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Abstract of the Thesis

An Empirical Study of Statistical Financial

Models: Portfolio Optimization and Evaluation

by

Weikang Fan

Master of Science in Statistics

University of California, Los Angeles, 2016

Professor Mark Stephen Handcock, Chair

This paper provides a review of statistical models in finance for portfolio optimiza-

tion and portfolio performance evaluation. Based on the assumptions of modern

portfolio theory, we discuss five portfolio optimizing models. We then classify

portfolio performance evaluation measures into four generalized categories, in-

cluding the most common performance/risk ratios, the incremental return, the

preference-based measures, and the market timing measures. Under each cate-

gory we review the typical measures with their advantages and drawbacks, and

discuss approaches to refine on the drawbacks.

In the empirical study section that follows we build five portfolios based on the

portfolio optimizing models. Eleven performance evaluation measures are applied

to the portfolios, and are compared according to their effectiveness.
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CHAPTER 1

Introduction

The literature on portfolio management goes back to the 1950s. Economist Harry

Markowitz introduced modern portfolio theory in a 1952 essay, which established

the mathematical framework for the portfolio management models in later years.

Modern portfolio theory assumes that returns follows a Gaussian distribution,

measures return by expected values and quantifies risk by variance. The defect

is obvious: these assumptions does not match the real world. In reality the mar-

ket is highly chaotic and unlikely to follow a Gaussian distribution. The returns

may not be symmetrically distributed; even if it is, the investors may not have

a symmetrical preference over the returns. Investors are usually risk-averse, and

concerned more about the losses than the gains. We naturally conceive risk as

asymmetric, which brings about the needs for new risk measures without a fixed

assumption of distribution.

In this thesis, we start from the classical Markowitz model, and discuss sev-

eral other widely used portfolio optimizing methods proposed in later studies.

We will evaluate the performance of models through both the basic expected

value-variance scheme and some improved measures, which work in general non-

Gaussian cases.

This chapter briefly introduces the background of the thesis. Chapter 2 will

present the idea of diversification and how it helps us to invest portfolios and

reduce risk. We discuss five portfolio optimizing models: the classical Markowitz

model, the single index model, the constant correlation model, the multigroup
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model, and the multi-index model. For each model, we will show the algorithms

to find the optimal portfolio.

Chapter 3 summarizes the four categories of portfolio performance evaluation

measures.By category we first review the basic measures and their strengths and

weakness. Then we discuss their later modifications and extensions that improve

the basic measures and correct their defects.

Chapter 4 conducts an empirical study on some of the portfolio optimizing models

and performance evaluation methods discussed in Chapter 2 and 3. We collect

historical return rates for multiple stocks and the market index in two periods,

using data in the first period to construct the optimal portfolios and data in the

later period to evaluate the portfolio performance. We analyze the performance

of different optimizing models and the effects of selected evaluation measures.

Chapter 5 is the conclusion. It provides a brief summary of the empirical study

results, reviews the limitations of the study, and discusses the future work that

can improve upon the limitations.
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CHAPTER 2

Portfolio Optimization

2.1 Basic Setup

2.1.1 Assumptions

Throughout this paper we follow two assumptions:

Assumption 1. Investors are risk-averse and rational; their goal of portfolio

optimization is maximizing the expected return of the portfolio while trying to

minimize the risk at the same time. This is the basic assumption of Modern

Portfolio Theory.

Assumption 2. Short sales are allowed. Short selling a stock is to sell a stock

that you don’t own. When short sales are allowed, investors are able to achieve a

broader range of portfolio combinations. Thus for generalization we assume short

sales are allowed in this paper.

2.1.2 Concepts

(1) Return rate and its mean and variance Suppose that Pit is stock i’s

price at time t. Then the return of the stock i at time t is

Rit =
Pit − Pi,t−1

Pi,t−1

.

3



The mean and the variance of stock i’s return are:

R̄i =
1

n

n∑
t=1

Rit, σ2
i =

1

n− 1

n∑
t=1

(Rit − R̄i)
2.

The covariance between the returns of stocks i and j is:

cov(Ri, Rj) = σij =
1

n− 1

n∑
t=1

(Rit − R̄i)(Rjt − R̄j).

The correlation coefficient ρ between stocks i and j is:

ρij =
cov(Ri, Rj)

σiσj
.

(2) Risk Risk is the possibility that the return of an investment will be different

than expected. Investors are always glad to have a return higher than expected,

thus risk usually just indicates the likelihood of losing some or all of the origi-

nal investment. There are many kinds of risks; below we introduce some risks

associated with investing in the stock markets:

Systematic Risk It may also be called market risk. It is the risk for the

entire market to decline.

Unsystematic Risk It refers to the risk that a single stock may decrease

in value independent of the entire stock market.

Business Risk It is the risk that a company fails to stay in business.

Regulatory Risk It is the risk that the changes in relevant regulations may

influence the stock value and even the entire stock market.

Opportunity Cost Risk It refers to the risk that investors may be able to

achieve a higher rate of return by using the money to make another investment

instead of the original one.
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Liquidity Risk It is the risk associated with the marketability of the stock.

A stock would be riskier when it is less marketable than others.

In financial theories we suppose that there is a positive relationship between risk

and return. If an investor is willing to take more risk on an investment, he or she

will expect a higher potential return in compensation for the higher risk.

The concept of risk is not as explicit as return. The return rate has a clear and

unique mathematical definition, but this does not go for the risk. Actually there

are various kinds of risk measures, which will be discussed in later sections. A

very common and easy-to-compute risk measure is the standard deviation of the

stock’s historical return. The standard deviation of stock i is denoted by

σi =
√
var(Ri) = { 1

n− 1

n∑
t=1

(Rit − R̄i)
2}

1
2

(3) Investing a portfolio Portfolio is the term for a group of assets. For

simplicity here we just consider the case where all the assets are stocks. Suppose

that the portfolio is constituted by N stocks, and the fraction of available funds

invested in stock i is xi. Then the expected return of the portfolio is defined as:

E(Rp) = E(
N∑
i=1

xiRi) =
N∑
i=1

xiR̄i

. The variance of the portfolio is:

var(Rp) = var(
N∑
i=1

xiRi) =
N∑
i=1

N∑
j=1

xixjρijσiσj

.

(4) Risk-free rate Risk-free rate of return, denoted by Rf , is the return rate

of an investment with zero risk. Theoretically it is the minimum return of an

investment; in practice we usually use the interest rate on the U.S. Treasury bill

as the risk-free rate for models on U.S. financial market.
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Table 2.1: An example of diversification

Investment
Market Condition Mean

Return

Standard

DeviationGood Average Poor

Stock 1 0.15 0.10 0.05 0.10 0.041

Stock 2 0.05 0.10 0.15 0.10 0.041

Portfolio 0.10 0.10 0.10 0.10 0

(5) Market return Market return, denoted by Rm, is the return rate of the

market portfolio. Theoretically market portfolio is defined as the portfolio consist-

ing of all assets in the market, with weights to be the proportion of asset market

value relative to the total market value. In practice we usually use the returns of

stock market indexes, like S&P500 and NASDAQ, as the market return.

2.2 Diversification and Equal Allocation Portfolio

The well-known proverb ”Don’t put all your eggs in one basket!” conveys the idea

of ”diversification”. When applied to investment decision making, it suggests us

to invest in a portfolio rather than a single asset. ”Diversification” is a key concept

of risk management and a very useful method to reduce risk.

To see this, suppose that we have two stocks, stock 1 and stock 2; we build a stock

portfolio constituted by 50% in stock 1 and 50% in stock 2. Suppose that the stock

market have 3 kinds of future states, good, average, and poor. The return rates

and the standard deviations of the stocks and portfolios are presented in Table

2.1. The mean return is defined as

R̄ =
RGood +RAverage +RPoor

3
,

and the standard deviation is defined as

σ =
1

3

∑
s

(Rs − R̄)2, s ∈ {Good, Average, Poor}.
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From Table 2.1 we can find that while stock 1, stock 2, and the portfolio share

the same mean return of 0.10, they have different standard deviations, i.e. risks.

σportfolio = 0 < σ1 = σ2 = 0.041

The portfolio has lower standard deviation than both stock 1 and stock 2; by

investing in the portfolio rather than single stocks we diversify away the risk. Since

investors are assumed to be risk-averse, they would always prefer the portfolio

rather than stock 1 and stock 2.

Based on the idea of diversification we choose equal allocation as the first way to

optimizing the portfolio. Suppose that we have a given set of N stocks, then the

allocation vector is

x = (x1, · · · , xN) = (
1

N
, · · · , 1

N
).

It is a very rough optimizing method, and we mainly use the equal allocation

portfolio as a contrast to be compare with other well-designed portfolios.

2.3 Classical Markowitz Model

By changing the allocation vector x = (x1, · · · , xN) we can obtain numerous

portfolios constituted by a given set of N stocks. We plot the expected return

E(Rp) against the standard deviation σp =
√
var(Rp) for all the possible portfolios

in a graph, then each portfolio is represented by a point in the graph. The

boundary of the cloud of points is called portfolio possibilities curve.

The efficient frontier is defined as the set of points representing portfolios with

the highest E(Rp) for a give value of σp. It is actually the upper half of the port-

folio possibilities curve.

Figure 2.1 plots the efficient curve and the portfolio possibilities curve. The

green points represents the portfolios constituted by the give set of assets; the red

7



Figure 2.1: Classical Markowitz model: efficient frontier and portfoliio possibilities

curve

curve represents the efficient frontier, and the blue curve represents the possibili-

ties curve (its upper part is overlapped with the red curve).

Mathematically the efficient frontier is the set of portfolios that satisfy the con-

strained minimization problem:

min
1

2
σ2

such that: ∑
i

xi = 1,

E =
∑
i

xiR̄i,

σ2 =
N∑
i=1

N∑
j=1

xixjρijσiσj,

where σ2 is the variance of a portfolio on the frontier with expected return E.
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Suppose that the risk-free rate is Rf . Draw a line that passes the point (0, Rf )

and is tangent to the efficent frontier, then the tangency point represents the

optimal portfolio. The steps for calculating the optimal portfolio are:

Step 1. Compute the excess return vector R = (R̄1 −Rf , · · · , R̄m −Rf )
T ;

Step 2. Compute the variance-covariance matrix Σ = (σij)N×N ;

Step 3. Compute Z = Σ−1R;

Step 4. Compute xk = zk∑
i zi

for k = 1, · · · , N , then x = (x1, · · · , xN) is the

allocation vector of the optimal portfolio.

2.4 Single Index Model

The single index model states that

Rit = αi + βiRmt + εit,

where Rit is the return of stock i at time t and Rmt is the return of the market at

time t. Assume

E(εi) = 0, var(εi) = σ2
εi
, E(εiεj) = 0,

cov(Rm, εi) = 0, var(Rm) = σ2
m, E(Rm) = R̄m.

The steps for calculating the optimal portfolio are:

Step 1. Run regression Rit = αi + βiRmt + εit for every stock i;

Step 2. Compute the excess return to beta =
R̄i−Rf
βi

for every stock i;

9



Step 3. Compute the the cut-off point C∗

C∗ =
σ2
m

∑N
j=1(R̄j −Rf )βj/σ

2
εj

1 + σ2
m

∑N
j=1 β

2
j /σ

2
εj

;

Step 4. Rank stocks based on the excess return to beta ratio. Stocks with excess

return to beta greater than C∗ will be held long; stocks with excess return to beta

smaller than C∗ will be held short.

Step 5. Compute zi = βi
σ2
εi

(
R̄i−Rf
βi
− C∗);

Step 6. Compute xk = zk∑
i zi

for k = 1, · · · , N , then x = (x1, · · · , xN) is the

allocation vector of the optimal portfolio.

2.5 Constant Correlation Model

The constant correlation model is similar to the single index model. It assumes

that the pairwise correlation coefficients of different stocks are equal. The average

correlation coefficient is defined as

ρ =
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

ρij,

where ρij is the correlation coefficient between stock i and stock j.

The steps for calculating the optimal portfolio are:

Step 1. Calculate the variance-covariance matrix Σ = (σij)N×N for all the N

stocks;

Step 2. From Σ we can obtain standard deviation of stock i, σi =
√
σii, and the

correlation coefficient between stock i and stock j, ρij =
σij
σiσj

;

10



Step 3. Compute the excess return to standard deviation =
R̄i−Rf
σi

for every

stock i;

Step 4. Compute the average correlation coefficient ρ = 1
N(N−1)

∑N
i=1

∑N
j=1,j 6=i ρij;

Step 5. Compute the cut-off point C∗

C∗ =
ρ

1− ρ+Nρ

N∑
j=1

R̄j −Rf

σj
;

Step 6. Rank stocks based on the excess return to standard deviation ratio.

Stocks with excess return to standard deviation greater than C∗ will be held long;

stocks with excess return to standard deviation smaller than C∗ will be held short.

Step 7. Compute zi = 1
(1−ρ)σi

(
R̄i−Rf
σi
− C∗);

Step 8. Compute xk = zk∑
i zi

for k = 1, · · · , N , then x = (x1, · · · , xN) is the

allocation vector of the optimal portfolio.

2.6 Multigroup Model

In the multigroup model we suppose that the stocks are grouped by industry. For

simplicity, we discuss the case of two industries, where stocks 1, 2, 3 belong to

industry 1 and stocks 4, 5, 6 belong to industry 2. We assume that the correlations

within the first group are the same for all pairs in group 1 (call it ρ11), and similarly

the correlations within the second group are the same for all pairs in group 2 (call

it ρ22). We also assume that the correlations for all pairs of stocks between the

first group and the second group are the same (call it ρ12). Namely we have

Group1: ρ11 = ρ12 = ρ13 = ρ23

Group 2: ρ22 = ρ45 = ρ46 = ρ56

11



Between Group 1 and Group 2: ρ12 = ρ14 = ρ15 = ρ16 = ρ24 = ρ25 = ρ26 = ρ34 =

ρ35 = ρ36

Thus the original correlation matrix ρ equals

ρ =



1 ρ11 ρ11 ρ12 ρ12 ρ12

ρ11 1 ρ11 ρ12 ρ12 ρ12

ρ11 ρ11 1 ρ12 ρ12 ρ12

1 ρ11 ρ11 1 ρ22 ρ22

1 ρ11 ρ11 ρ22 1 ρ22

1 ρ11 ρ11 ρ22 ρ22 1


We use ρ̄ to represent the group correlation matrix:

ρ̄ =

ρ11 ρ12

ρ12 ρ22


Suppose that there are p groups, and we have Ni stocks in group i. The steps for

calculating the optimal portfolio are:

Step 1. Compute the excess return = R̄i − Rf and standard deviation σi for

every stock i;

Step 2. Compute the group correlation matrix ρ̄ =

ρ11 ρ12

ρ12 ρ22

;

Step 3. Calculate the matrix A =

1 + N1ρ11
1−ρ11

N1ρ12
1−ρ11

N2ρ12
1−ρ22 1 + N2ρ22

1−ρ22



Step 4. Calculate the vector C =

∑N1

i=1
R̄i−Rf
σi(1−ρ11)∑N2

i=1
R̄i−Rf
σi(1−ρ22)



Step 5. Calculate the matrix Φ = A−1C =

Φ1

Φ2


12



Step 6. Compute zi = 1
σi(1−ρkk)

[
R̄i−Rf
σi
−

∑p
g=1 ρkgΦg for each stock i and the

group k it belongs to;

Step 9. Compute xi = zi∑
i zi

for i = 1, · · · , 6, then x = (x1, · · · , x6) is the

allocation vector of the optimal portfolio.

2.7 Multi-index Model

In the multi-index model we continue to suppose that the stocks are grouped by

industry. For simplicity, we discuss the case of two industries, where stocks 1, 2

belong to industry 1 and stocks 4, 5 belong to industry 2. We assume that there

is a group index for each group; the stocks in a group are linearly related to the

corresponding group index, and the group index is linearly related to the market

index. The model is:

Ri = αi + βiIj + εi

Ij = γj + bjRm + cj

where

E(εiεk) = 0 for i = 1, · · · , n, k = 1, · · · , n, i 6= k

E(cjcl) = 0 for j = 1, · · · , p, l = 1, · · · , p, j 6= l

E(εicj) = 0 for i = 1, · · · , n, j = 1, · · · , p

According to the assumptions above we can derive the variance and covariances

for the stocks.

The variance for stock i, denoted by σ2
i , is:

σ2
i = β2

i σ
2
j + σ2

εi
, and σ2

j = b2
jσ

2
m + σ2

cj

⇒σ2
i = β2

i (b
2
jσ

2
m + σ2

cj
) + σ2

εi
.

13



Suppose that stock i and k belong to the same group j. Then the covariance for

stock i and k denoted by σik is:

σik = βiβk(b
2
jσ

2
m + σ2

cj
).

Suppose that stock i and k belong to different groups: stock i belongs to group j,

and stock k belongs to group l. Then the covariance for stock i and k denoted by

σik is:

σik = βiβkbjblσ
2
m.

Then we solve the problem below for an optimal portfolio:

R̄1 −Rf = z1σ
2
1 + z2σ12 + z3σ13 + z4σ14

R̄2 −Rf = z1σ21 + z2σ
2
2 + z3σ23 + z4σ24

R̄3 −Rf = z1σ31 + z2σ32 + z3σ
2
3 + z4σ34

R̄4 −Rf = z1σ41 + z2σ42 + z3σ43 + z4σ
2
4

The steps for calculating the optimal portfolio are:

Step 1. Run the regressions below for every stock i in every group j:

Ri = αi + βiIj + εi,

Ij = γj + bjRm + cj

;

Step 2. Calculate the matrix M :

M =

1 +
β2
1

σ2
ε1

[σ2
c1

+ b2
1σ

2
m] +

β2
2

σ2
ε2

[σ2
c1

+ b2
1σ

2
m] [

β2
1b1b2
σ2
ε1

+
β2
2b1b2
σ2
ε2

]σ2
m

[
β2
3b1b2
σ2
ε3

+
β2
4b1b2
σ2
ε4

]σ2
m 1 +

β2
3

σ2
ε3

[σ2
c2

+ b2
2σ

2
m] +

β2
4

σ2
ε4

[σ2
c2

+ b2
2σ

2
m]

 .
Step 3. Calculate the vector R:

R =

∑2
i=1

(R̄i−Rf )βi
σ2
εi∑4

i=3
(R̄i−Rf )βi

σ2
εi

 .
14



Step 4. Calculate the vector Φ:

Φ =

Φ1

Φ2

 = M−1R.

Step 4. Calculate zi for i = 1, 2, 3, 4:

z1 = β1
σ2
ε1

[
R̄1−Rf
β1
− [(σ2

c1
+ b2

1σ
2
m)Φ1 + b1b2σ

2
mΦ2]]

z2 = β2
σ2
ε2

[
R̄2−Rf
β2
− [(σ2

c1
+ b2

1σ
2
m)Φ1 + b1b2σ

2
mΦ2]]

z3 = β3
σ2
ε3

[
R̄3−Rf
β3
− [(σ2

c2
+ b2

2σ
2
m)Φ2 + b1b2σ

2
mΦ1]]

z4 = β4
σ2
ε4

[
R̄4−Rf
β4
− [(σ2

c2
+ b2

2σ
2
m)Φ2 + b1b2σ

2
mΦ1]]

Step 6. Compute xi = zi∑
i zi

for i = 1, · · · , 4, then x = (x1, · · · , x4) is the

allocation vector of the optimal portfolio.
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CHAPTER 3

Portfolio Evaluation

3.1 Basic Concepts

In section 2.1.1 we assume that investors’ goal of portfolio optimization is max-

imizing the expected return of the portfolio while trying to minimize the risk at

the same time. Thus when we evaluate the performance of a portfolio, we are

actually evaluating the return of a portfolio relative to its risk. Compared with

return, which has a explicit definition making it easy to calculate, risk is rather

difficult to measure. Various risk measures leads to various portfolio evaluation

methods, which can be generalized into 4 categories as follows:

Performance/Risk Ratios Evaluate the portfolio by the ratio of dividing the

performance by a risk measure. A typical measure is Sharpe’s ratio.

Incremental Return The portfolio performance is represented by an absolute

return obtained from subtracting a penalty from the measure of wealth. A typical

measure is Jensen’s alpha.

Preference-based Measures We design individualized portfolio performance

measures by introducing utility functions to represent the investors’ risk prefer-

ences. A typical measure is generalized Sharpe ratio.
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Market Timing Market timing is the strategy to make investment decisions

by attempting to predict the future market movements. Typical measures are

the Merton-Henriksson market timing measure and the Treynor-Mazuy market

timing measure.

In the following sections we will discuss these portfolio evaluation methods in

detail.

3.2 Performance/Risk Ratios

3.2.1 Sharpe Ratio and Adjusted Sharpe Ratio

The Sharpe ratio is defined as the ratio of the mean return in excess of the risk

free rate divided by its standard deviation:

Sharpe ratio =
R̄p −Rf

σp
.

The higher the Sharpe ratio, the better the portfolio performance. Sharpe ratio

exhibits obvious advantages. From its definition we can see that Sharpe ratio uses

the standard deviation of returns to measure total portfolio risk, which assumes

normally distributed returns. And to calculate Sharpe ratio we only need the

expected return and the standard deviation of the portfolio. Sharpe ratio is easy

to understand and calculate; although it is proposed as early as 1966, it is still

widely used nowadays.

However, Sharpe ratio shows many weaknesses as well. First, it is only useful in

ranking different portfolios; the value itself it is meaningless. Second, the ratio

relies on a constant risk-free rate and does not introduce any benchmark portfolio.

Third, when Sharpe ratio is negative, it will increase along with the risk, which is

hard to interpret. Fourth, returns may deviate from normal distribution.

To refine on the weaknesses some statistical adaptations are proposed in later

years. For example, Israelsen’s modified Sharpe ratio exponentiates the denom-
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inator with the excess return divided by its absolute value and thus widens the

range of values. Some other improved measures, such as adjusted for skewness

Sharpe ratio and adjusted for skewness and kurtosis Sharpe ratio, introduce higher

moments to solve the non-Gaussian distribution problem.

3.2.2 Sharpe Ratio Based on VaR and CVaR

VaR refers to the risk measure “Value at Risk”, and CVaR refers to the measure

Conditional Value at Risk.

Given a confidence level α ∈ (0, 1), suppose that the loss of a portfolio is L, then

Value at Risk (VaR) at confidence level α is defined as the smallest number l such

that the probability of loss exceeding l is at most (1− α), namely

V aRα(L) = inf{l ∈ R : P (L > l) ≤ 1− α}.

For instance, given confidence level α = 5%, VaR is the minimum loss among the

worst 5% of the cases.

In original Sharpe Ratio we use the standard deviation to measure risk. As for

Sharpe ratio based on Value at Risk, VaR is the risk indicator instead. To calculate

Sharpe ratio based on VaR, we divide the VaR by the initial value of the portfolio

and use this percent of loss as the denominator in the Sharpe ratio. This measure

refines the original Sharpe ratio on its weakness of unable to distinguish between

upside and downside risks.

On the other hand, VaR has its own drawbacks too. First, it is sensitive to the

confidence level α. Second, VaR has many local extremes resulted in unstable

ranking criterion. Third, it does not measure losses exceeding VaR.

Conditional Value at Risk (CVaR), also known as expected shortfall and expected

tail loss, refines VaR on its third drawback. It is the probability for a specific loss

to exceed VaR. Suppose α ∈ (0, 1) and L ∈ Lp(F ) is the payoff of a portfolio at
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some time in the future, then CVaR is defined as

CV aRα =
1

α

∫ α

0

V aRγ(L)dγ

= − 1

α
(E[L1{L ≤ lα}] + lα(α− P [L ≤ lα]))

where lα = inf{l ∈ R : P (L ≤ l) ≥ α)} and 1 is the indicator function.

CVaR can be used as an alternative of VaR that is more sensitive to the tail of the

loss distribution. Compared with Sharpe ratio based on VaR, Sharpe ratio based

on CVaR used CVaR as the risk measure in the denominator instead of VaR.

3.2.3 Treynor Ratio and Treynor-Black Ratio

Before introducing Treynor ratio, we first explain a new measure of risk: the beta.

Beta measures the volatility, or systematic risk, of a portfolio in comparison to

the entire market. To calculate beta, we consider the following regression of the

portfolio P’s excess return on market excess return:

Rp −Rf = αp + βp(Rm −Rf ) + εp.

The beta is the coefficient of market return in the regression, so it is also called

“beta coefficient”, and can be presented as

β =
cov(Rp, Rm)

var(Rm)
=
σim
σ2
m

= ρim.

The Treynor ratio, also known as the reward-to-volatility ratio, is a risk-adjusted

measurement of a return, based on systematic risk. It is the excess returns over

the risk-free rate per unit of additional risk compared with the market. Mathe-

matically it is defined as

Treynor ratio =
R̄p −Rf

βp
.

The higher the Treynor ratio, the better the portfolio performance.

We see that Treynor ratio is very similar to Sharpe ratio. The only difference is

19



that Sharpe ratio uses standard deviation to measure the total risk, while Treynor

ratio uses beta to measure the systematic risk. Therefore Treynor ratio shares

some limitations with Sharpe ratio: it is simply a ranking criterion with mean-

ingless value, and it relies on the choice of market return rate. Compared with

Sharpe ratio, an additional drawback is that portfolios with different total risk but

equal systematic risk will have the same rank. On the other hand, an additional

strength is that the risk measure beta it uses allows it to evaluate an aggregation

of portfolios, while Sharpe ratio can only be used to evaluate a single portfolio.

A modified version, Treynor-Black ratio (also known as Treynor-Black Appraisal

ratio), consider the alpha coefficient in the regression at the numerator instead

of excess return, and the standard deviation of the residuals at the denominator

instead of beta:

Treynor −Black ratio =
αp
σ(εp)

.

Alpha is an alternative measure of excess return, and we will discuss its advantages

later.

3.2.4 Other measures

Omega Ratio Given a threshold return target r, omega ratio is defined as the

probability weighted ratio of gains versus losses with respect to r, namely

Ω(r) =

∫∞
r

(1− F (x))dx∫ r
−∞ F (x)dx

where F is the cumulative distribution function of the return. The higher the

omega ratio is, the more gains over losses the portfolio produces, and the better

the portfolio performance is. When r is zero, the omega ratio is equivalent to

the Bernardo-Ledoit gain-loss ratio, which is defined as the expectation of the

positive part of the returns divided by the expectation of the negative part of

returns. Earlier we mentioned that the Sharpe ratio is hard to interpret when

it is negative; an advantage of the omega ratio is that it utilizes the information
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discarded by Sharpe ratio, i.e. the negative part of returns.

Sortino Ratio Sortino ratio, like the omega ratio, refines Sharpe ratio on its

inability to utilize the negative part of returns, but in a different way.

First we introduce semivariance, which is defined as

semivariance = E[(Rp − R̄p)
21{Rp ≤ R̄p}],

and semi-deviation is the square root of the semivariance. Semivariance, like VaR

and CVaR, measures the downside risk (risk of the actual return being below the

expected return).

Sortino ratio, as a modification of the Sharpe ratio, is defined as

Sortino Ratio =
R̄p − T
DR

,

where T is s target return rate and DR is the target semi-deviation, i.e.

DR =
√
E[(Rp − T )21{Rp ≤ T}].

Sharpe ratio and Sortino ratio would give similar results under a symmetrical

return distribution, but differ greatly when the return distribution is skewed.

Gini Ratio The Gini ratio, as another modification of Sharpe ratio, uses Gini

coefficient as the risk measure. Suppose that we have the historical return rate

for the portfolio in time t = 1, · · · , T , the Gini coefficient is defined as

G =

∑T
i=1

∑T
j=1 |Rp,i −Rp,j|
2T 2R̄p

.

And Gini ratio is the ratio of excess return from the risk-free rate divided by the

Gini coefficient:

Gini ratio =
R̄p −Rf

G
.

Gini coefficient measures the spread of return rates among themselves, and does

not rely on any fixed central point like the mean or a target return rate. Therefore

Gini ratio is more informative than Sharpe ratio when the return has a non-

Gaussian distribution.
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Minimax Ratio Minimax ratio is the ratio of expected excess return over risk-

free rate divided by the maximum loss. As Sharpe ratio measures risk with stan-

dard deviation, the square root of the variance, it can be seen as based on a l2

risk measure. Then the minimax ratio is based on a l∞ risk measure. Minimax

ratio has an obvious and severe weakness that it is easily impacted by outliers.

Information Ratio Information ratio, also known as the appraisal ratio, is the

ratio of expected excess return over a benchmark divided by the standard devia-

tion of the excess return. The Treynor-Black ratio we discussed earlier is a special

case of information ration using the market return as the benchmark.

The information ratio mainly has two disadvantages. First, it relies on the sen-

sitivity of the portfolio return to the benchmark. If the portfolio return is not

sensitive to benchmark, there will be little variation. Second, it treats the upside

risk and downside risk from the benchmark equally. There is an information ra-

tio based on semivariance that refines original information value on the second

disadvantage.

3.3 Incremental Return

3.3.1 Jensen’s Alpha and Its Variations

Jensen’s alpha is a measure of the marginal return. To calculate it, we consider

the regression below:

Rp −Rf = αp + βp(Rm −Rf ) + εp.

Then the αp coefficient is Jensen’s alpha.

Alpha, as the excess return of a portfolio relative to the benchmark market return,

evaluates the performance of an investment against a market index. When alpha

is positive, the portfolio outperforms the market, and when alpha is negative the
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portfolio underperforms he market.

Like Sharpe ratio Jensen’s alpha is a very classical and popular measure, which is

easy to calculate and interpret but has many weaknesses as well. First, it relies on

the choice of the benchmark, the market portfolio. Second, it does not measure

risks.

An adaption of Jensen’s alpha, the total risk alpha, brings risk in to account.

Given a target risk σp, we first build a portfolio BP with risk σp by combining the

market portfolio and the risk-free asset. Then we build a portfolio P with a risk

of σp too. Then the total risk alpha of portfolio P is RP − RBP , where portfolio

BP acts as the benchmark.

Another adaption is standardized Jensen’s alpha, which is defined as the original

Jensen’s alpha divided by its standard deviation. The advantage of standardized

Jensen’s alpha is that when two portfolios share the same Jensen’s alpha, we can

use standardized Jensen’s alpha to rank them.

3.3.2 M2 Index

The M2 index, also called risk-adjusted performance (RAP), measures the incre-

mental return relative to market risk.

For a portfolio P with expected return R̄p and standard deviation σp, and a mar-

ket portfolio with expected return R̄m and standard deviation σm, we build a

portfolio BP with risk σm by combining the portfolio P and the risk-free asset.

Suppose that the expected return of portfolio BP is RBP , then the M2 index of

portfolio P is

RBP −Rm =
σm
σp
R̄p + (1− σm

σp
)Rf − R̄m =

σm(R̄p −Rf )− σp(R̄m −Rf )

σp

When we use M2 index to rank portfolios, the higher the M2 index value, the

better the portfolio performance. Although there is a benchmark market portfolio

involved, the benchmark is just used to scale the return and does not affect the
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final ranking of portfolios. Mathematically M2 index is is a linear function of the

Sharpe ratio; thus it has the same drawbacks as Sharpe ratio.

3.4 Preference-based Measures

Before explaining preference-base measures, we first introduce utility functions.

Suppose that X is a consumption set. A consumer’s utility function u : X → R

represents a preference relation on X:

∀x, y ∈ X, u(x) ≤ u(y) if and only if the consumer wants y at least as much as x.

Utility functions map the consumption set to real number set, and help us quantify

consumers’ preference while keeping the preference order. The simplest ways

to build preference-based measures is to directly introduce utility functions to

represent investors’ preference. Suppose that the investor of a portfolio has utility

function u(·), then we can define a new measure as

E[u(R̄p −Rf )]

σp
.

The new measure keeps the general form of Sharpe ratio and maximizes the utility

of the investor instead of the expected portfolio return.

A typical preference-based measure, the generalized Sharpe ratio suggests an ex-

ponential utility function to represent investors’ preference and relates it to the

Sharpe ratio. The preference-based measures that directly introduce utility for

preference like this share a common drawback: the complexity in computation.

When we calculate the measures, we have to solve a utility maximizing problem

first; this can be troublesome for some utility functions.
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3.5 Market Timing

3.5.1 Treynor-Mazuy Market Timing measure

The Treynor-Mazuy market timing regression is

Rp,t+1 −Rf = ap + bp(Rm,t+1 −Rf ) + Λp(Rm,t+1 −Rf )
2 + vt+1

where the coefficient Λp measures the market timing ability. In this case Λp > 0

indicates market timing ability: when the market moves, the portfolio return goes

up or down in the same direction as the market, but by a disproportionate amount.

When Λp > 0, although different with Jensen’s alpha ap can be used for portfolio

evaluation as well. A positive ap usually indicates a well-designed portfolio.

3.5.2 Merton-Henriksson Market Timing Measure

The Merton-Henriksson market timing regression is

Rp,t+1 −Rf = ap + bp(Rm,t+1 −Rf ) + Λpmax(Rm,t+1 −Rf , 0) + ut+1

where the coefficient Λp measures the market timing ability.

When Λp = 0, ap is Jensen’s alpha and bp is the beta we use to measure risk. Here

Λp 6= 0 indicates market timing ability: when the market moves, the portfolio

return moves in the same direction as the market by a proportional amount.

The term max(Rm,t+1, 0) is a dummy variable that takes different values when

the market goes up and down, and it allows the investor to choose between an

upside beta and a downside beta. When the market goes up, investors will choose

the higher upside beta, as more funds are invested in the risky asset; when the

market goes down, investors will choose the lower downside beta, as more funds

are invested in the risk-free asset.
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CHAPTER 4

Empirical Study

4.1 Data Selection

I collect the historical monthly return rates of 25 stocks and a market index

S&P 500 during the period January 2008 to December 2015 from Yahoo Finance

(http://finance.yahoo.com). I use the data from January 2008 to December 2012

to find the optimal portfolios and the data from January 2013 to December 2015

to evaluate the performance of the portfolios.

The 25 stocks belongs to 5 sectors: Consumer Goods, Utility, Basic Materials,

Healthcare, and Industrial Goods, with 5 stocks in each of the above 5 sectors.

The stock names and their notations are listed by sector in the Table 4.1.

4.2 Portfolio Optimization

I build five portfolios as follows:

Equal Allocation Portfolio (denoted by EA) Invest a proportion of 1/25 =

0.04 in each of the 25 stocks; the expected portfolio return is 0.01093141, and the

standard deviation is 0.06553477.

Classical Markowitz Model (denoted by CMM) With the risk-free rate

to be Rf = 0.001, an optimal portfolio is built based on the classical Markowitz

model. The allocation proportions, the expected return, and the standard devia-
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Table 4.1: Names and notations of the market index and 25 stocks

Consumer Goods Utility

Unilever PLC (ULVR.L) AGL Energy Ltd (AGL.AX)

Apple Inc (AAPL.MX) Algonquin Power (AQN.TO)

Associated British Foods PLC (ABF.L) Centrica PLC (CNA.L)

Anglo-Eastern Plantations PLC (AEP.L) Cesc Ltd (CESC.BO

Archer-Daniels-Midland Company (ADM) NTPC Ltd (NTPC.NS)

Industrial Goods Healthcare

Bodycote PLC (BOY.L) Unilever PLC (ULVR.L)

ACC Ltd (ACC.BO) ACADIA Pharmaceuticals Inc. (ACAD)

Caterpillar Inc. (CAT) Achillion Pharmaceuticals, Inc (ACHN)

Deere & Company (DE) Advanced Proteome Therpt (APC.V)

Escorts Ltd (ESCORTS.NS) Alnylam Pharmaceuticals, Inc. (ALNY)

Basic Materials Market Index

Anglo American PLC (AAL.L) S&P 500 (ˆGSPC)

Chambal Fertilisers (CHAMBLFER.NS)

Deepak Fertilisers (DEEPAKFER.NS)

Dhanuka Agritech Ltd (DHANUKA.BO)

E I du Pont de Nemours (DUPP.PA)
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Table 4.2: Classical Markowitz model: optimal portfolio summary

Consumer Goods Utility Basic Materials

ULVR.L 0.37612 AGL.AX 0.59375 AAL.L -0.21998

AAPL.MX 0.30785 AQN.TO -0.03586 CHAMBLFER.NS 0.18719

ABF.L -0.08085 CNA.L 0.33619 DEEPAKFER.NS 0.08192

AEP.L 0.49109 CESC.BO -0.22167 DHANUKA.BO 0.29952

ADM -0.16029 NTPC.NS -0.37603 DUPP.PA -0.14567

Healthcare Industrial Goods
Expected

Return
0.04421ABT.L -0.37682 BOY.L -0.02706

ACAD 0.07868 ACC.BO 0.12973

ACHN 0.10063 CAT 0.42189
Standard

Deviation
0.06819APC.V -0.22148 DE -0.56243

ALNY 0.14760 ESCORTS.NS -0.12404

tion of this optimal portfolio is shown by Table 4.2.

Single Index Model (denoted by SIM) With the risk-free rate to be Rf =

0.001, an optimal portfolio is built based on the single index model. The alloca-

tion proportions, the expected return, and the standard deviation of this optimal

portfolio is shown by Table 4.3.

Constant Correlation Model (denoted by CCM) With the risk-free rate

to be Rf = 0.001, an optimal portfolio is built based on the constant correla-

tion model. The allocation proportions, the expected return, and the standard

deviation of this optimal portfolio is shown by Table 4.4.

Multigroup Model (denoted by MGM) With the risk-free rate to be Rf =

0.001, an optimal portfolio is built based on the multigroup model. The alloca-

tion proportions, the expected return, and the standard deviation of this optimal
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Table 4.3: Single index model: optimal portfolio summary

Consumer Goods Utility Basic Materials

ULVR.L 0.16809 AGL.AX 0.15390 AAL.L -0.13734

AAPL.MX 0.20237 AQN.TO 0.02342 CHAMBLFER.NS 0.01406

ABF.L 0.32474 CNA.L 0.12024 DEEPAKFER.NS -0.01914

AEP.L 0.06751 CESC.BO -0.08011 DHANUKA.BO 0.19602

ADM -0.09586 NTPC.NS -0.12137 DUPP.PA 0.06629

Healthcare Industrial Goods
Expected

Return
0.0258ABT.L 0.10961 BOY.L 0.05787

ACAD 0.01788 ACC.BO 0.07548

ACHN 0.04772 CAT 0.00560
Standard

Deviation
0.04780APC.V -0.01589 DE -0.13366

ALNY -0.02163 ESCORTS.NS -0.02579

portfolio is shown by Table 4.5.

4.3 Portfolio Evaluation

4.3.1 General Analysis

Using the allocations proportions of each portfolio calculated by historical returns

from January 2008 to December 2012, I calculate the historical returns of the

five portfolios from January 2013 to December 2015, which are demonstrated in

Figure 4.1 along with the market index S&P 500. In Figure 4.1, the equal allo-

cation portfolio, optimal portfolio of classical Markowitz model, optimal portfolio

of single index model, optimal portfolio of constant correlation model, optimal

portfolio of multigroup model, and market index are denoted by EA, CMM, SIM,

CCM, MGM, and market respectively.
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Table 4.4: Constant correlation model: optimal portfolio summary

Consumer Goods Utility Basic Materials

ULVR.L 0.23567 AGL.AX 0.20023 AAL.L -0.14996

AAPL.MX 0.34560 AQN.TO 0.00057 CHAMBLFER.NS -0.01821

ABF.L 0.53738 CNA.L 0.08196 DEEPAKFER.NS -0.07260

AEP.L 0.08523 CESC.BO -0.16227 DHANUKA.BO 0.34836

ADM -0.30437 NTPC.NS -0.32543 DUPP.PA 0.09380

Healthcare Industrial Goods
Expected

Return
0.04055ABT.L 0.06028 BOY.L 0.08332

ACAD 0.01965 ACC.BO 0.09625

ACHN 0.06113 CAT 0.04483
Standard

Deviation
0.08006APC.V -0.07457 DE -0.05438

ALNY -0.07749 ESCORTS.NS -0.05499

Figure 4.2 plots the 25 stocks and the five portfolios we build in the last sec-

tion in an expected value versus risk diagram. From Figure 4.2 we can that the

multigroup model has the highest expected return along with medium level of

risk; the constant correlation models has about the same risk as the multigroup

model, but a lower expected return; the classical Markowitz model has a medium

expected return with the highest risk; the single index model and the equal allo-

cation portfolio have rather low expected returns and risks.

Figure 4.3 plots the cumulative returns of the optimal portfolios and the market

index. Here we use the market index as a benchmark and the roughly-designed

equal allocation portfolio as a contrast. The four well-optimized portfolios, CMM,

SIM, CCM, and MGM, are supposed to outperform both the market and the EA.

From Figure 4.3 we can see that all the four well-optimized portfolios outperforms

the market and the EA, and EA outperforms the market. The classical Markowitz
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Table 4.5: Multigroup model: optimal portfolio summary

Consumer Goods Utility Basic Materials

ULVR.L 0.30601 AGL.AX 0.05419 AAL.L -0.08803

AAPL.MX 0.32790 AQN.TO -0.05395 CHAMBLFER.NS 0.01659

ABF.L 0.52800 CNA.L -0.04683 DEEPAKFER.NS -0.02177

AEP.L 0.13523 CESC.BO -0.16583 DHANUKA.BO 0.35032

ADM -0.14021 NTPC.NS -0.31419 DUPP.PA 0.14293

Healthcare Industrial Goods
Expected

Return
0.03663ABT.L 0.15043 BOY.L 0.02387

ACAD 0.03082 ACC.BO 0.01273

ACHN 0.06706 CAT -0.02085
Standard

Deviation
0.06769APC.V -0.02924 DE -0.14189

ALNY -0.01813 ESCORTS.NS -0.10516

model remains below the market and the equal allocation portfolio for a long time

but eventually grows beyond them. This evidence verifies the effectiveness of

the four portfolio optimizing models; and even that of the EA which is simply

supported by the idea of diversification.

Among the four well-optimized portfolios, MGM outperforms all the others; CCM

is next in rank below MGM, followed by SIM and CMM. CMM, as mentioned

above, goes beyond EA in the last minute, and appears to be the worst model.

Based on the observations above, I think the the multigroup model has the best

performance. It is not surprising, as stocks we select are naturally grouped into

5 different sectors, which meets the assumption of the multigroup model. I will

apply different measures to evaluate the portfolio performance and test my idea.

Before proceeding to applying the portfolio performance measures, I test the

normality of the portfolios returns first. Figure 4.4 plots the densities of the five

portfolios and the market index; Figure 4.5 to 4.10 gives the Q-Q plots of the five
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Figure 4.1: Historical returns of the five portfolios
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portfolios and the market index. From Figure 4.5 we can find that EA, market,

and CCM have nearly symmetrical distributions, while CMM, MGM, and SIM

are left-skewed. According to the Q-Q plots none of the return data appears

to be normally distributed, which is confirmed by the Shapiro-Wilk test results.

Therefore besides some classical performance measures that assume normality, I

also try measures that work with non-normality.

4.3.2 Portfolio Performance Measures

I apply 11 performance measures to the five portfolios. The values of the measures

corresponding to different portfolios are organized in Table 4.6.
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Table 4.6: Portfolio Performance Measures

EA CMM SIM CCM MGM

Sharpe ratio 0.40140 0.25332 0.54836 0.44184 0.46897

Adjusted Sharpe ratio 1.46358 0.84781 2.25423 1.80457 1.85284

Sharpe ratio based on VaR

(α = 5%)
0.32668 0.17082 0.50425 0.39104 0.43707

Sharpe ratio based on CVaR

(α = 5%)
0.24995 0.14290 0.37396 0.27972 0.30205

Treynor ratio 0.01705 0.05074 0.03538 0.03706 0.02991

Treynor-Black ratio 0.22244 0.20330 0.43806 0.34012 0.34690

omega ratio

(market index as benchmark)
1.81067 1.58301 3.07498 2.44187 2.85415

Gini ratio 0.01173 0.01534 0.02871 0.02870 0.03305

Jensen’s alpha 0.00582 0.02566 0.02012 0.02541 0.02478

Treynor-Mazuy

Market Timing

measure

alpha 0.01070 0.02934 0.02864 0.03556 0.03644

beta 0.96464 0.69636 0.95728 1.13408 1.47727

gamma -4.73026 -3.60803 -9.12157 -10.86752 12.27421

Merton-Henriksson

Market Timing

Measure

alpha 0.01454 0.02620 0.03817 0.04686 0.04687

beta 1.27110 0.63305 1.65285 1.96071 2.29633

gamma 0.63850 0.00734 -1.40532 -1.67084 -1.69646
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Figure 4.2: Expected returns and risks of stocks and portfolios
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4.3.3 Performance Evaluation

Table 4.6 includes the results of all the portfolio performance measures that help

us evaluate in depth. Below is the ranking of the portfolios by each measure, from

the best to the worst:

Sharpe ratio SIM, MGM, CCM, EA, CMM.

Adjusted Sharpe ratio SIM, MGM, CCM, EA, CMM.

Sharpe ratio based on VaR SIM, MGM, CCM, EA, CMM.

Sharpe ratio based on CVaR SIM, MGM, CCM, EA, CMM.
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Figure 4.3: Cumulative returns of the five portfolios and the market
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Treynor ratio CMM, CCM, SIM, MGM, EA.

Treynor-black ratio SIM, MGM, CCM, EA, CMM.

Omega ratio SIM, MGM, CCM, EA, CMM.

Gini ratio MGM, SIM, CCM, EA, CMM.

Jensen’s alpha CMM, CCM, MGM, SIM, EA.

Treynor-Mazuy market timing All the gammas are negative, indicating no

market timing ability. The ranking of alpha is: MGM, CCM, CMM, SIM, EA.

Merton-Henriksson market timing All the gammas are non-zero, indicat-

ing market timing ability. The ranking of alpha is: MGM, CCM, SIM, CMM, EA.
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Figure 4.4: Densities of portfolio returns
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From the ranking above we can find that Sharpe ratio, adjusted Sharpe ratio,

Sharpe ratio based on VaR, Sharpe ratio based on CVaR, Treynor-black ratio

and omega ratio provide the same ranking. Gini ratio is slightly different from

them by exchanging the rank of MGM and SIM. The results of these measures

corroborate my findings in the general analysis; we can conclude that they are

effective measures. On the other hand, the Treynor ratio and Jensen’s alpha

provide completely different ranking compared with the others. They rank the

CMM portfolio with poorest performance to be the best, and the best MGM, SIM

portfolios to be the worst. We conclude that they are ineffective measure.

Ruling out the ineffective measures and leaving the special market timing measures
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Figure 4.5: Q-Q plot of market
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Figure 4.6: Q-Q plot of EA
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Figure 4.7: Q-Q plot of CMM
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Figure 4.8: Q-Q plot of SIM

alone, we grade the portfolios from point 5 to point 1 as they are ranked from the

highest to the lowest. Then the portfolio scores from the highest to the lowest

are: SIM, MGM, CCM, EA, CMM.

We can see that the majority of effective measures rank SIM higher than MGM

because they consider the risk-aversion of investors. Compared with MGM that

has the highest expected return and a medium level of risk, investors would prefer

SIM with the lowest expected return but also the lowest risk among the four well-

optimized portfolios.

An exception is Gini ratio: it does not take risk-aversion into account. It simply

calculates the dispersion, and assign equal weights to the differences between any
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Figure 4.9: Q-Q plot of CCM
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Figure 4.10: Q-Q plot of MGM

two return rates. Thus Gini ratio does not worry about the rather high risk of

MGM and puts it in the first place.

As for the market timing ability, the two market timing measures provide opposite

results. Since Goetzmann et al. [2000] show that Merton-Henriksson market

timing measure gives weak results if it is applied to monthly results instead of

a daily timer, and the historical return data used in this thesis is on a monthly

basis, I tend to trust the result of Treynor-Mazuy market timing measure, which

indicates no market timing ability for any of the five portfolios.
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CHAPTER 5

Conclusion and Future Work

In the thesis we discuss five portfolio optimizing models and four categories of

portfolio performance measures. Based on the historical monthly return of 25

selected stocks and the market index S&P 500 from January 2008 to December

2015, we construct optimal portfolios based on classical Markowitz model, single

index model, constant correlation model, and multigroup model, with an equal

allocation portfolio as contrast.

We evaluate the performance of these portfolios, utilizing eleven measures from

three categories, and analyze the portfolio performance as well as the effective-

ness of evaluation measures. The single index model and the multigroup model

work the best: if the investors’ are risk averse, they may prefer the single sindex

model; if they do not concern about losses more than gains, they may prefer the

multigroup model.

The classical Markowitz works the worst, and it even underperforms the equal

allocation portfolio. The constant correlation model does not have a good perfor-

mance, the reason of which may be a mismatch between the model’s assumptions

and the reality. I think the reason is that stocks from the same sector do not share

a constant correlation; it is confirmed through calculating the covariance matrix

of the stocks.

As for the performance evaluation measures, Sharpe ratio, adjusted Sharpe ratio,

Sharpe ratio based on VaR, Sharpe ratio based on CVaR, Treynor-black ratio,

omega ratio, and Gini ratio are verified to be effective, while the Treynor ratio
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and Jensen’s alpha work badly on ranking the portfolio performances. However,

we can not claim that they are useless measures, since the choice of the most

appropriate measure depends on the investment environment involved.

Figure 5.1: Densities of portfolio returns: removing the data during market crash
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For example, the stock market crash from January 2008 to February 2009

caused by the global financial crisis significantly impacts the result of the em-

pirical study. After removing the data during the market crash, I optimize the

portfolios again and obtain quite another result.

In this case, all the portfolio returns have right-skewed distributions, as shown by

Figure 5.1. Compared with Figure 4.4, we can see that the market crash creates a

long tail on negative returns, making the original distributions left-skewed. When

we remove the part of data during the crash, the long tail disappears and distri-

butions become right-skewed.

Figure 5.2 plots the cumulative historical returns of portfolios and the market;

we observe that the classical Markowitz model has an overwhelming superiority
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Table 5.1: Portfolio Performance Measures: removing the data during market

crash

EA CMM SIM CCM MGM

Sharpe ratio 0.39737 0.57392 0.56540 0.39111 0.38774

Adjusted Sharpe ratio 1.44992 2.45336 2.39645 1.60177 1.54799

Sharpe ratio based on VaR

(α = 5%)
0.32185 0.60265 0.52514 0.33171 0.36394

Sharpe ratio based on CVaR

(α = 5%)
0.24681 0.39643 0.39210 0.24093 0.23792

Treynor ratio 0.01688 0.04287 0.02850 0.02086 0.01902

Treynor-Black ratio 0.21665 0.47508 0.44945 0.23720 0.22231

omega ratio

(market index as benchmark)
1.78542 3.74307 2.64240 1.91029 2.17044

Gini ratio 0.01154 0.04927 0.02239 0.01482 0.01732

Jensen’s alpha 0.00569 0.03551 0.01350 0.01001 0.01059

Treynor-Mazuy

Market Timing

measure

alpha 0.01057 0.03904 0.01840 0.01149 0.01381

beta 0.96745 1.14393 0.83010 0.97604 1.28040

gamma -4.71729 -2.87367 -4.91534 -0.61226 -2.341731

Merton-Henriksson

Market Timing

Measure

alpha 0.01439 0.03998 0.02341 0.01225 0.013457

beta 1.27312 1.26230 1.19860 1.02864 1.32156

gamma -0.63681 -0.27503 -0.74676 -0.10416 -0.13210
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Figure 5.2: Cumulative returns of the five portfolios and the market: removing

the data during market crash

0

1

2

3

4

D
e
c
 1

2

J
a
n
 1

3

F
e
b
 1

3

M
a
r 

1
3

A
p
r 

1
3

M
a
y
 1

3

J
u
n
 1

3

J
u
l 
1
3

A
u
g
 1

3

S
e
p
 1

3

O
c
t 
1
3

N
o
v
 1

3

D
e
c
 1

3

J
a
n
 1

4

F
e
b
 1

4

M
a
r 

1
4

A
p
r 

1
4

M
a
y
 1

4

J
u
n
 1

4

J
u
l 
1
4

A
u
g
 1

4

S
e
p
 1

4

O
c
t 
1
4

N
o
v
 1

4

D
e
c
 1

4

J
a
n
 1

5

F
e
b
 1

5

M
a
r 

1
5

A
p
r 

1
5

M
a
y
 1

5

J
u
n
 1

5

J
u
l 
1
5

A
u
g
 1

5

S
e
p
 1

5

O
c
t 
1
5

N
o
v
 1

5

D
e
c
 1

5

J
a
n
 1

6

Date

C
u

m
u

la
ti
ve

 R
e

tu
rn

Legend CCM CMM EA market MGM SIM

over the others. Figure 5.3 shows that the SIM, CCM and MGM portfolios have

similar expected returns and risks, while the CMM portfolio exhibits extremely

high expected return and risk, doubling those of the other portfolios.

Table 5.1 shows that all the measures share a coherent ranking of models, namely

all the measures are effective. The classical Markowitz model has the best perfor-

mance, and the single index model is ranked the second, followed by the multi-

group model and the constant correlation model. The ranks of MGM and CCM

differ among different measures, but they are always worse than CMM and SIM.

In this example, by removing the data during the market crash we obtain totally

different results of portfolio performance and effective portfolio evaluation mea-

sures. What stays the same is the result of market timing measures; they still

indicate no market timing ability for any of the portfolios.

This thesis have several limitations. First, none of the optimal portfolios has

good market timing. Second, the thesis only discusses the classical models and
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Figure 5.3: Expected returns and risks of stocks and portfolios: removing the data

during market crash
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measures. Third, the entire thesis lies on a probabilistic frame work; all the risk

measures are probabilistic in nature, not structural. In a structural model, the

system components and their relationships are modeled in Monte Carlo simula-

tions. A change in component X will cause the change of component Y, the change

on Y then causes changes on Z, and so on. Probabilistic models, such as all the

models in this thesis, just consider the likelihood of losses, but does not analyze

the underlying structure that triggers the losses.

In the future we can apply some newly issued optimizing models and performance

evaluation measures, especially structural models. It may help us design better

portfolio strategies with good market timing.
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