to	their	model	 (e.g.,	 that	chaotic	dynamics	only	occur	
early	 in	 life)	 to	explain	why	divergence	would	not	continue	 indefi-
nitely,	but	instead	decline	later	in	ontogeny.

Sih	et	al.	(2015)	reviewed	a	range	of	models	in	behavioral	ecol-
ogy	which	suggest	 that	 feedbacks	between	behavioral	and	state	
variables	might	encourage	either	convergence	or	divergence	pat-
terns	in	the	mean	values	of	both.	Because	these	authors	were	pri-
marily	interested	in	the	“emergence	of	personality,”	they	focused	
on	models	which	demonstrate	that	positive	feedbacks	between	a	
state	variable	and	a	behavior	can	encourage	divergence	patterns	
for	 both	 the	 state	 variable	 and	 the	 behavior,	 where	 “state	 vari-
able”	 was	 very	 broadly	 defined	 as	 “any	 feature	 that	 affects	 the	
cost	or	benefits	of	the	behavioral	action.”	For	example,	if	individ-
uals	 in	good	condition	behave	more	boldly	when	foraging,	and	 if	
higher	foraging	rates	enhance	body	condition,	one	would	expect	
divergence	across	individuals	 in	both	boldness	in	a	foraging	con-
text	and	condition	(Luttbeg	&	Sih,	2010).	Verbal	models	suggesting	
that	 positive	 feedback	 loops	 between	 behavior	 and	 state	might	
contribute	to	the	development	of	personality	have	also	appeared	
in	the	psychology	literature.	For	instance,	the	“corresponsive	prin-
ciple	of	personality	development”	 (Caspi	et	al.,	2005)	posits	that	
individuals with particular personality traits initially seek out par-
ticular	social	situations,	and	that	spending	time	in	those	social	sit-
uations deepens and enhances the personality traits that led those 
individuals	to	seek	them	out	in	the	first	place.

In	contrast	with	other	explanations	for	divergence	 (see	above),	
positive	 feedback	models	 predict	 that	 both	 the	 behavior	 of	 inter-
est	and	the	state	variable	that	affects	the	fitness	consequences	of	
that	 behavior	will	 change	 over	 time,	 and	 that	 the	 behavioral	 vari-
able	and	the	state	variable	will	be	correlated	with	one	another	over	
time	within	 individuals.	 In	principle,	minor,	even	stochastic,	differ-
ences	among	 individuals	early	 in	 life	 in	either	the	state	variable	or	
the	behavior	could	“get	the	ball	rolling.”	However,	in	the	absence	of	
additional	 assumptions,	 these	models	 predict	 that	 divergence	due	
to	 positive	 feedback	would	 continue	 indefinitely.	 Sih	 et	 al.	 (2015)	
readily	acknowledge	this	problem,	suggesting	that	“individual	diver-
gence	due	to	positive	feedback	would	typically	cease	at	some	point	
in	time	either	because	of	biological	floors	or	ceilings	to	both	state	
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and	behavior,	because	behavior	is	open	for	modification	only	during	
certain	developmental	stages,	or	because	the	effect	of	state	on	be-
havior	(or	vice	versa)	is	non-	linear.”

Sih	et	al.	(2015)	also	reviewed	several	models	which	show	how	
negative	feedbacks	between	state	variables	and	behavior	might	lead	
to	convergence	patterns.	Indeed,	many	of	the	same	models	predict	
either	positive	feedback	(and	divergence)	or	negative	feedback	(and	
convergence),	depending	on	assumptions	about	other	variables.	For	
instance,	models	of	relationships	between	energy	reserves	and	food	
sampling	 behavior	 can	 predict	 either	 convergence	 or	 divergence	
patterns,	depending	on	assumptions	about	the	risk	of	starvation	in	
the	local	environment	(Mathot	&	Dall,	2013).	Such	models	imply	that	
convergence	 and	 divergence	might	 alternate	 over	 time	within	 the	
same	set	of	individuals,	for	example,	if	seasons	with	food	abundance	
alternated	with	seasons	of	food	scarcity.	As	was	the	case	for	diver-
gence,	negative	 feedback	models	which	predict	 convergence	 indi-
cate	that	both	the	behavior	and	the	state	variable	will	change	over	
time,	and	that	the	behavior	and	the	state	variable	will	be	correlated	
within	individuals	over	time.

3  |  HOW C AN EMPIRICISTS DETERMINE 
IF (AND WHEN) INDIVIDUAL DIFFERENCES 
CHANGE OVER TIME?

3.1  |  Practical concerns

In	order	to	characterize	temporal	changes	in	individual	differences	in	
behavior,	we	need	to	measure	the	same	behavior	in	the	same	subjects	
at	different	periods	over	the	course	of	a	study.	That	is,	these	analyzes	
require	a	longitudinal	rather	than	a	cross-	sectional,	experimental	de-
sign. In addition, the patterns illustrated in Figures 1 and 2	are	based	
on	the	expected	values	of	each	subject	at	different	points	in	time,	not	
on	statistics	based	on	their	cumulative	scores	over	time.	For	instance,	
divergence	patterns	for	space	use	behavior	have	been	described	for	
genetically	 identical	mice	 housed	 in	 large,	 complex	 arenas	 (Freund	
et al., 2013, 2015;	Torquet	et	al.,	2018).	However,	since	the	estimates	
of	space	use	 in	these	studies	were	based	on	a	cumulative	measure	
(roaming	entropy),	the	extent	to	which	the	behavior	of	the	subjects	
actually	diverged	over	the	course	of	the	study	is	unclear.

Because	the	behavior	an	individual	expresses	at	a	given	moment	
should	be	viewed	as	a	random	sample	from	an	underlying	distribu-
tion	with	a	mean	and	variance	(Fleeson,	2001;	Stamps	et	al.,	2012),	
it	 is	not	advisable	to	use	the	first	score	expressed	by	an	individual	
to	 infer	 its	expected	value	at	 the	beginning	of	a	study.	One	major	
problem	with	 this	approach	 is	 the	possibility	of	 “regression	 to	 the	
mean.”	That	 is,	 if	by	chance	the	first	datum	sampled	from	an	 indi-
vidual's	distribution	was	extremely	far	from	its	true	mean,	we	would	
expect	a	second	datum	from	that	same	distribution	to	be	closer	to	
its	true	mean.	These	and	other	statistical	issues	(e.g.,	see	Beckmann	
&	Biro,	2013)	 that	arise	when	an	 individual's	 first	 score	 is	used	 to	
infer	its	expected	value	at	the	beginning	of	a	study	are	one	reason	
that	 the	 Law	 of	 Initial	 Values,	 mentioned	 in	 the	 introduction,	 fell	

out	of	 favor	 (Burt	&	Obradovic,	2013;	Rogosa	&	Willett,	1985).	 In	
fact,	we	should	not	use	each	 individual's	 score	at	any	 time	during	
a	study	to	estimate	its	expected	behavior	at	that	time,	because	the	
residual	variation	around	each	 individual's	expected	value	 is	often	
quite	high,	as	is	indicated	by	the	low	repeatability	of	behavioral	traits	
(Beckmann	&	Biro,	2013;	Bell	et	al.,	2009;	Wolak	et	al.,	2012).	The	
statistical	methods	described	later	in	this	article	avoid	the	problem	
of	regression	to	the	mean	and	related	issues	by	estimating	each	indi-
vidual's	expected	values	at	different	points	in	time	based	on	multiple	
scores	for	that	individual	(e.g.,	see	Figures 3 and 4,	below).

Generally	 speaking,	 the	 subjects	 in	 empirical	 studies	 of	 con-
vergence	or	divergence	patterns	should	be	of	the	same	age	at	the	
onset	of	the	study,	since	even	short-	term	temporal	changes	 in	be-
havioral	or	physiological	traits	can	vary	as	a	function	of	the	age	of	
the	 subjects.	 For	 example,	 in	 rats,	 habituation	 rates	 increase	over	
the	juvenile	to	prepubertal	period	(Leussis	&	Bolivar,	2006),	elevated	
hormonal	levels	in	response	to	an	acute	stressor	require	twice	as	long	
to	return	to	baseline	levels	in	prepubertal	individuals	as	they	do	for	
adults	(Foilb	et	al.,	2011),	and	learning	rates	for	a	novel	spatial	learn-
ing	task	decline	from	middle	to	old	age	(D'Hooge	&	De	Deyn,	2001).	
Moreover,	if	individuals	reach	important	developmental	milestones	
at	different	chronological	ages,	then	the	subjects	should	be	matched	
for	developmental	age,	not	chronological	age.	For	 instance,	 if	con-
specifics	only	begin	to	direct	particular	types	of	aggressive	behavior	
toward	focal	subjects	when	the	 latter	begin	 to	approach	maturity,	
and	 if	different	 individuals	 in	 the	 same	species	approach	maturity	
at	different	chronological	ages,	then	any	effects	of	received	aggres-
sion	on	the	development	of	the	focal	subjects'	behavior	would	begin	
at	different	chronological	ages	for	the	different	subjects	(Stamps	&	
Luttbeg,	2022).	In	that	case,	we	would	predict	that	either	divergence	
or	convergence	in	response	to	those	social	interactions	would	begin	
at	a	specific	life	stage	(i.e.,	when	each	individual	approached	matu-
rity),	 as	 opposed	 to	when	 they	 reached	 a	 particular	 chronological	
age.	Finally,	 if	 the	goal	 is	 to	study	 temporal	patterns	over	ontoge-
netic	timescales,	the	subjects	should	be	as	young	as	 is	practical	at	
the	onset	of	the	study.	This	is	because	the	theoretical	models	that	
predict	convergence	or	divergence	patterns	over	ontogenetic	times-
cales	predict	that	within-	individual	changes	will	be	most	pronounced	
when	initially	naïve	subjects	are	first	exposed	to	salient	experiences.

3.2  |  A role for preliminary studies

Designing,	conducting,	and	analyzing	experimental	studies	with	the	
precision	required	to	detect	patterns	of	convergence	or	divergence	
is	not	for	the	faint	of	heart,	due	to	the	extensive	sampling	require-
ments	required	to	obtain	robust	estimates	of	the	variables	of	inter-
est	(discussed	below).	Hence,	empiricists	might	first	consider	some	
preliminary/pilot	analyzes	to	help	them	design	a	given	study	and	in-
dicate	whether	additional	studies	of	temporal	changes	in	individual	
differences	might	be	warranted.

Preliminary	data	 can	help	 empiricists	 determine	when	 to	begin	
and	 end	 collecting	 the	 data	 used	 to	 test	 for	 convergence	 and	
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divergence	patterns,	and	plan	sampling	strategies	 informed	by	pre-
liminary	estimates	of	among-		and	within-	subjects	variation.	Answers	
to	these	questions	will	depend	on	the	goal	of	a	given	study,	and	infor-
mation	about	the	natural	history	of	the	study	species.	For	instance,	
when	the	goal	is	to	quantify	individual	differences	in	habituation	or	
sensitization	in	response	to	initially	novel	stimuli,	typically	the	initial	
data	are	collected	when	the	subjects	are	first	exposed	to	the	stimulus	
(Bell	&	Peeke,	2012).	Similarly,	studies	of	‘exploratory	behavior’	typi-
cally	begin	when	subjects	are	first	exposed	to	a	novel	object	or	envi-
ronment.	In	contrast,	if	the	goal	is	to	quantify	individual	differences	
in	activity	rates	in	a	familiar	environment,	then	the	first	data	should	
be	taken	after	all	of	the	subjects	had	had	sufficient	time	to	become	
familiar	with	the	conditions	in	their	home	environment	(Biro,	2012).

Information	on	the	biology	of	the	study	species	is	also	essential	
for	choosing	the	appropriate	periods	over	which	to	measure	conver-
gence	 or	 divergence	 patterns.	Most	 of	 the	 theoretical	models	 de-
scribed	above	assume	that	each	subject	is	consistently	or	repeatedly	
exposed	to	particular	stimuli	over	the	period	in	which	convergence	or	
divergence	occur.	In	nature,	however,	this	assumption	might	only	be	
valid	for	particular	ages	or	life	stages.	For	example,	Kraft	et	al.	(2018)	
reported	that	the	tendency	of	the	two	male	morphs	of	mosquitofish	
(G. holbrooki)	to	flee	from	adult	females	seemed	to	gradually	converge	
to	 a	 virtually	 identical	 score	 over	 the	 adolescent	 period,	 but	 then	
strongly	diverge	after	the	males	had	reached	maturity.	These	results	
are	consistent	with	the	hypothesis	that	adult	females	treated	melanic	
and	silver	males	similarly	when	they	were	juveniles,	but	treated	them	
differently	after	 they	reached	sexual	maturity.	Similarly,	one	would	
not	 necessarily	 expect	 convergence	 or	 divergence	 patterns	 to	 be	
maintained	across	other	life-	history	transitions	that	resulted	in	major	
changes	in	the	physical	or	social	stimuli	experienced	by	a	given	indi-
vidual	(e.g.,	metamorphosis,	dispersal	to	new	habitat).

Although	 formal	 analysis	 of	 convergence	 or	 divergence	 re-
quires	a	 longitudinal	dataset,	preliminary	cross-	sectional	data	may	
offer	some	suggestions	about	the	patterns	that	one	might	observe	
in	a	future	study,	without	requiring	a	massive	commitment	of	time	
and	 resources.	 For	 instance,	 cross-	sectional	 analyzes	 of	 person-
ality	 traits	 in	 humans	 suggested	 that	 time-	specific	 estimates	 of	
among-	individual	 variance	 in	 expected	 values	 (VARamg)	 increase	
with	age	 (Mottus	et	al.,	2016, 2019),	 results	which	the	authors	 in-
terpreted	 as	 supporting	 a	 divergence	 pattern.	 Similar	 suggestions	
have	been	made	 for	animals	based	on	changes	 in	VARamg	among	
samples	 collected	 from	 different	 life	 stages	 or	 age-	groups	 (e.g.,	
Petelle	et	al.,	2013;	Sakai,	2018).	Divergence	may	also	be	suspected	
in	experimental	studies	 in	which	groups	of	 initially	similar	subjects	
reared	in	the	presence	of	different	stimuli	express	different	levels	of	
VARamg	at	the	end	of	this	study	(e.g.,	Urszan	et	al.,	2018).

3.3  |  What variables do we need to assess 
patterns of temporal change?

Our	 first	 goal	 is	 to	 verify	 that	 significant	 individual	 differences	 in	
expected	values	occurred	during	at	least	some	portion	of	the	study,	

since otherwise there is no point in asking whether these individ-
ual	 differences	 changed	 over	 time.	 The	 typical	 way	 to	 determine	
whether	individual	differences	occur,	or	are	“repeatable,”	is	via	the	
statistic R.	 Repeatability	 (R)	 indicates	 the	 proportion	 of	 the	 total	
variance	 in	 scores	 that	 is	 attributable	 to	 variance	 among	 the	 sub-
jects	 in	 their	 predicted	 mean	 values	 (VARamg).	 Of	 course,	 many	
other	factors	(e.g.,	time	of	day,	temperature,	and	reproductive	state),	
can	contribute	to	the	total	variance	in	scores	in	a	given	dataset,	but	
if	 the	effects	of	 these	 factors	on	 the	 scores	can	be	controlled	via	
careful	 experimental	 designs	 and	 appropriate	 statistical	 models,	
then	the	total	variance	in	scores	will	be	primarily	determined	by	two	
variables:	VARamg	and	VARresid,	where	 the	 latter	 is	 the	 variance	
that	remains	after	one	accounts	for	variance	that	can	be	explained	
by	 the	other	 factors.	Thus,	R	 provides	 a	way	 to	assess	 the	extent	
to	which	the	variable	we	are	interested	in	(individual	differences	in	
predicted	mean	values,	as	is	indicated	by	VARamg)	can	be	detected	
among	the	residual	noise	(VARresid)	(Biro	&	Stamps,	2015).	In	a	care-
fully	controlled	study,	VARresid	can	be	used	to	estimate	 the	 “pre-
dictability”	of	the	subjects,	that	is,	the	extent	to	which	their	scores	
varied	around	their	means	(Cleasby	et	al.,	2015; Mitchell et al., 2021; 
Stamps	et	al.,	2012).

There	are	many	reasons	why	VARresid	might	vary	over	time	(Biro	
&	Adriaenssens,	2013;	Stamps	et	al.,	2012;	Westneat	et	al.,	2015),	
and	longitudinal	studies	have	recently	confirmed	that	both	VARamg	
and	 VARresid	 can	 change	 over	 time	 (Biro	 &	 Adriaenssens,	 2013; 
Carlson	&	Tetzlaff,	2020; Class et al., 2019; Cornwell et al., 2023; 
Kok	et	al.,	2019;	Mitchell	&	Biro,	2017;	Polverino	et	al.,	2019; Thys 
et al., 2021).	As	a	result,	temporal	changes	in	either	or	both	of	these	
variables	 can	 contribute	 to	 changes	 in	 R	 over	 time	 (reviewed	 in	
Dochtermann	&	Royaute,	2019).

Because	we	are	interested	in	how	individual	differences	in	pre-
dicted	mean	values	might	change	over	time,	in	this	article,	we	seek	
estimates	 of	 time-	specific	 values	 of	 both	 VARamg	 and	 VARresid	
(VARamgt,	and	VARresidt,	respectively).	Together,	these	allow	us	to	
compute	a	time-	specific	value	of	R	(Rt)	for	each	of	several	different	
periods	within	a	longitudinal	study.	The	process	required	to	estimate	
Rt	is	slightly	more	complicated	than	that	required	to	estimate	R|time	
(conditional	R),	a	statistic	that	has	often	been	used	to	estimate	time-	
specific	R	(see	Appendix	S2A).	The	equations	used	to	compute	R|time	
assume	that	VARamg,	but	not	VARresid,	may	change	over	the	course	
of	the	study	(Biro	&	Stamps,	2015;	Nakagawa	&	Schielzeth,	2010).

By	convention,	researchers	usually	assume	that	consistent	indi-
vidual	differences	are	present	if	the	value	of	R	is	statistically	“signifi-
cant,”	for	example,	when	VARamg	(and	by	extension	R)	is	statistically	
significantly	greater	than	zero,	based	on	a	likelihood	ratio	test	when	
VARamg	 is	 evaluated	 at	 the	 intercept	 (Singer	&	Willett,	2003),	 or	
when	the	confidence	or	credible	intervals	for	estimates	of	R are cen-
tered	away	from	zero	(Biro	&	Stamps,	2015; Laskowski et al., 2022; 
Polverino	 et	 al.,	2016).	 Hence,	 the	 first	 criterion	 for	 any	 study	 of	
temporal	 changes	 in	 individual	 differences	 is	 that	 the	 value	 of	 Rt 
must	be	significant	for	at	least	one	of	the	periods	over	the	course	of	
a	longer	study.	Of	course,	given	a	sufficiently	powerful	experiment,	
even	very	low	values	of	R	may	be	significant.	Thus,	some	researchers	
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might	prefer	to	set	the	bar	a	bit	higher,	and	require	that	the	value	of	
Rt	should	reach	some	threshold	value	(e.g.,	a	‘moderate’	effect	size	
of	0.3,	see	Cohen,	1988)	at	some	point	during	a	longer	study	to	jus-
tify	taking	a	closer	look	at	temporal	changes	in	individual	differences	
over	the	course	of	that	study.

Assuming	 that	 individual	 differences	were	observed	 at	 some	
point	 in	the	study,	our	next	question	is	whether,	and	if	so	when,	
the	expected	values	of	 the	subjects	became	more	similar	 to	one	
another	 (convergence),	 more	 different	 from	 one	 another	 (diver-
gence),	 or	 were	 maintained	 at	 the	 same	 level	 over	 time	 (main-
tenance),	during	a	 specific	period	of	 time	during	 the	course	of	a	
longer	study.	In	order	to	address	this	question,	we	need	to	graph	
the	raw	data,	ensure	that	our	statistical	model	captures	the	pat-
terns	in	that	data,	and	then	use	that	model	to	estimate	the	value	of	
several	time-	specific	variables:	VARamgt, CORRt1,t2, and CORRet,s. 
The	equations	used	to	compute	these	variables	are	standard	vari-
ance	partitioning	exercises	developed	in	the	quantitative	genetics	
literature,	 but	 they	 are	unfamiliar	 to	many	behavioral	 biologists,	
and	they	are	currently	scattered	among	a	number	of	publications	
(e.g.,	Brommer,	2013;	Falconer,	1981;	Mitchell	&	Houslay,	2021).	
Here,	 we	 bring	 these	 formulae	 together	 to	 show	 how	 they	 can	
be	 used	 to	 determine	 whether	 and	 when	 individual	 differences	
change	over	time.	To	this	end,	we	provide	simple	explanations	of	
two	types	of	statistical	models	that	can	be	used	to	estimate	these	
variables,	detailed	step-	by-	step	worked	examples	based	on	pub-
lished	datasets,	and	annotated	code	which	empiricists	can	use	to	
analyze	 their	 own	 data	 (see	 below	 and	 Appendices	 S1–	S4).	 Our	
goal	 is	 to	 introduce	 readers	 to	 two	 classes	 of	 statistical	models	
that	can	be	used	to	describe	changes	in	individual	differences	over	
time,	 equations	 that	 can	 be	 used	 to	 estimate	 time-	specific	 vari-
ances	and	covariances,	and	ways	that	different	models	with	differ-
ent	assumptions	can	be	used	to	analyze	data	on	temporal	changes	
in	individual	differences.

1.	 VARamgt	 This	 is	 the	 variance	 among	 the	 subjects	 in	 their	 ex-
pected	 (predicted	 mean)	 values	 at	 a	 given	 time,	 t.	 A	 decline	
in	 VARamgt during a given period suggests that convergence 
occurred	during	that	period.	Conversely,	an	increase	in	VARamgt 
during a given period suggests that divergence occurred during 
that	period.	Finally,	maintenance	of	VARamgt over a given period 
suggests	 that	differences	among	 the	subjects	 in	 their	expected	
values	 were	 maintained	 over	 that	 period.

2. CORRt1,t2.	 This	 is	 the	 correlation,	 across	 subjects,	 between	 the	
estimates	of	 their	expected	values	at	 times	 t1	and	t2.	This	cor-
relation	allows	us	to	determine	whether	rank-	order	consistency	
was	maintained	 t1	 and	 t2.	Rank-	order	 consistency	 is	 important	
because	 it	 indicates	 the	 extent	 to	 which	 individual	 differences	
were	maintained	 over	 time	 on	 an	 ordinal	 scale,	without	 regard	
to	the	extent	to	which	the	predicted	scores	of	the	subjects	dif-
fered	from	one	another	(see	Roberts	&	DelVecchio,	2000;	Stamps	
&	Groothuis,	2010).	 CORRt1,t2	 will	 be	 positive	 if	 consistency	 is	
maintained	over	the	period	between	time	t1	and	t2,	negative	 if	
the	order	of	the	subjects'	scores	reversed	between	time	t1	and	

t2,	 and	 near	 zero	 if	 consistency	 was	 not	 maintained	 over	 the	
interval	t1	to	t2.	We	suggest	that	positive	or	negative	values	of	
CORRt1,t2	approach	“moderate”	effect	sizes	(e.g.,	r ≥ 0.3	or	r ≤ −0.3,	
Cohen, 1988),	to	increase	the	chances	that	rank-	order	consistency	
is	biologically,	as	well	as	statistically,	significant.	On	a	graph	show-
ing	the	subjects'	reaction	norms,	CORRt1,t2	is	indicated	by	the	ex-
tent	of	crossing-	over	that	occurred	during	the	period	between	t1	
and	t2,	such	that	higher	levels	of	crossing-	over	yield	lower	values	
of	CORRt1,t2.	This	correlation	is	similar	to	an	intra-	class	correlation	
or	repeatability	estimate,	but	it	is	based	on	the	subjects'	expected	
scores,	rather	than	on	their	raw	scores,	as	is	the	case	for	the	latter	
statistics.

3. CORRet,s.	This	 is	 the	covariance	across	subjects,	between	their	
‘elevation’	 (i.e.,	 the	 estimate	 of	 their	 expected	 value	 at	 a	 given	
time,	t),	and	their	“slope,”	that	 is,	the	rate	of	change	 in	their	ex-
pected	values	after	time	t,	expressed	as	a	correlation.	If	our	time	
variable	is	left	centered	(see	below),	then	the	covariance	between	
intercepts	and	slopes,	expressed	as	a	correlation,	is	indicated	by	
CORRe0,s. The CORRet,s	will	be	negative	 if	 the	mean	values	of	
the	 subjects	 converged	 after	 time	 t,	 positive	 if	 their	 expected	
values	diverged	after	time	t,	and	near	zero	if	differences	in	their	
expected	values	were	maintained	after	time	t. Here too, we sug-
gest	using	“moderate”	effect	sizes	described	above	as	support	for	
substantive	and	biologically	relevant	correlations.

Crucially,	none	of	these	variables	on	its	own	may	be	sufficient	to	
tell	us	whether	individual	differences	converged,	diverged,	or	were	
maintained	during	a	particular	period	of	time.	For	instance,	although	
a	positive	value	of	CORRet,s indicates divergence, divergence could 
also	occur	if	CORRet,s	was	near	zero.	The	latter	situation	would	be	
expected	if	all	of	the	subjects	started	out	with	similar	expected	val-
ues	at	t1,	but	diverged	to	very	different	expected	values	by	t2.	In	
this	case,	the	low	variance	in	expected	values	at	t1	would	lead	to	
low	values	not	only	of	CORRe1,s,	but	also	of	CORRt1,t2. However, 
the	divergence	would	still	be	apparent,	based	on	a	substantial	 in-
crease	in	VARamgt	from	t1	to	t2,	and	a	“fanning	out”	pattern	in	a	
graph	that	illustrated	the	subjects'	temporal	reaction	norms	during	
this period.

Along	the	same	lines,	although	similar	values	of	VARamgt at t1 
and	t2	might	suggest	maintenance,	this	could	also	occur	if	substan-
tial	crossing-	over	of	the	subject's	temporal	reaction	norms	occurred	
between	 t1	 and	 t2.	At	 the	extreme,	 the	 trait	 values	of	 the	differ-
ent	subjects	might	even	reverse,	such	that	individuals	with	high	ex-
pected	values	at	 t1	had	 low	expected	values	at	 t2,	and	vice	versa	
(e.g.,	of	“reversal	patterns,”	see	Figure 3,	and	figure	2d	in	Brommer	&	
Class, 2015).	However,	in	the	latter	situation,	CORRe1,s and CORRt1,t2 
would	both	be	negative	and	the	crossing-	over	would	be	obvious	in	a	
graph	illustrating	the	reaction	norms	of	the	subjects.

As	we	demonstrate	 below,	 by	 graphing	 the	 subjects'	 data	 and	
computing	the	values	of	all	of	the	time-	specific	variables	described	
above,	empiricists	can	determine	whether	individual	differences	in-
creased,	decreased,	or	were	maintained	during	each	of	several	peri-
ods during a longer study.
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3.4  |  Experimental designs

Temporal	 changes	 in	 individual	 differences	 can	 be	 analyzed	 using	
different	 types	 of	 longitudinal	 experimental	 designs.	 These	 days,	
empiricists	typically	use	one	of	two	longitudinal	designs	to	describe	
temporal	 trends	 in	 individual	 differences:	 (1)	 continuous	 designs,	
or	 (2)	 burst	 designs.	 In	 a	 continuous	 design,	 the	 observations	 for	
each	of	the	subjects	are	relatively	evenly	spaced	apart	in	time	over	
the	course	of	the	study	period.	In	contrast,	in	a	burst	design,	a	se-
ries	of	observations	are	closely	spaced	in	time,	with	gaps	between	
each	 “burst”	 of	 data	 collection	 (Nesselroade,	 1991;	 Salthouse	 &	
Nesselroade, 2010).

One	advantage	of	the	continuous	design	is	that	investigators	do	
not	need	to	decide,	a	priori,	when	they	should	focus	on	data	collec-
tion.	In	contrast,	the	burst	design	is	useful	when	investigators	begin	
the	study	with	an	idea	of	the	periods	for	which	they	require	robust	
estimates	of	individual	differences	(e.g.,	morning	vs.	evening,	juve-
nile	 vs.	 adult	 life	 stages,	 behavior	 expressed	 at	 the	 onset	 of	 each	
breeding	period).	 In	addition,	as	we	describe	below,	data	collected	
using	a	burst	design	can	be	analyzed	using	a	statistical	model	 (the	
discrete	time	model)	which	relies	on	fewer	assumptions	than	does	
another	model	 (random	regression)	which	 is	often	used	to	analyze	
convergence	 or	 divergence	 patterns.	 Below,	 we	 illustrate	 time-	
specific	 convergence	 and	 divergence	 using	 hypothetical	 datasets	
collected	using	the	continuous	design	(Figure 3)	and	the	burst	design	
(Figure 4).

Visual	 inspection	 of	 the	 hypothetical	 continuous	 dataset	 pre-
sented in Figure 3,	 suggests	 that	 it	 illustrates	a	 “reversal	pattern,”	
in	which	 the	 rank-	order	 of	 the	 subjects	 switched	over	 the	 course	
of	the	study	period.	For	instance,	one	subject	(black	dots)	appeared	
to	have	a	 relatively	 low	expected	value	at	 the	onset	of	 the	 study,	

but	ended	up	with	a	relatively	high	one,	while	the	reverse	was	true	
for	 another	 subject	 (gray	dots).	 In	 this	 situation,	we	would	expect	
CORRt1,t2	to	change	over	the	course	of	the	study	period,	with	pos-
itive	values	for	CORR1,5	and	for	CORR15,20,	but	negative	values	for	
CORR1,20.	In	addition,	we	would	expect	VARamgt to decline early in 
the	study,	and	then	increase	later	in	the	study,	and	we	would	expect	
CORRet,s	 to	be	negative	early	 in	 the	study,	approach	zero	around	
day	9,	and	then	become	increasingly	positive	with	time.	This	figure	
also	suggests	that	residual	variance	(VARresidt)	increased	over	time,	
as	 is	 indicated	by	the	deviations	of	 the	subjects'	scores	 from	their	
temporal	reaction	norms;	these	deviations	appear	to	be	larger	later	
than earlier in the study.

Visual	inspection	of	the	hypothetical	burst	data	in	Figure 4 not 
only	 suggests	 that	 the	 individuals	 had	 different	 expected	 values	
within	each	burst,	but	also	that	the	rank-	order	consistency	in	their	
expected	values	was	maintained	across	the	study	period.	In	that	sit-
uation,	we	would	expect	both	CORR1,2 and CORR1,3	to	be	positive.	
This	 figure	 also	 suggests	 that	 the	 variance	 among	 the	 subjects	 in	
their	 expected	 values	 (VARamgt)	 decreased	 from	burst	 1	 to	burst	
2,	but	then	increased	again	from	burst	2	to	burst	3.	In	addition,	the	
figure	suggests	that	convergence	occurred	between	burst	1	and	2,	
but	that	divergence	occurred	between	burst	2	and	3.	In	that	case,	we	
would	expect	CORRet,s	to	be	negative	over	the	period	from	t1	to	t2,	
but	positive	over	the	period	from	t2	to	t3.

Close	visual	inspection	of	the	raw	data	of	the	subjects	of	a	given	
study	is	not	only	required	to	appropriately	fit	statistical	models,	but	
also	to	interpret	their	results.	While	this	might	be	obvious	to	many,	
empiricists	 studying	 individual	 differences	 often	 seem	 to	 proceed	
directly	to	analysis	without	plotting	data,	and	many	of	them	fail	to	
provide	the	plots	of	a	model's	predictions	against	the	raw	data	that	
would	allow	readers	to	evaluate	the	authors'	conclusions	for	them-
selves.	To	this	end,	in	Appendices	S1–	S4, we provide the code and 
analyzes	 required	 to	 determine	whether	 a	 given	 statistical	 model	

F I G U R E  4 Hypothetical	dataset	B,	collected	using	a	burst	
design.	Each	of	three	individuals	in	this	dataset	(indicated	by	the	
black,	white,	and	gray	dots)	was	measured	four	times	per	burst	
(e.g.,	once	a	day	over	a	4-	day	interval).	Each	burst	was	separated	
by	a	gap	in	time	from	the	next	one	(e.g.,	data	collected	at	30-	day	
intervals).

F I G U R E  3 Hypothetical	dataset	A,	collected	using	a	continuous	
design,	showing	20	repeated	measures	of	behavior	for	each	of	
the	three	individuals.	The	scores	of	each	individual	at	each	time	
point	are	indicated	by	dots	(black,	gray,	white),	and	their	expected	
values	at	any	point	in	time	(i.e.,	their	temporal	reaction	norms)	are	
indicated	by	the	three	lines.
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captures	trends	evident	in	graphs	of	the	raw	data	of	the	individuals	
in	the	study,	and	whether	the	data	satisfies	the	basic	assumptions	of	
that	statistical	model.

4  |  STATISTIC AL MODEL S FOR 
ANALY ZING TIME- SPECIFIC CONVERGENCE 
OR DIVERGENCE

4.1  |  Continuous time analysis using random 
regression

4.1.1  |  General	approach

Researchers	 studying	 temporal	 trends	 in	 longitudinal	 studies	
in	 psychology	 (Singer	 &	 Willett,	 2003)	 and	 behavioral	 ecology	
(Dingemanse	et	al.,	2010)	often	employ	the	familiar	random	regres-
sion	 (RR)	model.	 In	 its	simplest	form,	this	model	assumes	that	one	
can	characterize	the	temporal	trendlines	of	all	of	the	subjects	using	
straight	 lines	 about	 a	 linear	mean	 level	 trend,	 for	 example,	 that	 if	
convergence	or	divergence	do	occur,	these	patterns	are	maintained	
over	the	entire	course	of	a	study	(see	Figure 1a,b).	In	more	complex	
forms,	the	RR	may	take	on	nonlinear	patterns	at	the	mean	level	trend	
by	treating	time	as	a	factor	(or	using	polynomial	terms),	but	the	indi-
vidual	trendlines	are	still	assumed	to	be	linear	deviations	about	the	
mean	(more	details	below).	As	such,	the	simple	RR	model	provides	
a	 useful	 starting	 point	 for	modeling	 change	 over	 time,	 because	 it	
can	capture	some	of	the	possible	patterns	of	temporal	change	(see	
Figure 1).	 In	addition,	 it	provides	a	null	model	that	can	be	rejected	
for	more	complex	patterns	(see	Figure 2),	given	a	sufficiently	pow-
erful	dataset	and	a	statistical	approach	that	is	capable	of	detecting	
changes	in	temporal	trends	over	time.

We	suggest	that	the	RR	model	provides	a	useful	starting	point	
for	analyses	of	 temporal	 changes	 in	 individual	differences	 in	pre-
dicted	mean	values,	because	as	a	practical	matter,	empiricists	often	
do	not	know	at	 the	onset	of	a	 study	 if	or	when	 the	 trendlines	of	
their	subjects	might	change	over	time.	For	 instance,	 in	a	typically	
noisy	 empirical	 dataset,	 it	might	 not	 be	 obvious	 a	 priori	whether	
the	data	best	conformed	to	the	pattern	illustrated	in	Figure 1a, or 
to the pattern illustrated in Figure 2a.	Here,	we	 show	how	 time-	
specific	variables	generated	by	an	RR	analysis	can	be	used	to	sug-
gest	whether	or	not	convergence	or	divergence	patterns	might	have	
occurred	during	particular	periods	over	the	course	of	a	larger	study.	
In	such	cases,	we	suggest	how	empiricists	might	collect	additional	
data	and	use	more-	complex	statistical	models	to	pin	down	the	pe-
riods	 when	 convergence	 or	 divergence,	 if	 present,	 occurred	 (see	
below,	and	Section	5).

In	 brief,	 a	 random	 regression	 model	 does	 two	 things.	 First,	 it	
describes	the	mean	trendline	for	the	subjects	(i.e.,	the	trendline	for	
the	population)	much	as	the	familiar	 linear	regression	model	does.	
Second,	 it	 characterizes	 how	 the	 trendline	of	 each	 subject	 differs	
from	 this	 population	mean	 trendline.	 The	 intercept	 and	 slope	 pa-
rameters	 for	 the	population	are	 fixed	effects,	while	 the	predicted	

intercepts	for	each	subject	and	the	predicted	slopes	for	each	sub-
ject	are	characterized	by	random	effects,	each	of	which	is	expressed	
as	a	deviation	from	the	population-	level	intercept	and	slope.	For	an	
introduction	to	this	model,	we	recommend	reading	from	textbooks	
on	 the	 subject	 (Singer	&	Willett,	2003;	 Zuur	 et	 al.,	 2009),	 but	we	
also	provide	a	brief	review	of	relevant	models	and	code	here,	to	help	
readers	understand	and	implement	them.

For	 studies	 of	 temporal	 changes	 in	 individual	 differences,	 the	
intercept	should	be	defined	at	the	point	in	time	when	the	first	data	
were	 collected	 (see	 Singer	 &	Willett,	2003	 for	 discussion	 of	 data	
centering	in	longitudinal	models).	That	is,	where	time	is	indicated	by	
t,	the	time	when	the	first	data	were	collected	is	set	as	t = 0,	by	sub-
tracting	the	minimum	time	value	from	all	time	values.	This	is	referred	
to	as	“left	centered”	data.	This	practice	differs	from	other	situations	
in	which	 temporal	 change	 in	 trait	 values	 is	not	 the	 focus,	 and	 the	
intercept	 is	 set	 at	 the	 temporal	midpoint	 of	 the	 study	 (i.e.,	 “mean	
centered,”	e.g.,	as	in	Dingemanse	et	al.,	2010).

Together,	 the	 predicted	 intercepts	 and	 slopes	 for	 each	 sub-
ject	from	the	random	regression	define	the	initial	expected	value	
and	 how	 each	 subject's	 expected	 values	 changed	 over	 time,	 re-
spectively,	 thus	providing	an	estimate	of	each	subject's	temporal	
reaction	 norm.	Using	 the	 equations	 described	 below,	 and	model	
estimates	of	the	among	subjects'	variance	in	intercepts	and	slopes,	
and	their	correlation,	allow	us	to	estimate	each	subject's	expected	
value	(its	“elevation”)	at	any	time,	t,	during	the	study.	This	permits	
us	to	estimate	VARamgt	at	any	point	in	time.	Similarly,	we	can	com-
pute	the	correlation,	across	the	subjects,	between	their	expected	
values	 at	 any	 two	points	of	 time	during	 the	 study	 (CORRt1,t2),	 in	
order	 to	 determine	 the	 extent	 to	 which	 rank-	order	 differences	
in	 trait	 values	 were	 maintained	 over	 specific	 intervals	 over	 the	
course	 of	 the	 study.	 Finally,	 the	 estimates	 of	 the	 subjects'	 el-
evations	 at	 specific	 times,	 combined	with	 the	 estimates	 of	 their	
slopes,	 allows	 us	 to	 estimate	 CORRet,s	 for	 any	 time	 during	 the	
study.	Since	the	intercept	is	left	centered	at	the	onset	of	the	study,	
CORRe0s = CORRi,s where CORRi,s	 is	 the	 correlation,	 among	 the	
subjects,	between	their	intercepts	and	slopes.	Together,	estimates	
of	CORRt1,t2,	VARamgt, and CORRet,s,	at	different	points	over	the	
course	of	 the	 study	 can	 indicate	whether	 the	 rank-	order	 consis-
tency	 of	 the	 different	 subjects	was	maintained	 (and	 if	 so,	when	
during	the	study	it	was	maintained),	and	whether	convergence	or	
divergence	occurred	(and	if	so,	when	during	the	study	it	occurred).	
Finally,	 time-	specific	estimates	of	 repeatability	 (Rt),	 based	on	es-
timates	 of	VARamgt	 and	VARresidt,	 can	 be	 used	 to	 estimate	 the	
extent	 to	which	 subjects	 differed	 from	 one	 another	 at	 different	
times	over	the	course	of	the	study.

4.1.2  |  A	worked	example

We	used	data	from	Jolles	et	al.	 (2019)	to	demonstrate	how	a	ran-
dom	regression	model	can	be	used	to	analyze	an	existing	dataset	
produced	 using	 a	 continuous	 time	 experimental	 design.	 Jolles	
et	 al.	 (2019)	 investigated	 temporal	 changes	 in	 “boldness”	 (based	
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on	 an	 assay	 of	 the	 proportion	 of	 time	 spent	 out	 of	 shelter	 in	 an	
initially	 novel	 test	 tank)	 of	 first-	year,	 three-	spined	 sticklebacks,	
Gasterosteus aculeatus.	 Each	 of	 the	 subjects	 was	 tested	 once	 a	
week,	for	6	consecutive	weeks.	The	resulting	dataset	was	suitable	
for	 analysis	 using	 the	 random	 regression	model,	 as	 it	 had	 a	 sam-
ple	size	(80	subjects,	six	repeats	per	subject)	sufficient	to	estimate	
model	parameters	with	reasonable	precision	(see	van	de	Pol,	2012 
and Martin et al., 2011	for	discussion	of	the	sample	sizes	required	
for	this	sort	of	analysis).	A	step-	by-	step	description	of	our	analysis	
of	these	data	is	presented	in	Appendix	S2A, using code provided in 
Appendix	S1.

The	results	of	this	analysis	suggested	that	individual	differences	
in	boldness	in	the	stickleback	were	rather	similar	and	largely	main-
tained	for	the	first	week	or	two,	and	were	then	followed	by	diver-
gence	that	began	in	week	3	and	continued	to	week	6	(see	Table 1, 
Figure 5,	 and	 Appendix	 S2A).	 The	 suggestion	 of	 maintenance	 in	
weeks	1	and	2	is	supported	by	the	very	similar	values	(and	95%CI's)	
of	 VARamgt	 in	 weeks	 1	 and	 2,	 and	 estimates	 of	 CORRet,s that 
broadly	 overlapped	 zero	 in	 both	 periods.	 Divergence	 later	 in	 the	
study	was	indicated	by	increases	over	time	in	the	value	of	VARamgt, 
and	significantly	positive	values	of	CORRet,s	from	week	3	onward.	
Rank-	order	 consistency	 was	 somewhat	 maintained	 from	 weeks	 1	
through	6,	but	was	lower	earlier	(weeks	1–	3)	than	later	(weeks	4–	6)	
in	the	study	(based	on	analyzes	of	CORRt1,t2).	Individual	differences	
in	mean	values	were	also	evident	 throughout	 the	 study,	but	were	
much	less	pronounced	earlier	than	later	(results	from	the	Rt	analysis).	
The	uncertainty	in	the	estimates	of	the	value	of	CORRet,s and the 
low	values	of	Rt	 in	weeks	1	and	2	were	at	 least	partly	attributable	
to	the	fact	that	VARresidt	was	significantly	and	substantially	higher	
during weeks 1 and 2 than it was later in the study. This trend was 
apparent	in	the	raw	data	(see	Appendix	S2: Figure A2.2)	and	it	was	
supported	by	analyzes	which	showed	that	adding	time-	specific	re-
sidual	variance	to	a	model	substantially	improved	the	fit	of	the	model	
to	the	data	(see	Appendix	S2B).

The	results	of	this	model,	which	computed	estimates	of	VARresidt 
for	each	week,	were	substantially	different	 (especially	for	the	first	
2 weeks)	from	those	of	an	otherwise	equivalent	random	regression	
model	which	 assumed	 that	 residual	 variation	 did	 not	 change	 over	
time	 (see	Appendix	S2B).	Moreover,	 the	patterns	 indicated	by	 the	

current	model	were	also	substantially	different	from	those	reported	
by	Jolles	et	al.	in	their	analyzes	of	their	data.	Jolles	et	al.	(2019)	relied	
on	a	random	regression	model	that	assumed	that	residual	variance	
did	not	change	across	the	study	period,	and	that	estimated	their	sub-
jects'	 intercepts	at	week	0.	They	reported	a	highly	significant	neg-
ative	correlation	across	 the	 subjects	between	 their	 intercepts	and	
their	 slopes	 (CORRi,s = −0.56).	 Taken	 on	 its	 own,	 this	 result	would	
either	 be	 interpreted	 as	 evidence	 of	 convergence	 throughout	 the	
study	period,	or	of	a	 reversal	pattern,	 in	which	an	 initial	period	of	
convergence	was	followed	by	a	 later	period	of	divergence.	 In	con-
trast,	our	model	provided	no	evidence	of	convergence	at	any	time,	
and	 instead	 suggested	 that	 an	 initial	 period	 of	 maintenance	 was	
followed	by	a	period	of	divergence.	Confirming	these	results	would	
require	additional	study	and	other	statistical	models,	some	of	which	
are	described	below	and	in	Section	5.

TA B L E  1 Estimates	for	VARamgt,	VARresidt, CORRt1,t2, CORRet,s, and Rt	presented	for	each	time	point	derived	from	random	regression	
analysis	of	the	behavioral	data	from	Jolles	et	al.	(2019).	Mean	and	CIs	are	indicated	for	each	variable.	Results	from	code	provided	in	
Appendix	S1,	and	from	analyzes	described	in	Appendix	S2A.

Week

A B C D E

VARamgt VARresidt CORR1,X CORRet,s Rt

1 0.0109	(0.005	to	0.019) 0.028	(0.018	to	0.041) NA −0.18	(−0.52	to	0.38) 0.28	(0.14	to	0.44)

2 0.0105	(0.006	to	0.016) 0.019	(0.013	to	0.027) 0.95	(0.90	to	0.98) 0.12	(−0.27	to	0.58) 0.36	(0.22	to	0.51)

3 0.0121	(0.008	to	0.018) 0.009	(0.006	to	0.014) 0.82	(0.67	to	0.93) 0.39	(0.04	to	0.73) 0.56	(0.42	to	0.70)

4 0.0158	(0.01	to	0.023) 0.009	(0.007	to	0.014) 0.66	(0.42	to	0.87) 0.59	(0.31	to	0.83) 0.61	(0.48	to	0.73)

5 0.0220	(0.015	to	0.031) 0.008	(0.005	to	0.013) 0.52	(0.21	to	0.81) 0.72	(0.51	to	0.88) 0.72	(0.59	to	0.84)

6 0.0290	(0.020	to	0.043) 0.011	(0.006	to	0.018) 0.41	(0.07	to	0.76) 0.81	(0.64	to	0.92) 0.72	(0.58	to	0.85)

F I G U R E  5 Predicted	temporal	reaction	norms	for	the	subjects	
in	Jolles	et	al.	(2019),	generated	by	a	random	regression	model	that	
permits	residual	variance	to	vary	over	time.	Black	lines	indicate	
the	predicted	reaction	norms	for	each	subject,	and	the	red	line	
indicates	the	mean	level	trend.	Results	based	on	code	provided	in	
Appendix	S1	and	analyzes	described	in	Appendix	S2.
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4.2  |  Burst sampling designs analyzed using 
discrete time models

4.2.1  |  General	approach

Data	collected	using	a	burst	design	can	be	analyzed	several	differ-
ent	ways.	 The	 first	 is	 to	 use	 a	 random	 regression	model	 in	which	
time	is	treated	as	a	categorical,	rather	than	a	continuous	variable	(a	
“categorical	time	model,”	e.g.,	Class	et	al.,	2019;	Dingemanse,	Barber,	
et al., 2012).	This	type	of	model	allows	for	nonlinear	trendlines	at	the	
population	level,	and	by	extension	at	the	individual	level.	However,	
this	 model	 still	 assumes	 that	 each	 individual's	 deviation	 from	 the	
population-	level	mean	at	each	burst	is	 linear	as	a	function	of	time,	
meaning	 that	 every	 individual's	 predicted	 trendline	 has	 a	 similar	
shape	(see	Appendix	S4B).	Another	option	for	burst	data	is	to	use	a	
“discrete	time	model,”	sometimes	referred	to	as	a	“character	state”	
model.	An	advantage	of	this	model	is	that	it	makes	no	assumptions	
about	deviations	of	the	individuals'	reaction	norms	from	the	reaction	
norm	at	the	population	level,	and	thus	the	shapes	of	the	temporal	re-
action	norms	are	allowed	to	vary	among	individuals	(as	in	Figure 2).	
The	discrete	 time	model	 requires	more	parameters	 than	does	 the	
categorical	time	model.	However,	given	adequate	data,	the	discrete	
time	model	may	be	preferable	for	analyzing	burst	data,	because	 it	
allows	for	the	possibility	of	complex	patterns	of	temporal	changes	in	
variances	that	theory	suggests	may	occur	over	extended	periods	of	
time	(see	Section	1).	Hence,	in	this	section,	we	highlight	the	discrete	
time	model.	Furthermore,	when	we	analyzed	our	worked	example	
dataset	(Mitchell	et	al.,	2016,	see	below),	using	both	types	of	mod-
els,	we	found	that	the	discrete	time	model	provided	a	better	fit	to	
these	data	than	did	the	categorical	 time	random	regression	model	
(see	Appendix	S3	for	code,	and	Appendix	S4B	for	a	comparison	of	
results	from	the	two	models).

4.2.2  |  A	worked	example

We	used	data	from	Mitchell	et	al.	 (2016)	 for	a	worked	example	to	
demonstrate	 how	 an	 existing	 dataset	 that	 was	 collected	 using	 a	
burst	design	could	be	analyzed	using	a	discrete	time	model.	In	this	
study,	adult	male	guppies	were	placed	in	individual	home	tanks,	and	
their	 activity	 in	 those	 tanks	was	measured	 over	 a	 3-	week	 period.	
This	dataset	was	 selected	 for	analysis	because	 the	data	were	col-
lected	using	a	burst	design	(each	subject	was	sampled	4–	6	times	per	

burst,	over	2–	3 days,	in	three	bursts	conducted	at	weekly	intervals),	
and	 because	 the	 sample	 size	 (104	 individuals,	 total	N = 1477)	was	
adequate	for	this	type	of	analysis.

The	 results	of	our	analysis	of	 the	data	 in	Mitchell	et	al.	 (2016)	
indicated	that	moderate	convergence	in	activity	occurred	between	
week	 1	 and	 week	 2,	 followed	 by	 weak,	 if	 any,	 convergence	 be-
tween	week	2	and	3	 (Table 2, Figure 6,	Appendix	S4A).	These	 re-
sults	were	based	on	weak	CORR1,2	and	a	significantly	negative	value	
of	CORRet,s	from	week	1	to	2,	compared	to	strong	CORR2,3 and a 
weakly	 negative,	 close	 to	 nonsignificant,	 value	 of	 CORRet,s	 from	
week	2	to	3	(Table 2).	Note,	however,	that	in	this	dataset,	convergence	

TA B L E  2 Estimates	for	VARamgt,	VARresidt, CORRt1,t2, and Rt	presented	for	different	time	points,	based	on	discrete	time	and	random	
regression	analyses	of	data	from	Mitchell	et	al.	(2016).	Mean	and	CIs	are	indicated	for	each	variable.	Results	based	on	code	provided	in	
Appendix	S3,	and	analyzes	described	in	Appendix	S4A.

Week (X)

A B C D E

VARamgt VARresidt CORR1,X CORR2,3 Rt

1 0.56	(0.39	to	0.80) 0.55	(0.46	to		0.64) NA 0.50	(0.40	to		0.61)

2 0.50	(0.37	to		0.67) 0.36	(0.31	to		0.41) 0.42	(0.22	to			0.60) 0.58	(0.50	to	0.66)

3 0.56	(0.39	to		0.76) 0.53	(0.47	to		0.61) 0.26	(0.04	to			0.47) 0.69	(0.53	to		0.81) 0.51	(0.41	to		0.60)

F I G U R E  6 Fitted	temporal	trendlines	of	guppy	activity	rates	
from	Mitchell	et	al.	(2016),	based	on	three	bursts	of	data,	analyzed	
using	a	discrete	time	(“character	state”)	type	model	which	permits	
among-	subjects	variance	and	residual	variation	to	vary	over	time.	
Shown	are	104	individuals,	with	the	mean	level	trend	shown	in	
red.	Activity	is	expressed	in	units	of	SD	following	transformation.	
Results	based	on	code	provided	in	Appendix	S3, and analyzes 
described	in	Appendix	S4A.
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was	not	accompanied	by	substantial	changes	in	VARamgt across the 
three	 bursts.	 CORRt1t2	 values	 were	 significantly	 higher	 than	 zero	
across	the	study,	indicating	maintenance	of	rank-	order	consistency	
throughout. However, CORR1,2	was	somewhat	lower	than	CORR2,3, 
reflecting	the	higher	levels	of	crossing-	over	of	the	subjects'	reaction	
norms	that	occurred	earlier	than	later	in	the	study	(Figure 6).

5  |  DISCUSSION

Over	the	years,	investigators	working	in	a	wide	range	of	disciplines,	
including	physiology,	ethology,	psychology,	and	behavioral	ecology,	
have	described	situations	in	which	individual	differences	in	behav-
ioral	or	physiological	 traits	 seem	 to	 increase	 (diverge)	or	decrease	
(converge)	during	particular	periods	over	the	course	of	longer	study.	
These	 observations	 have	 encouraged	 theoreticians	 to	 advance	 an	
impressive	 range	of	hypotheses	 that	predict	 that	 individual	differ-
ences	will	either	diverge	or	converge	during	specific	periods	of	time.	
The	 ability	 to	 identify	 when	 convergence	 or	 divergence	 patterns	
occur,	begin,	or	cease	is	a	crucial	first	step	for	evaluating	the	proxi-
mal	or	the	ultimate	factors	that	might	be	responsible	for	generating	
these	patterns.	However,	to	date,	empiricists	have	rarely	quantified	
time-	specific	convergence	or	divergence	patterns,	in	part	because	of	
a	lack	of	appreciation	of	experimental	designs	and	statistical	meth-
ods	which	would	allow	them	to	do	so.

Here,	we	show	how	estimates	of	several	time-	specific	statistics	
allow	 investigators	 to	 quantify	 changes	 in	 individual	 differences	
over	time.	These	include	VARamgt,	the	variance	among	individuals	
in	their	expected	values	at	a	given	time,	CORRet,s, the correlation, 
across	individuals,	between	their	expected	values	(i.e.,	their	“eleva-
tion”)	at	a	given	time	and	the	rate	of	change	in	their	expected	val-
ues	 after	 that	 point	 in	 time	 (i.e.,	 their	 “slope”),	 and	CORRt1,t2, the 
correlation,	 across	 individuals,	 between	 their	 expected	 values	 at	
t1	and	 their	expected	values	at	a	 later	 time,	 t2.	We	describe	how	
estimates	 of	 these	 three	 variables,	 together	 with	 graphs	 illustrat-
ing	the	temporal	reaction	norms	of	the	subjects,	can	suggest	if,	and	
when,	 individual	 differences	 in	 expected	 (predicted	 mean)	 values	
converged,	diverged,	or	were	maintained	in	each	of	a	series	of	pe-
riods	during	a	 longer	study.	Estimates	of	the	time-	specific	residual	
(unexplained)	variance	at	each	 time	period,	VARresidt, are also re-
quired,	because	if	the	residual	variance	changes	over	time,	failing	to	
account	for	those	changes	can	bias	estimates	of	the	other	variables	
listed	above	(Ramakers	et	al.,	2020).	Finally,	investigators	can	use	the	
time-	specific	values	of	VARamgt	and	VARresidt	to	estimate	Rt	(time-	
specific	values	of	 repeatability),	 in	order	 to	estimate	the	extent	 to	
which	individual	differences	changed	over	time.

Because	at	present	 the	statistical	methods	suitable	 for	analyz-
ing	time-	specific	changes	in	individual	differences	are	unfamiliar	to	
many	of	the	empiricists	who	might	want	to	use	them,	in	this	article,	
we	provide	two	worked	examples	of	these	methods,	both	of	which	
are	based	on	published	data	from	laboratory	studies	of	fish	behavior.	
In	the	first	example,	Jolles	et	al.	(2019)	assessed	“boldness”	in	three-	
spined	stickleback	(G. aculeatus)	once	a	week	for	a	total	of	6 weeks.	

In	 this	 case,	 a	 random	 regression	model	 suggested	 that	 individual	
differences	 in	 boldness	 were	 largely	 maintained	 during	 the	 first	
2 weeks	of	the	study,	and	that	divergence	began	at	week	3	and	con-
tinued	through	the	end	of	the	study.	In	the	second	example,	Mitchell	
et	 al.	 (2016)	 recorded	 the	 activity	 of	male	 guppies	 (P. reticulata)	 in	
three	bursts,	1-	week	apart.	In	this	case,	a	discrete-	time	model	indi-
cated	that	the	mean	activity	rates	of	the	subjects	strongly	converged	
from	week	1	to	week	2,	then	weakly	converged	from	week	2	to	week	
3.	 If	 nothing	else,	 these	 examples	 show	 that	 different	patterns	of	
time-	specific	change	 in	behavior	can	occur	even	 in	empirical	stud-
ies	which	are	superficially	similar	(temporal	changes	in	“personality”	
traits	of	fish	measured	over	several	weeks	in	an	initially	novel	envi-
ronment),	for	reasons	which	are	currently	unclear.

More	generally,	these	worked	examples	show	why	estimates	of	
all	of	the	time-	specific	statistics	described	in	this	article	can	be	im-
portant	for	detecting	and	describing	temporal	changes	in	individual	
differences.	For	instance,	many	investigators	have	described	conver-
gence	or	divergence	patterns	using	statistical	models	which	assume	
that	VARresid	does	not	change	over	time	(e.g.,	Bell	&	Peeke,	2012; 
Biro	et	al.,	2014;	Jolles	et	al.,	2019;	Martin	&	Reale,	2008; Mathot 
et al., 2012).	 However,	 theoreticians	 have	 shown	 that	 statistical	
models	which	either	do	or	do	not	allow	VARresid	to	vary	over	time	
can	produce	different	 results	 (e.g.,	 Ramakers	 et	 al.,	2020).	Hence,	
we	analyzed	Jolles'	stickleback	data	both	ways	(see	Appendix	S2B).	
For	 that	 dataset,	 random	 regression	 models	 which	 assumed	 that	
VARresid	did	not	change	over	time	(including	the	model	Jolles	used	
to	analyze	their	data)	reported	strong	negative	correlations	between	
the	 subjects'	 estimated	values	at	 the	onset	of	 the	 study	and	 their	
slopes.	Typically,	this	result	would	be	construed	as	evidence	for	ei-
ther	convergence,	or	reversal	(i.e.,	in	which	a	period	of	convergence	
was	 followed	 by	 a	 period	 of	 divergence).	 In	 contrast,	 our	 model,	
which	 included	 time-	specific	 estimates	 of	 VARresid,	 instead	 sug-
gested	that	an	initial	period	of	maintenance	was	followed	by	a	period	
of	divergence,	results	which	were	supported	by	visual	inspection	of	
the	temporal	reaction	norms	of	the	experimental	subjects.

Similarly,	 investigators	 who	 have	 tested	 for	 temporal	 changes	
in	 individual	differences	using	 random	regression	models	 typically	
estimate	the	correlation	between	elevation	and	slope	(CORRets)	at	
just	one	point	in	time	(e.g.,	Beveridge	et	al.,	2022;	Biro	et	al.,	2014; 
Class	&	Brommer,	2016;	Dingemanse,	Bouwman,	et	al.,	2012; Martin 
&	Reale,	2008; Mathot et al., 2012; Thys et al., 2021).	This	practice	
might	be	adequate	for	detecting	convergence	or	divergence	if	either	
of	 those	patterns	was	sustained	 from	the	beginning	 to	 the	end	of	
the	study	(e.g.,	patterns	indicated	in	Figure 1).	However,	as	we	have	
shown	here	 for	 the	stickleback	analysis,	 if	we	had	 just	 relied	on	a	
single	estimate	of	CORRets,	our	conclusions	about	temporal	changes	
in	individual	differences	would	have	varied,	depending	on	when	we	
estimated	the	relationship	between	the	elevation	and	the	slope.	For	
instance,	if	we	had	estimated	this	correlation	using	estimates	of	the	
subjects'	expected	values	at	the	onset	of	the	study,	we	would	have	
concluded	 that	 there	 was	 no	 evidence	 for	 either	 convergence	 or	
divergence,	whereas	 if	we	had	estimated	the	correlation	based	on	
estimates	 of	 the	 subject's	 expected	 values	 at	 the	midpoint	 of	 the	



14 of 19  |     STAMPS and BIRO

study, we would have concluded that the individual trendlines di-
verged throughout the study.

Other	 investigators	 have	often	 relied	 on	 just	 one	of	 the	 time-	
specific	 statistics	mentioned	above	 to	determine	whether	 conver-
gence	or	 divergence	occurred	 in	 their	 study.	 For	 example,	 several	
authors	have	used	changes	in	VARamg	with	age	as	evidence	of	tem-
poral	changes	in	individual	differences	(Mottus	et	al.,	2017;	Petelle	
et al., 2013;	Sakai,	2018).	But	as	we	demonstrate	here	with	the	an-
alyzes	 of	 the	 guppy	 data	 from	Mitchell	 et	 al.	 (2016),	 convergence	
(indicated	by	negative	values	of	CORRets)	can	occur	even	in	the	ab-
sence	of	major	temporal	changes	in	VARamg	when	there	is	substan-
tial	crossing	of	the	subjects'	temporal	reaction	norms.

Of	course,	both	the	worked	examples	in	this	article	were	meant	
to	be	illustrative,	showing	what	different	models	can	and	cannot	do	
when	visual	 inspection	of	a	dataset	 indicates	some	obvious	trends	
that	guide	analyzes.	In	the	future,	research	in	which	simulations	were	
used	to	create	complex	datasets	with	known	underlying	structures	
would	be	valuable	for	evaluating	and	comparing	the	performance	of	
different	models	in	capturing	temporal	trends	over	a	wide	range	of	
conditions,	including	variation	in	the	heterogeneity	of	residuals	(see	
also	below).

One	unexpected	 insight	 to	emerge	 from	our	 review	was	 that	
to	date,	researchers	have	relied	on	different	criteria	to	determine	
when	 individual	 differences	 (or	 “personality”)	 emerge	 over	 the	
course	of	development.	The	 theoretical	models	described	 in	 the	
Introduction	predict	temporal	changes	in	the	true	(as	opposed	to	
the	predicted)	means	of	the	subjects.	In	these	models,	the	emer-
gence	 of	 individual	 differences	 is	 assumed	 to	 be	 a	 product	 of	
divergence,	whereby	 individuals	who	had	very	 similar	mean	val-
ues	 at	 one	 point	 in	 time	 gradually	 diverge	 until	 their	 mean	 val-
ues	are	quite	different	 from	one	another	 (e.g.,	 see	Bergmuller	&	
Taborsky,	2010;	Fisher	et	al.,	2018;	Sih	et	al.,	2015).	However,	em-
piricists	usually	describe	the	emergence	of	individual	differences	
in	practical	terms,	based	on	the	time	or	age	at	which	they	are	first	
able	to	detect	individual	differences	in	trait	values,	using	repeat-
ability,	R	(e.g.,	Brust	et	al.,	2015; Laskowski et al., 2022;	Polverino	
et al., 2016).	 Because	 empiricists	 rely	 on	 statistically	 significant	
values	 of	 R	 to	 detect	 individual	 differences	 in	 predicted	 mean	
values,	 and	 because	 the	 ability	 to	 detect	 statistically	 significant	
time-	specific	 values	 of	R	 (Rt)	 depends	upon	 the	 sample	 size	 and	
the	values	of	both	VARamgt	and	VARresidt,	the	age	or	time	when	
individual	differences	“emerge”	based	on	this	second	criterion	will	
depend	on	how	both	VARamgt	 and	VARresidt	 change	over	 time.	
As	 a	 result,	 individual	differences	 could	 “emerge”	 at	 a	 given	age	
or	 time	 in	 an	 empirical	 study	 even	 in	 the	 complete	 absence	 of	
any	divergence	in	predicted	mean	values.	For	instance,	Polverino	
et	al.	(2016)	found	that	the	R	values	for	several	personality	traits	in	
mosquitofish	(G. holbrooki),	were	significant	for	adults	but	not	for	
juveniles,	not	because	VARamgt	changed	over	ontogeny,	but	be-
cause	VARresidt	declined	with	age.	Thus,	the	inability	to	detect	in-
dividual	differences	in	predicted	mean	values	prior	to	a	given	point	
in	time	during	a	 longer	study	could	occur	because	VARamgt was 
very	low	before	that	point,	because	VARresidt was very high until 

that	 point,	 or	 some	 combination	 of	 these.	 The	 best	way	 to	 dis-
criminate	among	these	alternatives	would	be	to	increase	sampling	
efforts	to	estimate	parameters	with	greater	precision	(see	simula-
tions	of	data	requirements	in	Martin	et	al.,	2011;	van	de	Pol,	2012; 
Wolak	et	al.,	2012).	For	example,	by	sampling	each	subject's	be-
havior	at	3 s	intervals	for	11 h	per	day,	Laskowski	et	al.	(2022)	were	
able	to	demonstrate	individual	differences	in	the	mean	swimming	
speed	of	individual	fish,	Poecilia formosa,	within	the	first	day	post-	
hatch	 (Rt = 0.65).	 Note,	 however,	 that	 such	 frequent	 sampling	
might	produce	inflated	estimates	of	VARamgt	(and,	by	extension,	
Rt)	if	individual	scores	were	strongly	autocorrelated	over	short	pe-
riods	of	time.	Although	methods	currently	exist	to	estimate	tem-
poral	autocorrelation,	they	do	not	take	into	account	the	possibility	
that	temporal	autocorrelation	might	differ	among	individuals.

Our	initial	reason	for	estimating	time-	specific	values	of	VARresid	
was	to	obtain	more	reliable	estimates	of	other	variables	required	to	
test	 for	 temporal	 changes	 in	 individual	 differences.	However,	 this	
procedure	 indicated	 that	 VARresidt	 for	 boldness	 significantly	 de-
clined	over	time	in	the	stickleback	(see	Table 1),	but	that	VARresidt 
for	activity	rates	did	not	change	over	time	in	the	guppies	(see	Table 2).	
In	both	studies,	the	investigators	controlled	experimentally	and	sta-
tistically	for	other	factors	that	might	have	contributed	to	variation	in	
the	subject's	behavior;	hence,	we	assume	that	much	of	the	residual	
variance	observed	in	each	study	was	due	to	rIIV	(residual	intraindi-
vidual	variability,	or	its	inverse,	“predictability”).	Further,	in	both	of	
these	studies,	the	fish	were	repeatedly	tested	in	the	same	environ-
ment,	under	the	same	set	of	conditions.	 In	this	situation,	Bayesian	
models	of	development	predict	that	rIIV	will	decline	as	a	function	of	
time	(e.g.,	Stamps	&	Krishnan,	2014a).	This	is	because	as	the	subjects	
become	increasingly	certain	over	time	about	the	true	current	value	
of	 the	state	of	 the	environment,	 they	become	more	certain	about	
the	trait	values	that	would	be	appropriate	for	that	environment.	And	
to	date,	empiricists	who	have	studied	temporal	changes	in	predict-
ability	in	this	situation	often	find	that	rIIV	declines	(or	equivalently,	
that	predictability	increases)	as	a	function	of	time,	age,	or	the	num-
ber	of	experiences.	For	instance,	declines	in	trial-	to-	trial	variability	
as	a	function	of	time	or	practice	sessions	are	frequently	reported	in	
studies	of	motor	learning	(Beerse	et	al.,	2020;	Krakauer	et	al.,	2019; 
Shmuelof	et	al.,	2012,	 reviewed	 in	Sternad,	2018).	Declines	 in	rIIV	
over	 time	 have	 also	 been	 reported	 for	 other	 behaviors	when	 the	
subjects	 are	 repeatedly	 tested	 under	 the	 same	 conditions	 (Biro	&	
Adriaenssens,	2013;	Goold	&	Newberry,	2017;	Mitchell	&	Biro,	2017; 
Polverino	 et	 al.,	 2019; Thys et al., 2021).	 Hence,	 the	 decline	 in	
VARresidt	over	time	in	boldness	we	detected	in	the	stickleback	is	in	
line	with	both	theoretical	predictions	and	previous	empirical	studies	
of	temporal	changes	in	this	variable	when	animals	are	repeatedly	or	
continuously	exposed	to	the	same	stimuli	or	experiences.

Although	we	illustrated	the	methods	used	in	this	article	using	
two	datasets	which	focused	on	a	similar	situation	(changes	in	indi-
vidual	differences	in	fish	behavior	over	several	weeks	for	subjects	
tested	 in	 an	 initially	 novel	 environment),	 the	 methods	 we	 de-
scribe	here	should	be	useful	for	analyzing	many	other	situations	in	
which	convergence	or	divergence	might	be	restricted	to	particular	
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periods	of	time.	For	example,	discrete	time	models	might	be	used	
to	 analyze	 situations	 in	 which	 preliminary	 results	 suggest	 that	
convergence	 and	 divergence	 patterns	 might	 regularly	 alter-
nate	over	 time.	One	possible	example	 is	described	by	Kluen	and	
Brommer	(2013),	which	measured	“neophobia-	related	behavior”	in	
blue	tits	(Cyanistes caeruleus)	in	two	seasons:	winter	and	breeding	
season.	These	authors	found	that	the	individuals	had	significantly	
different	scores	in	winter,	but	that	their	scores	converged	to	very	
similar	values	during	the	breeding	season.	The	low	variance	among	
the	subjects	in	expected	mean	values	during	the	breeding	season	
likely	contributed	to	results	indicating	low	rank-	order	consistency	
across	the	seasons	(e.g.,	values	of	CORRt1,t2	near	zero).	These	re-
sults	suggest	that	in	blue	tits,	individual	differences	in	neophobic	
behavior	might	alternate	each	year:	converging	from	winter	to	the	
breeding	season,	and	then	diverging	again	from	the	breeding	sea-
son to winter.

Similarly,	predictable	alternation	of	convergence	and	divergence	
in	 individual	differences	might	occur	when	animals	 are	alternately	
exposed	to	high	and	 low	tides.	Cornwell	et	al.	 (2019)	studied	 indi-
vidual	 differences	 using	 an	 assay	 of	 “boldness”	 in	 snails	 (Littoraria 
irrorata)	under	conditions	simulating	the	tidal	patterns	in	their	natu-
ral	habitat.	For	the	same	set	of	subjects,	VARamg	was	higher	at	high	
tide	than	at	 low	tide,	and	the	value	of	CORRi,s when the intercept 
was	 set	 at	 high	 tide	was	 significantly	 negative,	 indicating	 conver-
gence	from	high	to	low	tide.	There	was	also	evidence	that	rank-	order	
consistency	was	largely	maintained	from	high	to	low	tide.	Given	that	
in	the	snails'	world,	high	and	low	tides	regularly	alternate	with	one	
another,	these	data	imply	that	boldness	in	this	species	might	regu-
larly	 converge	 from	high	 to	 low	 tide,	 and	 then	diverge	again	 from	
low to high tide.

Also,	while	we	focused	on	individual	phenotypic	differences	in	
this	article,	the	approaches	and	statistical	models	described	herein	
could	easily	be	modified	to	study	temporal	changes	 in	genotypic	
differences	in	behavioral	or	physiological	traits.	A	number	of	au-
thors	 have	 conducted	 longitudinal	 studies	 of	 behavioral	 change	
for	 genotypes	 in	 the	 laboratory	 (e.g.,	 Edenbrow	 &	 Croft,	 2011; 
Laskowski et al., 2022;	Stamps	et	al.,	2018)	or	pedigreed	individu-
als	in	the	laboratory	or	field	(e.g.,	Class	et	al.,	2019;	Dingemanse,	
Barber,	et	al.,	2012; Ronald, 2011;	White	&	Wilson,	2019).	In	such	
cases,	 time-	specific	 statistics	 comparable	 to	 those	 described	 in	
this	article	could	be	used	to	determine	whether,	and	 if	so	when,	
convergence	and	divergence	occurred	at	the	genetic	level.	For	in-
stance,	a	study	of	genotypic	differences	 in	aversive	conditioning	
in larval Drosophila melanogaster showed that when genotypes 

which	 expressed	 significantly	 different	mean	 values	when	naïve	
were	exposed	to	a	single	aversive	training	experience,	their	scores	
converged	to	similar	scores	(Stamps	et	al.,	2018).	Similarly,	a	field	
study	of	pedigreed	great	tits	(Parus major),	reported	that	additive	
genetic	variance	in	exploratory	behavior	declined	from	year	0	to	

year	3,	 and	 that	 rank-	order	 consistency	at	 the	genetic	 level	was	
not	 maintained	 over	 this	 period,	 as	 the	 cross-	year	 correlation	
dropped	to	zero	(Class	et	al.,	2019).

In	some	cases,	the	patterns	suggested	by	the	methods	described	
in	this	article	should	themselves	be	viewed	as	preliminary,	and	war-
rant	 more	 complicated	 statistical	 models	 and/or	 more	 extensive	
datasets	 to	determine	when	temporal	changes	 in	 individual	differ-
ences	occurred.	A	simple	example	is	when	theory	or	preliminary	an-
alyzes	suggest	that	individual	reaction	norms	might	be	curved	rather	
than	linear.	In	that	case,	one	could	include	polynomial	terms	for	time	
in	a	random	regression	model	to	capture	this	relationship.	However,	
this	 procedure	 requires	 observations	 at	 multiple	 time	 points	 for	
every	subject	for	a	meaningful	and	precise	analysis	(e.g.,	see	Bell	&	
Peeke,	2012;	Goold	&	Newberry,	2017).

A	more	complicated	example	is	illustrated	by	the	worked	exam-
ple	for	the	stickleback	data	from	Jolles	et	al.	(2019)	described	in	this	
article.	Our	analyzes	suggested	that	in	this	dataset,	a	period	of	pos-
sible	maintenance	for	the	first	2 weeks	was	followed	by	a	period	of	
divergence,	which	 continued	until	 the	end	of	 the	 study.	However,	
those	results	were	based	on	a	standard	random	regression	model,	
which	assumes	that	individual	deviations	from	the	mean	are	linear.	
As	a	result,	this	type	of	model	would	be	unable	to	capture	a	situa-
tion	in	which	a	period	of	strict	maintenance	(VARslope = 0)	was	imme-
diately	followed	by	a	period	of	strong	divergence	(VARslope ≫ 0),	as	
shown in Figure 2b.	In	order	to	more	firmly	establish	that	an	initial	
period	of	maintenance	was	 followed	by	 a	 period	of	 divergence,	 it	
would	be	useful	to	conduct	a	new	empirical	study	with	more	samples	
per	subject,	which	could	then	be	analyzed	using	statistical	models	
which	do	not	rely	on	this	assumption.	For	instance,	if	multiple	sam-
ples	per	subject	were	collected	once	a	week	using	the	burst	design,	
discrete	 time	 (character	 state)	 models	 similar	 to	 those	 described	
in	this	article	could	be	used	to	determine	if	and	when	the	patterns	
changed.	Conversely,	 if	multiple	 samples	within	 each	 period	were	
collected	using	a	continuous	design,	then	one	could	use	a	more	com-
plicated	version	of	the	random	regression	model	described	here	to	
address	this	question.	For	example,	one	could	create	a	dummy	vari-
able	 that	divides	 time	 into	 two	 intervals	 (weeks	1–	3	 vs.	 4–	6),	 and	
then	introduce	this	factor	variable	into	a	random	regression	model,	
where	this	effect	 is	crossed	with	continuous	time	variable	at	fixed	
and	 random	 effects	 levels,	 permitting	 different	 among-	subjects	
variances	to	be	fit	within	each	interval	(see	Singer	&	Willett,	2003).	
Thus,	such	a	model	could	capture	patterns	of	individual	variance	as	
depicted in Figure 2b.	Such	a	model	would	have	the	following	coding	
structure in R:

This	code	would	generate	unique	intercept	and	slope	predictions	
for	each	individual	within	each	interval,	and	permit	testing	of	whether	
a	period	of	maintenance	(weeks	1–	3)	was	followed	by	a	period	of	di-
vergence	(weeks	4–	6).	In	addition,	one	could	determine	exactly	when	
changes	occurred	by	fitting	models	with	different	interval	cutoff	points	
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(e.g.,	weeks	1–	2	vs.	3–	6	in	the	fish	study),	and	finding	which	best	fit	the	
data.	For	an	example	of	this	sort	of	analysis,	see	(Biro,	2012).

We	also	note	that	although	in	this	article	we	focused	on	individ-
ual	differences	in	predicted	mean	values,	individuals	may	also	differ	
from	 one	 another	with	 respect	 to	 other	 variables	which	 are	 used	
to	describe	temporally	labile	behavioral	or	physiological	traits.	One	
example	is	rIIV,	or	residual	intraindividual	variability,	which	indicates	
the	extent	 to	which	each	 individual's	 scores	vary	around	 its	mean	
value.	In	recent	years,	several	studies	have	demonstrated	that	indi-
vidual	differences	in	rIIV	are	repeatable	(Biro	&	Adriaenssens,	2013; 
Cornwell et al., 2023;	Highcock	&	Carter,	2014),	and	the	repeatabil-
ity	of	rIIV	implies	some	level	of	rank-	order	consistency	in	this	vari-
able	over	time.	However,	as	we	have	seen	in	this	article,	repeatability	
can	 be	 high	 during	 periods	when	 individual	 differences	 are	 either	
converging	or	diverging,	as	well	as	when	they	are	being	maintained.	
In	addition,	to	date,	nearly	every	empirical	study	which	has	demon-
strated	individual	differences	in	rIIV	has	been	based	on	estimates	of	
each	subject's	variability	over	the	entire	study	(Mitchell	et	al.,	2021).

But	 the	 evidence	 that	 average	 levels	 of	 rIIV	 can	 change	 over	
time	 (see	 above)	 raises	 the	obvious	 question	of	whether	 individ-
ual	differences	in	rIIV	might	also	change	(converge	or	diverge)	over	
time.	 As	was	 the	 case	 for	 individual	 differences	 in	mean	 values,	
theoreticians	and	empiricists	have	offered	suggestions	on	why	we	
might	expect	 to	observe	changes	 in	 individual	differences	 in	 rIIV	
over	 time.	For	 instance,	Bayesian	models	of	development	predict	
that	 if	 individuals	 initially	differ	with	 respect	 to	 the	variability	of	
their	 behavior,	 those	 differences	 will	 decline	 over	 time	 if	 every	
individual	 is	repeatedly	exposed	to	the	same	cues	or	experiences	
(Stamps	&	Krishnan,	2014a).	However,	at	present,	there	is	only	indi-
rect	evidence	that	individual	differences	in	rIIV	might	change	over	
time.	For	instance,	a	comparison	of	two	groups	of	athletes	(trained	
vs.	 novices)	 revealed	 that	 the	 trained	 athletes	 initially	 had	 lower	
levels	of	 trial-	to-	trial	 variability	 than	novices	when	both	begin	 to	
learn	a	novel	throwing	task,	but	eventually	both	groups	converged	
on	similarly	low	levels	of	trial-	to-	trial	variability	for	that	task	(Cohen	
&	Sternad,	2009).	We	suggest	that	studies	of	temporal	changes	in	
individual	differences	in	rIIV	might	be	a	profitable	topic	for	future	
research,	 and	 predict	 that	 in	 the	 near	 future,	methods	 following	
from	those	described	in	this	article	will	be	developed	to	detect	con-
vergence	or	divergence	patterns	for	individual	differences	in	rIIV.
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