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Abstract

One of the primary difficulties in treating patients with genetic syndromes is diagnosing their 

condition. Many syndromes are associated with characteristic facial features that can be imaged 

and utilized by computer-assisted diagnosis systems. In this work, we develop a novel 3D facial 

surface modeling approach with the objective of maximizing diagnostic model interpretability 
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within a flexible deep learning framework. Therefore, an invertible normalizing flow architecture 

is introduced to enable both inferential and generative tasks in a unified and efficient manner. The 

proposed model can be used (1) to infer syndrome diagnosis and other demographic variables 

given a 3D facial surface scan and (2) to explain model inferences to non-technical users via 

multiple interpretability mechanisms. The model was trained and evaluated on more than 4700 

facial surface scans from subjects with 47 different syndromes. For the challenging task of 

predicting syndrome diagnosis given a new 3D facial surface scan, age, and sex of a subject, the 

model achieves a competitive overall top-1 accuracy of 71%, and a mean sensitivity of 43% across 

all syndrome classes. We believe that invertible models such as the one presented in this work can 

achieve competitive inferential performance while greatly increasing model interpretability in the 

domain of medical diagnosis.

Index Terms—

Genetic Syndrome; Normalizing Flow; Interpretable Machine Learning; 3D Shape Model

I. INTRODUCTION

Diagnosing human genetic syndromes is a complex and difficult process due to their 

diversity, subtle differences between subjects with different syndromes, and their rarity. 

Genetic testing is the ideal way to diagnose afflicted subjects, but these tests are expensive, 

genetic experts are often scarce, and many syndromes exist for which the genetic profile 

is not yet known. As a supplement to genetic testing, computer-assisted phenotyping based 

on facial images or scans has been proposed as a low-cost, easy to utilize, and entirely 

non-invasive strategy for genetic syndrome screening [1].

The facial morphology associated with a syndrome can be quite distinctive and it has 

been shown that facial shape features are useful diagnostic indicators for many syndromes 

[1]–[4]. Experienced clinical geneticists will often use facial morphology as a preliminary 

diagnostic indicator prior to genetic testing. The development of robust and fully automatic 

computational pipelines to analyze facial morphology would, therefore, allow non-expert 

clinicians all across the globe to utilize a unified quantitative understanding of syndromic 

facial morphology to support clinical decision making processes at a very low cost.

Face-based syndrome detection models have been developed for both 2D facial images 

and 3D facial surface scans. State-of-the-art 2D approaches such as [5], [6] commonly 

use deep learning-based discrimintative models. However, single uncalibrated 2D images 

cannot capture facial morphology with the fidelity of 3D surface imaging [4]. Furthermore, 

deep discriminative models often lack interpretability, which makes it difficult for clinicians 

to understand what information a model uses to make inferences. Model interpretability 

is particularly important in medical applications as many clinicians hesitate to introduce 

black box models into their decision making process. On the other hand, state-of-the-art 

approaches relying on more informative 3D surface scans like [4] commonly utilize point-

based generative shape models [7] that are equipped with an inference mechanism (e.g., 
a regularized discriminant analysis variant as proposed in [4]). While these models are 
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more interpretable than solely discriminative ones, they usually rely on simplified facial 

representations (e.g., a sparse set of landmarks) and simplified probabilistic assumptions 

(e.g., Gaussian distributions). Both of those properties restrict model flexibility in ways 

that may impact model performance. 3D facial morphology may not follow a Gaussian 

distribution, and sparse landmarks may be incapable of capturing important, subtle shape 

details.

In this work, we propose a novel deep learning-based, invertible 3D facial surface modeling 

approach. The main novelty of our method is two-fold: (1) In contrast to standard facial 

shape analysis methods used for syndrome data modeling (often limited to Gaussian 

distributions), our NF model can learn complex non-Gaussian conditional face distributions. 

(2) Our model is fully invertible and, as a result of this, is highly multi-functional. 

Specifically, the proposed model is the first non-Gaussian 3D facial shape model with 

the ability to (1) infer syndrome diagnosis and other demographic variables given a high-

resolution 3D facial surface scan, (2) generate modal, randomly sampled, and counterfactual 

3D faces using demographic information, and (3) analyze the magnitude of facial variation 

between and within demographic groups (e.g., males vs. females) in a fully probabilistic 

way. The proposed normalizing flow approach efficiently handles all tasks within a single 

unified probabilistic model. The results of the evaluation show how this multi-functionality 

can help non-technical clinicians to intuitively understand and gain confidence in the model 

and its inference process through, for example, counterfactual visualizations. To the best of 

our knowledge, a deep invertible model of 3D syndromic facial morphology has not been 

proposed before.

(A) Related Work

1) Face-based Syndrome Classification: In contrast to the volumes of work on 

general facial shape modeling and recognition [8], approaches specifically designed to 

diagnose genetic syndromes are scarce. Many available machine learning-based syndrome 

classification methods [5], [6], [9]–[12] rely on 2D frontal facial images of the subject as 

they are widely available in a clinical setting. However, this usually restricts the set of 

input features to projected geometric information and texture data, which may limit the 

achievable classification accuracy [9]. This problem can be alleviated by using 3D geometric 

information from 3D surface scans [3], [4] directly acquired via 3D scanning techniques [1]. 

As a low-cost alternative to real 3D data acquisition, some authors propose to infer 3D shape 

information for diagnostic purposes from 2D images [13], [14] by fitting a 3D face model 

[15]. Most approaches were developed and evaluated using a small number of syndrome 

classes.

2) Generative 3D Facial Shape Modelling: Facial shape modelling generally aims 

at estimating a low-dimensional manifold of typical shape variations together with a 

probability density based on available high-dimensional training data (e.g., contours or 

meshes). Historically, this has been mostly achieved by linear approaches [7], [16] that 

define linear subspaces and use simple (often Gaussian) densities (see [8] for an overview). 

Over the years, those efforts have led to a multitude of so-called 3D morphable face models 

(3DMMs; e.g., [15], [17], [18]). While many 3DMMs successfully disentangle certain 
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semantically meaningful factors of variation like identity and expressions, conditioning them 

on additional demographic variables is not common or straightforward (e.g., in [18] several 

3DMMs are built to independently capture age and sex variations) and available solutions 

for conditional shape modeling [19] typically rely on Gaussian distributions.

3) Deep Learning-based 3D Facial Shape Modelling: More recently, the first deep 

learning-based 3DMMs have been proposed [20]–[25] that make use of specifically adapted 

versions of variational auto-encoders (VAE) and generative adversarial networks (GAN). In 

contrast to traditional 3DMMs, their inherent non-linearity allows them to represent more 

complex manifolds and probability densities, which may lead to models that better capture 

the data [21]. A unique challenge associated with processing 3D surface meshes is their 

special graph-like structure. Hence, popular operations widely used in imaged-based deep 

learning solutions either need to be specifically adapted (e.g., spectral graph convolutions 

[21]–[23]) or the data needs to be reparameterized accordingly [25]. Although VAEs and 

GANs are excellent for generating visually convincing synthetic data samples, they are not 

well suited for tasks that involve evaluating the likelihood of samples. Both GANs and VAEs 

require computationally expensive Monte-Carlo integration, which can be intractable for 

high dimensional data, or lower-bound approximations to estimate likelihood values [26], 

[27]. In contrast, invertible normalizing flow models are designed to support efficient and 

exact likelihood evaluation.

4) Normalizing Flows: Normalizing flows (NF) are a recently proposed class of deep 

learning model. A NF model represents a learnable bijective function (see reviews in [28], 

[29]). NFs are most commonly applied to generative manifold and density estimation tasks 

much like VAEs and GANs [30]. However, in contrast to VAEs where two separate models 

(encoder and decoder) are trained to map to and from a latent variable space, NFs are 

able to perform encoding and decoding using the forward and inverse directions of a single 

unified model. This avoids consistency issues often seen when modeling both directions 

independently. Furthermore, unlike GANs and VAEs, the likelihood of a NF model can be 

evaluated efficiently and exactly. This allows for direct maximum likelihood-based training, 

Bayesian inference of condition variables, and estimation of information theoretic measures 

like KL-divergence and differential entropy.

Recently, the first NF models operating on point clouds or mesh data were described (e.g., 
[31], [32]), but we are not aware of any work specifically using NFs to build syndromic 3D 

face models.

II. METHODS

In this section, we will first introduce our notation and describe necessary data pre-

processing steps before our NF architecture is described in Sec. II-C. We then describe 

in Sec. II-D how the model can be used to perform Bayesian inference of syndrome classes 

and demographic variables before different probabilistic interpretability mechanisms are 

described in Secs. II-E and II-F.
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The overarching goal of our modelling approach is to efficiently approximate the 

distribution of human facial surface morphology conditioned on genetic syndrome 

diagnosis, age, and sex. For model training, we assume a population Si, yi i = 1
npop  of npop 

subjects to be given. Each tuple (Si, yi) consists of a subject’s 3D facial surface mesh Si and 

a set of associated factors yi = {agei, sexi, syndi} with agei ∈ ℝ+, sexi ∈ {male, female}, 

and syndrome diagnosis syndi ∈ Γ, where Γ is a set of clinical genetic syndrome classes 

including a class for unaffected (non-syndromic) people.

A. Reference Surface and Registration

Depending on the actual 3D scanning and reconstruction techniques employed to capture 

the facial scans Si of the training population, the number of vertices to represent each 

discrete surface and their topology may vary considerably between subjects. We, therefore, 

normalize all scans to a reference topology with a fixed number of vertices located at 

corresponding locations for each subject. This is done by first registering a fixed template 

mesh S :V ℝ3 with |V | = nvert vertices to all npop scans Si (see Sec. III-B for details). This 

results in non-linear transformations that are used to propagate the template’s vertices to 

the subject scans. Finally, positional and rotational information is removed and each surface 

is vectorized by stacking the 3D point coordinates of all nvert vertices to obtain vectors 

si ∈ ℝ3nvert.

B. Manifold Estimation

Facial surface meshes produced by modern scanners commonly contain tens of thousands 

of vertices resulting in very high-dimensional surface vectors si ∈ ℝ3nvert. Estimating a 

probability density on this very high-dimensional space is both computationally challenging 

and unnecessary since the positions of neighboring points on densely sampled facial surfaces 

will naturally have high mutual information. Therefore, we construct our model as a 

probability density on a sub-manifold of the ambient data space (see [30] for a description of 

how manifold and density estimation relate within a NF framework).

As in standard linear shape modeling approaches [7], we assume that the surface vectors si 

can be accurately represented by a nsub-dimensional Euclidean manifold of maximum data 

variation F estimated using principal components analysis (PCA) of the training samples. 

F is then spanned by the first nsub principal components with descending eigenvalue 

magnitude and centered at the training sample mean s ∈ ℝ3nvert. More specifically, all 

elements of sub-manifold F are identified by the set s + s s ∈ span F . Surface vectors si 

are projected to F in a least squares sense [7], which results in low-dimensional vectors 

fi = FT si − s  with fi ∈ ℝnsub. nsub is selected to be as low as possible without negatively 

impacting syndrome classification performance so that the manifold projection removes only 

diagnostically unimportant information. The manifold projection can be easily inverted as in 

standard shape models [7] via si ≈ s + Ffi.
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C. Model Architecture

Let fi, yi i = 1
npop  denote the training tuples consisting of the dimensionality-reduced face 

representations and the associated conditioning factors. We now aim to estimate the 

conditional probability distribution pF (f |y) of facial surface morphology on manifold F. 

Mathematically, our NF model represents a bijective function g z ; y, θ :ℝnsub ℝnsub with 

trainable parameters θ that maps elements z of a nsub-dimensional latent space Z to a 

nsub-dimensional space F of facial morphology f while imposing conditions y. We chose a 

simple Gaussian base distribution pZ (z) = pZ (z|y) = N (0, I) for the latent variable space Z. 

This allows us to express the the potentially non-Gaussian conditional distribution of interest 

pF (f |y) using the change of variables theorem [33]:

pF f y = pZ g−1 f ; y, θ ⋅ det ∇g−1 f ; y, θ

Here, det ∇g−1 f ; y, θ  denotes the Jacobian determinant of g−1 (f; y, θ). To convert 

Eq. (1) into a tractable NF model, function g(·; y, θ) must be specified such that it 

is efficiently invertible and possesses a tractable jacobian determinant. We first split 

g ⋅ ; y, θ = gnlay ∘ ⋯ ∘ gi ∘ ⋯ ∘ g1 ⋅ ; y, θ1  into a chain of nlay simpler sub-functions (called 

layers in NF models). The different types of layers used in our model will be described first, 

followed by a summary of how the layers are composed to create the full NF model (see also 

Fig. 1).

1) Affine Injector: Within our NF model, the first layer is the only conditional layer. 

It applies an affine transformation w =gi(u; y, θi) determined by the conditions y to each 

dimension of the layer’s input u ∈ ℝnsub to generate the output w ∈ ℝnsub:

w = exp s y; θi ⊙ u + t y; θi .

The scaling s(·; θi) and translation t(·; θi) functions can be complex neural networks as the 

inverse of the layer can be computed without having to invert s(·; θi) or t(·; θi) via

u = exp −s y; θi ⊙ w − t y; θi

and its Jacobian has a simple triangular structure [34]. We will refer to this type of layer 

as an affine injector following [35]. We choose s(·; θi) and t(·; θi) to be fully-connected 

neural networks (two hidden layers, 100 neurons per layer and ELU activations) with 

partially shared weights θi. In consideration of the available training data, we also encode 

the assumption that the magnitude of facial shape variation along each dimension of the 

latent space does not depend on syndrome class by excluding synd as an input to the scaling 

network s(·; θi).

2) Rotation: The second layer in our model is a trainable rotation layer. Rotation is an 

appealing transformation in this context due to its close relation to PCA and related methods 
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for learning linear bases of data spaces. We use the Cayley transform to produce a smooth 

parameterization of the special orthogonal group SO(nsub) as discussed in [36]. Later in 

the model, we also use fixed random rotations to mix information between dimensions. 

Rotations are easily invertible and always have a Jacobian determinant of unity.

3) Affine Coupling Blocks: The next layers of our NF model are affine coupling 

layers that were first introduced in [34]. Affine coupling layers also define an invertible 

affine transformation w = gi(u; θi) between their inputs u = u1, u2 ∈ ℝnsub and their outputs 

w = w1, w2 ∈ ℝnsub. Here, u1 and w1 denote the first nsub/2 dimensions and u2 and w2 

represent the second half of the input and output vectors, respectively. The element-wise 

affine transformation is then defined as:

w1 = exp s u2; θi ⊙ u1 + t u2; θi and w2 = u2 .

In our model, we use a volume preserving (and differential entropy preserving) variant of 

affine coupling layers where the Jacobian determinant of each layer is constrained to unity 

(see [37] for details). In practice, this constraint has a strong regularizing effect and can 

be enforced by subtracting the mean from the vector produced by the scaling function s(·, 
θi) such that it sums to zero. We choose s(·; θi) and t(·; θi) to be fully-connected neural 

networks (two hidden layers, 32 neurons per layer and ELU activations) with shared weights 

θi.

Permuting or mixing the inputs after each affine coupling layer is necessary because 

otherwise interactions between dimensions would be restricted. Therefore, we create affine 

coupling blocks consisting of two affine coupling layers separated by a permutation that 

reverses dimension order. At the end of each affine coupling block, we also place a random, 

fixed rotation that mixes the data as proposed in [33].

4) Scaling: The final layer of our model is a fixed scaling layer. The fixed parameters 

of the layer are set once at the start of training according to the standard deviation of each 

dimension of the dimensionality reduced training data. The purpose of the final layer is to 

ensure that data representations are normalized as they pass through the other layers of the 

model while maintaining the information associated with data magnitude in the loss function 

via the Jacobian determinant of the scaling layer.

5) Layer Composition: The composition order of the various flow layers used to create 

g(·; y, θ) is shown in Fig 1. The trainable layer parameters θ = θ1, …, θnlay  can be optimized 

using maximum likelihood training. We chose a multivariate Gaussian distribution with 

identity covariance as a prior for pZ (z) resulting in the negative log-likelihood loss

L θ = − ∑
i = 1

npop
log pZ g−1 fi; yi, θ

+ log det ∇g−1 fi; yi, θ
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for training data fi, yi i = 1
npop . Although the optimization is carried out on the low-

dimensional shape representations fi, it is equivalent to an optimization on manifold F in 

the high-dimensional ambient data space. This is due to the definition of F as a Euclidean 

manifold; the manifold projection described in Sec. II-B has a constant Jacobian determinant 

independent of the input data. [30], [38].

D. Bayesian Inference

To infer the syndrome class syndi of a subject i from facial surface morphology fi and 

demographic variables agei and sexi, the flow model can be used along with Bayes’ theorem 

to compute a posterior distribution:

psynd synd fi, agei, sexi =
pF fi agei, sexi, synd psynd synd agei, sexi

pF fi agei, sexi

Here, we can see that the inclusion of age and sex as conditioning variables enables 

our model to account for the effects of age and sex on facial morphology when making 

inferences. Furthermore, an identical approach can be used to infer subject age or sex. 

Although this is less relevant for clinical applications, it nicely demonstrates the multi-

functionality of the proposed model. In addition to a trained flow model, we require a joint 

distribution for the condition variables p(age, sex, synd) in order to perform inference. In 

this work, we use a naïve prior that assumes condition variable independence:

p age, sex, synd = p age ⋅ p sex ⋅ p synd
p age = Uniform 0, 80
p sex = Bernoulli 0.5

p synd = Uniform Γ

In a clinical application the joint distribution of condition variables could be set and 

manipulated by the clinician using prior knowledge about the application context.

E. Face Generation

Data generation capabilities improve interpretability by enabling a model to visually 

answer questions about what information it has learned and what information it uses to 

make inferences. Two of the three interpretablity mechanisms of the proposed NF model 

demonstrated in this work involve data generation.

1) Demographic Specific Face Generation: The first type of interpretability 

mechanism is intended to answer questions about what facial representations the model 

has learned for a particular demographic (e.g., “What do 8 year old males with Down 
syndrome look like?”). To address this, the model can be used to generate randomly sampled 

and maximally probable faces (modes) to exemplify general trends and typical variability. 

Clinicians can then visually assess the facial characteristics the model has learned.

For this task, our NF model can be used in the same way as a conditional VAE or GAN 

without requiring any additional training. First, a latent sample is drawn from the latent 

Bannister et al. Page 8

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prior. The sample is then mapped using the NF and the specified condition variables from 

the latent space to the data space and rendered as a 3D surface mesh. Our model can 

also generate modes (maximally probable faces) for specific demographics by mapping the 

origin of the latent space (the mode of the latent prior) to the data space in the same way. 

This property of mode preservation is a consequence of our model architecture enabled 

through use of the affine injector layer and volume preserving coupling layers.

2) Counterfactual Face Generation: The second interpretability mechanism is 

intended to answer questions about what facial information the model uses to justify 

particular inferences (e.g., “Why did the model infer the syndrome class of this subject 
as unaffected instead of Down syndrome?”). To address this, the model can be used to 

generate a counterfactual face, which represents what the model would expect a given 

subject to look like if they belonged, hypothetically, to a counterfactual demographic group. 

This counterfactual face visually shows, by contrast with the subjects true face, what facial 

information was used by the model to justify that particular inference. Counterfactual 

representations have been shown to be highly effective when explaining a models decision 

making process to non-technical users [39].

For this task, the original subject face is first mapped to the latent space using the NF 

and the predicted (or true) condition variables. Next, the subject’s latent representation is 

mapped back to the data space using the inverse direction of the flow and a different set of 

counterfactual condition variables. The original and counterfactual faces can then be visually 

compared.

F. Variation Analysis

The third interpretability mechanism is intended to answer questions about the magnitude 

of inter- and intra-demographic facial variation as captured by the model (e.g., “How 
much overlap is there between the facial morphology of males and females?”). This 

information can be presented to clinicians to help them assess and evaluate the model’s 

internal understanding of facial variation within and between demographic groups. Variance, 

co-variance, and variance-based statistics are commonly used within Gaussian modelling 

approaches to compute standardized effect sizes and magnitudes of variation. To address 

these questions using a non-Gaussian model such as the one presented in this work, we 

propose a more general information-based approach.

For this task, we compute Monte Carlo estimates of differential entropy

ℎ pF f yi = − ∫F
pF f yi logpF f yi df

and KL divergence

DKL pF f yi pF f yj = − ∫F
pF f yi log

pF f yj
pF f yi

df
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for and between different demographic groups. Integration over F weighted by a probability 

distribution pF (f |yi) can be numerically approximated by sampling from the model, and the 

likelihood of samples under different demographic conditions can be efficiently evaluated 

using Eq. (1).

III. EXPERIMENTS

The first aim of the evaluation is to show that the developed NF model can accurately infer 

syndrome diagnosis, age, and sex from 3D faces. We then use the same model to generate 

interpretability results that can be used by clinicians to evaluate whether the model bases 

its inferences on reasonable facial shape information, or noise and other imaging artefacts. 

Since the exact same NF model is used for a multitude of tasks, the results of various 

evaluation procedures are mutually supportive.

A. Data Description

The 4727 3D facial scans used to train and evaluate our model were acquired using 3DMD 

facial imaging systems1 and are available through the FaceBase Consortium2. Patients with 

cranio-facial syndromes were recruited through clinical geneticists at different sites across 

North America and have a clinical or molecular diagnosis. Each of the 47 syndromes in 

this analysis is represented by 20 or more subjects. 2600 of the 4727 subjects are presumed 

to be unaffected by a genetic syndrome. Ethics approval for this study was granted by the 

Conjoint Health Research Ethics Board (Id #: REB14-0340 REN4) at the University of 

Calgary

B. Data Pre-Processing

Each subject scan was landmarked with a set of eight guide points using a combination of 

manual landmarking and an image-based automatic algorithm [40]. An averaged template 

mesh (see Fig. 2) was then registered to each scan. This template mesh was initially 

non-linearly mapped to each subject scan using a thin plate spline transformation anchored 

by the corresponding guide points. Next, the non-rigid iterative closest point algorithm [41] 

was used to relax the template mesh completely onto the surface of the scan (see Fig. 2 for 

an example).

The topology of the template was designed so that there is a bijective mapping between 

bilaterally (across the median plane of the template) corresponding vertices. This bijection 

was used to produce a mirrored and symmetric version of each subject face as a form of data 

augmentation. Finally, information associated with facial position and rotation was removed 

from the template registration transformations and a data manifold was estimated using the 

approach described in Sec. II-B. For this analysis, we chose nsub = 100, which produced a 

manifold capturing 99.8% of the total variance in the training data.

1 www.3dmd.com 
2See www.facebase.org for more information and how to access the data.
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C. Training and Evaluation

All NF models evaluated were trained for 1500 epochs using the NAdam optimizer with 

a learning rate of 10−3 and a batch size of 2056 using a Python-based implementation 

(Tensorflow 2.2.0 and Tensorflow-Probability 0.10.1) and a 2070 Super NVIDIA GPU with 

8 GB memory. The full NF model has 68428 trainable parameters in total. Training a single 

NF model takes less than 1 hour. Mapping individual faces to and from the latent space 

is very fast (less than a second) and on par with a VAE comparison model. Importantly, 

the time to evaluate the conditional likelihood pF (fi|yi) of a 3D face fi using the NF 

model is comparable to performing a forward or inverse transformation. This is essential 

for efficient Bayesian inference and analysis of variation. Comparatively, approximating the 

conditional likelihood of a single sample using a cVAE model requires expensive Monte 

Carlo integration. The time to perform inference using the NF model is slightly longer 

compared to discriminative comparison models (MLP, PointNet) due to the need to sample 

multiple conditional likelihood values when computing a posterior distribution. The time to 

perform an analysis of variation varies with the number of random samples used to produce 

Monte Carlo estimates of the information-based statistics. The full analysis performed in this 

work completes in approximately one hour.

1) Inference: For all inference experiments, model training was performed as described 

above using Monte Carlo cross validation with ten random train/test splits of the 4727 scans. 

Maximum a posteriori (MAP) estimates from posterior distributions as defined in Eq. (3) 

are used for all inference tasks and integer age values are sampled at an interval of one year 

during inference.

For the sake of comparison with baseline non-linear discriminative models, we also trained 

and evaluated a multi-layer perceptron (MLP) model (two hidden layers, 100 neurons per 

layer, and ELU activations) and a PointNet (PN) model [42] following the implementation 

of keras.io/examples/vision/pointnet/ on the same data splits as used for the proposed NF 

model. The MLP model uses the same dimensionality reduced data as the NF model while 

the PN model is applied to a randomly sampled subset of 3038 3D points from the dense 

surface meshes.

In order to compare the proposed model to previously proposed Gaussian modelling 

approaches, and to test if non-Gaussian models are valuable in this application, NF models 

were trained and evaluated with the affine coupling blocks removed from the architecture 

shown in Fig 1. This ablated architecture (LinearNF) has a bijection g(·; y, θ) that is linear 

with respect to the input (though not with respect to the condition variable y) so that the 

induced distribution pF (f |y) is always Gaussian.

2) Face Generation: The NF model used to generate qualitative face generation results 

(Figures 3, 4) as well as for analysis of variation results (Sec. IV-C) was trained as described 

above but using the full set of scans described in Sec.III-A.

For a quantitative comparison with another non-linear generative model, we trained a 

conditional variational auto-encoder (cVAE) on the same, dimensionality reduced, face 

data as the proposed NF model to represent the same conditional distribution of facial 
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morphology pF (f |y). The auto-encoder has a latent space dimensionality of nsub and an 

isotropic Gaussian latent prior (the same as the NF model). The encoder and decoder are 

densely connected neural networks (two hidden layers, 100 neurons per layer, and ELU 

activations).

We quantitatively compared the generative capabilities in terms of cross-validated likeness 

scores. Likeness scores are calculated by comparing the distributions of intra-class 

Euclidean distances, and between-class distances (where class indicates whether the data 

is real or model generated) using the Komolgorov-Smirnov (KS) distance. The larger of 

the two KS distances between intra-class Euclidean distances and between class Euclidean 

distances is subtracted from 1 to compute the likeness score. Therefore, a score closer to 

1 is better. Likeness scores have been shown to capture important performance aspects of 

generative models such as creativity, diversity, and inheritance [43]. We compute likeness 

scores for different demographics using the first of the ten random train/test data splits. All 

scores were computed using 10,000 random samples.

3) Variation Analysis: All estimates of KL divergence and differential entropy (Eqs. (5) 

and (6)) were produced using 50,000 random samples from the latent prior pZ (z), which 

we found sufficient to produce stable results. KL divergence and differential entropy are 

always expressed in units of nats/dim. Units of information (nats or bits) per dimension are 

commonly used to evaluate non-Gaussian generative models [34], [44].

Unlike the case of discrete entropy where there is a natural canonical reference measure (the 

counting measure), there is no canonical reference measure for differential entropy. Here, 

we use the Lebesque measure over ℝnsub and express all facial measurements f using units 

of millimeters. Despite this added complexity, differential entropy can still be interpreted 

as a measure of relative uncertainty or magnitude of variation. A uniform distribution 

over a unit cube in ℝnsub with volume 1 mmnsub will have a differential entropy of 0 nats/
dim. More localized distributions will have a smaller (negative) differential entropy and 

less localized distributions will have a larger (positive) differential entropy. KL divergence 

has the same interpretation (relative entropy or information gain) for both continuous and 

discrete probability distributions.

IV. RESULTS

A. Inference

1) Syndrome Inference: Table I summarizes the results of the inference experiments. 

The overall accuracy of the NF model is 71%. For 92% of unaffected subjects, the correct 

unaffected class was selected by the model. Results vary widely for the syndrome classes, 

which is an effect regularly seen in studies that include a large number of syndrome 

classes [4]. Averaged across all 47 syndrome classes in the analysis (excluding unaffected 

subjects), the mean sensitivity was 43%. Compared to the Gaussian model (LinearNF), the 

non-Gaussian model (NF) showed improved overall accuracy (71% vs. 69%) and mean 

syndrome sensitivity (43% vs. 38%).
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The MLP results were generally similar to those of the NF model, but come without 

the additional interpretability and multi-functionality of the proposed NF model. Overall 

accuracy and mean syndrome sensitivity were both within two percentage points. The MLP 

model struggled with the same syndromes as the NF model (Coffin Siris sensitivity 0% and 

Pierre Robin Sequence sensitivity 7%), and performed well on similar syndromes (Down 

sensitivity 79%, Cockayne sensitivity 71%, Williams sensitivity 64%). The sensitivity of the 

MLP model identifying unaffected individuals was slightly better (96%).

The PointNet model performed the worst overall as well as for each individual syndrome. 

We believe this is primarily an issue of the high input dimensionality and low sample size 

(as low as 20 subjects for some syndromes). The comparison between the PointNet model 

and the MLP model (which uses dimensionality reduced data) suggests that the manifold 

projection step in our approach provides useful regularization for this setup. Furthermore, 

the PointNet model and other similar models [45] were designed for more challenging tasks 

in which mesh vertex ordering is unknown and variable. Mesh topology and vertex order are 

fixed in our dataset using registration to a reference mesh (see section II-A). This property of 

vertex permutation invariance may also contribute to the inferior performance of PointNet. 

Like the MLP and most other discriminative models, PointNet has no ability to generate 3D 

facial surfaces, and no ability to analyze inter- or intra-demographic facial variation.

2) Age Inference: The mean absolute error between predicted and true age was 4.4 

years for unaffected subjects and 11.9 years for patients with syndromes. For unaffected 

subjects, the mean standard deviation of the posterior age distribution was 3.5 years, 

indicating that the model tends to be slightly overconfident in its age estimates. In general, 

age estimation was more accurate for younger subjects. This trend was also mirrored in the 

variation analysis results (see Fig. 6).

3) Sex Inference: 91% of unaffected subjects and 66% of patients with syndromes were 

classified as the correct sex using MAP estimation. Sex estimation was more accurate for 

older subjects most likely because sex-specific facial features develop later in life. This trend 

was also mirrored in the variation analysis results (see Fig. 7).

B. Face Generation

1) Demographic Specific Face Generation: Fig. 3 shows maximally probable faces 

(modes) and random samples produced by the NF model for a selection of different 

syndrome and age conditions. The modes and samples exhibit facial features characteristic 

of the different syndromes and age groups (e.g., small faces for young ages, wide faces for 

Down syndrome, long faces for Sotos syndrome). Additional visualizations of samples and 

modes from the NF model are provided as supplementary files (see Appendix II).

Fig. 3 also shows faces generated using a cVAE model. These faces correspond to the origin 

of the latent space which, unlike the proposed NF model, may not represent the mode of the 

conditional distribution. Although these faces lack a probabilistic interpretation, they also 

exhibit features characteristic of the different syndrome classes. The effect of age appears to 

be less prominent compared to the NF modes.
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Table II shows cross-validated likeness scores for selected demographics that are well 

represented within our data. Both NF models outperform the cVAE model for all 

demographics included in our evaluation. The Gaussian (LinearNF) and non-Gaussian (NF) 

flow models performed similarly overall. NF showed small improvements over LinearNF 

in some demographics and was slightly outperformed in other demographics. In general, 

likeness scores are better for demographics with more training and evaluation subjects.

2) Counterfactual Face Generation: Fig. 4 shows counterfactual faces produced 

using an example subject previously unseen by the model. By contrasting the counterfactual 

faces with the original face, we can see what information the model uses to make inferences. 

With respect to this example subject (ytrue ={27 yrs, Male, Unaffected}), the model expects 

that: a younger subject would have a smaller face with a less pronounced nose and chin, a 

female subject would have a smaller face and less pronounced brow, nose, and chin, and a 

Down syndrome patient would have a wider, flatter face.

C. Variation Analysis

1) Differential Entropy Analysis: We first calculated the differential entropy of the 

marginal distribution of facial morphology h(pF (f )) = 483 nats/dim, marginalizing the 

condition variables by integration with respect to the naïve joint distribution of condition 

variables (see Eq. (4)). Next, we calculated the conditional differential entropy of facial 

morphology given all condition variables h(pF (f |y)) = 424 nats/dim. Thus, differential 

entropy decreased by 12% on average when age, sex, and syndrome diagnosis are specified. 

This result indicates that intra-demographic facial variation is larger than inter-demographic 

variation with respect to age, sex, and syndrome class. Furthermore, we computed partially 

conditional entropies h(pF (f |synd)) = 460 nats/dim, h(pF (f |age)) = 463 nats/dim, and h(pF 

(f |sex)) = 478 nats/dim. These results indicate that the sex condition has the least effect on 

facial morphology compared to the other condition variables.

Fig. 5 shows the differential entropies of age- and sex-specific distributions. In general, total 

facial morphological variation was greater for males and older demographics. Our model 

architecture assumes that differential entropy is invariant with respect to syndrome class.

2) KL Divergence Analysis: Fig. 6 shows the KL-divergences induced by increasing 

the age condition by 1 year for unaffected subjects of both sexes at different ages. These 

values reflect the rate at which the distribution of facial morphology changes at different 

ages across both sexes. In general, facial morphology changes faster at younger ages. This 

pattern is also mirrored in the age inference experiments where the MAP age estimates 

are more accurate for younger subjects. Some other interesting patterns are the spikes in 

KL divergence that occur around 10–15 years. These are likely attributable to the onset of 

puberty; the female spike happens slightly earlier and the male spike continues more into the 

late teens and early twenties.

Fig. 7 shows KL-divergences between sex-specific distributions at different ages. In general, 

sex divergences increase with age up until 25 to 30 years after which they gradually decline. 

This pattern is also mirrored in the sex inference experiments where the MAP sex estimates 

are more accurate for older subjects.
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Overall, the variation analysis results quantitatively show that the model has learned patterns 

of facial variation that are in agreement with what is generally known about syndromic facial 

morphology, facial development, and sexual dimorphism. The results provide an additional 

perspective from which clinicians can evaluate patterns (e.g., the development of sexually 

dimorphic facial features with age) that are also observed in the inference and generation 

results.

V. DISCUSSION

For the task of predicting genetic syndrome diagnosis from a 3D facial surface scan in a 

challenging setup with 48 classes, the model performed very well (overall top-1 accuracy 

of 71%, and a mean sensitivity of 43% across all syndrome classes). It is important to 

note that the face-based computer-assisted diagnosis of genetic syndromes is an extremely 

difficult problem as there is a large number of syndrome classes and there often exists a 

considerable overlap between the facial morphological distributions associated with different 

genetic syndromes. A particularly useful property of our probabilistic model is its inherent 

ability to directly quantify and visualize those overlaps (see Figs. 6 and 7).

Aside from the domain-specific challenges mentioned above, we believe that the 

classification results are also affected by the sample sizes within our training data. For 

some classes, only twenty patients were available (e.g., Coffin Siris), which is a very small 

sample for deep learning applications. Performance for those minority classes could likely 

be improved by collecting additional data. Due to the rarity of genetic syndromes and the 

large number of different syndromes, data collection is challenging within this domain.

As a result of patient anonymization processes, we do not have the ability to perform a 

direct comparison with 2D image-based approaches using this data. We believe that a future 

study comparing 2D and 3D facial representations for syndrome diagnosis would be highly 

valuable.

Despite these limitations, we believe that our results are highly clinically relevant and 

the models very useful. Compared to discriminative baseline models, the syndrome 

classification performance of the proposed NF model is similar (MLP) or better (PointNet) 

while being far more interpretable and multi-functional. In addition to inferential tasks, the 

NF model is able to perform multiple generative tasks (sample, mode, and counterfactual 

generation) as well as extensive analyses of inter- and intra-demographic facial variation 

that the MLP and PointNet models cannot perform. Compared to a Gaussian generative 

model (LinearNF), our non-Gaussian architecture achieves a higher overall accuracy and 

mean syndrome class sensitivity. We also expect the more flexible, non-Gaussian model to 

benefit more from a larger training sample size. Compared to the limited number of previous 

studies also specifically aiming at differentiating a large number of syndrome classes using 

3D facial data such as [4], the syndrome inference results are competitive. However, it is 

very challenging to compare scores that are generated using different training and validation 

data. Furthermore, the generative results and information-based statistics produced by our 

models provide additional insight into demographic-specific facial morphological variation 

that may be useful to clinicians to study characteristics of different syndromes.

Bannister et al. Page 15

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VI. CONCLUSION

In this work, we proposed a novel 3D facial surface model, which can be used to infer 

syndrome diagnosis and other demographic variables given a high-resolution 3D facial 

scan. With the goal of maximizing model interpretability within a single, flexible deep 

learning framework, an invertible normalizing flow architecture was designed that discards 

the commonly employed Gaussian assumption and can seamlessly handle high dimensional 

3D data as well as a large number of syndrome classes. The proposed model is the first 

non-Gaussian 3D facial shape model with the ability to (1) infer syndrome diagnosis and 

other demographic variables given a high-resolution 3D facial surface scan, (2) generate 

modal, randomly sampled and counterfactual 3D faces using demographic information, 

and (3) analyze the magnitude of facial variation between and within demographic groups 

(e.g., males vs. females) in a fully probabilistic way. Our evaluation demonstrates that a 

unified invertible architecture achieves competitive inferential performance while enabling 

much greater interpretability through multiple mechanisms that do not require any additional 

model training or modification. To the best of our knowledge, a deep invertible model 

of 3D facial morphology has never been proposed before, neither for general purposes in 

computer vision nor specifically for genetic syndromes. Furthermore, this work, for the 

first time, describes the use of invertible flow models to analyze the magnitude of inter- 

and intra-demographic morphological variation using entropy-based statistics. We believe 

that invertible models such as the one presented in this work have the potential to greatly 

increase model interpretability in the domain of medical diagnosis.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The proposed normalizing flow-based 3D facial shape model is a non-linear, invertible 

bijection (indicated by bidirectional arrows) between a normally distributed latent space 

Z and a linear manifold embedded in a space of 3D facial surfaces. The bijection is 

modeled as a composition of bijective layers (affine injector, rotation, …) that successively 

transform the normal latent density pZ (z) to match the complex density on the manifold 

of 3D faces. Furthermore, the bijection is conditional on demographic variables age, sex, 

and genetic syndrome diagnosis. The synthetic faces on the right represent maximally 

probable faces (modes) on the linear manifold that are produced by the model for different 

combinations of demographic variables. The characteristic Down syndrome facial phenotype 

is clearly recognizable in the first column, first row. See sections II-B and II-C for a detailed 

explanation of the model architecture and mathematical notation.
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Fig. 2. 
Top Left: the average template mesh annotated with eight guide points. Bottom Left: an 

example subject scan annotated with the same eight guide points. Top Right: the subject 

mesh (with color) overlaid with transformed template (white mesh). Bottom Right: the 

transformed template.
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Fig. 3. 
Top Row: Faces corresponding to the origin of the latent space of a cVAE which, unlike 

the proposed NF model, may not represent the mode of the conditional distribution. Middle 

Row: modal faces for different syndrome classes at different ages produced by the NF 

model. Bottom Row: a random sample from the latent space zrand mapped forward through 

the NF using different syndrome and age conditions. The sex condition was fixed to male.
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Fig. 4. 
Left column: counterfactual faces for the example subject shown in Fig. 2. Right column: 

A color map of the shape differences (excluding size information) between original 

and counterfactual faces overlaid on the original face. Blue indicates an area where the 

counterfactual shape protrudes outwards compared to the original shape, and red indicates 

the opposite. The true demographics of the subject are ytrue ={27, Male, Unaffected}. The 

counterfactual demographics shown in each row are ytop ={10, Male, Unaffected}, ymiddle 

={27, Female, Unaffected}, and ybottom ={27, Male, Down}.
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Fig. 5. 
The differential entropies h(pF (f|yi)) for different values of agei and sexi with syndi fixed 

(our model assumes that differential entropy is invariant with respect to syndrome class). In 

general, total facial morphological variation is greater for males and older demographics.
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Fig. 6. 
The KL divergences DKL(pF (f|yi)||pF (f|yj)) for different values of agei with agej = agei 

+1. The syndrome condition was fixed (syndi = syndj = Unaffected). In general, facial 

morphology changes fastest at very young ages and during puberty.
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Fig. 7. 
The KL divergences DKL(pF (f|yi)||pF (f|yj)) between sex specific distributions at different 

ages (agei = agej ). The syndrome condition was fixed (syndi = syndj = Unaffected). In 

general, sex divergences increase with age until adulthood.
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TABLE I

TOP-1 OVERALL ACCURACY AND PER-SYNDROME SENSITIVITIES FOR THE SYNDROME INFERENCE TASK (%).

NF LinearNF MLP PointNet

Overall accuracy 71 69 72 47

Mean syndrome sensitivity 43 38 41 9

1p36 Del 20 14 23 2

22q 11 2 Del 36 43 35 7

4p Del Wolff-Hirschhorn 53 32 56 11

5p Del Cri du Chat 51 47 57 9

Achondroplasia 68 61 62 14

Angelman 17 19 26 2

CHARGE 44 41 56 5

Cardiofaciocutaneous 19 25 34 7

Cleft Lip Palate 36 27 27 10

Cockayne 75 67 71 44

Coffin Siris 0 25 0 0

Cohen 57 67 43 4

Cornelia de Lange 52 59 56 8

Costello 43 41 54 6

Crouzon 34 21 33 13

Down 81 66 79 20

Ehlers Danlos 40 34 35 9

Fragile X 25 3 32 0

Goldenhar 23 35 27 11

Jacobsen 28 21 24 1

Joubert 35 17 22 1

Kabuki 23 33 30 5

Klinefelter 58 67 50 13

Loeys Dietz 22 22 23 0

Marfan 40 41 35 11

Moebius 9 0 7 0

Mucopolysaccharidosis 32 27 39 4

Neurofibromatosis 35 31 26 2

Noonan 38 39 34 4

Osteogenesis Imperfecta 26 17 24 7

Pallister Killian 40 41 35 10

Phelan McDermid 48 34 42 2

Pierre Robin Sequence 4 9 7 0

Pitt Hopkins 38 35 40 1

Prader-Willi 30 12 24 5

Rett 40 45 32 5

Rhizomelic Chondro Punctata 72 86 59 26
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NF LinearNF MLP PointNet

Rubinstein Taybi 43 22 43 17

Russell Silver 68 51 62 12

Smith Lemli Opitz 13 24 28 2

Sotos 60 38 58 9

Stickler 42 21 21 6

Treacher Collins 63 65 64 12

Trisomy 18 74 26 68 13

Turner 71 69 58 8

Unaffected 93 94 96 79

Williams 78 71 64 12

X Linked Hypohidrotic Ectodermal 47 51 31 1
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TABLE II

LIKENESS SCORES FOR DIFFERENT GENERATIVE MODELS AND DIFFERENT DEMOGRAPHICS.

Demographic (# of evaluation subjects) NF LinearNF cVAE

Unaffected, 5–10 yrs (48) 0.66 0.61 0.10

Unaffected, 10–20 yrs (117) 0.89 0.82 0.65

Unaffected, 20–30 yrs (321) 0.94 0.94 0.74

Unaffected, 30–40 yrs (134) 0.87 0.89 0.70

Marfan, 5–40 yrs (21) 0.81 0.83 0.51

Down, 5–40 yrs (9) 0.40 0.39 0.44
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