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Symposium

How Does the Brain Implement Adaptive Decision Making to
Eat?

Valérie Compan,1 B. Timothy Walsh,2 Walter Kaye,3 and Allan Geliebter4,5

1Nîmes University, Place Gabriel Peri, Carmes, 30021 Nîmes, France, 2New York State Psychiatric Institute/Columbia University Medical Center, New York,
New York 10032, 3Eating Disorder Treatment and Research Program, Department of Psychiatry, University of California, La Jolla, California 92037,
4Department of Psychiatry, Montana Sinai School of Medicine, New York, New York 10029, and 5Department of Psychology, Touro College and University
System, New York, New York 10023

Adaptive decision making to eat is crucial for survival, but in anorexia nervosa, the brain persistently supports reduced food intake
despite a growing need for energy. How the brain persists in reducing food intake, sometimes even to the point of death and despite the
evolution of multiple mechanisms to ensure survival by governing adaptive eating behaviors, remains mysterious. Neural substrates
belong to the reward-habit system, which could differ among the eating disorders. The present review provides an overview of neural
circuitry of restrictive food choice, binge eating, and the contribution of specific serotonin receptors. One possibility is that restrictive
food intake critically engages goal-directed (decision making) systems and “habit,” supporting the view that persistent caloric restriction
mimics some aspects of addiction to drugs of abuse.
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Introduction
Feeding behavior results from a combination of factors from the
internal and external environments and is a typical motivated
behavior. Feeding behavior maintains the body weight of an or-
ganism to a threshold specific to one’s species (as for tempera-
ture; Kupfermann, 1991). From this comes the complexity: food
intake depends on homeostatic rules and also on other internal
states, motivational states also called “drives” (Kupfermann,
1991). Motivation is expressed when it triggers goal-directed be-
havior. When individuals feel hungry, they are motivated to ob-

tain food. Feeling hungry then translates into the demand for
energy. Hunger impels the organism to display goal-directed be-
havior to seek and consume foods and thus survive. Individuals
do not make the decision to feel hungry, but can decide to satisfy
or not satisfy hunger.

For some individuals, eating behavior can be chronically
disordered and can include persistent food restriction and/or
excessive intake despite negative consequences, suggesting dis-
turbances of motivation and of goal-directed behavior (decision
making). Food is a basic primary reward, requiring motivation to
obtain it (“wanting”; Hoebel, 1997). Some investigators suggest
that excessive consumption of foods, regardless of whether it is
associated with obesity (Corwin et al., 2011), mimics addiction
(Avena, 2010). However, whether binge eating represents a kind
of addiction remains unclear (Corwin, 2011).

Common molecular mechanisms also exist between anorexia
and addiction. Indeed, drugs of abuse (e.g., cocaine, amphet-
amine) trigger adaptive responses including an increased activity
of the cyclic adenosine monophosphate (cAMP)/protein kinase
A (PKA) signaling pathway in the nucleus accumbens (NAc), a
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Significance Statement

An improved understanding of the neural basis of eating disorders is a timely challenge because these disorders can be deadly.
Up to 70 million of people in the world suffer from eating disorders. Anorexia nervosa affects 1– 4% of women in United States and
is the first cause of death among adolescents in Europe. Studies relying on animal models suggest that decision making to eat (or
not) can prevail over actual energy requirements due to emotional disturbances resulting in abnormal habitual behavior, mim-
icking dependence. These recent studies provide a foundation for developing more specific and effective interventions for these
disorders.
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critical brain structure of the reward system (Koob and Nestler,
1997; Nestler, 2005; Chen et al., 2009). The resultant phosp-
horylation of the cAMP-response element binding protein
(CREB) dampens rewarding effects. Therefore, the sensitivity to
subsequent drug exposures decreases (tolerance) with increased
activity of reward pathways (dependence) to the point that drugs
removal triggers depressive states (Nestler, 2004). Stimulation of
the cAMP/PKA/cocaine- and amphetamine-regulated transcript
(CART) pathway in the NAc after local stimulation of the sero-
tonin (5-hydroxytryptamine, 5-HT) 4 receptors (5-HTR4) pro-
vokes anorexia (Jean et al., 2007). This pathway is also involved in
anorexia inducedbythe3,4-N-methylenedioxymethamphetamine, the
psychogenic compound of ecstasy (Jean et al., 2007). The ability
of cocaine-addiction-related animal models (Rocha et al., 1998)
to eat less despite an early period (3 d) of deprivation further
depends on a gain-of-function of 5-HTR4 with CART overex-
pression in the NAc (Jean et al., 2012b). Considering
the involvement of CART in motivational properties of cocaine
(Couceyro et al., 2005; Rogge et al., 2009), these findings evidence
a “shared neural signal foul-up” between drug dependence and
anorexia that is consistent with deficits in neural networks un-
derlying addiction in patients with anorexia nervosa (Kaye et al.,
2009; Nestler, 2013). The rewarding effect of anorexia has been
described in humans at the onset of anorexia nervosa symptoms
(Brockmeyer et al., 2013). Indeed, the brain can implement food
restriction until death as the result of maladaptive decision mak-
ing. Because the prospect of receipt of a positive reward is capable
of inducing risky, and potentially lethal behavior, potential neu-
ral deficits that restrict food intake to a lethal point could be
included in those of dependence, which requires further testing.

Examination of the activity of neural centers involved in
the recognition of rewards and the development of habits is
therefore relevant (Walsh, 2013). A recent report described goal-
directed decision making as a complex process and argued that
reward-based decisions depend on the habit and goal-oriented
systems (Solway and Botvinick, 2012). The habit system “stores”
stimulus–response associations based on past rewards and the
goal-oriented system selects one action by anticipating the posi-
tive and negative outcomes (Solway and Botvinick, 2012). Be-
cause “addiction is a form of learning and relapse is a persistent
memory of the drug experience” (Wikler, 1961), feeding behav-
ior appears to result from integrated activity of an autonomous
and voluntary nervous systems informed by the sensory nervous
system of external environment states. However, excessive and
restrictive intake of food can prevail over homeostatic rules.
Studying neural substrates of feeding behavior is therefore critical
to better understand how neural systems interact to make adap-
tive decisions to eat or not in the face of environmental changes
(i.e., stressors). Indeed, responses to stress include reduced food
intake despite requirements for energy (Stone et al., 1984; Shiba-
saki et al., 1988; Shimizu et al., 1989; Grignaschi et al., 1993;
Haleem et al., 1998), macronutrient selection (Wang, 2002), and
increased consumption of food (Rowland and Antelman, 1976;
for review, see Morley et al., 1983).

Our understanding of brain functions often comes from clin-
ical descriptions of symptoms in humans. Indeed, symptoms of
anorexia nervosa make visible a likely “crosstalk” between differ-
ent cerebral structures. We will use “anorexia” instead of
“anorexia-like behavior” for animals. Animals display anorexia
that is operationally defined as reduced food intake despite the
physiological energy demand; that is, after partial or total food
deprivation (Jean et al., 2012b). Patients with anorexia nervosa
can reduce food intake and even starve to death and often display

emaciation, amenorrhea, motor hyperactivity or “overexercise”
(Beumont et al., 1994; Casper, 2006), anxiety (Godart et al., 2000;
Kaye et al., 2004), harm avoidance [excluding possible harm due
to anorexia (Fassino et al., 2002)], perfectionism (Friederich and
Herzog, 2011), obsessionality (Anderluh et al., 2003; van den
Heuvel et al., 2005), and depression (Casper, 1998). Individuals
suffering from anorexia nervosa can also struggle with bulimia
(i.e., overeating with purging). The symptomatology of anorexia
nervosa is complex, especially when food restriction alternates
with bulimia that differs from binge eating (Corwin et al., 2011).
Binge eating involves uncontrollable consumption of large
amounts of food, but is not followed by food purging. Under-
standing anorexia is a major challenge because restrictive feeding
aggravates numerous diseases and is the first cause of death of
adolescents in Europe (Papadopoulos et al., 2009). Indeed, per-
sonality traits (anxiety, harm avoidance, obsession, perfection-
ism) often occur in childhood before the onset of eating disorders
and likely implement biological predisposition and account for
�50 – 80% of the risk of developing eating disorders (Bulik et al.,
2006; Kaye et al., 2009).

In this mini-review, we will consider first the most known
molecular mechanisms that have been observed in the hypothal-
amus and the NAc, two respective critical brain areas related to
the autonomic and voluntary nervous system. In addition, al-
though numerous peptidergic systems are involved, we will focus
on serotonergic systems that are also known to have a prime role
in survival mechanisms because of their clear involvement in
adaptive responses to stress, emotional states, and feeding behav-
ior. Mainly based on recent results, we suggest that voluntary
control processes in the nervous system (underlying decision and
motivation) can be modified to prevail over cerebral autono-
mous control of hunger, compromising survival. To better un-
derstand how the brain implements adaptive decision making to
eat, we will consider the neural circuitry involved in persistent
restrictive food choice, consistently with the fact that an altered
balance between reward and inhibition may favor extremes in
food intake. At a molecular level of analyses, we will then describe
particular mechanisms in the NAc that could underlie the switch
from undereating to overeating in animal models. Finally, we will
show that these brain activities depend on environmental factors
transmitted via the sensory system (e.g., individuals with obesity
vs lean) show differential neural responses to visual and auditory
food cues of high- and low-palatability foods.

Critical brain areas of the CNS control food intake:
autonomous versus voluntary control
The main area of current research remains the delineation of
subcircuits in the hypothalamus that regulate the autonomic
nervous system and control energy homeostasis. In summary
(Schwartz et al., 2000), hypothalamic neurons in the arcuate
nucleus coexpress either neuropeptide (NPY) and agouti
related-peptide (AgRp) or CART and POMC and their respec-
tive activation increases and decreases food intake upon the
influence of numerous messengers, including those secreted
by peripheral organs (leptin, ghrelin, orexin, etc.). In turn,
AgRp-containing neurons in the arcuate nucleus mainly target
neurons in the paraventricular nucleus that express melano-
cortin 4 receptors (MCR4; Garfield et al., 2015). Stimulation
of the MCR4 decreases food intake (Adan and Kas, 2003;
Lubrano-Berthelier et al., 2003; Srinivasan et al., 2004; Kim et
al., 2008).

In parallel, accumulating evidence shows a critical influence of
5-HT on food intake (for review, see Compan, 2013). In the
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hypothalamus, stimulation of the 5-HT2C receptors (5-HTR2C),
likely located on CART/POMC neurons, induced increases in the
�-melanocyte-stimulating hormone release and reduced food in-
take (Heisler et al., 2002). Consistently, lorcaserin, a 5-HTR2C

agonist, appears effective in reducing obesity and possibly abuse
of substances in humans (Higgins et al., 2013; Howell and Cun-
ningham, 2015), in agreement with an enhanced cocaine self-
administration in the 5-HTR2C knock-out (KO) mice (Rocha et
al., 2002). Stimulating 5-HTR1B in the hypothalamus also re-
duces food intake and may favor the inhibitory control of
5-HTR2C (Doslikova et al., 2013). In contrast, activation of the
5-HTR1A and 5-HTR2B in the arcuate nucleus, expressed by
POMC neurons, increases food intake (Yadav et al., 2009; Yadav
et al., 2011). Nonetheless, 5-HTR1A/5-HTR2B could be “modula-
tors” between two “anorectic factors,” leptin and MCR4 in the
hypothalamus. Leptin inhibits 5-HT cells activity in the brains-
tem and thus reduces the inhibitory control of 5-HTR1A on
MCR4 mRNA expression in the hypothalamus, resulting in re-
duced food intake (Kumar et al., 2010).

Autonomous control of food intake appears to depend largely
on the hypothalamus, including likely important downstream
pathways between the parabrachial nucleus and the central nu-
cleus of amydgdala (Carter et al., 2013), but the involvement of
the voluntary system, including the NAc and medial prefrontal
cortex (mFPC), is less clear. However, the critical role of the NAc
and mPFC in motivation and goal-directed behavior suggests
that both structures could trigger increased or decreased intake of
foods that could override actual energy needs (in opposition to
the hypothalamus).

Analyses have been mainly conducted in the NAc and show
that, in addition to the hypothalamus, peptides influence food
intake (e.g., CART, NPY, galanin, melanocortins, glucagon-like
peptide, opioids; Zhang and Kelley, 1997; Jean et al., 2007; Wool-
ley et al., 2007; Picciotto, 2008; Pandit et al., 2011; Reddy et al.,
2014; van den Heuvel et al., 2015). In addition, over the last few
years, dopamine has been often related to “food addiction” and
obesity (for review, see Salamone and Correa, 2013), whereas a
5-HT-dependent addictive pathway in the NAc (Jean et al., 2007)
involving a 5-HTR4 and 5-HTR1B interrelation supports anorexia
(Jean et al., 2012b). Nonetheless, and as observed in the hypothal-
amus for different 5-HT receptor subtypes, stimulation of the
5-HTR6 provokes overeating (Pratt et al., 2009).

A key question is what are the neural substrates that initiate
the transition from transient to persistent restrictive food intake;
that is, those that would abnormally favor an “early decision
making” to not eat. We suspected impaired activity of a network
governing goal-directed behavior (decision making), the ascend-

Figure 1. A working hypothesis: decision making to eat could partly depend on neural path-
ways concerned with dealing with stress. A, Efferent neurons of the mPFC mainly target the DR
(Sesack et al., 1989; Peyron et al., 1998; Vertes, 2004) and contain glutamate (GLU) (Lee et al.,
2003). With regard to the reciprocal descending projections, 5-HT neurons in the mPFC mainly
arise from the DR and send axon collaterals to the NAc (Van Bockstaele et al., 1993). In the mPFC,
60% of pyramidal efferent neurons express both 5-HTR4 and 5-HTR1A mRNA (Feng et al., 2001).
In the mPFC, 5-HTR4 mRNA are mainly expressed by GLU-expressing efferent neurons (Penas-
Cazorla and Vilaro, 2014). In the NAc, 5-HTR4 are localized on GABA-expressing efferent neurons
to the lateral hypothalamus (Jean et al., 2007). In the mPFC, the 5-HTR1A is localized, in the
mPFC, in glutamatergic pyramidal efferent, local GABA-expressing interneurons (Czyrak et al.,
2003; Amargós-Bosch et al., 2004; Santana et al., 2004) and on 5-HT terminals and, in the DR, on
DR 5-HT neurons (Miquel et al., 1992; Pompeiano et al., 1992). B, From the mPFC, 5-HTR4 exert
a tonic positive influence on the firing activity of DR 5-HT neurons in rodents (Lucas and Debon-
nel, 2002; Lucas et al., 2005; Conductier et al., 2006). From the DR and mPFC, 5-HTR1A exert a
negative feedback on DR 5-HT neurons (Sprouse and Aghajanian, 1987; Haj-Dahmane et al.,
1991; Bortolozzi et al., 2004). We found that mPFC 5-HTR4 overexpression induced decreases in
the levels of plasma membrane 5-HT transporter (SERT) and increases in 5-HT release, which

4

activates DR 5-HTR1A that prevent the transition from a transient to a sustained hypophagia
(“early anorexia”), introducing anorexia as an antidepressant (5-HT accumulation resulting
from 5-HTR1A desensitization and SERT reduction; Jean et al., 2012a, unpublished data). In
addition, stimulation of 5-HTR4 in the NAc enhanced the activity of an addictive signaling
pathway (cAMP/PKA/CART), which provokes anorexia and motor hyperactivity (Jean et al.,
2007, 2012b), suggesting that neural substrates of anorexia are included in those of depen-
dence. C, Consistently, acute intraperitoneal administration of cocaine (30 mg/kg) failed to
increase, in the NAc, cAMP levels and pCREB/CREB ratio, in 5-HTR4 KO compared with wild-type
mice. Data are means � SEM, n � 5– 8 mice of both genotypes per each group. A significant
treatment effect is noted: §p�0.05, §§ p�0.01 compared with NaCl, a genotype effect (*p�
0.05) and genotype � treatment interaction, # p � 0.05, ## p � 0.01 after significant two-
way ANOVA. We posit that decreased activity of the mPFC-5-HTR4 (among many other factors)
could favor a subcortical influence; that is, an autonomous control without adaptive decisional
control regardless of the requirement for energy (Compan, 2013).
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ing serotoninergic inputs from the dorsal raphe nucleus to
the mPFC for several reasons: (1) this network supports an adap-
tive “decision” to avoid adverse effect of stress and then depres-
sive states (Amat et al., 2005; Robbins, 2005; Euston et al., 2012);
(2) eating disorders are stress related (for review, see Hardaway et
al., 2015); and (3) eating disorders are often associated with de-
pression (Micali et al., 2015). Our working hypotheses are sche-
matized in Figure 1 (Jean et al., 2012a, unpublished data),
introducing the idea that processes within the voluntary nervous
system (underlying decision, motivation) could be modified to
prevail over a cerebral autonomous control of hunger, compro-
mising survival. This study suggests a primary mechanism that
could support the onset of a persistent hypophagia (“an early
anorexia”) whereby individuals shift from adaptive to persistent
maladaptive food choice as in anorexia nervosa (Walsh, 2013;
Fig. 2).

Neural circuitry involved in persistent restrictive food choice
One of the major unanswered questions about anorexia nervosa
is how to account for its persistence. The salient behavioral fea-
ture of anorexia nervosa is the avoidance of high-fat foods
(Walsh, 2011). This pattern of behavior is consistent across indi-
viduals and not difficult to measure objectively. Even after indi-
viduals with anorexia nervosa have become accustomed to
routinely consuming such foods during treatment in structured
settings such as hospital units and day programs, have gained
significant weight, and have exhibited substantial psychological
improvement, they continue to avoid consuming high-fat food
when they can (Walsh, 2013). This behavior is a substantial con-

tributor to the high rate of relapse after successful acute treatment
in such programs.

The Columbia group has taken a top-down approach in
attempting to understand the neural underpinnings of this
phenomenon, using emerging knowledge from cognitive neuro-
science regarding the acquisition and maintenance of behavior.
Specifically, we have suggested that the dieting behavior of an-
orexia nervosa begins in response to stresses experienced during
adolescence and adulthood (Walsh, 2013) and is initially highly
rewarding because the resultant weight loss is viewed as a rare
accomplishment and evidence of impressive self-control (Stein-
glass et al., 2012b) and it helps the individual to cope with
difficult-to-manage stressors. However, we posit that, over time,
as the dieting behavior is repeated and continues to be reinforced,
at least intermittently, it becomes engrained via the mechanisms
underlying stimulus–response learning; that is, habit formation
(Walsh, 2013). This model suggests that, once the behavior has
become well established, it engages the dorsal striatum, a striatal
subregion associated with habitual behavior (Fig. 2).

To test these hypotheses, we reframed the avoidance of high-
fat foods characteristic of anorexia nervosa as a choice about what
food to eat. We adapted a previously published food choice task
(Hare et al., 2009) and expanded it to include photographs of 76
foods, half of which had a high fat content (�37% of calories
from fat). The task has three phases and was conducted during
fMRI: in the first two phases, subjects are asked to rate each food
on “health” and on “taste” using a 5-point Likert scale. From the
foods rated neutral by that subject on both health and taste, a
“reference food” is randomly chosen. In the third phase of the
task (the choice phase), the subject is shown 75 pairs of photo-
graphs and asked to indicate which of the two foods they prefer,
also using a 5-point Likert scale. The photograph of the reference
food is always shown on the left and the 75 other foods are se-
quentially displayed on the right. At the end of the task, one of the
subject’s actual choices is randomly selected and that food pre-
sented to the subject, who is asked to eat it. On the following day,
the subject is asked to select foods from a multi-item buffet and
eat these foods for lunch.

We have completed an initial study examining 21 young-adult
women hospitalized for treatment of anorexia nervosa and 21
healthy women. As expected, both groups rated the high-fat
foods as significantly less healthy than the low-fat foods. On av-
erage, the controls rated the high-fat and low-fat foods equally
tasty, but the patients rated the high-fat foods less tasty, leading to
a significant group � taste interaction. In the choice phase, pa-
tients with anorexia nervosa chose high-fat foods far less fre-
quently than did the controls, leading to a highly significant
group � choice interaction. Furthermore, the proportion of
times that patients chose high-fat foods versus the reference food
was significantly correlated with the caloric content of the lunch
that they chose to consume the following day. These results indi-
cate that the food choice task effectively captures the salient be-
havioral feature of anorexia nervosa.

Analysis of fMRI data revealed several important findings.
First, during the choice phase, individuals with anorexia nervosa
engaged the dorsal striatum significantly more than did controls,
consistent with our hypothesis. In contrast, there were no differ-
ences between groups in activity in the dorsal striatum during the
health and taste phases. Second, during the choice phase, there
was no difference between groups in activity in the ventral stria-
tum, a subregion associated with goal-directed actions.

The current results are consistent with the possibility that per-
sistent, maladaptive food choice in anorexia nervosa is linked to

Figure 2. Reproduced with permission from Steinglass and Foerde (2015) (and see Foerde et
al., 2015).
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activity in the frontostriatal networks crucial for the development
of habitual behavior. A similar hypothesis has been proposed
regarding substance use and other disorders. The current data
suggest that food choice in anorexia nervosa is not guided simply
by frontal-striatal activity associated with goal-based, rewarding
behaviors and support continued examination of the neural basis
of persistent maladaptive food choice in this disorder.

Altered balance between reward and inhibition may favor
extremes consumption of food
Another key question is what factors, such as personality traits,
predispose to the development of inappropriate restriction of
food intake? The fact that such traits persist after recovery from
the eating disorder suggest that they may be predisposing factors
for the development of chronic eating disorders. Individuals with
anorexia nervosa often report that there is an anxiety-reducing
character to dietary restraint and reduced daily caloric intake
(Vitousek and Manke, 1994; Kaye et al., 2003; Steinglass et al.,
2010), whereas eating stimulates dysphoric mood (Frank and
Kaye, 2012).

Symptomatology of individuals with anorexia nervosa suggest
potential altered balance among limbic, cognitive, and salience
neural circuits. These circuits interact to valuate reward, assess
future consequences of one’s behavior, and integrate and evalu-
ate reward prediction to guide decisions using cognitive control
and inhibition (Phillips et al., 2003). Simply put, patients
with anorexia nervosa have a diminished reward and salience
response and increased cognitive control and inhibition. For ex-
ample, they have long been noted to be anhedonic and ascetic,
able to sustain self-denial of food and most of the comforts and
pleasures in life (Frank et al., 2005). Moreover, patients with
anorexia nervosa have an enhanced ability to delay reward (i.e.,
show less reduction in the value of a monetary reward over time)
compared with healthy volunteers (Steinglass et al., 2012a). They
also tend to be overcontrolled, overconcerned about conse-
quences, and have high punishment sensitivity in the ill and re-
covered states (Claes et al., 2006; Harrison et al., 2010; Harrison et
al., 2011; Jappe et al., 2011; Matton et al., 2013; Glashouwer et al.,
2014).

Data from imaging studies support the argument that en-
hanced cognitive control and ability to delay reward may help to
maintain persistent food restriction. Animal studies show that
the ventral striatum processes motivational aspects of stimuli by
modulating the influence of limbic inputs on striatal activity
(Schultz, 2004; Yin and Knowlton, 2006). In this way, even sec-
ondary rewards such as money activate the ventral striatum pro-
portionally to the reward amount or deviation from an expected
payoff (Montague et al., 2004). Our group (Wierenga et al., 2015)
investigated brain activation during delay discounting in recov-
ered anorexia nervosa when hungry and when satiated (Fig. 3). It
is important to emphasize that hunger influences behavioral
choice in healthy individuals by increasing the appetitiveness of
rewarding stimuli (Goldstone et al., 2009; Wang and Dvorak,
2010; Levy et al., 2013; Tal and Wansink, 2013). Compared with
healthy women, recovered anorexia nervosa patients failed to

Figure 3. A, Left, Region-of-interest analysis showing that, for “immediate reward valua-
tion” within the right ventral striatum, healthy comparison women (CW) had a greater response
when hungry than when satiated; when satiated, remitted anorexia nervosa (RAN) had a
greater response than CW. Right, Cognitive-related region-of-interest analysis for the “all

4

decisions” analysis. Within the right middle frontal gyrus, RAN responded more strongly than
CW for all trials. Error bars represent the SE for each group. *p � 0.05; **p � 0.01. B–D,
Comparison of ventral limbic and dorsal cognitive circuits in CW showing hunger (B) enhances
limbic and reduces cognitive activity whereas satiety (C) reverses these neural processes. How-
ever, in RAN, there is (D) reduced limbic and enhanced cognitive function whether hungry or
satiated (Wierenga et al., 2015).
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increase activation of reward valuation circuitry when hungry
and showed elevated response in cognitive control circuitry re-
gardless of metabolic state (Wierenga et al., 2014). This finding is
consistent with our previous studies (Wagner et al., 2007; Wag-
ner et al., 2010; Bischoff-Grethe et al., 2013) and other studies
showing that limbic regions are underactive for motivational be-
havior in ill anorexia nervosa patients (Zastrow et al., 2009). That
is, hunger does not make salient stimuli more appetitive in an-
orexia nervosa. Moreover, difficulties in valuating emotional sa-
lience may contribute to inabilities to appreciate the risks
inherent in this deadly disorder.

In addition, imaging studies show that altered reward and
salience processing is associated with eating pathology. A grow-
ing body of research (Kaye et al., 2013) suggests that ill and re-
covered anorexia nervosa adults have an enhanced anxiety
response to anticipated food cues and diminished insula and stri-
atal response to receipt of food (Wagner et al., 2008; Cowdrey et
al., 2011; Vocks et al., 2011; Frank et al., 2012; Oberndorfer et al.,
2013a, 2013b). A study of response to pain confirms a mismatch
between anticipation and objective responses in recovered an-
orexia nervosa patients (Strigo et al., 2013). That is, there may be
a reduced response to “code” reward, but an exaggerated antici-
pation that is often anxious in nature. An exaggerated response to
stimulus cues may be a mean to predict and manage the anxiety
elicited by subjectively aversive stimuli, similar to the anticipa-
tory sensitivity linked with stimulus avoidance that is seen in
highly anxious individuals (Simmons et al., 2006).

Finally, based on growing evidence from behavioral and im-
aging studies, individuals with anorexia nervosa could have an
impaired ability to identify the emotional significance of a stim-
ulus but increased traffic in neural circuits concerned with
planning and consequences, which is associated with anxiety
(Wierenga et al., 2014). This overreliance on cognitive brain cir-
cuits involved in linking action to outcome may constitute an
attempt at “strategic” (as opposed to hedonic) means of respond-
ing to reward stimuli.

It is appropriate here to mention the critical implication of
5-HT systems in anxiety that is prevented when 5-HTR1A is ex-
pressed during the early postnatal period (Gross et al., 2002);
conversely, the absence of 5-HTR4 induces anxiety-like behavior
in stressful conditions and leads to decrease in 5-HTR1A levels in
the dorsal hippocampus (Compan et al., 2004; Conductier et al.,
2006). Interestingly, cocaine administration increased the phos-
phorylated CREB (pCREB)/CREB ratio in the NAc in wild-type
mice but not in 5-HTR4 KO animals (Fig. 1), suggesting that these
receptors enhance CREB phosphorylation. Considering that in-
hibition of the transcription factor CREB in the NAc has been
associated with anxiety-like behavior (Barrot et al., 2005), an-
orexia induced by stimulation of 5-HTR4 in the NAc could favor
the “anxiety-reducing character to dietary restraint” (Vitousek
and Manke, 1994; Kaye et al., 2003; Steinglass et al., 2010). In
contrast, reduced activation of 5-HTR4 could enhance anxiety
that is provoked by overeating.

Particular molecular mechanism underlies the transition
from undereating to overeating
The mechanism that underlies the transition from undereating to
overeating depends on a peculiar property of G-protein coupled
receptors (GPCRs) that was described in vitro by Lefkowitz
(2007). Like other GPCRs, 5-HTR4 displays an active form (G-
protein coupled, symbolized by R*) and inactive form (G-protein
uncoupled, R) in the plasma membrane, mostly described in vitro
(Claeysen et al., 2000; Kenakin, 2004), with the unique exception

of the MCR4 that have been shown to be constitutively active in
vivo (Kim et al., 2008). Some GPCRs then can exhibit an auton-
omous capacity (or agonist-independent activity called “consti-
tutive activity”) to regulate their own intracellular signaling
pathways without agonist stimulation. Inhibiting this autono-
mous capacity of 5-HTR4 reduces the activity of their intracellu-
lar signaling pathways and stabilizes their R form. An inverse
agonist inhibits the constitutive activity, and displaces the signif-
icant amount of R* form toward R. Agonists then enrich R*
whereas inverse agonists stabilize R, and antagonists equilibrate
R/R*. However, the physiological consequences of the R*/R tran-
sition (‘toggling’) was unknown. We found that inactivating to-
tally (“silencing”) the NAc-5-HTR4, i.e., injecting a specific
inverse agonist of 5-HTR4 in the NAc of behaving mice, provoked
overeating (competitive antagonist suppressed this response).
We hypothesize that the two extremes of the R*/R of 5-HTR4, in
the NAc correspond to two extremes of feeding patterns: restric-
tive diet and overeating. Our results indicate that silencing
5-HTR4 causes overeating while, as mentioned above, activation
of the main signaling pathway (cAMP/PKA) of 5-HTR4 in the
NAc (R*) favors anorexia (Jean et al., 2007; Jean et al., 2012b;
Laurent et al., 2012). From R* to R, cAMP levels increase then
decrease in the NAc. Analyses of downstream molecular signals
show that silencing NAc-5-HTR4 decreases the levels of cAMP,
decreases CART and increases the mRNA levels of the orexigenic
neuropeptide Y (NPY). siRNA-mediated NPY knock-down in
the NAc suppresses overeating induced by silencing 5-HTR4

(Compan, 2015).
Consistently, humans with obesity display increased levels of

5-HTR4 in the NAc (Haahr et al., 2012), suggesting either an
accumulation of 5-HTR4 in their inactive state and/or an adap-
tive compensatory increase in 5-HTR4 in response to decreases in
5-HT contents that are suspected to be lower in humans with
obesity (Björntorp, 1995; Strömbom et al., 1996). This is consis-
tent with the inverse correlation between 5-HT and 5-HTR4 con-
tents in rats, pigs, and humans (Compan et al., 1996; Ettrup et al.,
2011; Haahr et al., 2014). During one year without bulimic and
purging episodes, the levels of 5-HIAA in CSF were higher in
patients who were suffering from bulimia than in controls (Kaye
et al., 1998). The levels of 5-HIAA are also reduced in CSF of
patients with anorexia nervosa, but normalized over the recovery
of their body weight (Kaye et al., 1984; Kaye and Weltzin, 1991).
Altogether, we suggest that sustaining high constitutive activity of
5-HTR4 induces persistent anorexia, a corollary to our observa-
tion that inhibition of the constitutive activity of 5-HTR4 triggers
excessive food intake. As mentioned above, a maladaptive food
choice is associated with changes in the activity of the dorsal, but
not the ventral striatum. Whether the absence of increased neural

Figure 4. Greater activation in response to high-ED versus low-ED food cues in binge eaters
compared with nonbinge eaters in a conjunction of visual and auditory modalities, in the dorsal
anterior cingulate cortex (dACC). The bar graph shows � estimates for voxels in the dACC in
binge eaters (BE) and nonbinge eaters (non-BE) for high-ED (vs baseline) and low-ED (vs base-
line) (Geliebter et al., 2015).
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activity in the ventral striatum could be associated with low re-
lease of 5-HT and high constitutive activity of 5-HTR4 in patients
with anorexia nervosa is unknown. The following section pro-
vides evidence that, on the other side of the weight spectrum, in
individuals with obesity, there is increased brain activity in the
dorsal striatum in response to high-calorie food cues.

Differential neural responses to visual and auditory food cues
in obesity and binge eating
We compared fMRI brain activity in response to food cues in
obese and lean individuals who had consumed a fixed meal for
lunch 3 h earlier. The obese participants were more likely to show
increased brain activity in the putamen (dorsal striatum) and
ventral tegmental area (VTA, midbrain), two components of the
dopaminergic reward pathway, when shown images (visual cues)
or when hearing words (auditory cues) associated with highly
energy-dense (ED) food cues such as chocolate cake, ice cream, or
french fries compared with low ED foods such as carrots, cucum-
bers, or apples. That this occurred across different modalities of
vision and audition suggests that the effects are independent of
sensory input (Geliebter et al., 2006; Carnell et al., 2014). Greater
putamen activation in obese versus lean women in response to
high-ED compared with low-ED visual stimuli were also noted in
another fMRI study (Rothemund et al., 2007). In addition, in a
PET study, obese (vs lean) individuals showed greater regional
cerebral blood flow in the midbrain in response to a small taste of
a liquid meal (DelParigi et al., 2005).

A greater proportion of obese individuals are binge eaters
compared with those who are lean (de Zwaan, 2001) and binge
eating often precedes obesity (Mussell et al., 1995). When we
compared binge eaters with nonbinge eaters, a similar pattern
emerged as for comparing obese with lean subjects (Geliebter et
al., 2015). That is, there was greater responsively to cues of high-
ED, more palatable foods than low-ED foods, in this case in the
dorsal anterior cingulate (Fig. 4), an area involved in guiding
reward-based decision making (Bush et al., 2002). In addition, in
a PET study, there was more dopaminergic activity in the dorsal
striatum of obese binge eaters than obese nonbinge eaters when a
taste of a preferred food was given after oral methylphenidate to
enhance dopamine levels (Wang et al., 2011).

After Rouen Y gastric bypass surgery to treat obesity, there was
a marked reduction in fMRI activity in the reward areas of the
brain associated with dopaminergic pathways [including the
VTA and putamen, as well as the dorsolateral prefrontal cortex,
ventrolateral and dorsomedial PFC, ventral striatum, and lenti-
form nucleus (i.e., putamen and pallidum)] in response to
high-ED versus low-ED food cues (Ochner et al., 2011; Geliebter,
2013), suggesting that surgery helped to normalize the neural
responses in those with obesity. Surgery may induce hormonal
changes (e.g., orexin, ghrelin, etc.), which could in turn modify
neural activity. The change in neural activity was apparently not
due to weight loss per se because it was noted even after statisti-
cally controlling for weight change and was also seen in the sur-
gery group only compared with a control group who lost weight
by dieting. We have also examined whether the surgery effect
differed between those who binge eat and those who do not, and
found that after surgery, the brain responses were similarly re-
duced in both groups for high-energy food cues. This may be
because gastric restriction from the surgery virtually prevents
binge eating.

Conclusion
In sum, neural substrates of dependence could interfere with
homeostasis and favor maladaptive decision making to not eat or
overeat and eventually lead to eating disorders. The neuronal
network underlying eating behaviors is part of a larger network
implicating reward and decision-making systems that react to
environmental cues. Accordingly, environmental changes (i.e.,
stressors) associated with biological predisposition could alter
motivation and adaptive decision making, including the exces-
sive restriction of food intake or types of foods. If adaptive
responses to stress depend on the 5-HT system, then eating dis-
orders could emerge when 5-HT neurons reach the limit of their
adaptive capacities. We suggest that a predominance of a cortical
control reflects an adaptive process to prevent “negative emo-
tional states” when facing an acute stress at the onset of anorexia
nervosa, which could be supported by a shared signal foul-up
with drugs of abuse. In the face of chronic stress, limits of this
adaptive process could “submerge” cortical control and “release
the influence of the subcortical areas” such as the NAc (autono-
mous control without adaptive decisional control), in which un-
controlled oscillating changes in common molecule levels
(cAMP, CREB: all controlled by GPCRs) could lead to an anar-
chic consumption of foods (from anorexia to bulimia and/or
binge eating).
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