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Abstract The nonlinear form of the Muskingum model has been widely applied to
river flood routing. There are four variants of the nonlinear Muskingum model based
on alternative formulations of the nonlinear storage equation. This paper proposes a
new Muskingum model with an improved, seven-parameter, nonlinear storage equation.
The proposed model provides more degrees of freedom in fitting observed hydraulic
data than other nonlinear Muskingum models. The proper estimation of the proposed
Muskingum nonlinear model’s parameters is essential to achieve accurate flood-routing
predictions. This paper introduces a hybrid method for the estimation of Muskingum
parameters. The parameter-estimation method combines the shuffled frog leaping algo-
rithm (SFLA) and the Nelder-Mead simplex (NMS). The proposed Muskingum model
and parameter estimation method were applied to the routing of several hydrographs.
Our results indicate improved performance of the methodology described in this work
when compared with those of other Muskingum models.
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Abbreviations
AD Absolute deviation between observed and computed outflows
BFGS Broyden-Fletcher-Goldfarb-Shannon
DE Differential evolution
DPO Deviations of peak of routed and Observed outflows
GA Genetic algorithm
GRG Generalized reduced gradient
HS Harmony search
LM Lagrange multiplier
MAR MARquardt
NL1 Non-linear 1
NL2 Non-linear 2
NL3 Non-linear 3
NL4 Non-linear 4
NL5 Non-linear 5
N-LSM Nonlinear least-squares method
NMS Nelder-Mead simplex
PS Pattern search
ICSA Immune clonal selection algorithm
PSO Particle swarm optimization
PSF-HS Parameter setting free harmony search
SA Simulated annealing
SFLA Shuffled frog leaping algorithm
S-LSM Segmented least-squares method
SS Standard Search
SAD Sum of the absolute deviations between observed and computed outflows
SSQ Sum of squared deviations between observed and computed outflows
SQ Squared deviation between observed and computed outflow

1 Introduction

Many techniques of operations research have been developed and applied in various
fields of water resources systems. The applications encompass diverse fields of
inquiry, such as linear estimation (Loáiciga and Church 1990), reservoir operation
(Afshar et al. 2011; Bozorg Haddad et al. 2008a, b, 2009, 2011a; Fallah-Mehdipour
et al. 2011a), cropping patterns (Moradi-Jalal et al. 2007; Fallah-Mehdipour et al.
2012), pumping scheduling (Bozorg Haddad and Mariño 2007; Bozorg Haddad et al.
2011b; Rasoulzadeh-Gharibdousti et al. 2011), water distribution networks (Bozorg
Haddad et al. 2008c; Soltanjalili et al. 2010; Fallah-Mehdipour et al. 2011b;
Seifollahi-Aghmiuni et al. 2011; Ghajarnia et al. 2011; Sabbaghpour et al. 2012),
water quality problems (Cozzolino et al. 2005a, b, 2006, 2011), urban and rural
drainage networks (Cimorelli et al. 2013a, 2014a; Palumbo et al. 2014; Cozzolino
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et al. 2015), operation of aquifer systems (Bozorg Haddad and Mariño 2011), and site
selection of infrastructures (Karimi-Hosseini et al. 2011). Several of these works dealt
with the development flood routing methods.

Floods are one of the costliest natural phenomena (Garcia and Loáiciga 2013).
The prevention of flood damages includes the accurate prediction of hydrograph
propagation along river reaches. This is, in fact, the domain of flood routing
(Tewolde and Smithers 2006). There are hydraulic and hydrologic approaches for
flood routing through river channels (Chow et al. 1988). The hydraulic approach is
based on the numerical solution of either the convective-diffusion equations or the
one-dimensional Saint-Venant equations of gradually varied unsteady flow in open
channels (Cunge et al. 1980). This approach performs well typically but it is data-
intensive and computationally burdensome (Samani and Shamsipour 2004).
Sometimes, in order to carry out faster computations, simplified hydraulic ap-
proaches are used, such as the Parabolic Model, linearized (Cimorelli et al. 2013b,
2014b, 2015) or not (Ponce 1990; Santillana and Dawson 2010) and Kinematic
Model, in turn linearized or not (Singh 1996).

The hydrologic approach is based on the conservation of mass principle and uses a
conceptual relation between storage and discharge in place of the dynamic flow equation
(Chow et al. 1988). The Muskingum model is a hydrologic flood routing approach introduced
by McCarthy (1938) while conducting flood control studies in the Muskingum river in the
United States.

The standard procedure for applying the Muskingum method involves two steps (Das
2004): (1) calibration and (2) prediction. The calibration step determines the parameters of the
Muskingum model by using historical inflow-outflow hydrograph data of the investigated
river reach. The prediction step solves for the outflow hydrograph given an inflow hydrograph
using Muskingum routing equations.

A routing scheme for the Muskingum model is proposed for situations where the
storage and weighted flow relationship is nonlinear. In previous research, four nonlinear
versions of the Muskingum model have been reported (Chow 1959; Gavilan and Houck
1985; Gill 1978; Easa 2013). In the first (NL1 model) and second (NL2 model) version
of the nonlinear Muskingum model, the exponent parameters are associated with the
inflow and outflow variables of the storage equation. The third (NL3 model) version of
the nonlinear Muskingum model associates its exponent parameter with the weighted
flow of the storage equation. The fourth (NL4 model) version of the nonlinear
Muskingum model combines the storage equations of the NL1 and NL3 model.

Easa (2013) pointed out that the aim of modifying the structure of a flood routing model is
to produce more degrees of freedom in model calibration. He also stated that the NL4 model
has more degrees of freedom than other nonlinear Muskingum models and, hence, would
generally yield a closer fit to the observed outflow data.

In practical applications the calibration step is of utmost importance for applying nonlinear
Muskingum models (Chow et al. 1988). Several researchers have applied various methods to
estimate the parameters of nonlinear Muskingum models.

The available methods for parameter estimation of nonlinear Muskingum models
can be classified in three groups (Barati 2011a). The first group consists of mathe-
matical techniques, such as segmented least-squares method (S-LSM), nonlinear least-
squares method (N-LSM), the Broyden-Fletcher-Goldfarb-Shannon (BFGS) technique,
the Lagrange multiplier (LM) method, the Nelder-Mead simplex (NMS) method, and
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the generalized reduced gradient (GRG) method. These techniques rely on local search
algorithms, which may converge in a few iterations but lack global optimality, in
general. In addition, they achieve global optimal solutions contingent on the specifi-
cation of suitable initial parameter estimates, a nontrivial task (Geem 2011). The
second group of nonlinear Muskingum parameter estimation methods comprises
phenomenon-mimicking algorithms, such as the pattern search (PS), genetic algorithm
(GA), harmony search (HS), particle swarm optimization (PSO), immune Clonal
selection algorithm (ICSA), differential evolution (DE), parameter setting free harmo-
ny search (PSF-HS) algorithm, simulated annealing (SA) algorithm, and shuffled frog
leaping algorithm (SFLA). These algorithms search randomly for the near-global
optimal solution. However, they are poor in terms of convergence performance. The
third group of parameter estimation methods consist of the hybrid methodology that
combines phenomenon-mimicking algorithms and mathematical techniques, such as
the hybridizing GA and NMS (GA-NMS), the hybridizing HS and BFGS (HS-BFGS),
and the hybridizing GA and GRG (GA-GRG). These algorithmic procedures offer the
advantages of both optimization methods (phenomenon-mimicking algorithms and
mathematical techniques) while offsetting their disadvantages.

Table 1 show details (solution methods, model type, number of parameters, and
reference) of research works carried out over recent decades on the estimation of
parameters of various nonlinear Muskingum models. This table indicates that previous
research work has focused mostly on estimating the parameters of the NL3 model using
different methods. The methods used for estimating the parameters of the NL3
Muskingum model include the S-LSM (Gill 1978), the hybrid Hooke-Jeeves pattern
search and the Davidson-Fletcher-Powell (HJ + DFP) algorithm (Tung 1985), the N-
LSQ (Yoon and Padm Anabhan 1993), the GA (Mohan 1997), the HS (Kim et al.
2001), the LM method (Das 2004), the BFGS technique (Geem 2006), the PSO (Chu
and Chang 2009), the ICSA (Luo and Xie 2010), the PSF-HS algorithm (Geem 2011),
the DE algorithm (Xu et al. 2012), the GA-NMS (Barati 2011a), the NMS method
(Barati 2011b), the SFLA and SA (Orouji et al. 2013), the hybrid HS-BFGS (Karahan
et al. 2013), the hybridizing NMS and Big Bang–Big Crunch (BBBC) (NMS-BBBC)
(Karahan 2013), and the GRG (Barati 2013a; and Hamedi et al. 2014). A few studies
have applied various methods to estimate the parameters of the NL1, NL2, and NL4
models, and some of those studies have compared the performances of the latter models
with that of the NL3 model (Table 1).

Several researches have focused recently on altering the structure of the storage
equation of the nonlinear Muskingum model with the aim of introducing greater
flexibility in fitting observed hydrograph data. This paper introduces a seven-
parameter nonlinearMuskingum model that modifies the structure of the storage
equationof the NL4 model. This model exhibits more degrees of freedom in model
calibration than the standard NL4 model. In addition, this study proposes a novel
hybrid method that combines parameter-estimation algorithms, namely, the SFLA
(Orouji et al. 2013) and NMS (Barati 2011b), to calibrate the seven parameters of
the proposed Muskingum model. Sections 2 and 3 present the formulation details of the
nonlinear Muskingum models and the proposed nonlinear Muskingum model, respec-
tively. Section 4 details the method to estimate the model’s parameters. Section 5
presents applications and results of the proposed model using three case studies
involving single-peak, non-smooth hydrographs, and multi-peak hydrographs.
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2 Formulation of the Nonlinear Muskingum Model

The Muskingum model is based on the continuity equation for a river reach, which is given by:

dS

dt
≈
ΔS

Δt
¼ I−O ð1Þ

where I = inflow; O = outflow; S = channel storage volume; t = time. The Muskingum model
provides a second equation relating S, I, O, and the model parameters. In the original (linear)
Muskingum model, the following storage equation was used:

S ¼ K XI þ 1−Xð ÞO½ � ð2Þ
where K = storage constant, is greater than 0; and X = dimensionless weighting factor that
represents the inflow-outflow relative effects on the storage. X ranges between 0.0 and 0.5 for
reservoir storage, and 0 and 0.3 for stream channels (Mohan 1997; Geem 2006).

It is common to observe a nonlinear storage-discharge relationship in natural stream
that induces significant error in flood routing by the linear Muskingum model (Gill
1978; Tung 1985).n Four forms of the nonlinear Muskingum models have been
suggested in previous research for taking into account the nonlinearity between
storage and discharge (Chow 1959; Gavilan and Houck 1985; Gill 1978; Easa
2013). The NL1 model was introduced by Chow (1959). The latter author proposed

Table 1 Non-linear Muskingum models reported in previous studies

Author and year of publication Model type Number of parameters Solution method

Gill (1978) NL3 3 S-LSM

Gavilan and Houck (1985) NL1 and NL2 3 and 4 SS

Tung (1985) NL3 3 PS

Yoon and Padm Anabhan (1993) NL1 and NL3 3 and 3 N-LSM

Papamichail and Georgiou (1994) NL2, NL1, and NL3 3, 4, and 3 MAR

Mohan (1997) NL1 andNL3 3 and 3 GA

Kim et al. (2001) NL3 3 HS

Das (2004) NL1 and NL3 3 and 3 LM

Geem (2006) NL3 3 BFGS

Chu and Chang (2009) NL3 3 PSO

Luo and Xie (2010) NL3 3 ICSA

Barati (2011a) NL3 3 GA-NMS

Barati (2011b) NL3 3 NMS

Geem (2011) NL3 3 PSF-HS

Xu et al. (2012) NL3 3 DE

Orouji et al. (2013) NL3 3 SA and SFLA

Karahan et al. (2013) NL3 3 HS-BFGS

Barati (2013a) NL1, NL2, and NL3 3, 4, and 3 GRG

Karahan (2013) NL3 3 NMS-BBBC

Easa (2013) NL4 4 GA-GRG
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the following formulas for inflow (I) and outflow (O) in a river reach, and for the
water storages at the upstream (Sin) and downstream (Sout) sections of the reach:

I ¼ ayn ð3Þ

O ¼ ayn ð4Þ
Sin ¼ bym ð5Þ

Sout ¼ bym ð6Þ
where y = flow depth; a and n = coefficients that express the discharge-depth characteristics of
the upstream and downstream end sections of a river reach; b and m = coefficients that express
the mean storage-depth characteristics of the reach; and Sin and Sout = the storages at the
upstream and downstream end sections, respectively. Eliminating y from Eqs. (3) and (5), and
Eqs. (4) and (6), Sin and Sout are expressed as follows:

Sin ¼ b
I

a

� �m=n

ð7Þ

Sout ¼ b
O

a

� �m=n

ð8Þ

Chow (1959) proposed the following equation for the storage in a channel (S) at any given
time:

S ¼ XSin þ 1−Xð ÞSout ð9Þ
Substituting Sin and Sout from Eqs. (7) and (8) into Eq. (9) and simplifying, yields the

storage equation of the NL1 model:

S ¼ K X Iα þ 1−Xð ÞOα½ � NL1ð Þ ð10Þ
where α ¼ m

n ; and K ¼ b
aα . Chow (1959) showed that α is larger than 0.6 in natural channels.

The NL2 model was introduced by Gavilan and Houck (1985). This is a generalization of
the NL1 model, given that α2≠α1:

S ¼ K X Iα1 þ 1−Xð ÞOα2½ � NL2ð Þ ð11Þ
The NL3 model was introduced by Gill (1978), who added an exponent parameter β to the

Muskingum Eq. (2):

S ¼ K XI þ 1−Xð Þ O½ �β NL3 ð12Þ
The NL4 model was presented by Easa (2013). He combined the NL1 and NL3 models to

produce the NL4 version:

S ¼ XSin þ 1−Xð ÞSout½ �β ¼ K X Iα þ 1−Xð ÞOα½ �β ð13Þ

3424 O.B. Haddad et al.



where K ¼ b
aα

� �β
. The NL4 model has more degrees of freedom (i.e., parameters) than the

other nonlinear Muskingummodels. Hence, it would generally yield a better fit to the observed
outflow data. Easa (2013) showed that the NL4 model produced better performance with lower
value of the sum of squared deviations (SSQ) and the sum of the absolute deviations (SAD)
between observed and computed outflows than the other nonlinear Muskingum models.
Notice that the NL1, NL2, and NL3 models [Eqs. (9)–(11)] are obtained from the NL4 model
[Eq. (12)] by setting β =1, β =1 and α1=α2, or α=1, respectively.

3 The Proposed Nonlinear Muskingum Model

Section characteristics in natural channels (rivers) are related to the ‘formative discharge’ and
the sediment transport capacity (Wolman and Miller 1960; Andrews 1980; Pianese 1992;
Leopold 1994). Since the formative discharge and sediment transport capacity vary along the
natural channels, the upstream and downstream sections of the reach are not necessarily equal
in natural channels. In this work the difference in morphological changes between the
upstream and downstream sections of a river reach are captured by varying the a and n
coefficients in the following manner:

Sin ¼ b
I

a1

� �m=n1 ð14Þ

Sout ¼ b
O

a2

� �m=n2 ð15Þ

where a1 and n1=express the discharge-depth characteristics of the upstream section; and a2 and
n2=express the discharge-depth characteristics of the downstream section. Substituting Sin and Sout
from Eqs. (13) and (14) into the equation S=[XSin+(1−X)Sout]β, and simplifying the resulting
expression, produces the nonlinearMuskingummodel (referred to as the NL5model in this work):

S ¼ K X C1I
α1ð Þ þ 1−Xð Þ C2O

α2ð Þ½ �β NL5ð Þ ð16Þ
where

K ¼ bβ ð17Þ

α1 ¼ m

n1
ð18Þ

α2 ¼ m

n2
; ð19Þ

C1 ¼ 1

a1

� �α1
� �β

ð20Þ
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and

C2 ¼ 1

a2

� �α2
� �β

ð21Þ

where α1, α2, β, C1, and C2 are greater than 0. Model NL4 [Eq. (12)] is obtained from model
NL5 by setting C1=C2=1 and α1=α2=α. The proposed NL5 model [Eq. (15)] has seven
parameters (K, X, α1, α2, β, C1, and C2), and it is, in this sense, more complex than the other
known nonlinear Muskingum models. The flood-routing problem is formulated as a mathe-
matical optimization model that minimizes the sum of the squared deviations between
observed and estimated outflows.

4 Estimating the Parameters of the Proposed NL5 Model

A simulation–optimization procedure is used to estimate the parameters of the pro-
posed NL5 model. Sections 4.1 and 4.2 presents the simulation and optimization
procedures, respectively.

4.1 Simulation Procedure of the Proposed NL5 Model

This paper employs Tung’s (1985) flood-routing method, also employed by Geem (2006), to
simulate flood routing with the NL5 model. The observed inflow, calculated outflow, and
calculated storage at i-th time interval are Ii, Ôi, and Si, respectively, where i=0, 1, 2, …, N
denotes the simulation time intervals. The steps of the proposed NL5 flood-simulation model are:

Step 1 Assume values for the seven hydrologic parameters (K, X, α1, α2, β, C1, C2).

S0 ¼ K X C1I
α1
0

� �þ 1−Xð Þ C2
bOα2

0

� 	h iβ
i ¼ 0 ð22Þ

Step 2 Calculate the initial storage S0, letting the initial calculated outflow be equal to initial
observed inflow (Ô0=I0):

ΔSi
Δt

¼ I i−
1

C2 1−Xð Þ
� �

Si
K

� �1
β

−
1

C2 1−Xð Þ
� �

X C1I i
α1ð Þ½ �

( ) 1
α2

ð23Þ

Step 3 Calculate the time rate of change of the storage volume at time interval i (starting with
i=1):

Si ¼ Si−1 þΔt
ΔSi−1
Δt

� �
ð24Þ

Step 4 Calculate the storage at time i:
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Step 5 Calculate the outflow at time interval i:

bOi ¼ 1

C2 1−Xð Þ
� �

Si
K

� �1
β

−
1

C2 1−Xð Þ
� �

X C1I
α1
i−1

� �
 �( ) 1
α2

ð25Þ

Notice that Ii−1 rather than Ii is used in Eq. (24), following the approach ofGeem (2006).
Step 6 Increase the index i by 1 and repeat Steps (3)–(5) until the simulation has reached

time N.
The objective function used to evaluate the optimal values for the parameters of

the proposed NL5 model is given by:

Min SSQ ¼
XN
i¼1

Oi−bOi

� 	2
ð26Þ

where SSQ=sum of the square deviations between the observed outflow and com-
puted outflow at time interval i; and Oi= observed outflow at time interval i. The
objective function can also be set to minimize the sum of the absolute deviations
between the observed outflow and computed outflow at i-th time interval. This is
given by:

SAD ¼ miniminize
XN
i¼1

Oi−bOi

��� ��� i ¼ 0; 1; 2;…;N ð27Þ

Or, the objective function could minimize the difference between the peak ob-
served and the peak routed streamflow:

DPO ¼ minimize OP−cOP

��� ��� ð28Þ

where OP= the value of peak of observed outflow; and ÔP= the value of peak of
routed outflow. It should be noted that the DPO is an important variable in flood
routing predictions. Flood damage is decreased by the improved accuracy of DPO
estimated in the downstream reach of rivers (Orouji et al. 2013). Thus, the SSQ is the
main objective function in the calibration processes, and the SAD and DPO are
alternative objective functions whose minima are also satisfied.

4.2 Optimization Procedure of the Proposed NL5 Model

This section describes a hybrid optimization method for flood-routing parameter
calibration that combines the shuffled frog leaping algorithm (SFLA) with the
Nelder-Mead (NMS) method. In addition, the SFLA and NMS method are briefly
reviewed.
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4.2.1 Hybrid of the SFLA and the NMS Method

Barati (2011b) reported that the NMS method yields the best results among leading
parameter estimation techniques. Orouji et al. (2013) indicated that the SFLA is the
most efficient among well-known algorithms such as the genetic algorithm (GA). This
paper proposes a new hybrid optimization technique that merges the SFLA with the
NMS method. The proposed algorithm overcomes the disadvantages of the NMS
(requirement of one good initial vector of estimates, lack of global optimality, and
numerical divergence) and the SFLA (poor in terms of convergence performance,
difficulty in locating global optima).

The hybrid SFLA-NMS method has two phases: (1) obtaining a vector of parameters by
SFLA that is used as the initial solution for the NMS method, and (2) estimation of final
parameter values by NMS using the initial solution obtained in the previous step.

4.2.2 The Shuffled Frog Leaping Algorithm (SFLA)

The SFLA is a meta-heuristic algorithm for solving optimization problems that is inspired by
research on the hunting behavior of frogs. The algorithm uses memetic evolution in the form of
influencing of ideas from one individual to another in a local search. Conceptually, the local
search is similar to particle swarm optimization (PSO). A shuffling strategy allows the
exchange of information among local searchers, leading them toward a global optimum.
Based on this abstract model of virtual frogs, the SFLA draws on the PSO as a local search
tool and the idea of competitiveness and mixing information from parallel local searches to
move toward a global solution.

In SFLA, the frog of order j in the D dimensional space coordinates can be described as the
form xj = [xj1, xj2,…,xjD], where j=1, 2,…, P. The steps of the SFLA can be summarized in a
flowchart as shown in Fig. 1. The details of this flowchart can be found in Orouji et al. (2013).

The local search and the shuffling processes are repeated until defined convergence criteria
are satisfied, for example, a specific number of iterations. Accordingly, the Primary parameters
of theSFLA are the number of frogs, the number of memeplexes, the number of generation for
each memeplex before shuffling, and the number of shuffling iterations.

A computational function of the SFLA written in MATLAB (Orouji et al. 2013) was
interfaced with a NL5 model to obtain a vector of the hydrologic parameters.

4.2.3 The Nelder-Mead Simplex (NMS) Method

The Nelder-Mead simplex (NMS) method (Nelder and Mead 1965) was originally
developed for nonlinear and unconstrained optimization. It does not need derivatives
calculations but only a numerical evaluation of the objective function is required (Nelder
and Mead 1965). It converges to minima (assuming that the objective is minimization)
by forming a simplex and using this simplex to search for its promising directions. A
simplex is defined as a geometrical figure which is formed by (n+1) vertices (n: the
number of variables of a function). The NMS technique uses an initial guess (initial
point) by the user to produce the initial simplex, which starts the algorithm. The initial
guess is used as one of the vertices of the simplex. The remaining vertices of the initial
simplex are found by adding ΔL (%) to each component of the initial guess vector. The
algorithm uses four possible operations: reflection, expansion, contraction, and
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shrinking. In each iteration of the NMS method the function values at each vertex are
evaluated and the worst vertex (that with the largest value under minimization) is
replaced by another (better) vertex which has just been found. Otherwise, a simplex is
shrunk around the best vertex. This process is repeated iteratively until a desired
convergence error value is satisfied. The convergence speed of the simplex method
may be affected by four parameters: θ (reflection parameter), η (expansion parameter),
γ (contraction parameter), and δ (shrink parameter). The values of these parameters

START

Randomly initialize population Size P 

Number of memeplexes (im) 

Iteration within each memeplexes (iN)  

Generate population (P) randomly 

Objective functions evaluation for  

each frog of the population

Sort P in descending order 

Partition (P) into m memeplexes

Local Search 

for each memeplexe 

Shuffle all the memeplexes 

Determine the best solution 

Stopping criteria 

satisfied? 

STOP 

Yes

No

Fig. 1 Flow chart of the SFLA
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satisfy θ>0, η>1, 0<γ<1, and 0<δ<1. In the standard implementation of the Nelder-
Mead method, the parameters are chosen to be θ=1, η=2, γ=0.5, and δ=0.5 (Nelder
and Mead 1965; Lagarias et al. 1998), this set of parameters produces the shortest time
of convergence. The steps of the NMS are shown in Fig. 2. Details ofthe NMS method
can be found in Lagarias et al. (1998).

The NMS method was implemented in this paper by means of the fminsearch function of
MATLAB (Yang et al. 2005), which was interfaced with the NL5 model to find the optimal
values of the hydrologic parameters.

5 Applications and Results of the Proposed NL5 Model

Three different case studies (smooth single peak hydrograph, non-smooth single peak
hydrograph and multiple peak hydrograph) were considered to test the performance of
the proposed NL5 model compared to other nonlinear Muskingum models. In each of
the three case studies the number of functional evaluations of the SFLA was 500, using
10 frogs and 50 iterations (Orouji et al. 2013). Moreover, although the SFLA is a
random-based algorithm, the variation coefficient (standard deviation over the average)
of the SSQ produced by the SFLA-NMS method in each of the case studies is very
small. Thus, the results presented for each of three case studies were obtained with a
single run of the SFLA-NMS method.

START

Generate a new simplex 

Reflection or expansion or contraction, 

Replace a point 

Sufficient 

progress? 

No
Shrink 

Replace a 

point 

Minimum 

attainted?

No

Yes

STOP

Yes

Fig. 2 Flowchart of the Nelder-Mead simplex algorithm
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5.1 Case Study 1: Smooth Single Peak Hydrograph

The first case study uses the inflow and outflow hydrograph of Wilson (1974). The data
reported by Wilson (1974) are known to present a nonlinear relationship between weighted
discharge and storage (Yoon and Padm Anabhan 1993; Mohan 1997) and have been used by
most of the previous studies for verification of a different procedure of parameter estimation of
various nonlinear Muskingum models (especially the NL3 model) in the calibration step. The
number of time steps and the duration of the time step in Wilson’s (1974) data areΔt=6 h and
N=21.

The optimal outflows and intermediate results of the proposed NL5 routing model include

Si,
ΔSi
Δt , and Oi, squared deviation (SQ) between observed and computed outflows for time

interval i, and absolute deviation (AD) between observed and calculated outflows for time
interval i, which are listed in Table 2.

The comparison of the observed and calculated hydrographs of the proposed NL5 model is
presented in Fig. 3. As is shown in Fig. 3, the computed hydrograph is well suited to the

Table 2 Optimal results obtained with the nonlinear Muskingum model NL5 for the first case study [data of
Wilson (1974)]

i Time Ii Oi Si ΔSi
Δt

Ôi (Oi−Ôi)
2 |Oi−Ôi|

(hour) (m3/s) (m3/s) (m3) (m3/s) (m3/s) (m3/s) (m3/s)

0 0 22 22 30.19 0.00 22.00 0.00 0.00

1 6 23 21 30.19 1.30 22.00 1.00 1.00

2 12 35 21 31.50 15.91 22.38 1.91 1.38

3 18 71 26 47.41 53.29 26.21 0.04 0.21

4 24 103 34 100.70 76.75 34.02 0.00 0.02

5 30 111 44 177.55 69.54 43.69 0.10 0.31

6 36 109 55 99.246 53.02 55.34 0.11 0.34

7 42 100 66 300.01 30.72 65.98 0.00 0.02

8 48 86 75 330.73 5.23 75.02 0.00 0.02

9 54 71 82 335.96 −17.61 81.78 0.05 0.22

10 60 59 85 318.34 −31.95 85.05 0.00 0.05

11 66 47 84 286.39 −43.31 84.07 0.00 0.07

12 72 39 80 243.08 −45.46 80.17 0.03 0.17

13 78 32 73 197.62 −44.58 72.81 0.04 0.19

14 84 28 64 15.04 −37.99 63.90 0.01 0.10

15 90 24 54 115.05 −31.93 53.95 0.00 0.05

16 96 22 44 83.12 23.42 44.50 0.25 0.50

17 102 21 36 59.70 −15.37 36.96 0.00 0.04

18 108 20 30 44.32 −9.81 29.43 0.32 0.57

19 114 19 25 34.52 −6.27 24.93 0.01 0.07

20 120 19 22 28.25 −2.88 21.88 0.01 0.12

21 126 18 19 25.37 – 20.24 1.55 1.24

Sum – – – – – – 5.44 6.69
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observed hydrograph. Moreover, this Figure shows that the NL5 model calculates accurately
the outflow hydrograph peak, which is an important variable in hydrograph routing.

Table 2 lists the calculated outflows using the SSQ, SAD, and DPO objective functions and
Wilson’s (1974) obtained with the nonlinear Muskingum models NL1 (Barati 2013a), NL2
(Barati 2013a), NL3 (Karahan et al. 2013), NL4 (Easa 2013), and the proposed NL5 (this
paper). It is clear from Table 2 that the use of the NL5 model improves the fit to observed
outflows. The optimal values (minima) of the objective functions decrease with increasing
model order, so that the proposed NL5 model features the best (smallest) values of the
objective functions. The SSQ, SAD, and DPO values of the objective functions obtained with

Fig. 3 Comparison of the observed hydrograph and calculated hydrograph obtained with the proposed NL5
model for the first case study [data from Wilson (1974)]

Fig. 4 Comparison of the AD values calculated with the NL4 model and the proposed NL5 model for the first
case study [data from Wilson (1974)]
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the proposed NL5 model, for example, are 29, 35, and 84 %, respectively, lower than those
with the NL4 model. These results demonstrate that the routed precision is satisfactory by
using to NL5 model, which calculates the best objective function values when compared with
the four other routing models reported in the literature.

A comparison of the AD values calculated with the of the NL4 model and the
proposed NL5 model is shown in Fig. 4, which displays the superior fitting capacity of
the proposed NL5 model compared to that of the NL4 model. Based on Fig. 4, the
proposed NL5 model estimates the AD values more accurately than those obtained with
the NL4 model.

The sensitivity of the objective function with respect to all model parameters of NL1, NL2,
NL3, NL4, and NL5 was analyzed and the results are listed in Table 3. For a given parameter,
the value shown is the percentage change in the objective function due to an increase of 1 % in
the optimal value of that parameter (other parameters are kept at their optimal values). As
noted, in all five models, K and X are relatively insensitive parameters, while the exponent
parameters are sensitive parameters (exponent parameter α in the NL1 model, exponent
parameters α1 and α2 in the NL2 model, exponent parameter β in the NL3 model, exponent
parameters α and β in the NL4 model and exponent parameters α2 and β in the NL5 model).
Generally, the exponent parameters are the most sensitive when the storage vs. discharge is
nonlinear.

Table 3 Comparison of the optimal SSQ, SAD, and DPO parameter values obtained by the proposed and the
existing nonlinear Muskingum models for the first case study, using the data by Wilson (1974)

Model
type

Solution
algorithm

Hydrologic parameters Objective functions

K X Α α1 α2 β C1 C2 SSQ SAD DPO

NL1 EV-GRG 0.461 0.229 1.501 – – – – – 258.45 58.25 1.85

NL2 EV-GRG 0.271 0.0003 – 3.042 1.568 – – – 184.32 32.18 0.55

NL3 HS-BFGS 0.086 0.278 – – – 1.868 – – 36.77 23.47 0.90

NL4 GA-GRG 0.834 0.296 0.433 – – 4.079 – – 7.67 10.31 0.31

NL5 SFLA-NMS 0.478 0.088 – 0.696 0.425 3.817 0.619 0.735 5.44 6.69 0.05

Fig. 5 Comparison of the observed hydrograph and the calculated hydrograph obtained with the proposed NL5
model for the second case study
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5.2 Case Study 2: Non-Smooth Single Peak Hydrograph

The second case study is a flood event that occurred in the Wye river in the United
Kingdom (NERC 1975). The 69.75-km stretch of the River Wye from Erwood to
Belmont has no tributaries and very small lateral inflow. Thus, this flood event is a
good test case to test flood-routing methods (Bajracharya and Barry 1997). This flood
was first studied by O’Donnell et al. (1988) with a linear Muskingum model. This
flood event, similar to Wilson’s (1974) data, presents a pronounced nonlinear relation-
ship between flow and storage volume. This case study includes Δt=6 h and N=33.
Karahan et al. (2013), Barati (2013b), and Hamedi et al. (2014) used this case study to
estimate the parameters of the NL3 model with the HS-BFGS, NMS, and GRG
methods. Easa (2013) used this case study to estimate the parameters of the NL4
model with the GA-GRG method.

A comparison of the observed hydrograph and calculated hydrograph using the proposed
NL5 model of this case study is presented in Fig. 5. This clearly demonstrates that the
calculated hydrograph obtained by proposed model is well fit to the observed hydrograph.

The SSQ, SAD, and DPO objective-function values calculated with the proposed
NL5 model in this case study were 30,894.4, 731.7, and 72, respectively. Table 4
compares the SSQ, SAD, and DPO calculated considering different Muskingum
models. Tables 4 shows a comparison of optimum parameters obtained from proposed
NL5 model and various nonlinear Muskingum models, such as the NL3 model by

Table 4 Sensitivity of the objective function to model parameters in the first case study

Parameter Percentage change in the objective function due to 1 % increase in optimal parameter value

NL1 NL2 NL3 NL4 NL5

K 0.00 0.01 0.03 0.16 0.12

X 0.00 0.00 0.00 0.02 0.07

α 0.02 – – 10.06 –

α1 – 0.14 – – 3.25

α2 – 0.24 – – 8.22

β – – 2.37 10.14 10.99

C1 – – – – 1.16

C2 – – – – 1.05

Table 5 Comparison of the optimal SSQ, SAD, and DPO parameter values obtained by the NL3 and NL4
models and the proposed NL5 model for the second case study

Model
type

Solution
algorithm

Hydrologic parameters Objective functions

K X α α1 α2 β C1 C2 SSQ SAD DPO

NL3 GRG 0.076 0.415 – – – 1.59 – – 34789.4 739.0 90

NL4 GA-GRG 0.437 0.404 1.197 – – 1.332 – – 32299.2 743.3 76

NL5 SFLA-NMS 0.600 0.609 – 1.056 1.163 1.398 0.96 1.02 30894.4 731.7 72
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GRG method (Hamedi et al. 2014) and the NL4 model by GA-GRG method (Easa
2013). The calculated optimal parameters of the proposed NL5 method in this study
were obtained with the hybrid SFLA-NMS method. Based on Table 4 the least (best)
value for the considered objective functions correspond to the NL5 method. Moreover,
the SSQ, SAD, and DPO of the NL5 model were four, two, and five percent less

Table 6 Comparison of the computed outflows obtained with the NL3 and NL4 models and the proposed NL5
model for the second case study

i Time Observed data: m3/s Computed outflow: m3/s

(hour) Ii Oi NL3 NL4 NL5

0 0 154 102 154 154 154

1 6 150 140 154 154 154

2 12 219 169 152 152 152

3 18 182 190 183 184 184

4 24 182 209 192 192 193

5 30 192 218 185 186 186

6 36 165 210 187 187 187

7 42 150 194 178 179 176

8 48 128 172 161 162 162

9 54 168 149 139 141 140

10 60 260 136 154 155 155

11 66 471 228 201 203 204

12 72 717 303 267 281 281

13 78 1092 366 347 363 362

14 84 1145 456 419 443 443

15 90 600 615 602 624 626

16 96 365 830 879 893 896

17 102 277 969 839 849 855

18 108 277 665 689 709 711

19 114 187 519 531 560 554

20 120 161 444 414 424 439

21 126 143 321 290 307 311

22 132 126 208 203 219 216

23 138 115 176 150 160 156

24 144 102 148 123 127 124

25 150 93 125 102 107 105

26 156 88 114 94 94 93

27 162 82 106 88 88 88

28 168 76 97 81 82 81

29 174 73 89 75 75 75

30 180 70 81 72 73 72

31 186 67 76 69 69 69

32 192 63 71 66 66 66

33 198 59 66 62 62 61

Improved Nonlinear Muskingum Model for Flood Routing 3435



(better) than those obtained considering the NL4 nonlinear Muskingum model,
respectively.

Table 5 presents a comparison between the outflows calculated with the NL3 Muskingum
model (Hamedi et al. 2014), NL4 Muskingum model (Easa 2013), and the proposed NL5
Muskingum model introduced this study. It is evident from Table 5 that the outflows calculated
with the NL5 model are more accurate than those obtained with other routing models
(Table 6).

To further illustrate the ability of the proposed NL5 model to fit the data better
than NL4 model, a comparison of the absolute outflow deviations of the two models
is shown in Fig. 6. These values demonstrate that the NL5 model achieved better data
fitting than the NL4 model.

Fig. 6 Comparison of the AD values calculated with the NL4 model and the proposed NL5model for the second
case study

Fig. 7 Comparison of the observed hydrograph and the calculated hydrograph using the proposed NL5 model
for the third case study
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5.3 Case Study 3: Multiple-Peak Hydrograph

The third case study is a flood multiple peak hydrograph introduced by Viessman and
Lewis (2003). This case study includes Δt=1 h and N=23. The observed inflow-
outflow hydrographs are shown in Fig. 7. The outflow hydrograph estimated by the
proposed model NL5 is also shown in Fig. 7. The SSQ, SAD, and DPO objective-
function values were obtained with the proposed NL5 model for the parameter vector
(K=0.078, X=5×10−7, α1=3.121, α2=1.420, β=1.0861, C1=0.99, and C2=1.03) were
69,860, 994, and 30, respectively. In addition, the best SSQ, SAD, and DPO objective-
function values of the NL4 model for the parameter vector (K=0.077, X=0.167, α=
0.921, and β=1.568) were 73,399, 1034, and 50, respectively, obtained with the
SFLA-NMS method in this paper. Thus, the calculated optimal SSQ, SAD, and DPO
values with the proposed model NL5 for this example decreased (improved) 5, 4, and
40%, respectively, compared to those obtained with the NL4 model.

6 Concluding Remarks

The nonlinear Muskingum model is widely used for hydrologic flood routing. It relies on
the continuity equation and an assumed nonlinear storage equation. Several researchers
have improved the fitting performance of the nonlinear Muskingum model by modifying
the structure of its nonlinear storage equation. Such modifications for the structure of the
nonlinear storage equation have introduced more degrees of freedom in model
calibration.

This paper proposed an improved nonlinear Muskingum model with a seven-
parameter nonlinear storage equation. All existing forms of the Muskingum model
are special cases of the proposed model. This provides the user with flexibility in
evaluating all model forms easily. In addition, a new hybrid SFLA-NMS method was
introduced in this paper to solve the hydrologic parameter calibration problem. The
proposed algorithm finds the global or near-global minimum with fast convergence.
The latter method found the best parameter values measured in terms of the sum of
the square deviations, the sum of absolute deviations among observed and estimated
outflows, and the absolute value of the difference between the observed peak the
routed peak outflows.

The performance of the proposed nonlinear Muskingum model (NL5) was compared
with those of other common nonlinear Muskingum models using three case studies. The
proposed NL5 model produced better results than the existing non-linear models. The
SSQ obtained with the proposed model for the first, second, and third case studies
decreased (improved) 29, 4, and 5%, respectively, compared to those of the correspond-
ing optimized values (NL4 model) reported in previous studies. Although the proposed
model involves a more complex calibration procedure than other nonlinear Muskingum
models, the additional complexity could results in a substantial improvement in data
fitting. This paper’s application of the proposed NL5 model shows that it could substan-
tially (up to almost 29 %) improve the fit to observed outflows. The added model-
calibration complexity was mitigated by a novel, hybrid, estimation method.

This paper has shown that the SFLA-NMS method can be successfully applied to
estimate optimal parameter values of various nonlinear Muskingum models. The
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proposed nonlinear Muskingum model is recommended for future studies and appli-
cations in flood routing.

Conflict of interest No conflict of interest.
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