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SIMPLIFIED ENERGY LANDSCAPE FOR MODULARITY USING TOTAL
VARIATION∗

ZACHARY BOYD† , EGIL BAE‡ , XUE-CHENG TAI§ , AND ANDREA BERTOZZI¶

Abstract. Networks capture pairwise interactions between entities and are frequently used in applications such
as social networks, food networks, and protein interaction networks, to name a few. Communities, cohesive groups
of nodes, often form in these applications, and identifying them gives insight into the overall organization of the
network. One common quality function used to identify community structure is modularity. In Hu et al. [SIAM
J. App. Math., 73(6), 2013], it was shown that modularity optimization is equivalent to minimizing a particular
nonconvex total variation (TV) based functional over a discrete domain. They solve this problem—assuming the
number of communities is known—using a Merriman, Bence, Osher (MBO) scheme.

We show that modularity optimization is equivalent to minimizing a convex TV-based functional over a discrete
domain—again, assuming the number of communities is known. Furthermore, we show that modularity has no
convex relaxation satisfying certain natural conditions. Despite this, we partially relax the discrete constraint using
a Ginzburg Landau functional, yielding an optimization problem that is more nearly convex. We then derive an MBO
algorithm with fewer parameters than in Hu et al. and which is 7 times faster at solving the associated diffusion
equation due to the fact that the underlying discretization is unconditionally stable. Our numerical tests include a
hyperspectral video whose associated graph has 2.9 × 107 edges, which is roughly 37 times larger than was handled
in the paper of Hu et al.

Key words. social networks, community detection, data clustering, graphs, modularity, MBO scheme

AMS subject classifications. 65K10, 49M20, 35Q56, 62H30, 91C20, 91D30, 94C15

1. Introduction. Community detection in complex networks is a difficult problem with ap-
plications in numerous disciplines, including social network analysis [52], molecular biology [36],
politics [52], material science [5], and many more [53]. There is a large and growing literature on
the subject, with many competing definitions of community and associated algorithms [22, 59, 24].
In practice, community detection is used as a way to understand the coarse, or mesoscale, properties
of networks. Further investigation into these communities sometimes leads to insights about the
processes that formed the network or the dynamics of processes acting on the network.

In this paper, we focus on the task of partitioning the nodes in a complex network into dis-
joint communities, although many other variations, such as overlapping, fuzzy, and time-dependent
communities are also used in the literature. The proper way to understand such communities in
small networks has been fairly well-studied, and their role in larger networks is the subject of active
research [38].

A great variety of definitions have been proposed to make the partitioning task precise [24], in-
cluding notions involving edge-counting, random walk trapping, information theory, and—especially
recently—generative models such as stochastic block models (SBMs). In this paper, we focus on
modularity optimization [55], which is the most well-studied of existing methods. Let G be a
non-negatively weighted, undirected, sparse graph with N nodes, weight matrix W = (wij), de-
gree vector k satisfying ki =

∑
j wij , and 2m =

∑
i ki. Modularity-optimizing algorithms seek a
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2 Z. BOYD, E. BAE, X.-C. TAI, AND A. L. BERTOZZI

partition A1, · · · , An̂ of the nodes of G which maximizes

Q =
1

2m

n̂∑
`=1

∑
ij∈A`

wij −
kikj
2m

.

Intuitively, we are to understand wij as the observed edge weight and
kikj
2m as the expected weight

if the edges had been placed at random. Thus, there is an incentive to group those nodes which
have an unusually strong connection under the null model.

The results of modularity optimization must be interpreted carefully. For example, the mod-
ularity functional, Q, will find communities in a random graph [34]. In addition, many dissimilar
partitions may yield near-optimal modularity values [33]. This is to be expected, since the network
partitioning problem is very well posed. Real networks are generated by complicated processes with
many factors, and thus there are often multiple ways to partition a network that reflect legitimate
divisions among the objects being studied [58]. One way to leverage this diversity of high-modularity
partitions in practice, as well as prevent the discovery of communities in random graphs, relies on
consensus clustering [73]. Another approach is simply to sample many high-modularity partitions,
expecting that multiple intuitively-meaningful partitions may be found. Such effects effects have
been observed, for instance, in the Zachary Karate Club network, which has both a community
structure and leader-follower structure [58].

Modularity also has preferred scale for communities [23, 44]. For this reason, one typically
includes a resolution parameter γ > 0 [60, 4], yielding

Q =
1

2m

n̂∑
`=1

∑
ij∈A`

wij − γ
kikj
2m

When γ is nearly zero, the incentive is to place many nodes in the same community, so that the
edge weight is included in the sum. When γ is large, few nodes are placed in each community, to
avoid including the large penalty term γ

kikj
2m .

A number of heuristics have been proposed to optimize modularity [22, 24], with prominent
approaches including spectral [54], simulated annealing [34], and greedy or Louvain algorithms [7].
The optimization problem is NP-hard [8], so it is not expected that a single heuristic will suffice
for all situations.

In 2013, Hu, Laurent, Porter, and Bertozzi [37] discovered a connection between the modu-
larity optimization problem in network science and total variation (TV) minimization from image
processing. As an application, Hu et al. developed Modularity MBO, a TV-oriented optimization
algorithm that effectively optimizes modularity. The present work strengthens both theoretical and
algorithmic connections from [37]. Specifically, we make the following contributions:

We provide four additional formulations of modularity, two in terms of TV and two in terms
of graph cuts. In addition to being intuitively simpler than the formulation in [37], these formulas
place all of the nonconvexity of the problem into a discrete constraint and the choice of the number
of classes—the functionals themselves are convex. This new formulation leads quickly to a theorem
showing that convex relaxation of modularity is not possible under certain conditions. While many
practitioners have observed that modularity optimization seems highly nonconvex, ours is the first
result of which we are aware showing this in a rigorous way. We provide an alternative relaxation,
using the Ginzburg-Landau functional, that relaxes the discrete constraint in a way that is not
convex but is more manageable. As the amount of relaxation goes to zero, solutions of the relaxed
problem approach solutions of the discrete problem.
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Based on these ideas, and following [37], we develop an MBO-type scheme, Balanced TV, which
quickly and accurately optimizes modularity in several examples. This algorithm seems especially
well-suited to use on similarity networks that arise in machine learning, where prior knowledge of
the approximate number of communities is available, and the number of such communities tends
to be small. We provide practical help for implementing Balanced TV that eliminates the need
to hand-tune certain parameters, as is necessary in [37]. This includes bounds on the timestep
in the MBO iteration and a method to avoid using an inner loop in that iteration. We also
show how to discretize the partial differential equation (PDE) part of the MBO iteration in an
unconditionally stable, efficient way. We test our algorithm on much larger datasets than are
used in [37], giving insight into scalability, which typically is very good for MBO-type algorithms.
These examples include hyperspectral video, which makes evaluation of the resulting communities
relatively easy. In general, we find that the modularity approach does capture the essence of these
machine learning problems, although the simplicity of our approach necessarily means that more
specialized algorithms may have an advantage in specific cases. In addition, our algorithm typically
optimizes modularity as accurately as the Louvain method, which is one of the best tools available
for modularity optimization on large graphs.

The rest of the paper is organized as follows: Section 2 surveys the necessary background in
both modularity optimization and TV minimization. Section 3 develops the main theoretical results
about the optimization problem itself. Section 4 develops the theory and practical implementation
of our algorithm, Balanced TV. Section 5 gives numerical examples. Section 6 concludes. There
are also appendices containing additional background and deferred proofs.

2. Total Variation Optimization. While modularity optimization is normally understood
as a combinatorial problem, TV was historically seen as a continuum object, with applications in
partial differential equations, physics simulation, and image processing.1 Given a smooth function
f from some domain U ⊂ Rn to R, we define the TV of f as

|u|TV =

∫
U

| ∇ f |.

In the special case where n = 1, this is the total rise and fall of the function, hence the name. An
important special case is when n = 2 or 3 and f is the indicator function of a region V ⊂ U . In
such a case, |f |TV is the perimeter or surface area of V .

Total variation minimization is an important heuristic in image processing, where e.g. a black
and white image that is corrupted by noise can be viewed as a function f : [0, 1]2 → [0, 1], where
the value of f varies from 0 (black) to 1 (white). A common task is to remove the noise and recover
the original image. Since noise is manifest as large gradients in f , early approaches found u as the
solution to a minimization problem such as

min
u

∫
[0,1]2

|| ∇u||2 + ||u− f ||2.

The solution to such a problem is a smoothed image, which means that the noise is eliminated, but
all edges are also erroneously eliminated. The correct approach [61], is to modify the problem as
follows

min
u

∫
[0,1]2

|| ∇u||+ ||u− f ||2.

1See [11] for a more complete treatment.
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This small change allows the minimization procedure to preserve edges and yields much better
results in many applications. The reason is that minimizers of total variation tend to be piecewise
smooth. Total variation minimization has other applications as well, such as compressed sensing [10]
and mean curvature flow [12, 43].

The preceding discussion has assumed that the domain in question is some subset of Rn, but
the main ideas above can be carried out on a graph as well [29]. We first define the nonlocal gradient
of a function f : G→ R at node i in the direction of the edge from i to j as

∇f(i, j) = f(j)− f(i).

The 1-norm of ∇f at node i is then given by

|∇f(i)|1 =
∑
j

wij |f(j)− f(i)|.

Finally, we can use summation to replace integration, yielding the graph total variation

(1) |f |TV =
1

2

∑
ij

wij |f(j)− f(i)|.

We will actually use a slight generalization of Equation 1; in the case where f is vector-valued, we
identify it with an N × n̂ matrix where the i-th row is f(i) and write

|f |TV =
1

2

∑
ij`

wij |fi` − fj`|.

We also want an associated notion of perimeter for graphs, which we will term the graph cut.
Let f : G→ R be the characteristic function of a set of nodes S. Then we can calculate

|f |TV =
1

2

∑
ij

wij |f(i)− f(j)| =
∑

i∈S,j∈Sc

wij := Cut(S, Sc).(2)

TV minimization on a graph tends to produce piecewise-constant functions whose corresponding
graph cut is small.

3. Equivalence Theorem and its Consequences. In this section, we prove and explore
some consequences of our main result. We will need this definition:

Definition 3.1. Let Π(G) be the set of all partitions of the nodes of G. We identify the nodes
of G with the integers 1 through N . Thus if {A`}n̂`=1 ∈ Π(G), then we write i ∈ A` if node i lies in
the `-th component of the given partition.

To each element of Π(G), we identify a matrix in RN×n̂, called the partition matrix satisfying,
ui` = δ(i ∈ A`), where δ is the Kronecker delta. Thus, u ∈ Π(G) means that u corresponds to some
partition of the nodes of G under the correspondence just given.

3.1. Main Result.

Theorem 3.2 (Equivalent forms of modularity). For any subset S of the nodes of G, define
volS =

∑
i∈S ki. Then the following optimization problems are all equivalent:

Standard formulation: argmax
n̂∈N,{A`}n̂`=1∈Π(G)

n̂∑
`=1

∑
ij∈A`

wij − γ
kikj
2m

(3)
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Balanced cut (I): argmin
n̂∈N,{A`}n̂`=1∈Π(G)

n̂∑
`=1

(
Cut (A`, A

c
`) +

γ

2m
(volA`)

2
)(4)

Balanced cut (II): argmin
n̂∈N,{A`}n̂`=1∈Π(G)

n̂∑
`=1

(
Cut (A`, A

c
`) +

γ

2m

(
volA` −

2m

n̂

)2
)

+ γ
2m

n̂

(5)

Balanced TV (I): argmin
n̂∈N,u∈Π(G)

|u|TV +
γ

2m

∣∣∣∣kTu∣∣∣∣2
2

(6)

Balanced TV (II): argmin
n̂∈N,u∈Π(G)

|u|TV +
γ

2m

∣∣∣∣∣∣∣∣kTu− 2m

n̂

∣∣∣∣∣∣∣∣2
2

+ γ
2m

n̂

(7)

Each of the preceding forms has a different interpretation. The original formulation of modularity
was based on comparison with a statistical model and views communities as regions that are more
connected than they would be if edges were totally random. The cut formulations represent modu-
larity as favoring sparsely interconnected regions with balanced volumes, and the TV formulation
seeks a piecewise-constant partition function u whose discontinuities have small perimeter, together
with a balance-inducing quadratic penalty. The cut and TV forms come in pairs. The first form
(labelled “I”) is simpler to write but harder to interpret, while the second (labelled “II”) has more
terms, but the nature of the balance term is easy to understand, as it is minimized (for fixed n̂)
when each community has volume 2m

n̂ .
One can compare these equivalent formulations with [37], in which minimizing the functional

(8) |u|TV − γ||u−mean(u)||2`2(G) = |u|TV − γ
∑
i`

ki

∣∣∣∣∣ui` − 1

2m

N∑
i′=1

kiui′`

∣∣∣∣∣
2

is shown to be equivalent to modularity optimization, subject to the same constraint as the other TV
formulas presented here. Thus, in [37], there are two sources of nonconvexity, namely the balance
term and the constraint, while in our formulation, the discrete constraint is the only source of
nonconvexity. It is also more clear from our formulation which features of a solution are incentivized
by modularity optimization, namely, the two priorities of having a small graph cut and balanced
class sizes are the only considerations. The relative weight of these considerations, as well as the
number of communities, is governed by γ. The fact that the second term induces balance can be
seen from (5), since if each community has exactly 2m

n̂ volume, there is minimal penalty from that
term. Overall, these theoretical simplifications should make the nonconvexity of the problem easier
to navigate, both for humans and computers.

Finally, we note that all of these formulations of modularity provide a convenient way to
incorporate metadata into the partitioning process. This can be done by simply incorporating a
fidelity term and minimizing the functional

|u|TV +
γ

2m
||kTu||22 + λ||χ ∗ (u− f)||22



6 Z. BOYD, E. BAE, X.-C. TAI, AND A. L. BERTOZZI

where λ > 0 is a parameter, f is a term containing the metadata labels, ∗ is the entry-wise matrix
product, and χ is a matrix that is zero except in the entries where labels are known. Including
metadata should always be done with care, of course, but this device should prove very convenient,
as it has been well-tested in image processing and machine learning applications.

Theorem 3.2. Notice that the cut and TV formulations are really just a change of notation, so
that there are two nontrivial equivalences, namely the equivalence of (3) with (4) and the equivalence
of (4) and (5). We first show the equivalence of (3) with (4). Fix n̂, and consider an otherwise
arbitrary partition {A1, . . . , An̂} of G. Then we have

Q =
1

2m

n̂∑
`=1

∑
ij∈A`

wij − γ
kikj
2m

(9)

=
1

2m

n̂∑
`=1

 ∑
i∈A`,j∈{1,...,N}

wij −
∑

i∈A`,j∈Ac
`

wij

− γ

2m

n̂∑
`=1

∑
ij∈A`

kikj
2m

(10)

=
1

2m

N∑
ij=1

wij −
1

2m

n̂∑
`=1

∑
i∈A`,j∈Ac

`

wij −
γ

2m

n̂∑
`=1

∑
ij∈A`

kikj
2m

(11)

= 1− 1

2m

n̂∑
`=1

∑
i∈A`,j∈Ac

`

wij −
γ

2m

n̂∑
`=1

∑
ij∈A`

kikj
2m

(12)

= 1− 1

2m

n̂∑
`=1

Cut(A`, A
c
`)−

γ

2m

n̂∑
`=1

∑
ij∈A`

kikj
2m

.(13)

Summing along the j index first yields

= 1− 1

2m

n̂∑
`=1

(
Cut(A`, A

c
`) +

γ

2m

n̂∑
`=1

∑
i∈A`

ki volA`

)
(14)

= 1− 1

2m

n̂∑
`=1

(
Cut(A`, A

c
`) +

γ

2m
(volA`)

2
)

(15)

Thus, the maxima of modularity coincide with the minima the functional from (4), as required.
To see that (4) and (5) are equivalent, we calculate:

n̂∑
`=1

(
Cut (A`, A

c
`) +

γ

2m

(
volA` −

2m

n̂

)2
)

(16)

=

n̂∑
`=1

(
Cut (A`, A

c
`) +

γ

2m

(
(volA`)

2 − 4m

n̂
volA` +

4m2

n̂2

))
(17)

=

n̂∑
`=1

(
Cut (A`, A

c
`) +

γ

2m
(volA`)

2
)
− γ

2m

8m2

n̂
+

γ

2m

4m2

n̂
(18)

=

n̂∑
`=1

(
Cut (A`, A

c
`) +

γ

2m
(volA`)

2
)
− γ 2m

n̂
(19)
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3.2. On convex relaxations. The preceding equivalence theorem makes it very tempting
to look for a convex relaxation of (6), but this is not really possible,2as the following theorem
shows. We will use the term symmetric to describe a functional that is invariant under column
permutations of the input matrix. In the case where the input lies in Π(G), this is the same as
permuting the group labels.

Theorem 3.3. Let

F(u) = |u|TV +
γ

2m
||kTu||22

have domain Π(G, n̂) = Π(G) ∩ RN×n̂, and let F̃ be any symmetric, convex extension of F to the
convex hull of Π(G, n̂). Then F̃ has a trivial, global minimizer ũ that has all columns equal to each
other, thus yielding no classification information.

Proof. Consider an arbitrary matrix u in the convex hull of Π(G, n̂). For each permutation of
the columns π ∈ Sn̂, we have F(u) = F(πu). Let ũ = 1

n̂!

∑
π∈Sn̂

πu. Then by Jensen’s inequality
we have

F(ũ) = F̃

(
1

n̂!

∑
π∈Sn̂

πu

)
≤ 1

n̂!

∑
π∈Sn̂

F̃(πu) = F̃(u).

Since u was arbitrary, ũ is a global minimizer. Finally, all the columns of ũ are equal, as promised.

3.3. Ginzburg-Landau Relaxation. In this subsection, we develop a way to relax the mod-
ularity problem to a continuum domain, which can make the nonconvexity more manageable. In
other TV problems arising in materials science and image processing, discrete constraints similar
to modularity’s are dealt with using the idea of phase fields, where a thin transition layer be-
tween discrete-valued regions is allowed, making the problem smooth so that it can be attacked
by continuum methods. (See e.g. [66, 20, 2, 6].) As discussed above, TV is used for two of its
properties: promoting small perimeter and encouraging binary results. The Ginzburg-Landau re-
laxation replaces the TV term with two other terms: the Dirichlet energy and a multiwell potential,
each of which has one of the aforementioned properties. Thus the Ginzburg-Landau energy in the
continuum is given by

Fε(u) =

∫
U

ε||∇u(x)||2 +
1

ε
P (u(x)) dx,

where ε is a small parameter and P is a multiwell potential with local minima at the corners of the
simplex. The exact form of P will not be important for our purposes, but we will give a concrete
example in the next theorem. A classical result asserts that for u : U ⊂ R → R and P having
minima at 0 and 1, we have the following convergence3result:

Fε(u)
Γ−→
{

const |u|TV if u is binary
+∞ otherwise

as ε→ 0, under appropriate conditions.

2We do note, however, that by means of a different embedding [15] was able to obtain a convex relaxation with
solutions which, while not discrete, are also not trivial. Thus, the embedding requirement is a significant part of our
theorem. Other related works include [13] and [1].

3See the appendices for an overview of Γ-convergence.
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In order to arrive at the graph Ginzburg-Landau functional, observe that if we ignore boundary
terms, then ∫

U

||∇u||2 =

∫
U

(∇u,∇u) =

∫
U

−(div∇u, u) =

∫
U

−(∆u, u),(20)

which suggests that we use an appropriate graph Laplacian in our formulation. The Laplacian that
is appropriate for our context is the combinatorial or unnormalized Laplacian, L = diag(k)−W.

In [6], the idea of using a Ginzburg-Landau functional in graph-based optimization first ap-
peared, and it has subsequently been treated in more depth in [63], where much of the continuum
theory was successfully extended to graphs. Our approach closely mirrors [37], the main difference
in this case simply being that our functionals have different convexity properties. For general n̂,
a complete theory of convergence on graphs has not been developed yet, although in applications
convergence seems not to depend on n̂. With n̂ = 2, we have the following result:

Theorem 3.4 (Γ-convergence for the binary balanced TV problem). Assume n̂ = 2, and let
u be a single binary-valued column. Assume furthermore that P (ui) = u2

i (1 − u2
i ). Then the

functionals4

Fε = ||∇u||22 +
1

ε

N∑
i=1

P (ui) +
γ

2m

(
(kTu)2 + (kT (1− u))2

)
(21)

:= uTLu+
1

ε

N∑
i=1

P (ui) +
γ

2m

(
(kTu)2 + (kT (1− u))2

)
,(22)

defined over all of RN , Γ-converge to the functional

|u|TV +
γ

2m

(
(kTu)2 + (kT (1− u))2

)
,

which is understood to take the value +∞ whenever u is not binary. In particular,
• for any sequence εn → 0, and any corresponding sequence uε of minimizers of Fεn , there is

a subsequence that converges to a maximizer of (binary) modularity, and
• any convergent subsequence of the uε converges to a maximizer of (binary) modularity.

The proof is given in the appendices.
Moving forward, we focus on minimizing the relaxed functionals from Theorem 3.4, or more

precisely their multi-class analogue:

(23) tr
(
uTLu

)
+

1

ε

N∑
i=1

P (ui) + ||kTu||22,

where u ∈ RN×n̂, and P is a potential with minima at the standard basis vectors of Rn̂. This should
give a good approximation of the true modularity maximization problem.

While using the Ginzburg-Landau functional does introduce a Laplacian into our formulation,
we stress that this approach is different from spectral heuristics such as spectral clustering—the
preceding result on Γ-convergence shows that the real object we are aiming for is TV. Later on, we
will see that our approach gives very different results from spectral clustering.

4Note that due to the discrete setting, there is no epsilon factor preceding the Laplacian term, see [63].
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4. Numerical Scheme.

4.1. MBO iteration. We minimize the functional from (23) using an adaptation of the graph
MBO scheme. We call our approach Balanced TV. The acronym “MBO” stands for Merriman,
Bence, and Osher [51], who introduced this algorithm in Euclidean space. It has been widely
used as an approach to motion by mean curvature and TV minimization. The connection between
graph-based TV and MBO was first made in [49] and [26]. The theoretical study of the algorithm
on graphs was initiated in [64]. We sketch the logic of MBO here and refer the reader to [51]
for a more complete treatment. The scheme works by approximating the gradient descent flow of
the Ginzburg-Landau functional in the case where ε is very small. Consider the Ginzburg-Landau
gradient descent equation (at fixed n̂)

ut = −Lu− 1

ε
P ′(u)− γ

m
kkTu.

One way to approximate this flow is by operator splitting [30]. Given un one obtains un+ 1
2 as the

solution to

ut = −Lu− γ

m
kkTu(24)

for tn < t < tn + 1
2dt and initial data un. Then one gets un+1 by solving

ut = −1

ε
P ′(u)(25)

for tn + 1
2dt < t < tn + dt and initial data un+ 1

2 . The iteration continues until a fixed point is
reached. Such operator splitting schemes are typically first-order accurate in time. In the case
where ε is very small, the second flow is essentially a thresholding operation, pushing all values of
u into the nearest well, i.e.

un+1
i` =

{
1 ` = argmaxˆ̀u

n+ 1
2

iˆ̀

0 otherwise

This gives the MBO scheme:

Balanced TV MBO scheme

Initialize u randomly.
Set n = 0.
while A stationary point has not been reached do

un+ 1
2 = e−dtMun where M = L+ γ

mkk
T

un+1 = threshold(un+ 1
2 )

n = n+ 1
end while

The most expensive part of this procedure is evaluating the matrix exponential. We accomplish
this efficiently using a pseudospectral scheme, which will be described below.

In the foregoing, we have made the decision to treat the forcing term implicitly, which differs
from several recent studies, such as [37, 6, 49]. This can be done efficiently because the operator
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M is positive semi-definite and can be applied to a vector in linear time, assuming A is sparse.
Implicit treatment has the advantage of avoiding an inner loop, which is time-consuming, has a
timestep-restriction, and adds another user-set parameter, namely the inner loop timestep. For this
reason, the implicit treatment described herein is much easier and faster than the typical nested-loop
approach.

As stated, we assume from here on that A is sparse. The case where A is dense could be
approached using the Nyström method, as in [6]. Beware, however, that one must find a way to
estimate k and 2m efficiently, which is not obvious. An alternative is to sparsify the network in
preprocessing, which is the approach taken in our examples. This is generally cheap compared to
the cost of partitioning the resulting sparse network.

4.2. Treating the matrix exponential. As stated above, the most time-intensive step in
the MBO iteration is the matrix exponential, and this step is repeated many times. Therefore, it
makes sense to use a pseudospectral scheme, as described in, for instance, [6]. This means that we
precompute the eigenvalues and eigenvectors of M , and use them to solve the matrix exponential.
By doing the eigenvalue calculation up front, each iteration is greatly accelerated. Here is how the
scheme looks:

Pseudospectral Balanced TV MBO scheme

Initialize u randomly.
Calculate the eigenvalues of M , and form the diagonal matrix D with its diagonals being
the eigenvalues.
Also calculate the eigenvectors and form the matrix V whose columns are the eigenvectors.
while a stationary point has not been reached do

an = V Tun.
an+1 = e−dtDan

un+ 1
2 = V an+1

un+1 = threshold(un+ 1
2 ).

end while

In practice, it may not be possible to calculate the full spectrum of M , if M is large. In this
case, we calculate the Neig smallest eigenvalues and eigenvectors of M . Then instead of changing
coordinates using a full matrix, use the N ×Neig matrix V exactly the same way as before. This
is equivalent to projecting onto a subspace generated by these eigenvectors, and it makes the
algorithms very efficient.

To understand the effect of computing only a few eigenvectors, recall that M is positive semidef-
inite. Therefore, it has an orthonormal basis of eigenvectors, and the evolution we are solving,
namely ut = −Mu, can be diagonalized as at = −Da where a = V Tu, and V is the full matrix of
eigenvalues, and D is a non-negative, diagonal matrix. Therefore, the evolution occurs in distinct
“modes”, with rates of decay controlled by the eigenvalues of M . The modes corresponding to
small eigenvalues persist longer than those corresponding to large eigenvalues (which experience
stiff exponential decay), so that it is not a bad approximation to simply project these components
away when it is numerically necessary. Thus, in practice, we collect the smallest eigenvectors of M
and the corresponding eigenvectors, neglecting the others.

We use Anderson’s iterative Rayleigh-Chebyshev code [3]—which the author kindly provided
to us—to get the eigenvalues and eigenvectors. We generally set Neig = 5 n̂.
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4.3. Determining the number of communities. The preceding algorithm assumes a fixed
n̂. In practice, we found three methods of determining the value of n̂:

1. Use domain knowledge—for instance, in two moons, it is known that there are two com-
munities,

2. Try several values of n̂ and take whichever one produces the best modularity—this works
best in cases where there are few communities, as in MNIST. Note that the most time
consuming part of the MBO scheme, namely computation of eigenvectors need only be
done once, so that several different values of n̂ can be tried without incurring much extra
cost.

3. Recursively partition the network—this works when many communities are present, as in
the LFR networks. The partition is only made at each step if it increases modularity.
This approach worked well in our examples, although in the case of LFR, where O(N)
communities are present, a lot of recursion is needed. This is compensated for by the fact
that the subgraphs grow smaller and smaller near the end.

4.4. Scaling. We expect the scaling of our approach to be roughly linear, as suggested by the
following informal argument. The main components of the algorithm are

1. finding eigenvalues and eigenvectors (probably O(N logq N) for some q),5

2. changing coordinates using only the leading eigenvectors (O(N) per iteration, with empir-
ically O(1) iterations needed to converge),

3. evaluating the exponential of a vector componentwise (also O(N) per iteration), and
4. thresholding (O(N) per iteration).

The preceding estimates all apply in the case where no recursion is needed, i.e. the number of
communities is known in advance. If the recursion is done by partitioning the graph into n̂ pieces
at each level, then the cost is heuristically on the order of

Õ(N) + n̂ Õ

(
N

n̂

)
+ n̂2 Õ

(
N

n̂2

)
+ · · ·+O(N)O(1) = Õ(N)

where Õ means that logarithmic terms are neglected, and each term in the sum is the product
of the number of partitioning problems to be solved with the size of the partitioning problems.
This scalability is roughly borne out in our example data sets, although we warn that there are
additional complications, based on the varying number of communities to be produced, differences
in the efficiency of parallelization at different scales, and possibly other factors.

4.5. On the choice of timestep. Our approach requires the selection of parameters γ, dt,
Neig, n̂, and various other parameters and methods. In order to simplify the exploration of this
parameter space in practical applications, it is useful to have some theory about the choice of these
parameters. Here, we describe how to set dt in the MBO scheme. This is especially useful in
the recursive implementation, as the appropriate timestep empirically decreases as the graph gets
smaller, and it would be laborious for a human to check at each recursion step.

Our derivations are inspired by those in [64], and proofs are deferred to an appendix. First, we
consider a lower bound on the timestep:

Proposition 4.1 (Lower bounds on the timestep). Let u0 ∈ Π(G, n̂). If u satisfies ut = −Mu
with initial data u0, then we have the following bounds:

5There is no rigorous result for the Rayleigh-Chebyshev procedure, but numerical evidence suggests strongly
better than quadratic convergence, and O(N logq N) is the convergence speed for some similar algorithms.
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1.

||u(τ)− u0||∞ ≤ e2(γ+1)kmaxτ .

2. In the case where n̂ = 2, this bound implies that if the MBO timestep τ satisfies

τ <
log 2

2(γ + 1)kmax
≈ 0.15

(γ + 1)kmax
,

then the MBO iteration is stationary.
3. If ρ is the spectral radius of M , we also have

||u(τ)− u0||∞ ≤
√

n̂||u0||2 (eτρ − 1) .

4. If n̂ = 2, the MBO iteration is guaranteed to be stationary whenever

τ < ρ−1 log
(

1 +N−
1
2

)
.

Although we had to restrict to n̂ = 2 in the above, we used the timestep restriction regardless of
n̂—indeed the authors expect that n̂ = 2 is the worst case, although we are unable to prove it at
present.

The upper bound on the timestep is more delicate. Normally, the upper bound would be
determined by convergence theory, using error bounds and stability estimates, the theory of which
is incomplete in the graph setting at present. Instead, we use the following heuristic to motivate our
bounds: In most cases, M is strictly positive definite, so the evolution ut = −Mu forces u to decay
toward 0. The idea behind MBO is that the diffusion effects give information about curvature on
short time scales, and the long time scales give information about more global quantities, which is
useless in that context. Therefore, in the graph context, it makes sense to try to understand the
time scale that is “long” and set the timestep to be shorter than that. Using the approach to 0 as
a convenient notion of long-time behavior, we obtain the following useful bounds:

Proposition 4.2 (Decay estimates for M). Let ut = −Mu with initial data u0 ∈ Π(G, n̂).
Then the following bounds hold:

1. Assume λ1 is the smallest eigenvalue of M . Then

||u||2 ≤ e−τλ1 ||u0||2.

2. Let M be nonsingular. Then for any ε > 0, we have ||u(τ)||∞ < ε if

τ > λ−1
1 log

(
||u0||2
ε

)
.

In practice, setting the timestep as the geometric mean between this upper bound and the lower
bound from Proposition 4.1 has produced good results without resorting to hand-tuning of param-
eters.6

6We also found empirically that a simple time stepping procedure improved results sometimes: Let the algorithm
run to convergence, then continue with a smaller timestep until convergence occurs again.
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5. Results. Table 1 summarizes the results of our Balanced TV algorithm on various test
datasets. We compared our results to the Modularity MBO algorithm from [37]. We chose conser-
vative timesteps for Modularity MBO, which slowed it down, but this was necessary to get it to
work on all of the test datasets. With careful tuning of all the parameters, Modularity MBO can be
made more competitive. We also compared to the GenLouvain code from [39], which implements
the well-known Louvain method. Note that the timing comparison with GenLouvain is not very
important, since there exist much faster Louvain codes, e.g. igraph’s C library routines [17]. All
three codes tested here are written in MATLAB, with C or C++ calls for the most costly parts,
such as eigenvector computation. All three codes are in principle dependent on random number
generation, so our numerical tests had to be repeated several times to understand the variance. In
all cases, we report the best outcomes for modularity and metadata matching and the medians for
the timings.

5.1. Summary of Results. We found that Balanced TV gave the highest-modularity par-
tition on 4 of the 6 types of data. The modularity of these partitions was also better than the
metadata (“ground truth”) partition in 2 of the 3 experiments where metadata was available,
which means that the limiting factor in these cases is not the Balanced TV algorithm, but rather
the small amount of noise that enters the problem when reducing to the graph structure and re-
stricting to the modularity optimization framework, which considers only graph cuts and cluster
volumes. We emphasize that for this reason, one must be very careful not to interpret the metadata
matching as a measure of each algorithm’s success, but rather as a measure of the overall success of
the entire process, including graph construction, the modularity optimization framework, and the
optimization scheme used on that problem. The modularity value obtained is the way to measure
the success of the different optimization algorithms.

In terms of timing, we find that Balanced TV is best by far, probably due to a combination of
the simplified energy landscape, smarter timestep selection, elimination of the inner loop, and lack
of explicitly-treated forcing terms. For the imaging problems, Figures 1 and 2 show that Balanced
TV gives results at least as good as other approaches, such as NLTV [74] and spectral clustering [67],
and our results are in some respects clearly superior, especially on the plume data.

5.2. Analysis of each experiment. We now describe each test we performed and interpret
the results.

Two Moons Two moons consists of 2,000 points, embedded in 100-dimensional space, with
variance 0.02, with 98 noisy dimensions. We used a 13-nearest neighbors graph with the edge
weights given by a Gaussian law, with locally-determined decay parameters [72]. The number of
classes was assumed known. These results demonstrate that both noisy dimensions and nonconvex
geometry can be handled. Thirty-five tests were performed for each algorithm.

MNIST MNIST consists of 70,000 28x28-pixel images, each of which contains a single hand-
written digit [46]. The task is to identify the digit in each image. The graph was constructed
by projecting onto 50 principle components for each image and then using a 10-nearest neighbors
graph with self-tuning Gaussian decay [72]. The number of classes was assumed known. As in [37],
11 classes were used, as there are two different ways to write the digit 1. This is the only dataset
in which we tuned the timestep parameters by hand, although it only improved the results a small
amount, except for the speed of modularity MBO, which was improved by an order of magnitude.
100 tests were performed, except for GenLouvain, which was too slow and could only be tested 24
times. We found this problem particularly difficult, apparently due to the noisy way in which the
graph was constructed. For instance, about 25% of the partitions we found had better modularity
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Moons MNIST Urban LFR50k Plume7 Plume40

Nodes 2,000 70,000 94,249 50,000 286,720 1.6 ∗ 106

Edges 1.8 ∗ 104 4.7 ∗ 105 6.8 ∗ 105 7.9 ∗ 105 5.3 ∗ 106 2.9 ∗ 107

Communities 2 10 5 2,000 5 5

Modularity

Balanced TV 0.887 .932 .944 .700 .861 .825
Mod. MBO 0.887 .932 .938 .702 .864 .814
GenLouvain 0.887 .930 .926 .738 .882 *****
Ground Truth 0.873 .921 —– .736 —– —–

Classification
Balanced TV 98.6 97.3 —– 97.4 —– —–
Mod. MBO 98.0 96.8 —– 98.3 —– —–
GenLouvain 98.8 97.5 —– 96.9 —– —–

Iter. Time
(sec.)

Balanced TV 0.05 6 3 57 13 71
Mod. MBO 0.35 18 23 132 96 518
GenLouvain 0.78 4,860 5,112 112 106,417 *****

Eig. Time
(sec.)

Balanced TV 2.0 48 32 —– 305 56 min
Mod. MBO 2.8 52 35 —– 303 77 min

Data Corr. 0.87 0.94 —– 0.98 —– —–

Table 1
Numerical results for algorithms on several data sets. Overall, Balanced TV performed similarly to the other

methods but was much faster. Note that the algorithms achieve better modularity than the “ground truth” partition.
This indicates that there is a small amount of noise in the way the graph was generated, which makes an exact
recovery of the ground truth impossible using modularity alone. The amount of information lost, however, appears
to be slight. Timing for the algorithm is split into the eigenvector computation and the main iteration. This is
because the eigenvector computation need be done only once per graph, and then the main iteration can be used to
quickly sample different high-modularity partitions. The data correlation is simply the correlation between modularity
value and classification rate in the partitions recovered. This correlation is high enough to show that modularity is a
reasonable model for the ground truth, but low enough to explain the existence of many partitions with slightly better
modularity than the ground truth partition. Stars denote tests which were not performed due to excessive expected
length, and dashes denote measurements that do not make sense for the given dataset, either because nodes did not
come pre-labelled or recursive partitioning was used.

than the ground truth partition, but partitions with a classification accuracy greater than 95%
were found only about 4% of the time. This shows how the graph combined with the modularity
model did not encode the ground truth perfectly. On the other hand, almost all partitions with
modularity better than the ground truth partition also matched the ground truth partition at least
90%, so the issues with the model only seem relevant if very high accuracy is needed.

LFR 50k This is an artificial social network consisting of a ring of 50 1,000-node LFR networks
connected together with a small number of random connections [45, 37]. There are about 2,000
communities in these networks. We used the following parameters: average degree of 20, maximum
degree of 50, degree distribution exponent of 2, community size distribution exponent of 1, effective
mixing parameter of 0.2, maximum community size of 50, minimum community size of 10. Fifteen
tests were performed for each method, each on a different random network. We used recursive
partitioning to determine the number of communities.

This is the only example in which it is clear that Balanced TV does not get near enough to the
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global minimizer, and the reason is not totally clear. We do note, however, that when the same tests
are performed on a single 1,000-node LFR network, Balanced TV attains better than 99 percent
accuracy, even with much higher effective mixing parameter, which suggests that some aspect of
the ring structure or greater scale in the LFR50 test makes it more difficult. Another interesting
fact is that while Balanced TV and Modularity MBO obtain essentially equal modularity scores,
their classification rate is not the same, showing that there can exist problem-specific biases in the
minimizers likely to be found by different solvers. These biases are essentially accidents, since both
solvers are designed to look for local minima of the modularity functional.

Urban Image The urban hyperspectral image is a 307×307 image of an urban setting, where
each pixel encodes the intensity of light at 129 different wavelengths. The classification problem
in this setting is to identify the pixels that contain similar materials, such as dirt, road, grass, etc.
In past works, authors have tried to identify a small number of classes in this image, see e.g. [74],
and we follow that precedent in our own presentation, noting that the image can also be naturally
split into many more classes, as there are many materials present in the picture. In fact, this makes
the segmentation task very difficult, as large clusters in the graph are really an agglomeration of
smaller clusters corresponding to each substance.

The graph representation was computed using “nonlocal means” [9]. This means that for each
pixel p, a vector vp was constructed by concatenating the data in a 3×3 window centered at p. One
then uses the weighted cosine distance on these 3× 3× 162 = 1, 458 component vectors, where the
components from the center of the window are given the most weight. For each pixel, we obtained
the 10 nearest neighbors in this distance using a k-d tree and the VLFeat software package [65].

We assumed either 5 or 6 communities were present for our tests. We performed 200 tests
with the MBO-based methods, giving a large variety of segmentations. Almost all of these were
reasonable but corresponded to different interpretations of the scene. As an example of the different
interpretations of the scene, observe that in Figure 1, some of the images consider all houses to
be of the same class, but others distinguish the brown and white roofs, which seem to be made of
different materials. The diversity of outcomes suggests that the results of several segmentations may
be combined for more robust insights, but we do not pursue this further in this work. The images
selected for inclusion in Figure 1 are those that are most similar to the existing literature. We also
performed 10 tests with GenLouvain, of which 9 gave identical outcomes. Finally, we compared
with a recent NLTV-based algorithm [74], which is specifically designed for hyperspectral imaging
applications.

Overall, we found that Balanced TV was very competitive, with some clear advantages. We
cannot remark on every difference between the images in Figure 1 here, but we can point out some
of the more striking ones. Comparing with Modularity MBO and NLTV, Balanced TV does a
much better job of placing all of the grass into a single class. Comparing with GenLouvain, we see
that Balanced TV correctly resolved the difference between pavement and dirt, which is not well-
represented in the GenLouvain segmentation. Indeed, looking at the roads in the upper right, we
see that Balanced TV gives the sharpest resolution of the roads and the surrounding dirt sections.
On the other hand, Balanced TV does have a little trouble compared to GenLouvain when resolving
the buildings just below the large road in the upper left corner of the picture, although this is partly
due to the fact that the roofs there are clearly made of different materials from most of the houses
further down in the image, and NLTV has a similar problem.
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RGB image Balanced TV

Modularity MBO GenLouvain segmentation

NLTV segmentation [74]

Figure 1. The urban dataset segmented using different methods. Balanced TV does well when separating dirt
from roads, resolving the roads in the upper right corner, and placing all of the grass into a single class. It has some
difficulty with the buildings in the upper left corner, just below the main road, which are a different material from
the other buildings. See the main text for more detailed analysis.
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Plume Hyperspectral Video The gas plume hyperspectral video records a gas plume being
released at the Dugway Proving Ground [27, 47, 50].7 The graph was constructed by the same
procedure as the urban dataset, simply concatenating each frame side-by-side into one large image
and using nonlocal means to form the graph. Each frame has 320 × 128 pixels with data from
129 wavelengths. Two versions of this dataset were used, one with 7 frames, and another with 40
frames. We have included the segmentation of one frame in Figure 2, together with segmentations
produced by competing algorithms. Thirty tests were performed for the 7-frame video, once again
generating a variety of interpretations of the scene, most of which were reasonable. We show the
results most similar to existing approaches in Figure 2.

Balanced TV Spectral Clustering

NLTV [74] GenLouvain

Figure 2. Segmentations of the plume hyperspectral video using different methods. Observe that Balanced TV
is the only method that gets the whole plume into a single class without any erroneous additions.

It seems that Balanced TV gives the best results, since it is the only approach to keep the
plume in a single group, while also capturing the details on the edges well. It also has no artificial
divisions in the sky, as the other methods do. All of the methods separate the ground into multiple
classes, although NLTV nearly avoids this issue (at the expense of making the plume less clear). In
general, if the application is to identify the plume, Balanced TV should be preferred.

6. Conclusion. We have shown that modularity optimization can be framed as a balanced
TV problem that is convex except for a discrete constraint. This formulation yields an energy
landscape is easier to understand by using terms with a ready intuitive meaning and by putting all
of the nonconvexity into a simple discrete constraint. We have given a rigorous nonconvexity result
and shown how to use the Ginzburg-Landau functional to approximate modularity optimization
by more convex problems. We have also proposed an improved modularity optimization scheme,
Balanced TV, which works very well even on large graphs and which requires much less hand-tuning.
Numerical tests show that our method is competitive in terms of accuracy, while being faster than
the other methods tested.

7In [50], and semi-supervised MBO-type approach was used. The balance terms in modularity provide a way to
avoid trivial minimizers without supervision.
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A. Gamma convergence. The following are some basic facts about Gamma-convergence to
aid in understanding the results of this paper. See [63] for more details.

Definition A.1. Let X be a topological space, and Fn a sequence of real-valued functionals of
X. Then the sequence is said to Γ-converge to a functional F on X if the following two conditions
hold:

1. For convergent sequence xn → x, we have lim infn→∞ Fn(xn) ≤ F(x).
2. For every x, there exists a convergent sequence xn → x such that lim supn→∞ Fn(xn) ≥
F (x).

For our purposes, Γ-convergence is primarily a tool for ensuring that the minimizers of Fn approach
the minimizers of F , as guaranteed by the following:

Theorem A.2. Let Fn Γ-converge to F , and let xn be a minimizer of Fn. Then every cluster
point of the xn is a minimizer of F . If G is continuous, then Fn + G Γ-converges to F + G.

We end with the proof of 3.4.

Proof. From [63], we know that the graph Ginzburg-Landau functional Γ-converges to the graph
TV functional, and since the added term (kTu)2 + (kT (1 − u))2 is continuous, the Γ-convergence
is retained when this term is added to both the graph TV and graph Ginzburg-Landau function-
als. The subsequence condition then arises as a standard result in Γ-convergence theory and the
compactness of bounded domains in RN .

B. Deferred proofs. In this section, we prove in detail the bounds presented earlier regarding
the timestep selection in the MBO scheme.

Proof of Proposition 4.1. We first get pointwise estimates on u− u0:

||u− u0||∞ ≤ ||e−τM − I||∞||u0||∞ = ||e−τM − I||∞ ≤
∞∑
k=1

1

k!
τk||M ||k∞ = eτ ||M ||∞ − 1(26)

We estimate ||M ||∞ as follows:

||M ||∞ = max
i

∑
j

|Lij +
γ

m
kikj | = max

i

∑
j

|kiδij − wij +
γ

m
kikj |

≤ max
i
ki + ki +

γ

m
ki2m = 2(1 + γ)kmax

These computations do not depend on n̂, but in order to get a timestep, we assume that n̂ = 2.
In this case, let u1 and u2 be the columns of u. We have u1

t = −Mu1 and u2
t = −Mu2. Subtracting

these, and letting v = u1−u2 yields vt = −Mv. Allowing v to evolve until the time of thresholding,
we see that node i will switch classes if and only if v(i) has changed sign, that is if |v − v0|i > 1.
The quantity in (26) is less than 1 exactly when τ < log 2

2(γ+1)kmax
≈ 0.15

(γ+1)kmax
. This is exactly the

bound we sought.
Next, we work on the L2 bound

||u− u0||∞ ≤
√

n̂||u− u0||2 ≤
√

n̂||e−τM − I||2||u0||2 ≤
√

n̂||u0||2
∞∑
k=1

1

k!
τk||M ||k2(27)

=
√

n̂||u0||2
(
eτ ||M ||2 − 1

)
=
√

n̂||u0||2 (eτρ − 1)(28)
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As before, when we let n̂ = 2, one can subtract the columns to get v, so that no node will switch

communities as long as ||v − v0||∞ < 1, which is guaranteed if τ < ρ−1 log
(

1 +N−
1
2

)
.

Proof of Proposition 4.2. To get the bound, we let Λ be a diagonal matrix with the eigenvalues
of M on the diagonal. Since M is positive semidefinite, we can write M = QΛQT for some
orthogonal matrix Q. Then we have

||u(τ)||2 = ||e−τMu0||2 ≤ ||e−τM ||2||u0||2 = ||e−τΛ||2||u0||2 = e−τλ1 ||u0||2

Setting the latter quantity less than ε and then solving for τ yields the required bound.
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