UC Irvine UC Irvine Previously Published Works

Title

Rapid sample preparation of dissolved inorganic carbon in natural waters using a headspace-extraction approach for radiocarbon analysis by accelerator mass spectrometry

Permalink

https://escholarship.org/uc/item/5pv2h12f

Journal

Limnology and Oceanography: Methods, 12(4)

ISSN

1541-5856 1541-5856

Authors

Gao, Pan Xu, Xiaomei Zhou, Liping <u>et al.</u>

Publication Date

2014-04-11

DOI

10.4319/lom.2014.12.174

Peer reviewed

Rapid sample preparation of dissolved inorganic carbon in natural waters using a headspace-extraction approach for radiocarbon analysis by accelerator mass spectrometry

Pan Gao^{1,2*}, Xiaomei Xu², Liping Zhou^{1,3}, Mary A. Pack², Sheila Griffin², Guaciara M. Santos², John R. Southon², and Kexin Liu⁴

¹Laboratory for Earth Surface Processes, Department of Geography, and Institute of Ocean Research, Peking University, Beijing, 100871, China

²Keck Carbon Cycle AMS Laboratory, Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA ³Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao, China

⁴State Key Laboratory of Nuclear Science and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China

Abstract

We have established a high-throughput headspace-extraction method for the preparation of dissolved inorganic carbon (DIC) from water samples for radiocarbon (¹⁴C) analysis by accelerator mass spectrometry (AMS). Readily available septum-sealed screw cap vials were used for sample processing. Headspace-equilibrated gases with sample CO₂ were transferred using a syringe and cryogenically purified on a vacuum line for graphitization and ¹⁴C-AMS measurements in the Keck Carbon Cycle AMS facility at the University of California, Irvine (KCCAMS/UCI). Systematic investigations have shown that the extraction process does not introduce contaminants that could bias the ¹⁴C measurements and that the ¹⁴C results for standards are consistent with their consensus values. Large numbers of duplicate measurements have established a precision of 1.7‰ for modern samples with an average background of ~43,400 radiocarbon year for graphite target samples > 0.3 mg carbon. Seawater samples collected from Newport Beach, California, and processed using the headspace-extraction method yielded ¹⁴C results in excellent agreement with published values obtained with conventional DIC stripping ($\leq \pm 2\sigma$). The simplicity of our headspace-extraction approach allows its easy adaptation/implementation to any isotope lab, as we demonstrate here by a series of tests carried out at Peking University, China (PKU). With this innovative method, just 30 mL seawater per sample is needed. Coupled with the sealed tube zinc reduction method, 15 water samples can be prepared and graphitized in 1 day.

The oceans play an important role in the global climate system because of their large heat and carbon storage capacities. A significant amount of carbon in the ocean is stored as dissolved inorganic carbon (DIC) (36,000 Pg carbon; Druffel et al. 2008), which is also the most active part of the marine carbon pool. Measurements of natural radiocarbon (¹⁴C) in seawater DIC can help us understand oceanic carbon cycling, air-sea exchange, and global-regional ocean circulation (Stuiver et al.

*Corresponding author: E-mail: pangao@pku.edu.cn

Acknowledgments

DOI 10.4319/lom.2014.12.174

1983; Broecker et al. 1985; Key et al. 1996, 2002, 2004; Matsumoto 2007). Bomb-produced ¹⁴C has also been studied to quantify air–sea gas exchange rates, to evaluate the oceanic uptake of anthropogenic carbon dioxide (CO_2), to constrain the residence times of ocean carbon pools, as well as to reveal water mass-mixing processes such as seasonal upwelling (Peng et al. 1998; Kumamoto et al. 2002; Sweeney et al. 2007; Druffel and Griffin 2008; Hinger et al. 2010; Santos et al. 2011; Graven et al. 2012). To obtain high-resolution DI¹⁴C records in such studies, small sample volumes and rapid preparation of DIC samples for ¹⁴C measurements would be very helpful.

The amount of seawater needed for DI¹⁴C measurements has decreased from 250-300 L (for liquid scintillation counting; Bhushan et al. 1994) to about 250 mL (recommended for conventional ¹⁴C-AMS; McNichol et al. 1994; Kwong et al. 2004) with the development of accelerator mass spectrometry (AMS). In the conventional method for preparing water sam-

We thank the W.M. Keck Foundation and the University of California, Irvine for support. This work is partly supported by the National Natural Science Foundation of China (No. 91228209). Laboratory assistance from Eric G. Salamanca and Xingfang Ding is appreciated. P. Gao was funded by the China Scholarship Council (No. 2010601209).

ples for DIC ¹⁴C-AMS measurements (McNichol et al. 1994) the DIC in acidified water samples is stripped out as CO₂ using an inert nitrogen (N₂) carrier gas on a vacuum line and then converted to graphite. This method can fully extract (> 98%) the DIC from water samples and provides an excellent precision of 2.0‰ and 0.2‰ ($\pm 1\sigma$ standard deviation [stdev]) for Δ^{14} C (as defined in Stuiver and Polach 1977) and δ^{13} C analyses, respectively (Santos et al. 2011). However, the technique requires substantial effort, and on average, 45 min is needed for extracting one sample. As a significant amount of water is frozen down in the cold traps during stripping, the stripping probe and cold traps must be changed for each sample, which limits throughput to 5-6 samples per day, not including sample CO₂ graphitization. Furthermore, the size of the stripping probe itself (McNichol et al. 1994) is optimized for water samples of about 250 mL, which limits the application of the conventional method in small water samples such as pore water. Pack et al. (2011) developed a compact stripping probe with good efficiency (99.1 \pm 2.2%, n = 8) that requires only 60 mL water, but the extraction procedure still involves cleaning and flushing between samples, that limits sample processing throughput.

The headspace-extraction method is widely used for DIC δ^{13} C analyses. Torres et al. (2005) reported an online method using a Finnigan GasBench-II headspace autosampler coupled with a Finnigan DELTA plus XL isotope-ratio mass spectrometer (IRMS) for precise δ^{13} C measurements of DIC. Molnár et al. (2013) developed a similar headspace-extraction technique for DI¹⁴C analysis of groundwater. In the method of Molnár et al. (2013), after acidifying the water sample, CO₂ in the headspace is carried out using a helium (He) flow through a double-hole needle on a GasBench autosampler, and then transferred to either an Automated Graphitization Equipment (AGE) or a gas ion source AMS (Mini Radiocarbon Dating System MICADAS) directly for 14C analysis. For AGE 14C analyses, 10 mL groundwater is needed and 80% to 85% of the DIC from acidified water samples can be extracted with a precision of 3.4% (± 1 σ) for modern water samples. The gas ion source ¹⁴C-AMS analysis only requires 1 mL water and can extract > 90% of the DIC within 20 min, but the precision is only 10% $(\pm 1\sigma)$ for modern samples. This lower precision is mainly due to the reduced sample sizes (10-100 µg C) that yield lower currents in the AMS, rather than the extraction method itself.

In this study, a high-throughput method for preparing DIC samples for high-precision ¹⁴C-AMS analysis was developed on the basis of the headspace-extraction approach of Molnár et al. (2013). The new method uses a syringe to transfer headspace-equilibrated gases containing the sample CO_2 to a vacuum line. This isolates the acidified sample water from the vacuum line during CO_2 purification, and minimizes the time and effort involved in sample extraction and subsequent cleaning. Although the extraction efficiency is low (46.6 ± 3.9%; *n* = 10), 0.33–0.37 milligram carbon (mg C) can be extracted from as little as 30 mL surface seawater (or 0.44–0.50 mg C from 45 mL

surface seawater) using one 60 mL syringe extraction, which is sufficient for high-precision ¹⁴C-AMS measurements. The isotopic fractionation associated with the partial extraction of DIC is small ($\leq 0.6\%$) and is fully corrected by simultaneous measurements of ¹³C/¹²C and ¹⁴C/¹²C in the AMS system (Beverly et al. 2010). The online ¹³C/¹²C measurement also corrects for other isotopic fractionations that can occur during graphitization and inside the AMS ion source (Santos et al. 2007), which is the key for obtaining high-precision DI¹⁴C measurements (Liu et al. 2007; Xu et al. 2007).

Materials and procedures

Standards and seawater samples

DIC standards were prepared by dissolving ¹⁴C free calcite, an in-house coral standard (CSTD coral from Ellen Druffel), or IAEA-C2 travertine in acidified and stripped seawater following an established protocol (Hinger et al. 2010). They were used to optimize the procedure and test the precision and accuracy of the new method. Calcite is also used as a ¹⁴C-blank for DIC processing and graphitization background corrections. The average fraction modern (Fm; as defined in Stuiver and Polach. 1977) value for 262 ¹⁴C measurements of the conventionally processed DIC coral standard at the Keck Carbon Cycle AMS facility at the University of California, Irvine (KCCAMS/UCI) from January 2006 to September 2011 is 0.9445 ± 0.0018 (1 σ stdev). The IAEA consensus Fm value for IAEA-C2 is 0.4114 \pm 0.0003 (*n* = 64) (Rozanski et al. 1992), whereas the average value for 100 ¹⁴C measurements of the conventionally processed (Santos et al. 2004) DIC IAEA-C2 at KCCAMS from August 2008 to September 2010 is 0.4118 ± 0.0035 (1o stdev).

Six surface seawater samples collected in 2011 were analyzed for this study using both the conventional stripping and headspace methods. These seawater samples were used to verify our procedure's reproducibility and accuracy. In addition, 12 stored seawater samples collected during 2008-2009, which were previously measured by the conventional method (Santos et al. 2011) as part of a project to monitor coastal upwelling and local seawater geochemistry, were analyzed using the new headspace technique. All seawater samples were collected from the Newport Beach Pier (NBP) within the Southern California Bight (SCB; 33°36'21"N, 117°55'52"W), using methods described in Hinger et al. (2010).

Procedure

The procedure of the new headspace-extraction method can be divided into two steps. During the first step, the water sample is acidified under an ultra-high purity (UHP) He or N₂ atmosphere and heated to 75°C for rapid equilibration and high CO₂ distribution toward the headspace. In step 2, the CO₂ produced is extracted using a syringe, purified on a vacuum line, and reduced to graphite.

Water preparation and acidification

Readily available 60 mL I-Chem septum-sealed screw cap vials (Fisher #05-719-432; with an actual volume of 64 mL)

pre-cleaned with 10% hydrochloric acid (HCl) and baked at 550°C for 4 hours, with Teflon on silicone septa (Fisher #05-719-410), are used for sample processing. An additional black Viton septum (Sigma Aldrich #27355) is added inside the screw cap (Fig. 1, E + D setup in Table 1), as the original I-Chem septum is permeable to CO₂ gas. The vials are flushed upside down with UHP He gas in a He glove bag to remove air and then capped tight. A 30 mL BD Luer-Lock tip syringe (Fisher #14-829-48) with a BD 23 g, 2.5 cm needle (Fisher #14-826A) is flushed 3 times with UHP N_2 before removing a water sample from a storage bottle, and injecting it into the I-Chem vial through the septum. During the injection, an overpressure will gradually build up in the vial. To fully inject the 30 mL sample water into the sealed He filled 64 mL vial, one has to push hard on the syringe piston for about 30 seconds. This involves some effort, but the advantage of creating an overpressure is that during the subsequent headspace-extraction, gases in the over-pressured headspace will automatically expand into the extraction syringe. After water samples are prepared, a BD 1 mL syringe (Fisher #148232F) attached with a BD 23 g, 2.5 cm needle is used for adding 0.5 mL 85% phosphoric acid (H₃PO₄) to each sample. The samples are then gently shaken to mix the acid and placed on a 75°C heating block for 2 hours.

To prepare DIC standards, 4-8 mg carbonate material is ground in an agate motor, weighed out in a small flat-bottomed Pyrex tube, and placed inside the screw cap of an I-Chem vial. After being flushed with He together with the I-Chem vial in a UHP He glove bag, the screw cap is attached to the vial sealing the small Pyrex tube with standard inside the vial. The vial is then upended to spill out the carbonate, 30 mL stripped seawater (made by bubbling N₂ gas through previously acidified seawater for > 15 min in a N₂ glove bag) is injected and the prepared DIC standards are put through the same acidification and preparation procedures as the water samples.

CO₂ extraction and graphitization

The gases (including CO_2) in the vial headspace are extracted using a syringe, injected into a vacuum line and

Rapid ¹⁴C-DIC AMS sample preparation

Fig. 1. Schematic diagram of the headspace-extraction I-Chem vial setup.

Table 1. Stopper/septum combinations used in this study and their associated problems and test results. For septum combinations, such as "E + D," the first "E" was in contact with the water and the second "D" was above "E" as shown in Fig. 1. The Teflon side of the Teflon on silicone septum was placed facedown. ^{*14}C results obtained using septum indicated with asterisks are discussed in the text.

	Re	sult	Problems			
Septum [†]	Yield	¹⁴ C result	Leakage	Dead carbon contamination		
A	Good	Lower	No	Yes		
B*	Lower	Good	Yes	No		
B + C*	Good	Good	No	No		
D + C	Good	Lower	No	Yes		
E + D*	Good	Good	No	No		

[†]A: Blue butyl rubber stopper (Bellco Glass #2048-11800); B: White Teflon on silicone septum (Fisher #05-719-432, came with I-Chem vials); C: PTFE rubber septum (Thermo Scientific #PI-12422); D: Blue Teflon on silicone septum (Fisher #05-719-410, replacement for septum B that was no longer available during the later stage of this study); E: Black Viton septum (Sigma Aldrich #27355).

cryogenically purified before graphitization. The headspaceextraction schematic diagram is shown in Fig. 1. First, a 1-way stopcock (Discofix #455980) and a BD 23 g, 2.5 cm needle are attached to a 60 mL BD Luer-Lock tip syringe (Fisher #14-820-11). Then, the entire volume of the syringe is flushed three times and filled with 60 mL of UHP N₂, which is fully expelled just before the needle penetrates the septum of the I-Chem vial. The over-pressured gases in the vial headspace automatically expand into the syringe. To extract as much headspace gases as possible, the syringe piston is pulled back to the 60 mL scale mark and held for about 20 seconds before the stopcock is closed. For a low DIC concentration (ie, 500 μ mol L⁻¹ DIC) sample, a second or third extraction can be performed if more CO₂ is required.

The extraction syringe is attached to a cryogenic purification vacuum line (Xu et al. 2007) through a septum (Alltech #AT6518) in an Ultra-Torr fitting (Swaglok #SS-4-UT-3) and sample gases are released into the vacuum line after opening the stopcock. Sample CO_2 is cryogenically purified through a dry ice/ethanol trap and collected in a liquid nitrogen trap, and the purified CO_2 is converted to graphite using the sealed tube zinc reduction method described by Xu et al. (2007). The graphite/iron mixture is pressed into an aluminum target holder and analyzed for ¹⁴C at the KCCAMS facility (Southon et al. 2004; Beverly et al. 2010) or at the Peking University Accelerator Mass Spectrometry facility (PKUAMS) (Liu et al. 2007).

Assessment

A series of experiments were conducted to optimize the new method, including tests of different types of septum, heating temperature, heating time, water volume (water/headspace ratio), number of headspace-extractions, and headspace pressure. Then the efficiency, background, accuracy, and precision were evaluated by comparing the DI¹⁴C results of the standards and seawater samples to their consensus values or to DI¹⁴C results previously obtained by the conventional method. Finally, the utility of the new method was demonstrated at a second AMS laboratory at Peking University, China (PKU).

Septum contamination prevention

The choice of septa for the I-Chem vials is crucial for this technique. Septa must be impermeable to CO_2 and must also be resistant to acid vapor under elevated temperatures. Corrosion of a septum may release trace amounts of carbonaceous material and typically leads to lower ¹⁴C/¹²C ratios, since most septa are made from ¹⁴C-free materials. The resulting bias may be significant, particularly for high-precision measurements on near-modern ¹⁴C samples such as seawater. Five types of stopper/septum combinations were tested, and the results are summarized in Table 1.

Some septa did release old carbon during sample processing: septum A for the 120 mL serum bottles that we used initially in these experiments showed the presence of contaminants (Table 1; Fig. 2). The Fm difference between the headspace-extraction method with septum A and the conventional stripping method (headspace minus conventional) ranged from 0.0046 to -0.0230, with most of the headspace Fm values lower than the conventional method values (Fig. 2). The mean Fm differences for the CSTD coral and NBP_12May_11 seawater sample are -0.0040 ± 0.0059 (n = 17) and $-0.0075 \pm$ 0.0078 (n = 13), respectively; equivalent to releases of 4.2 ± 5.8 and $7.4 \pm 7.6 \mu g$ dead carbon (Fm = 0) per mg C sample, respectively. The Fm differences become larger and more erratic for samples subjected to higher heating temperatures and longer heating times (Fig. 2). The contamination introduced by this type of septum cannot be corrected for precisely, because the amount of old carbon incorporated into the sample is highly variable even under constant heating conditions.

Septum B used for the 64 mL I-Chem vials does not introduce any contamination, but unfortunately it is permeable to CO_2 gas. The efficiency for the first extraction with septum B for samples maintained at 75°C for 24 hours was 43.9 ± 2.3% (n = 6), slightly lower than for samples maintained for just 2 hours ($46.4 \pm 4.5\%$, n = 6), suggesting that CO_2 gas was escaping from the over-pressured headspace overnight.

Septum D shows minor contamination problems: the headspace Fm values for CSTD coral averaged 0.0025 ± 0.0023 (n = 18) lower than the conventional method. Based on our tests, we choose septum E (black viton), which can resist acid vapor at elevated temperatures (75°C) and does not bias the ¹⁴C results. However, septum B or D is still needed because septum E is too thin to make a good seal with the vial screw cap. All

Fig. 2. Differences between ¹⁴C Fm values of CSTD coral and NBP_12May_11 seawater samples obtained using the headspace-extraction and conventional stripping methods. Headspace samples were prepared with Septum A (shown in Table 1) under different extraction temperatures and durations.

seawater results presented in this study were obtained using septum E facing the water sample plus septum D on top (Teflon side down; Fig. 1), although the septum combination of E + B would be equivalent.

Temperature and time

In a tightly capped 64 mL vial with a fixed water volume, temperature and time are the two key factors that control the sample CO_2 distribution between the water and headspace. Elevated temperature and longer equilibration time will shift the carbonate equilibrium toward higher CO_2 concentrations in the headspace, and thus affect the final extraction efficiency. We tested different temperatures (room temperature

and 75°C) and heating times (1, 2, and 24 h) to optimize extraction efficiencies (Fig. 3a and 3b). Extraction efficiency is calculated by comparing the amount of CO_2 extracted to the amount of standard added (i.e., extraction efficiency [%] = 100 × $C_{extracted}$ [mg]/[Carbonate weight (mg) × 12%]; where 12% is the average carbon content in carbonate standards).

After 24 hours of heating at 75°C, more headspace CO_2 can be extracted than at 25°C (Fig. 3a; 54.6 ± 0.7%; n = 2 versus 26.5 ± 1.8%; n = 11). This is expected because the solubility of CO_2 in water decreases with higher temperature and thus more CO_2 is distributed in the vial headspace. The extraction efficiency reached 46.6 ± 3.9% (n = 10) after just 2 hours at

Fig. 3. Comparison of extraction efficiency (under an overpressured headspace) with a. temperature, b. heating time, c. water volume, and d. number of extraction. Values listed in columns are the average extraction efficiencies obtained under specified acidification/extraction conditions.

75°C (Fig. 3b), and we used these conditions for all of the remaining tests.

Water/headspace ratio

The theoretical distribution of $\mathrm{CO}_{\!_2}$ between water and headspace versus different water volumes (mL) in a 64 mL over-pressured I-Chem vial was calculated based on Henry's Law (Fig. 4a). The calculations assume 1980 µmol DIC L⁻¹ (DIC concentration of surface seawater sample NBP_12May_11) and use the solubility of CO₂ in pure water (ranging from 0.0204%) to 0.1049% mol CO₂ per mol pure water) at 75°C from Diamond and Akinfiev (2003) under different headspace overpressures of 0.1201-0.4632 MPa that correspond to water volumes from 10-50 mL in a 64 mL vial. The salinity effect on CO₂ solubility is small based on carbonate standards prepared by stripped seawater and Milli-Q water, and thus is ignored. The theoretical percentage of DIC released as CO₂ from a water sample to the vial headspace decreases from 95% to 43% as headspace volumes decreases from 54 to 14 mL (Fig. 4a, thin dashed line). However, the theoretical total carbon mass of CO_2 in the vial headspace follows a different pattern (Fig. 4a, thin solid line). It increases with water volume until 40 mL. For example, there is 0.23 mg C in the headspace with 10 mL water, whereas there is 0.61 mg C with 40 mL water. This is because larger volumes of water contain more DIC-carbon and thus releases more CO_2 to the vial headspace. Once the water volume passes 40 mL the total carbon mass of CO_2 in the vial headspace volume now becomes the limiting factor (Fig. 4a).

The theoretical yield (mg C) extracted with a 60 mL syringe extraction is also related to the fraction of headspace gases recovered. During the first extraction of a 30 mL water sample (34 mL headspace), the syringe can isolate and extract 63.8% of the headspace gases; while only 57.7% of the headspace gases can be recovered for a 20 mL water sample (44 mL headspace). Thus, after correcting for the fraction of headspace extractable in a 60 mL syringe, we get a ~50% theoretical yield for DIC from water samples ranging from 10 to 30 mL (Fig. 4a, thick dashed line). Accordingly, the corrected theoretical car-

Fig. 4. The theoretical percent of carbon and carbon mass (mg C) distribution in the headspace of a 64 mL vial and extracted with a 60 mL syringe under different water volumes (water/headspace ratios): a, overpressured headspace created by injecting water into a septum capped 64 mL I-Chem vial; b, atmospheric pressure (0.1013 MPa) headspace created by pouring water into a 64 mL I-Chem vial inside a N2 glove bag. The mg C extracted from seawater samples (closed black circles) and standards (closed gray circles) are plotted also to compare with the theoretical curves. A DIC concentration of 1980 μmol DIC L-1 is assumed for the theoretical estimates, and standard samples have been corrected to this DIC concentration.

bon mass extractable in a 60 mL syringe would increase from 0.12 to 0.36 mg C (Fig. 4a, thick solid line) as the water volume increases from 10 to 30 mL.

The optimum water/headspace ratio was tested using standards and samples with water volumes of 17, 20, and 30 mL (water: headspace ratios ranging from 0.36 to 0.88, with an over-pressured headspace). Water volumes in the 30-40 mL range were not investigated because the additional carbon mass in the headspace is not significant (0.61 mg C for 40 mL water versus 0.56 mg C for 30 mL), and it becomes too difficult to inject > 30 mL water against the overpressure of the sealed 64 mL I-Chem vial. Water volumes > 40 mL were not investigated because the total mass of CO₂ in the headspace starts to decrease at this point (Fig. 4a). Yields of $46.4 \pm 4.5\%$ (n = 6) for 17 mL water and 46.6 ± 3.9% (n = 10) for 30 mL water were obtained (Fig. 3c), which are slightly lower (due to only 2 hours of equilibration), but comparable to the calculated percent of carbon (~ 50%) extractable in the 60 mL syringe. The total mg C extracted from the headspace of replicate surface seawater samples (closed black circles in Fig. 4a; NBP_12May_11 seawater, 1980 µmol DIC L⁻¹) increased from 0.14 to 0.37 mg C as water volume increased from 10 to 30 mL. Similarly, the total mg C extracted from standard samples corrected to a DIC concentration of 1980 µmol L⁻¹ increased from 0.19 to 0.33 mg C as water volumes increased from 17 to 30 mL (Fig. 4a; closed gray circles). Both sample and standard masses of C extracted are consistent with the Henry's Law calculations. These experiments show that a water/headspace ratio of 0.88 (i.e., 30 mL water and 34 mL headspace, with an overpressured headspace) provides a sufficient amount of CO₂ for graphitization.

Second and third extraction

After the first extraction, of a 30-mL water sample, which removes about 63.8% of the headspace gases from the I-Chem vial, the pressure in the headspace is < 0.1013 MPa and some of the CO₂ left in the water will move to the headspace under this lower pressure condition. Thus, the CO₂ left in the vial will redistribute between the water and headspace until it reaches a new equilibrium state. This enables us to perform a second or third headspace-extraction on the same sample if necessary. For this, the I-Chem vial is placed back in the heating block for 5 min before the next extraction. During the waiting time, another 60 mL BD syringe is flushed and filled with 60 mL of UHP N₂ gas. A portion of the N₂ gas (20 mL) is expelled from the syringe just before the needle penetrates the septum of the I-Chem vial, and the remaining 40 mL of N₂ gas is injected into the vial to serve as a carrier gas for the leftover headspace gases/CO₂. As before, the resulting overpressure in the headspace reduces the effort involved in the second extraction. A third extraction can be applied in a similar manner if more C is needed.

As expected, the extraction efficiency changes with the number of extractions (Fig. 3d). Note that we have not included the results for septa B (white Teflon on silicone sep-

tum) associated with the 24 hours heating time in Fig. 3d because this septum is prone to leakage. The average extraction efficiency for the first plus second extraction after 2 hours heating is $62.0 \pm 7.8\%$ (*n* = 6), about 15% higher than the first extraction (46.4 \pm 4.5%; *n* = 6) alone. The average calcite blank values for the first plus second extraction and the first extraction are 45,600 \pm 1400 radiocarbon year (*n* = 3) and 41,900 \pm 1600 radiocarbon year (n = 3), respectively. We believe that the slightly better background from the first plus second extraction is due to a mass balance effect (Santos et al. 2007), as the total carbon mass for the combined extraction is larger, so that the modern carbon contamination involved in the whole procedure is diluted. The average CSTD coral Fm value is 0.9435 \pm 0.0008 (*n* = 3) for the first extraction and 0.9436 \pm 0.0020 (*n* = 3) for the first plus second extraction (Table 2) after 2 hours heating, indicating that the second extraction introduces no noticeable modern or old carbon. Considering that the second extraction is relatively time consuming (an additional 10 minutes for each sample), only the first extraction was used for seawater samples in this study. Nonetheless, we feel that this exercise was important, as a second extraction can also be used as a backup or duplicate for the sample if needed. Headspace pressure

As described in the sample preparation above, injecting water into a sealed 64 mL I-Chem vial results in an overpressured headspace. We initially chose this procedure because we were handling water samples stored in septum crimp capped bottles, and it was easier to transfer water using a syringe and inject the water directly into the I-Chem vial. Further, this procedure does not require a glove bag and the overpressure makes the subsequent syringe extraction easier. Alternatively, for a near atmospheric headspace pressure (0.1013 MPa), we can remove some of the He gas to compensate for the volume of water that we intend to add, or pour water directly into the I-Chem vial in a N₂ glove bag. The advantages of a near atmospheric pressure headspace are (1) it reduces the chance of CO₂ leakage through septa compared to overpressured conditions; (2) it increases CO_2 distribution in headspace (Fig. 4b).

Similar to the overpressured headspace, the theoretical percentage of carbon in the atmospheric pressure headspace decreases when water volume increases (Fig. 4b, thin dashed line), but the carbon mass in the headspace (Fig. 4b, thin solid line) increases and reaches its maximum value (0.68 mg C) under 43 mL water volume. The theoretical carbon mass extractable by a 60 mL syringe would increase from 0.12 to 0.51 mg C (Fig. 4b, thick solid line) as the water volume increases from 10 to 45 mL. This is proven by our test results: the corrected carbon masses (mg C) of standards extracted in the 60 mL syringe (Fig. 4b, closed gray circles) increased from 0.12 to 0.49 mg C for water ranging from 10 to 45 mL, and dropped to 0.47 mg C under 50 mL.

Two CSTD coral and 3 calcite samples with released pressure (i.e., approximately 0.1013 MPa, noted by asterisks in Table 2) were processed and analyzed for ¹⁴C. For these sam-

15415856, 2014, 4, Downloaded

from https://aslopubs.onlinelibrary.wiley.com/doi/10.4319/kom.2014.12.174 by University Of California - Irvine, Wiley Online Library on [11/07/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

rcense

 Table 2. Measured ¹⁴C values of CSTD coral, IAEA-C2, and calcite standards prepared with the headspace method at the KCCAMS facility under different experimental conditions.

	Standard	Weight	Septa	Heating	Heating	Water	Extraction	Yield	۲m	Ŧ	¹⁴ C Age	
UCIAIVIS	U	(ing)	type	T(C)	une (n)	v (IIIL)		(ing C)	FIII	I	(II)	
94555	CSTD	6.9	В	75	2	17	first	0.42	0.9445	0.0017	460	15
94556	CSTD	6.0	В	75	2	17	first + second	0.49	0.9456	0.0016	450	15
94862	CSTD	7.5	В	25	24	17	first	0.23	0.9459	0.0013	445	15
94863	CSTD	6.0	В	25	24	17	first + second	0.28	0.9462	0.0012	445	15
94864	CSTD	7.8	В	75	24	17	first	0.42	0.9420	0.0015	480	15
94865	CSTD	6.7	В	75	24	17	first + second	0.49	0.9427	0.0012	475	15
94870	CSTD	7.3	В	75	24	17	first	0.41	0.9453	0.0012	450	15
94872	CSTD	8.1	В	75	24	17	first + second	0.57	0.9427	0.0012	475	15
94873	CSTD	7.1	В	75	24	17	first	0.34	0.9423	0.0012	480	15
94874	CSTD	7.3	В	75	24	17	first + second	0.51	0.9453	0.0012	450	15
94879	CSTD	6.8	В	75	2	17	first	0.34	0.9431	0.0012	470	15
94880	CSTD	7.8	В	75	2	17	first + second	0.46	0.9416	0.0012	485	15
94881	CSTD	8.0	В	75	2	17	first	0.46	0.9430	0.0012	470	15
94882	CSTD	7.8	В	75	2	17	first + second	0.60	0.9436	0.0012	465	15
95651	CSTD	6.7	B + C	75	24	17	first	0.42	0.9439	0.0019	465	20
95795	CSTD	6.1	B + C	75	2	20	first	0.37	0.9442	0.0016	460	15
95803	CSTD	4.6	B + C	25	24	30	first	0.15	0.9486	0.0017	425	15
95804	CSTD	4.7	B + C	25	24	30	first	0.15	0.9469	0.0018	440	20
95805	CSTD	7.7	B + C	25	24	30	first	0.25	0.9458	0.0021	445	20
95807	CSTD*	8.2	B + C	25	24	30	first	0.25	0.9421	0.0017	480	15
95808	CSTD*	7.8	B + C	25	24	30	first	0.25	0.9408	0.0015	490	15
96214	CSTD	6.0	B + C	75	1	30	first	0.36	0.9440	0.0016	465	15
96215	CSTD	6.9	B + C	75	1	30	first	0.35	0.9442	0.0016	460	15
96217	CSTD	8.0	B + C	75	1	30	first	0.43	0.9438	0.0015	465	15
97341	CSTD	6.6	B + C	75	2	20	first	0.37	0.9432	0.0019	470	20
99133	CSTD	6.7	E + D	75	2	30	first	0.36	0.9433	0.0013	470	15
99134	CSTD	7.0	E + D	75	24	30	first	0.46	0.9439	0.0013	465	15
99408	CSTD	6.0	E + D	75	2	30	first	0.33	0.9436	0.0019	465	20
99435	CSTD	6.7	E + D	75	2	30	first	0.40	0.9441	0.0019	460	20
99437	CSTD [†]	6.3	E + D	75	2	30	first	0.31	0.9466	0.0017	440	15
96218	IAEA-C2	6.3	B + C	75	1	30	first	0.39	0.4143	0.0011	7080	25
96219	IAEA-C2	6.7	B + C	75	1	30	first	0.40	0.4142	0.0011	7080	25
96220	IAEA-C2	8.1	B + C	75	1	30	first	0.46	0.4125	0.0011	7115	25
99409	IAEA-C2	6.2	E + D	75	2	30	first	0.35	0.4139	0.0011	7085	25
99436	IAEA-C2	6.1	E + D	75	2	30	first	0.36	0.4141	0.0010	7085	20
99438	IAEA-C2 [†]	6.5	E + D	75	2	30	first	0.31	0.4159	0.0012	7050	25
94553	Calcite	5.7	B	75	2	17	first	0.30	0.0065	0.0001	40400	170
94554	Calcite	5.0	B	75	2	17	first + second	0.41	0.0029	0.0001	46940	190
94858	Calcite	5.0	B	25	24	17	first	0.15	0.0079	0.0001	38940	150
94859	Calcite	5.5	B	25	24	17	first + second	0.26	0.0059	0.0001	41180	140
94860	Calcite	5.9	B	75	24	17	first	0.20	0.0052	0.0001	42310	190
94861	Calcite	77	B	75	24	17	first + second	0.50	0.0032	0.0001	45130	160
94866	Calcite	73	B	75	24	17	first	0.37	0.0050	0.0001	41810	140
94867	Calcita	7.5	R	75	2 1 24	17	first + second	0.50	0.0055	0.0001	42060	150
01869	Calcito	7.U Q 1	D	75	∠ 1 24	17	first + second	0.30	0.0033	0.0001	40060	170
01860	Calcito	0.1 Q /	D	75	∠ 1 24	17	first + second	0.44	0.0000	0.0001	41060	120
04007	Calcita	0.4 6 7	D	75	24 0	17	first + second	0.00	0.0000	0.0001	41000	150
01075	Calcita	0.Z	D	75	2	17	first i second	0.37	0.0044	0.0001	43310	100
740/0	Calcite	0.1	Б	/3	Z	17	HISL + SECOND	0.49	0.0041	0.0001	44100	180

continued...

Table 2. Continued

Rapid ¹⁴ C-DIC AMS	sample	preparation
-------------------------------	--------	-------------

Lab Nr	Standard	Weight	Septa	Heating	Heating	Water	Extraction	Yield			¹⁴ C Age	
UCIAMS	ID	(mg)	type	T (°C)	time (h)	V (mL)	nr	(mg C)	Fm	<u>±</u>	(yr)	
94877	Calcite	7.0	В	75	2	17	first	0.36	0.0055	0.0001	41860	140
94878	Calcite	7.8	В	75	2	17	first + second	0.52	0.0034	0.0001	45770	220
95652	Calcite	6.4	B + C	75	24	17	first	0.42	0.0051	0.0001	42400	160
95796	Calcite	6.3	B + C	75	2	20	first	0.37	0.0045	0.0001	43480	180
95797	Calcite	4.3	B + C	25	24	30	first	0.15	0.0091	0.0002	37780	160
95798	Calcite	4.6	B + C	25	24	30	first	0.16	0.0084	0.0002	38390	150
95799	Calcite	7.8	B + C	25	24	30	first	0.25	0.0057	0.0001	41560	170
95800	Calcite*	4.1	B + C	25	24	30	first	0.13	0.0091	0.0002	37750	170
95801	Calcite*	7.8	B + C	25	24	30	first	0.21	0.0060	0.0002	41030	260
95802	Calcite*	7.3	B + C	25	24	30	first	0.24	0.0057	0.0001	41540	160
96211	Calcite	6.2	B + C	75	1	30	first	0.36	0.0047	0.0001	42980	130
96212	Calcite	6.8	B + C	75	1	30	first	0.40	0.0042	0.0001	43980	120
96213	Calcite	8.1	B + C	75	1	30	first	0.49	0.0041	0.0001	44250	130
96783	Calcite	5.8	B + C	75	2	20	first	0.35	0.0060	0.0001	41150	100
97332	Calcite	6.0	B + C	75	24	17	first + second	0.53	0.0045	0.0001	43320	130
99137	Calcite	5.6	E + D	75	2	30	first	0.32	0.0047	0.0001	43050	170
99138	Calcite	6.4	E + D	75	24	30	first	0.42	0.0034	0.0001	45700	170
99407	Calcite	6.3	E + D	75	2	30	first	0.38	0.0032	0.0001	46180	160
99434	Calcite	6.1	E + D	75	2	30	first	0.37	0.0032	0.0001	46160	180

*Sample was under 0.1013 MPa released headspace pressure; *Sample was under N₂ headspace.

ples, 30 mL of He in the headspace of the 64 mL I-Chem vials was removed via syringe before injecting the acid-stripped seawater. Under the released pressure, the calcite blank value is $40,100 \pm 2100$ (n = 3) radiocarbon year, slightly higher than the one with overpressured headspace ($44,100 \pm 1700$ radiocarbon year, n = 28), most likely due to the relatively smaller sample sizes (0.13-0.24 mg C) of these 3 standards. The CSTD coral Fm value under the released pressure is 0.9414 ± 0.0015 (n = 2), which is slightly depleted compared to its KCCAMS average value of 0.9445 ± 0.0018 (n = 262), but not statistically different (t = -4.7, df = 1, P = 0.13).

Another two standard samples (noted by daggers in Table 2) were prepared by pouring water into the vial in a UHP N₂ glove bag to create a atmospheric headspace pressure (0.1013 MPa): an I-Chem vial was flushed 3 times with UHP N₂, 30 mL stripped seawater was poured into the vial inside a N₂ glove bag, then the Pyrex tube containing the carbonate standard was dropped into the stripped seawater and the vial was immediately capped tight. The Fm value of the CSTD coral and IAEA-C2 standards obtained (0.9466 \pm 0.0017 and 0.4159 \pm 0.0012, respectively) are both in good agreement with the KCCAMS average values. Thus, a N₂ headspace with 0.1013 MPa pressure can be used as an alternative procedure. Under certain circumstances, where seawater samples are collected in glass storage bottles capped with nonpenetrable glass stoppers or plastic screw caps, it is easier and preferable to pour water into the I-Chem vial inside a UHP N₂ glove bag, and sample size of ~0.5 mg C for surface seawater could be obtained with 45 mL water under atmospheric headspace pressure.

Protocol summary

The optimum procedure for the headspace method (with overpressure headspace) in this study is set as follows: injection of 30 mL water into a He pre-flushed 64 mL vial setup (Fig. 1), heating under 75°C for 2 h followed by one headspace gas extraction. All seawater samples were processed using these experimental conditions. Alternatively, the UHP He used in preflushing can be substituted by UHP N₂ that is less expensive. Either overpressured or atmospheric pressure headspace does not affect the ¹⁴C results of the tested standards and seawater samples.

Beam current and mass dependent fractionation

For all standard and seawater samples obtained using the new method, samples > 0.3 mg C yielded 60-100 $\mu A^{12}C^{+1}$ current at the high energy Faraday cup in the KCCAMS system, which is comparable to ~0.75 mg C samples graphitized using the sealed tube zinc reduction method and run through the KCCAMS system (Khosh et al. 2010). Thus, the smaller size of graphite associated with the lower headspace-extraction efficiency has little effect on the $^{14}C\text{-AMS}$ measurements.

Due to the incomplete extraction of headspace CO_2 , one would expect some carbon isotopic fractionation between the CO_2 dissolved in the water and the CO_2 extracted from the headspace. To evaluate the magnitude of this fractionation, we measured the headspace $\delta^{13}C$ - CO_2 of standard samples including calcite, IAEA-C2, CSTD coral, NBS-18, and NBS-19 and compared them to either $\delta^{13}C$ consensus values or conventional stripping values. The conventional stripping method should have negligible isotope fractionation because

the sample CO_2 is fully stripped out from the water (> 98%). For the headspace measurements, after a 24 hours equilibration at room temperature (~25°C), 3 mL of the headspace gas in a 64 mL I-Chem vial was extracted using a 10 mL gas-tight syringe and injected into a He pre-flushed septum capped Exetainer vial (Labco). One NBS-18 and one NBS-19 headspace gas sample were extracted from the 64 mL vials after an additional 2 hours heating at 75°C. δ^{13} C values were then measured using a Finnigan Delta-Plus IRMS coupled with a Gasbench II autosampler at UCI. There is an excellent correlation (R^2 = 0.9991) between the δ^{13} C values of the headspace-extracted CO₂ and their consensus value or the corresponding aliquots extracted by the conventional stripping method (Fig. 5). However, the δ^{13} C values for the headspace-extracted CO₂ after equilibrium at 25°C for 24 hours are slightly heavier than the fully stripped conventional method values (by ~0.6%); Fig. 5, closed gray circles), and the 2 standards extracted after an additional 2 hours heating under 75°C show a similar deviation (~0.4‰ heavier; Fig. 5, closed black circles). We also measured the δ^{13} C of one CSTD coral CO₂ subsampled from the purified CO₂ of its headspace-extraction using our regular ¹⁴C sample protocol (75°/2 h, first extraction), and compare it to the δ^{13} C value measured using DIC- δ^{13} C method similar to Torres et al. (2005) (Fig. 5, black triangle). Similarly, the δ^{13} C value of this headspace ¹⁴C split is slightly heavier (0.23‰) than its DIC-δ¹³C value.

As mentioned earlier, the small fractionation caused by the headspace-extraction (ca. $\leq 0.6\%$) will not affect the ¹⁴C-AMS measurements because it is fully corrected by the online ¹³C/¹²C measurements in our AMS system. In addition, assuming that ¹⁴C fractionation is twice that of ¹³C, this fractionation would only introduce ~1.2‰ uncertainty into our ¹⁴C results, which is still well within our typical ¹⁴C analytical error of ~2-3‰ for modern samples. This means that the headspace method can potentially be used for AMS systems without the online ¹³C/¹²C capability. However, when the sealed tube Zn reduction graphitization method is used as in this study, it is preferable to have the online ¹³C/¹²C measurement for obtaining high-precision DI14C results, because there is a ~2-3‰ fractionation (lighter) involved in this graphitization method (Xu et al. 2007) and additional fractionation can occur inside the AMS ion source.

Background

The background of the headspace method was evaluated by measuring a set of 31 ¹⁴C-free calcite standards under different experiment conditions at KCCAMS (Table 2; Fig. 6c). The overall average background of our headspace method is better than 42,500 ± 2500 radiocarbon year (n = 31) for sample sizes from 0.13 to 0.6 mg C. Since the blank is mass dependent and improves as the sample size increases (Fig. 7), the average background for samples > 0.3 mg C is better than 43,400 ± 1900 radiocarbon year (n = 23). This is older than the background value of 40,500 ± 1000 radiocarbon year (n = 12) reported by Hinger et al. (2010) for conventional stripping

Fig. 5. Comparison of the IRMS measured δ^{13} C value of headspace extracted CO₂ and conventional stripping extracted CO₂ sample (δ^{13} C consensus values were used when available for standards IAEA-C2, NBS 18, and NBS 19). The dashed line is the 1:1 line, and the linear regression is shown as a solid line.

and graphitization of 1 mg C samples and thus will have very little influence on seawater DI¹⁴C results, as the oldest seawater ages are around 2000 year (Matsumoto 2007).

Precision and accuracy

The average CSTD coral Fm value measured by the headspace-extraction method at KCCAMS is 0.9441 \pm 0.0017 (1 σ stdev, n = 30) (Table 2; Fig. 6a), and one sample t test shows that this is in good agreement with the average KCCAMS value for CSTD coral (t = -1.3, df = 29, P = 0.21). The stdev obtained from the headspace extracted CSTD coral yields a relative error of 1.7‰.

The average Fm value measured for IAEA-C2 is 0.4141 ± 0.0011 (1 σ stdev, n = 6) (Table 2; Fig. 6b). Although these results are consistent with the average value measured on leached IAEA-C2 at the KCCAMS (0.4118 \pm 0.0035, n = 100), the headspace average value is slightly higher compared with the IAEA consensus value (0.4114 ± 0.0003) , perhaps because we did not leach the C2 powder before making up the six standards. Also, the C2 travertine material is not completely homogeneous: it contains small balls that have slightly older ¹⁴C ages (7148 ± 62 radiocarbon year, n = 6) than the fine powder (7086 ± 17 radiocarbon year; n = 6; unpublished data from John R. Southon), which may have contributed to the discrepancy. Moreover, fine powders of CaCO₃ tend to adsorb modern carbon from the atmosphere (Bush et al. 2013). In the later experiment at PKU (see below, also Fig. 6b), we pretreated the C2 by leaching it with 2 mL, 0.01 mol L⁻¹ HCl for every 11

15415856,

Fig. 6. Comparison of standard samples' 14C values obtained using the headspace method and their consensus values (solid black line): a. CSTD coral, b. IAEA-C2, and c. calcite. Gray area represents the $\pm 1\sigma$ stdev of the standards values from the KCCAMS. Closed symbols represent samples measured at the KCCAMS, and open symbols represent samples measured at the PKUAMS.

Fig. 7. Radiocarbon age of the procedural background using the headspace method vs. sample size. Closed symbols represent calcite samples measured in the KCCAMS, and open symbols represent samples measured in the PKUAMS.

mg C2 powder to remove absorbed modern CO₂ and obtained results in better agreement with the consensus value.

Comparison to the conventional method

The ¹⁴C results of 18 NBP surface seawater samples prepared using the headspace-extraction method and conventional stripping method show good agreement (Table 3; Fig. 8). The headspace-extraction method (with overpressured condition) was able to extract 0.33-0.37 mg C from surface seawater samples, which is consistent with the theoretical yield calculated in Fig. 4a. For the 6 samples collected in 2011, duplicates were prepared simultaneously by both the conventional and headspace-extraction methods (i.e., four aliquots per sample) to evaluate the reproducibility of the new method (Fig. 8a). The Fm stdev from 6 pairs of headspace duplicates is small (0.00004 to 0.0029), with a pooled stdev (McNaught and Wilkinson 1997) of 0.0015. Both the individual and average Fm values obtained with the headspace method are highly comparable with the conventional stripping data. t tests on paired samples all resulted in P values > 0.05 (Table 3), showing that the two methods are equivalent. For the 12 stored samples collected in 2008-2009, the headspace method ¹⁴C results are also comparable to the conventional stripping

184

Table 3. The DI¹⁴C values of surface seawater samples collected at the NBP site during 2008-2009 and 2011. The ¹⁴C results for the 2008-2009 set obtained by the conventional DIC extraction method were published in Santos et al. (2011) and were reproduced in Fig. 8.

Sample ID (day/month/year)	Lab Nr UCIAMS	Prep. method	Water weight (g)	Yield (mg C)	Fm	±	<i>T</i> -test on paired samples
13 Feb 11	99410	Headspace	30.5	0.36	1.0230	0.0019	(t = 0.33, df = 1, P = 0.80)
	99411	Headspace	29.6	0.37	1.0272	0.0019	
	98844	Conventional			1.0239	0.0017	
	98684	Conventional			1.0254	0.0013	
12 May 11	99412	Headspace	30.0	0.35	1.0246	0.0018	(t = 5, df = 1, P = 0.13)
,	99413	Headspace	29.7	0.36	1.0234	0.0020	
	98845	Conventional			1.0237	0.0018	
	98685	Conventional			1.0228	0.0018	
13 Jun 11	99414	Headspace	29.7	0.35	1.0226	0.0018	(t = 1, df = 1, P = 0.50)
	99415	Headspace	30.0	0.37	1.0235	0.0021	
	98846	Conventional			1.0226	0.0017	
	98686	Conventional			1.0226	0.0014	
13 Jul 11	99416	Headspace	30.8	0.36	1.0234	0.0018	(<i>t</i> = 0.49, df = 1, <i>P</i> = 0.71)
	99417	Headspace	28.2	0.34	1.0244	0.0018	
	98847	Conventional			1.0244	0.0017	
	98687	Conventional			1.0215	0.0013	
11 Aug 11	99418	Headspace	30.0	0.37	1.0241	0.0019	(<i>t</i> = 6, df = 1, <i>P</i> = 0.11)
-	99419	Headspace	29.9	0.36	1.0240	0.0022	
	98849	Conventional			1.0213	0.0016	
	98689	Conventional			1.0220	0.0013	
13 Sep 11	99420	Headspace	29.5	0.35	1.0212	0.0019	(<i>t</i> = 0.46, df = 1, <i>P</i> = 0.73)
	99421	Headspace	29.9	0.35	1.0238	0.0020	
	98850	Conventional			1.0225	0.0018	
	98690	Conventional			1.0203	0.0013	
15 Feb 08	99422	Headspace	30.1	0.33	1.0367	0.0022	
22 Apr 08	99423	Headspace	30.2	0.36	1.0322	0.0018	
7 May 08	99424	Headspace	30.5	0.37	1.0300	0.0019	
23 Jun 08	99425	Headspace	29.8	0.36	1.0318	0.0022	
18 Jul 08	99426	Headspace	30.2	0.37	1.0279	0.0022	
1 Aug 08	99427	Headspace	30.5	0.36	1.0308	0.0020	
29 Aug 08	99428	Headspace	30.2	0.36	1.0305	0.0020	
26 Sep 08	99429	Headspace	30.1	0.36	1.0331	0.0022	
24 Oct 08	99430	Headspace	30.7	0.37	1.0326	0.0022	
5 Dec 08	99431	Headspace	30.4	0.36	1.0320	0.0020	
16 Jan 09	99432	Headspace	30.3	0.36	1.0334	0.0021	
13 Feb 09	99433	Headspace	30.3	0.37	1.0354	0.0022	

results. It is notable that the headspace results show the most negative ¹⁴C values during the strong summer upwelling in 2008 (Santos et al. 2011, see also Fig. 8b), thus illustrating the suitability of the headspace method for DI¹⁴C investigations that require high-precision and high temporal resolution. We also compared the two methods by first calculating the mean Fm value (average of headspace and conventional measured values) of each seawater sample, and then subtracting this mean from the average Fm value of each method to get the residual Fm (Fig. 9). The residual Fm values are within $\pm 1\sigma$ stdev for 16 out of 18 samples and within $\pm 2\sigma$ stdev for all 18.

PKUAMS experiments

We applied the new headspace-extraction method in the Cosmogenic Nuclide Preparation Laboratory at Peking University to evaluate its utility. Several standard samples were processed using the optimized overpressure protocol (75°C/2h/first extraction), and the extracted headspace/CO₂ gas samples were purified and graphitized on a vacuum system similar to that of Xu et al. (2007). Graphite samples were analyzed for ¹⁴C with the PKUAMS as described in Liu et al. (2007). The Fm values of all samples measured in PKUAMS are listed in Table 4 and plotted in Figs. 6 and 7 for compari-

Fig. 8. Comparison of NBP surface seawater DI¹⁴C values obtained using the headspace method and conventional method: a. 6 NBP DIC samples collected during Feb-Sep 2011, for which two duplicates were measured by the headspace method and the conventional method at the same time (see also Table 3); b. 12 NBP DIC samples collected during Feb 2008 to Mar 2009, for which only one measurement was made by the headspace method for each sample; conventional method data are from Santos et al. (2011).

son with the KCCAMS data. The overall calcite background value measured with the PKUAMS is 44,000 ± 2000 radiocarbon year (n = 20), which is comparable with the KCCAMS background value $(43,400 \pm 1900 \text{ radiocarbon year; } n = 23)$. The average Fm values of the CSTD coral standards obtained with PKUAMS is 0.9449 ± 0.0028 (n = 16), which is in good agreement with the headspace method results obtained at KCCAMS (0.9441 \pm 0.0017; n = 30). Independent-samples t test confirms the consistency (t = -1.0, df = 21, P = 0.31). The average PKUAMS Fm value for IAEA-C2 is 0.4135 ± 0.0024 (n = 16). For the last 9 samples where we applied acid leaching, the average value is 0.4119 \pm 0.0011 (n = 9), and one sample t test shows that these data are consistent with the IAEA-C2 consensus value of 0.4114 ± 0.0003 (t = 1.7, df = 8, P = 0.14). Thus, acid leaching to remove modern CO₂ adsorption from the C2 standard should be included as a routine procedure. The slightly larger analytical error in the PKUAMS Fm data are due to the general lower beam currents in the PKUAMS system (Liu et al. 2007) and correspondingly larger uncertainty from counting statistics.

Discussion and recommendations

The DIC headspace-extraction method developed in this study is aimed at achieving high throughput sample preparation for high-precision ¹⁴C analysis by AMS. To minimize the time and effort involved in sample CO₂ stripping and cleaning between samples, the headspace CO₂ is isolated from the water using syringe extractions. The isotope fractionation of the sample CO₂ introduced by the incomplete extraction in this procedure is small (ca. $\leq 0.6\%$). Moreover, this small fractionation can be fully corrected by an online ¹³C/¹²C measurement, which is standard on most AMS systems. The radiocarbon results obtained using this new method have accuracy and precision comparable with those obtained with conven-

Fig. 9. Residual Fm for 18 NBP seawater samples. Replicate samples from 2011 have been averaged. Error bars show the reported measurement uncertainty or the standard deviation of replicate measurements for samples collected in 2011, whichever is bigger. The average residuals of the headspace method (μ_{head}) and conventional method (μ_{con}) are shown by thin solid lines, whereas the thick solid line indicates 0 residual or no difference between the two methods. The $\pm 1\sigma$ relative error ($\pm 1.7\%$) is shown by dashed lines.

Table 4. Radiocarbon values of CSTD coral, IAEA-C2, and calcite standard samples prepared with the headspace method and analyzed at the PKUAMS facility.

Lab Nr PKUAMS	Standard ID	Weight (mg)	Yield (mg C)	Fm	±	¹⁴ C age (y)	±
OAS0885	CSTD	7.4	0.48	0.9484	0.0033	425	30
OAS0886	CSTD	6.6	0.47	0.9437	0.0036	465	35
QAS0968	CSTD	6.0	0.43	0.9416	0.0023	485	20
QAS1028	CSTD	6.9	0.47	0.9504	0.0021	410	20
OAS1029	CSTD	6.6	0.43	0.9456	0.0033	450	30
OA\$1155	CSTD	3.9	0.25	0.9420	0.0024	480	25
QAS1156	CSTD	5.8	0.37	0.9460	0.0023	445	20
QAS1157	CSTD	6.7	0.40	0.9428	0.0022	475	20
QAS1158	CSTD	8.0	0.47	0.9435	0.0028	465	25
QAS1175	CSTD	7.2	0.44	0.9424	0.0025	475	25
QAS1333	CSTD	6.9	0.43	0.9467	0.0035	440	30
QAS1334	CSTD	6.9	0.43	0.9497	0.0023	415	20
QAS1335	CSTD	6.6	0.39	0.9462	0.0023	445	20
QAS1336	CSTD	6.7	0.41	0.9431	0.0014	470	15
QAS1337	CSTD	7.1	0.35	0.9442	0.0016	460	15
QAS1338	CSTD	6.7	0.37	0.9420	0.0015	480	15
QAS0883	IAEA-C2	7.0	0.46	0.4180	0.0016	7010	30
QAS0884	IAEA-C2	6.9	0.46	0.4185	0.0021	6995	45
QAS0967	IAEA-C2	6.0	0.44	0.4124	0.0021	7115	45
QAS1151	IAEA-C2	3.8	0.22	0.4147	0.0021	7070	45
QAS1152	IAEA-C2	6.0	0.36	0.4149	0.0017	7065	35
QAS1153	IAEA-C2	6.2	0.36	0.4133	0.0027	7100	60
QAS1154	IAEA-C2	8.9	0.53	0.4165	0.0016	7035	35
QAS1252	IAEA-C2	8.9	0.47	0.4109	0.0014	7145	30
QAS1253	IAEA-C2	8.9	0.67	0.4105	0.0021	7150	45
QAS1254	IAEA-C2	9.1	0.66	0.4118	0.0019	7125	40
QAS1327	IAEA-C2	6.8	0.36	0.4126	0.0016	7110	35
QAS1328	IAEA-C2	6.4	0.38	0.4119	0.0015	7125	30
QAS1329	IAEA-C2	6.6	0.37	0.4135	0.0015	7095	30
QAS1330	IAEA-C2	6.9	0.38	0.4109	0.0013	7145	30
QAS1331	IAEA-C2	7.5	0.44	0.4126	0.0012	7110	25
QAS1332	IAEA-C2	6.2	0.36	0.4133	0.0015	7100	30
QAK0132	Calcite	6.6	0.42	0.0065	0.0001	40500	170
QAK0133	Calcite	6.3	0.38	0.0082	0.0002	38620	160
QAK0134	Calcite	6.8	0.39	0.0045	0.0001	43390	200
QAK0135	Calcite	6.0	0.38	0.0041	0.0001	44070	210
QAK0138	Calcite	8.5	0.63	0.0030	0.0002	46740	420
QAK0139	Calcite	11.5	0.82	0.0023	0.0002	48930	630
QAK0140	Calcite	8.3	0.49	0.0042	0.0002	43960	300
QAK0141	Calcite	4.7	0.32	0.0049	0.0002	42690	300
QAK0142	Calcite	6.1	0.39	0.0032	0.0001	46260	320
QAK0143	Calcite	6.1	0.41	0.0031	0.0001	46320	320
QAK0144	Calcite	8.2	0.51	0.0027	0.0002	47380	610
QAK0145	Calcite	6.3	0.33	0.0039	0.0001	44470	300
QAK0146	Calcite	6.2	0.39	0.0044	0.0001	43640	270
QAK0147	Calcite	6.2	0.41	0.0035	0.0003	45530	650
QAK0151	Calcite	6.9	0.48	0.0040	0.0003	44390	510
QAK0152	Calcite	6.5	0.45	0.0031	0.0002	46440	470
QAK0153	Calcite	6.6	0.45	0.0033	0.0003	45780	670
QAK0154	Calcite	6.7	0.37	0.0056	0.0001	41680	190
QAK0155	Calcite	7.4	0.46	0.0045	0.0001	43390	200
QAK0156	Calcite	6.8	0.41	0.0047	0.0001	43060	180

Table 5. Preparation and sampling strategies for different storage conditions/needs, with check marks ($\sqrt{}$) indicating recommended approaches.

			Future	sampling
	Stored sample	bottle cap type	< 1 month storage	> 1 month storage
Preparation choice	Penetrable septum crimp cap	Nonpenetrable screw cap/glass stopper	64 mL I-Chem vials capped with septa (E + B or E + D)	Nonpenetrable screw cap/glass stopper capped bottles
Overpressured headspace*	\checkmark		√ (Inject 30 mL into vial)	
Atmospheric headspace [†]			√ (Fill 64 mL vial full,)§	

^{*}Overpressured headspace: Inject 30 mL water into He/N₂ pre-flushed septa (E + B or E + D) capped 64 mL I-Chem vial [†]Atmospheric headspace: Pour 30-45 mL water into 64 mL vial in N₂ glove bag, with 45 mL water for maximum mg C extractable [§]Split into two 30 mL for duplicates, or one 45 mL sample for maximum mg C extractable in N₂ glove bag

tional stripping. Therefore, the headspace method is suitable for DI¹⁴C investigations that require high-resolution analysis.

Compared with the conventional stripping methods, the headspace method is faster and involves less effort and expense. After acidification and heating, only 15 min is required for extracting and purifying CO₂ from one DIC sample, and no cleaning or flushing of the vacuum line is required between samples, since large amounts of water do not enter the vacuum line as they do with conventional stripping. The DIC sample preparation and acidification setup requires a UHP N₂ cylinder and 2 heating blocks, which would cost <US\$500. The vacuum line for the headspace-extraction method is based on the system shown in Xu et al. (2007), and the vacuum pumping system (with a mechanical pump), vacuum and pressure gauges, hardware and glassware cost < \$9,000. If one prefers an oil-free system with a turbo pump/diaphragm pump, the cost would be ~ \$14,000. Consumables and labware such as septa, syringes, needles, and chemical reagents cost < \$10 for each sample. Therefore, the main cost to fully implement this method is from the AMS measurement (US\$120 per sample or more, depending on the facility price). A set of 15 DIC samples can be processed daily prior to AMS analysis. The skills required for these extraction and graphitization procedures include basic laboratory skills such as handling of compressed gas and common chemicals (acids, bases, and alcohols), and special skills such as vacuum line operation and simple gas torch/glass blowing that can be easily learned from an experienced technician.

It is also notable that the supplies needed, such as screw cap vials, plastic syringes, and needles are inexpensive and highly disposable. This would be particularly desirable when handling water samples involving ¹⁴C tracer, such as labeled seawater samples or groundwater samples collected around radioactive waste dumping sites or nuclear power plants. However, we stress that for these applications, a dedicated vacuum line and rigorous cleaning between samples would be essential to avoid sample to sample memory and contamination; and for sufficiently "hot" samples, a completely disposable sample preparation system (Vogel et al. 1990; Ognibene et al. 2003) is recommended.

The method described here is based directly on the work of Molnár et al. (2013), but since this new version does not involve expensive apparatus such as a GasBench to control and extract the sample CO_2 , it can be easily adapted in a radiocarbon graphite preparation laboratory and measured on almost any AMS system, not just those equipped with a gas ion source. This has been demonstrated by the satisfactory results on standards obtained with the PKUAMS.

An additional advantage of the new method is that the amount of water needed is reduced from the recommended amount of 250 mL seawater for conventional stripping to 30 mL, whereas the accuracy, precision, and background of the two methods are comparable. The new method is potentially very valuable for small and low DIC concentration samples, since extraction efficiencies of 80.2% and 58.5% can be obtained for the first + second extraction from 10 and 45 mL water under atmospheric pressure headspace. For example, 0.19 mg C could be extracted from just 10 mL water with a DIC concentration of 2000 $\mu mol \ L^{\mbox{-1}}$, and a 45 mL sample with 500 µmol L-1 DIC would yield 0.16 mg C. In addition, larger volume I-Chem vial/bottle, which would hold more water may be used to accommodate low DIC concentration waters, such as fresh lake waters with a low pH. This could enable a substantial expansion of DI14C analysis in porewater, groundwater, and fresh water samples where only small or low DIC concentration water samples are available.

The overpressured headspace preparation is suitable for samples stored in penetrable septum/stopper capped storage bottles, as for water samples collected in bottles with nonpenetrable glass stoppers or screw caps, it is much easier to prepare the sample in a UHP N_2 glove bag, in which water is poured into the 64 mL I-Chem vial and capped quickly. Whether overpressure or not in the headspace, injecting or pouring water into I-Chem vials in a N_2 glove bag does not seem to affect ¹⁴C results based on our investigation, indicating the headspace-extraction method is robust. Preparation choices for different sample storage conditions are summarized in Table 5.

Our storage test shows that the Fm value of a seawater sample drops ~ 0.003 Fm after 2 years of storage without head-

space in the 64 mL I-Chem vial with the E + B septum combination seal (Table 1). It seems that the CO₂ in the water sample leaked out very slowly over the 2 years of storage, but it is still possible to use this vial for short-term storage (i.e., within a month). For future sampling, if the sample can be measured in < 1 month, we can inject 30 mL water sample into He/N_2 pre-flushed vial in the field, and the vial would be ready for acidification and extraction immediately after it is brought back to the laboratory. Steps involving water transfer in a glove bag would be eliminated, making this method even more straightforward. Also, we can fill the 64 mL I-Chem vial with sample water (without headspace) in the field, and split the water into two 30 mL samples (with an option for duplicates) or make one 45 mL sample for maximum C mass in the lab when preparing the sample for ¹⁴C analysis. In this case, before splitting the sample for DI14C analysis, we can sample 1 mL water from the I-Chem vials and measure it for stable isotope δ^{13} C using the technique outlined in Torres et al. (2005). However, a systematic investigation of the maximum storage time for the I-Chem vials used in this study is still needed. For samples that need to be stored for more than 1 month before DI14C measurements, nonpenetrable screw caps or glass stopper sealed bottles filled with no headspace are recommended (Table 5), and they are appropriate for stable isotope δ^{13} C measurements as well.

References

- Beverly, R. K., W. Beaumont, D. Tauz, K. M. Ormsby, K. F. von Reden, G. M. Santos, and J. R. Southon. 2010. The Keck Carbon Cycle AMS laboratory, University of California, Irvine: Status report. Radiocarbon 52:301-309.
- Bhushan, R., S. Chakraborty, and S. Krishnaswami. 1994. Physical research laboratory (chemistry) radiocarbon date list-I. Radiocarbon 36:251-256.
- Broecker, W. S., T. H. Peng, G. Ostlund, and M. Stuiver. 1985. The distribution of bomb radiocarbon in the ocean. J. Geophys. Res. Oceans 90:6953-6970 [doi:10.1029/JC090iC04p 06953].
- Bush, S. L., G. M. Santos, X. Xu, J. R. Southon, N. Thiagarajan, S. Hines, and J. F. Adkins. 2013. Simple, rapid, and cost effective: A screening method for ¹⁴C analysis of small carbonate samples. Radiocarbon 55:631-640 [doi:10.2458/ azu_js_rc.55.16192].
- Diamond, L. W., and N. N. Akinfiev. 2003. Solubility of CO₂ in water from –1.5 to 100°C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase Equilib. 208:265-290 [doi:10.1016/S0378-3812(03)00041-4].
- Druffel, E. R. M., J. E. Bauer, S. Griffin, S. R. Beaupre, and J. Hwang. 2008. Dissolved inorganic radiocarbon in the North Pacific Ocean and Sargasso Sea. Deep Sea Res. I 55:451-459 [doi:10.1016/j.dsr.2007.12.007].
 - , and S. Griffin. 2008. Daily variability of dissolved inorganic radiocarbon at three sites in the surface ocean. Mar.

Chem. 110:185-189. [doi:10.1016/j.marchem.2008.04.004] [doi:10.1016/j.marchem.2008.04.004].

- Graven, H. D., N. Gruber, R. Key, S. Khatiwala, and X. Giraud. 2012. Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO_2 uptake. J. Geophys. Res. Oceans 117 [doi:10. 1029/2012JC008074].
- Hinger, E. N., G. M. Santos, E. Druffel, and S. Griffin. 2010. Carbon isotope measurements of surface seawater from a time-series site off southern California. Radiocarbon 52:69-89.
- Key, R. M., P. D. Quay, G. A. Jones, A. P. McNichol, K. F. Von Reden, and R. J. Schneider. 1996. WOCE AMS radiocarbon.1. Pacific Ocean results (P6, P16 and P17). Radiocarbon 38:425-518.
- , and others. 2002. WOCE radiocarbon IV: Pacific Ocean results; P10, P13N, P14C, P18, P19 & S4P. Radiocarbon 44:239-392.
- , and others. 2004. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles 18 [doi:10.1029/ 2004GB002247].
- Khosh, M. S., X. Xu, and S. E. Trumbore. 2010. Small-mass graphite preparation by sealed tube zinc reduction method for AMS 14C measurements. Nucl. Instrum. Methods Phys. Res. B 268:927-930 [doi:10.1016/j.nimb.2009.10.066].
- Kumamoto, Y., A. Murata, C. Saito, M. Honda, and M. Kusakabe. 2002. Bomb radiocarbon invasion into the northwestern North Pacific. Deep Sea Res. II 49:5339-5351 [doi:10. 1016/S0967-0645(02)00194-7].
- Kwong, L. L. W., P. P. Povinec, and A. J. T. Jull. 2004. Preparation of graphite targets from small marine samples for AMS radiocarbon measurements. Radiocarbon 46:133-139.
- Liu, K. X., X. F. Ding, D. P. Fu, Y. Pan, X. H. Wu, Z. Y. Guo and L. P. Zhou. 2007. A new compact AMS system at Peking University. Nucl. Instrum. Methods Phys. Res. B 259:23-26 [doi:10.1016/j.nimb.2007.01.314].
- Matsumoto, K. 2007. Radiocarbon-based circulation age of the world oceans. J. Geophys. Res. Oceans 112:C9 [doi:10. 1029/2007JC004095].
- McNaught, A. D., and A. Wilkinson. 1997. Compendium of chemical terminology, 2nd ed. Blackwell Science Oxford.
- McNichol, A. P., G. A. Jones, D. L. Hutton, A. R. Gagnon, and R. Key. 1994. The rapid preparation of seawater $\sum CO_2$ for radiocarbon analysis at the National Ocean Sciences AMS facility. Radiocarbon 36:237-246.
- Molnár, M., I. Hajdas, R. Janovics, L. Rinyu, H. Synal, M. Veres, and L. Wacker. 2013. C-14 analysis of groundwater down to the millilitre level. Nucl. Instrum. Methods Phys. Res. B 294:573-576 [doi:10.1016/j.nimb.2012.03.038].
- Ognibene, T. J., G. Bench, J. S. Vogel, G. F. Peaslee, and S. Murov. 2003. A high-throughput method for the conversion of CO_2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of C-14 via accelera-

15415856,

tor mass spectrometry. Anal. Chem. 75:2192-2196 [doi:10. 1021/ac026334j].

- Pack, M. A., M. B. Heintz, W. S. Reeburgh, S. E. Trumbore, D. L. Valentine, X. M. Xu, and E. Druffel. 2011. A method for measuring methane oxidation rates using low-levels of C-14-labeled methane and accelerator mass spectrometry. Limnol. Oceanogr. Methods 9:245-260 [doi:10.4319/lom. 2011.9.245].
- Peng, T. H., R. M. Key, and H. G. Ostlund. 1998. Temporal variations of bomb radiocarbon inventory in the Pacific Ocean. Mar. Chem. 60:3-13 [doi:10.1016/S0304-4203(97)00089-3].
- Rozanski, K., W. Stichler, R. Gonfcantini, E. M. Scott, R. P. Beukens, B. Kromer, and J. der Plicht. 1992. The IAEA ¹⁴C intercomparison exercise 1990. Radiocarbon 34:506-519.
- Santos, G. M., J. R. Southon, K. C. Druffel-Rodriguez, S. Griffin, and M. Mazon. 2004. Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation: A report on sample preparation at KCCAMS at the University of California, Irvine. Radiocarbon 46:165-173.
- , R. B. Moore, J. R. Southon, S. Griffin, E. Hinger, and D. Zhang. 2007. AMS ¹⁴C sample preparation at the KCCAMS/UCI Facility: status report and performance of small samples. Radiocarbon 49:255-269.
- ——, J. Ferguson, K. Acaylar, K. R. Johnson, S. Griffin, and E. Druffel. 2011. $Δ^{14}$ C and $δ^{13}$ C of seawater DIC as tracers of coastal upwelling: a 5-year time series from southern California. Radiocarbon 53:669-677.
- Southon, J., and others. 2004. The Keck Carbon Cycle AMS laboratory, University of California, Irvine: Initial opera-

tion and a background surprise. Radiocarbon 46:41-49.

- Stuiver, M., and H. A. Polach. 1977. Reporting of C-14 data discussion. Radiocarbon 19:355-363.
- P. D. Quay, and H. G. Ostlund. 1983. Abyssal water carbon-14 distribution and the age of the world oceans. Science 219:849-851 [doi:10.1126/science.219.4586.849].
- Sweeney, C., E. Gloor, A. R. Jacobson, R. M. Key, G. McKinley, J. L. Sarmiento, and R. Wanninkhof. 2007. Constraining global air-sea gas exchange for CO_2 with recent bomb ¹⁴C measurements. Global Biogeochem. Cycles 21 [doi:10. 1029/2006GB002784].
- Torres, M. E., A. C. Mix, and W. D. Rugh. 2005. Precise δ^{13} C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuous-flow mass spectrometry. Limnol. Oceanogr. Methods 3:349-360 [doi:10.4319/lom.2005.3.349].
- Vogel, J. S., J. R. Southon, and D. E. Nelson. 1990. Memory effects in an AMS system—catastrophe and recovery. Radio-carbon 32:81-83.
- Xu, X. M., S. E. Trumbore, S. H. Zheng, J. R. Southon, K. E. McDuffee, M. Luttgen and J. C. Liu. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining highprecision. Nucl. Instrum. Methods Phys. Res. B 259:320-329 [doi:10.1016/j.nimb.2007.01.175].

Submitted 22 October 2013 Revised 22 February 2014 Accepted 13 March 2014