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The ability to culture pluripotent stem cells and direct their differentiation into
specific cell types in vitro provides a valuable experimental system for modeling
pluripotency, development and cellular differentiation. High-throughput profiling of
the transcriptomes and epigenomes of pluripotent stem cells and their differentiated
derivatives has led to identification of patterns characteristic of each cell type,
discovery of new regulatory features in the epigenome and early insights into the
complexity of dynamic interactions among regulatory elements. This work has also
revealed potential limitations of the use of pluripotent stem cells as in vitro models
of developmental events, due to epigenetic variability among different pluripotent
stem cell lines and epigenetic instability during derivation and culture, particularly at
imprinted and X-inactivated loci. This review focuses on the two most well-studied
epigenetic mechanisms, DNA methylation and histone modifications, within the

context of pluripotency and differentiation.

Keywords: differentiation ® DNA methylation e epigenome e histone modification
e imprinting @ pluripotency e sequencing ® stem cells e X inactivation

Early mammalian development involves
precise orchestration of gene expression in
a spatial and temporal manner in order to
establish cell lineage fate. Starting from a
totipotent state, cells fated to the embryonic
lineages pass through a pluripotent state and
then branch off into the germline and the
three germ cell lineages: the ectoderm, meso-
derm and endoderm. Multipotent progenitor
cells in these major lineages then differentiate
further to produce more than 200 specialized
cell types in the fully developed organism.
The differentiation process is accompanied
by changes in the transcriptome, and much
has been learned about the signals that govern
it by performing gene expression analyses of
differentiating and differentiated cells. Such
experiments have demonstrated the critical
role that transcription factors play in the regu-
lation of temporal and spatial gene expression
programs by binding to cis-regulatory regions
in response to environmental cues. There is
an increasing appreciation of the role of epi-

genetic mechanisms in the regulation of the
transcriptome, and recognition that changes
in the epigenome during differentiation can
point to genomic features that play key roles
in the differentiation process [1].

In virtually every cell type and organ sys-
tem, normal differentiation and development
is associated with characteristic changes
in epigenetic patterns, which allow for the
establishment and stable maintenance of a
wide variety of cellular phenotypes without
alterations to the genome (recently reviewed
in [2)). In terms of disease, epigenetic aber-
rations have been shown to result in devel-
opmental abnormalities, degenerative disease
and cancer (also reviewed in [3-6))[7-9]. In the
most inclusive definition, epigenetics is the
study of mechanisms that change gene activ-
ity without altering the DNA sequence, and
thereby include not only DNA methylation
and histone modifications, but also transcrip-
tion factors and noncoding RNAs. In fact,
there has been rather extensive debate regard-
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ing the definition of epigenetics, and in particular how
heritable a mark must be to be considered epigenetic.
Recent advances in the fields of cell biology and epig-
enomics have demonstrated that many epigenomic
marks are less stable than previously believed, and that
certain sequences of epigenetic events that were once
thought to be irreversible (e.g., progression from plu-
ripotent or multipotent stem cells to fully differenti-
ated mature cell types) can in fact be reversed using
cellular reprogramming techniques [10-12].

Human pluripotent stem cells (PSCs) have tremen-
dous potential for in vitro modeling of development and
disease due to their self-renewal properties and their
ability to differentiate into all cell lineages in the body.
Human embryonic stem cells (hESCs) [13], which are
derived from the inner cell mass of blastocyst-stage pre-
implantation embryos, are considered the gold standard
PSCs. Two other types of PSCs have been produced:
induced pluripotent stem cells (iPSCs), which are gen-
erated from somatic cells by overexpression of a small
number of reprogramming factors [10,11); and somatic
cell nuclear transfer ESCs (SCNT-ESCs), which are
derived from embryos resulting from the introduc-
tion of a somatic cell nucleus into an enucleated oocyte
(14]. In the blastocyst, the pluripotent state represented
by the cells in the inner cell mass is transient. /n vitro
however, the pluripotent state as represented by PSCs
can be artificially maintained for an indefinite period
of time. This greatly increases the utility of the cells,
but also makes them susceptible to genomic and epig-
enomic aberrations [15-18]. It is therefore important to
assess how such aberrations may impact the efficacy of
PSCs in accurately modeling development and disease,
and serving as sources of material for cell therapy.

The dynamic interplay between the transcriptome
and epigenome warrants implementation of genome-
wide approaches and high-throughput technologies to
identify and characterize mechanisms and molecular
factors that regulate genome function during develop-
ment, lineage-specification and disease pathology. In this
article, we describe the current genome-wide profiling
platforms and large-scale consortiums that have utilized
these technologies to understand the epigenome, and
also review the existing literature with an emphasis on
publications that have utilized genome-wide approaches
to describe: the epigenetic landscape of pluripotency
and cellular differentiation, as modeled by undifferenti-
ated and differentiated PSCs; differences among differ-
ent types of PSCs; differences between 77 vitro main-
tained ESCs and cells in the developing embryo; and
the dynamic changes in the epigenome that occur dur-
ing reprogramming. We will focus on two of the most
well-studied epigenetic mechanisms: DNA methylation
and histone modifications, and will only briefly touch on

noncoding RNAs (as we have recently written a review
on the role of miRNAs in pluripotency [19]).

The epigenome in mammalian development
DNA methylation is an essential mechanism that has
been shown to play a key role in both gene regulation
in the context of genomic imprinting, X chromosome
inactivation and regulation of some autosomal nonim-
printed genes and preservation of genomic stability. It
is becoming increasingly clear that DNA methylation
at different genomic loci is regulated by several differ-
ent mechanisms and involves the interplay between
DNA methyltransferases (DNMTs), DNA dioxygen-
ases, cytidine deaminases and various DNA-binding
proteins. These processes are particularly active during
early development, and evidence is growing that they
are important for the establishment and stabilization of
the pluripotent state.

DNMTT is the primary maintenance DNA meth-
yltransferase, and is responsible for converting the
hemi-methylated CpG dinucleotides that are gener-
ated during DNA synthesis into fully methylated
CpGs. DNMT3A and DNMT3B are de novo DNA
methyltransferases, which can establish new DNA
methylation at completely unmethylated CpG sites, as
well as methylate cytosines located at non-CpG sites.
Maintenance of DNA methyltranferase activity has
been shown to be critical for development. Mice with
homozygous mutations in Dnmtl, resulting in partial
to complete loss of Dnmtl function, were embry-
onic lethal by midgestation and were associated with
imprinting defects [20). Mouse Dnmt3a knockouts
are postnatal lethal and associated with imprinting
defects [21], while Dnmt3b knockouts are lethal in the
late embryonic period and showed defects in methyla-
tion of endogenous viral and satellite DNA sequences
(21]. Dnmt3a/b double knockouts have a more severe
phenotype, dying at midgestation, indicating that
there is partial redundancy between these two DNA
methyltransferases [20,22].

It has been shown that the absence of all three DNA
methyltransferases in mouse TKO ESCs results in
near-total demethylation of genomic DNA, but does
not affect self-renewal, expression of pluripotency
markers or global chromatin structure [23]. However,
in contrast to wild-type mouse ESCs or mouse ESCs
lacking Dnmtl only, the mouse TKO ESCs do not
stably differentiate when induced to form embryoid
bodies, and readily revert to a pluripotent phenotype
when returned to culture conditions favorable for
undifferentiated PSCs [24]. These results indicate that
DNA methylation is dispensable for maintenance of
the undifferentiated state, but is necessary for lineage
commitment.
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Differential methylation of CpG sites in CpG
islands [25] and those distributed more sparsely across
the genome is established during development by
global demethylation followed by selective remethyl-
ation. Following widespread erasure of DNA methyla-
tion marks during early development, de novo DNMTs
are involved in global remethylation of the genome.
During this process, most CpG islands are excluded
from DNA methylation [26]. It has been shown that
the primary mechanism for protection of CpG islands
from methylation is through proximal cis-regulatory
regions, such as transcription factor binding sites
26,27]. R-loops also protect CpG islands from methyla-
tion. R-loops result from the fact that CpG islands are
skewed toward having one strand of the double helix
rich in guanine, and the complementary strand rich in
cytosine (GC skew). During transcription, the nascent
G-rich RNA segments bind to the C-rich DNA strand,
which forces the G-rich DNA strand to form a loop,
thus protecting these sequences from the de novo DNA
methyltransferases [28].

Early mammalian development, including the
period from gametogenesis through the specification of
the three major cell lineages, is marked by several major
epigenetic changes — imprinting and X chromosome
inactivation being the most heavily studied [1]. Studies
in this area have been challenging due to the limited
numbers of cells in the early embryo and the differ-
ences among species, which prevent generalizations
from model organisms to the human system [29,30].

Imprinting refers to the inactivation of one of the two
alleles at a given genomic locus in a parent-of-origin-
specific manner, and is established during gametogen-
esis. Following fertilization, human zygotes undergo a
wave of global DNA demethylation, but DNA meth-
ylation status at imprinting control regions (ICRs)
remains unchanged, preserving parental allele-specific
DNA methylation at these sites and consequently par-
ent-of-origin-specific imprinted gene expression [31].
Imprinted regions are characterized by expression of
nearby long noncoding RNAs (IncRNAs) [32], specific
histone modifications [33,34], and DNA methylation.
Aberrant imprinting in humans has been correlated
with several developmental diseases, such as Beckwith-
Wiedemann, Prader-Willi and Angelman syndromes,
as well as malignancies, such as Wilms’ tumor [35-37].
Most imprinted genes are found in clusters, with mem-
bers of a cluster regulated simultaneously by a com-
mon ICR [38]. ICRs were traditionally thought to be
established and maintained through DNA methyla-
tion, but recent reports suggest that other epigenetic
modifiers are involved [39]. These reports include his-
tone modification features that may signal the specific-
ity of imprint acquisition during spermatogenesis and

The epigenome in pluripotency & differentiation

may be critical for establishing the DNA methylation
imprints during oogenesis [33,34].

How imprinted loci retain their parent-of-origin spe-
cific gene expression during development has yet to be
fully elucidated. In murine models, it appears that the
protection and maintenance of imprinted marks dur-
ing global demethylation events in pre-implantation
embryos, and in subsequent differentiation events
in development, depends on an epigenetic modifier
complex formed by ZFP57 and TRIM28 [40-42]. The
zinc-finger protein ZFP57 recognizes and binds to the
methylated hexanucleotide motif (TGCCGC) in ICRs,
and recruits TRIM28 and the DNMT3s to maintain
DNA methylation and heterochromatinization at many
imprinted domains across the genome [43]. How accu-
rately the ZFP57/TRIM28/DNMT3 complex prevents
demethylation of ICRs during demethylation events,
and if other components or complexes are involved in
the protection and maintenance of imprinting, has yet
to be determined. Mouse models have also shown that
the PGC7 complex has a role in protecting the mater-
nal sequences from early development demethylation
(44]. Interestingly, PGC7 was also shown to interact
with histone modification factor, H3K9me2, highlight-
ing cooperative interplay between the methylome and
histone modifications to prevent demethylation [4s].
How DNA methylation is initially established at ICRs
remains an outstanding question in the field.

Another level of epigenetic control of gene expres-
sion is through X chromosome inactivation (XCI). XCI
results in the transcriptional silencing of one of the two
X chromosomes in female cells, thereby balancing the
gene dosage from the X chromosome between female
and male cells. The mechanism by which one of the
two X chromosomes is inactivated involves extensive
changes in histone modifications, DNA methylation
changes and several noncoding RNAs [38,46]. The
most well characterized of these critical noncoding
RNAs is X-inactive specific transcript (XIST), which
is expressed from one of the two X chromosomes in
female cells. XCI regulation by the XIST transcript is a
paradigm for epigenetic silencing mediated by noncod-
ing RNAs. XIST acts in cis to coat the X chromosome
from which it is expressed, mediating the initiation and
maintenance of XCI by recruiting histone-modifying
complexes and by inducing nuclear reorganization [47].
In the mouse, XCI is initiated during the pre-implan-
tation period with silencing of the paternal X chromo-
some. The paternal X chromosome is then reactivated
in the ICM at the blastocyst stage resulting in two
active X chromosomes. In the trophoectoderm (TE)
lineage however, paternally imprinted XCI is main-
tained. During gastrulation, random XCI in embry-
onic cells is initiated by XIST. Although it is believed
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that XIST works similarly in mouse and human cells,
the mechanisms controlling its expression and the
developmental stage at which it is expressed is funda-
mentally different in murine and human development
(recently reviewed in [48,49]). Recent evidence points to
potential differences between the primate and murine
XCI pathway, where the primate TE lineage does not
display imprinted paternal XCI [s0].

While XCI is a complex process that is still incom-
pletely understood, application of high-throughput
sequencing technology is beginning to yield insights
and challenge current paradigms. Using allele-specific
sequencing of mouse trophoblast stem cells, Calabrese
et al. discovered DNAsel hypersensitive sites on the
inactive X chromosome, despite the lack of other mark-
ers of transcriptional activity [s1. Additionally, the
small fraction of genes on the X chromosome (~15%)
that escape X inactivation were found to be located
both inside and outside of the domain coated by XIST.
These results suggest that there are as-yet undiscovered
site-specific regulatory elements that act on the inactive
X chromosome.

The epigenomic landscape of human PSCs
Epigenomic profiling of human PSCs has been used to
address several important questions. First, are human
PSCs epigenetically stable? Second, are there differ-
ences in the epigenetic stability of human PSCs derived
or cultured under different conditions, and do any
observed differences correlate with the pluripotency of
the cells? Third, what epigenetic changes occur during
reprogramming and differentiation of human PSCs
(and do they represent the changes that occur during
normal cellular differentiation 7% vivo)?

Aberrant DNA methylation at imprinted loci in
hESCs and human iPSCs (hiPSCs) has recently been
shown to be both widespread and variable [s2,53]. Com-
prehensive DNA methylation profiling of large num-
bers of PSC lines revealed that hypermethylation of the
PEG3, MEG3 and HI9 loci were found to be particu-
larly prevalent and associated with downregulation of
gene expression in human PSC lines [52], in contrast
to earlier studies using targeted gene expression assays
on smaller numbers of cell lines, which reported stable
monoallelic expression for these genes in hPSCs [54-56].
It is unclear whether or not iz vitro culture conditions
are to blame for the observed imprinting aberrations,
as they were evident even in low passage hESCs [s3].
Another study showed that the reprogramming of
somatic cells to pluripotency did not affect the stability
of the vast majority of differentially methylated regions
(DMRs), which are regions that are differentially
methylated between different cell types and are often
associated with regulatory regions, such as enhanc-

ers [57]. Loss of imprinting in reprogrammed hiPSCs at
the PEG3, DIRAS3 and ZDBF2 loci was also reported,
but only the aberrant methylation of ZDBF2 could be
attributed to reprogramming, as the other two genes
also exhibited a loss of imprinting in the parental
somatic cells [57]. For hPSCs displaying aberrations
at imprinted regions, differentiation did not result in
correction of the aberrations, or in appearance of new
aberrations [52,53].

A majority of human female ESCs show non-ran-
dom XCI [58]. Female hESCs can be categorized into
three different classes based on their XIST expression
(59]. Class I hESCs express low levels of XIST, have
two active X chromosomes in the pluripotent state and
undergo random XCI upon differentiation; this state
has been associated with naive pluripotency [52,60-62].
Class IT hESCs express XIST at levels similar to those
of differentiated cells, and are in the XaXi state (Xa:
active; Xi: inactive) with the inactive X being coated
by XIST; most reported female hPSCs fall into this
class [63-67]. Class III hESCs are frequently in the
XaXi state, but have lost XIST expression, so the
inactive X chromosome lacks XIST coating. Unlike
in Class I cells, XIST expression in Class III cells
remains off following differentiation [68]. Currently,
a widely accepted model is that newly derived human
ESCs start in Class I and contain two active X chro-
mosomes, but due to suboptimal in vitro culture con-
ditions, they undergo XCI to become Class II, and
some lines later lose XIST expression and fall into
Class III [s0]. However, experiments in mammalian
pre-implantation embryos indicate that the process
of XCI in mice and humans is highly divergent, and
thus bring this model into question. Unlike in mouse
embryos, XIST is expressed in the majority of the cells
in the human embryo starting at morula stage, and
initially coats both X chromosomes in female cells,
even in inner cell mass cells [29].

Several studies detailing the XCI of iPSCs in repro-
grammed female human cells have recently been
published, with sometimes conflicting results. Some
groups have reported that reprogramming does not
result in the reactivation of Xi, and that iPSCs receive
the Xi from their parent somatic cell (66,671, while
others have shown that reprogramming results in the
reactivation of Xi [61,69-70]. Furthermore, several recent
reports show that hiPSCs are often initially XaXi with
XIST expression present, but quickly lose their XIST
expression in culture [52,58,66.67,70-72]. When XIST
expression is lost, it appears that a subset of Xi-linked
genes is activated and this activation is accompanied
by the loss of DNA methylation in multiple regions of
the X chromosome in a patchy and progressive fashion
[52,72]. It has been suggested that certain culture condi-
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tions promote the XaXa state. Lengner er a/. showed
that hypoxia could be used to derive hESCs that have
not undergone XCI [60]. Tomoda e al. reported that
reprogramming on LIF-secreting feeder cells often
resulted in XaXa hiPSC lines, and that the addition
of LIF to the medium for XaXi hiPSCs resulted in
reactivation to the XaXa state [70]. Other experiments
indicate that HDAC inhibitors [73] or other small mol-
ecules [62] may promote conversion of the XaXi state
to the XaXa state. Recently, a IncRNA, XACT, that
coats the active X chromosome has been identified in
humans (74]. It appears as if this IncRNA is not present
in mice or in differentiated cell types, and the authors
speculate that XACT may be involved in the initiation
of XCI in humans.

Although evidence is mounting that reprogram-
ming/derivation methods and culture conditions can
influence the XCI status of hPSCs, robust and repro-
ducible methods for control of hPSC XCI have not yet
been established. In addition, what the ‘normal’ state
of X chromosome inactivation is in the pluripotent
cells in the human embryo still remains to be com-
pletely understood. In the meantime, it has been noted
that for modeling of diseases caused by X-linked muta-
tions, it is important to monitor the XCI status of the
hPSCs over time [52,72].

Soon after iPSC technology was first developed, the
question of whether there are systematic differences
between iPSCs and hESCs arose. Since the histories
of the nuclear genomes of these two types of hPSCs
are quite different, it is not unreasonable to think
that there might be significant differences in their
epigenomes. As will be discussed below, several stud-
ies have addressed this issue, but we wish to point out
that a common limitation to the existing literature is
that sets of well-matched cell lines do not yet exist, for
which adequate numbers of hESC and hiPSCs have
been genetically matched for potentially confounding
variables, such as oxygen tension, media type (includ-
ing growth factors and small molecule additives), sub-
strate (including feeder cells and type of extracellular
matrix), and passage method. The recent success in
generation of human SCNT-ESCs has generated fur-
ther speculation as the history of the nuclear genomes
of these cells have similarities with both iPSCs (i.e.,
being derived from the nucleus of a somatic cell) and
ESCs (i.e., being reprogrammed by the cytoplasm of
an oocyte, and undergoing preimplantation embryo
development from the cleavage to blastocyst stages). In
particular, it will be interesting to uncover the mag-
nitude and types of differences between SCNT-ESCs
and hESCs, as these may represent the epigenomic
changes that take place during gametogenesis and fer-
tilization.

The epigenome in pluripotency & differentiation

The epigenomics of reprogramming

& differentiation

It has been suggested that reprogramming of somatic
cells to the pluripotent state occurs in two phases. The
first phase involves changes in gene expression and
remodeling of histone marks, and the second phase
results in the consolidation of pluripotency through
changesin DNA methylation and histone modifications
(75,76]. Two studies support the notion that remodel-
ing of DNA methylation is the rate-limiting step in the
process of complete reprogramming [77,78]. First, the
Blau laboratory reported that activation of the OCT4
and NANOG genes occurred much more rapidly dur-
ing reprogramming accomplished by fusion of somatic
cells with PSCs (~1 day) than by the overexpression of
standard reprogramming factors (~2 weeks), and that
AID was required for this process (77]. Second, ‘lift-
ing’ of the repression at the NANOG promoter by the
methyl DNA-binding protein MDB2 was necessary
to attain the fully reprogrammed state; paradoxically,
MDB2 was shown to be subject to repression by the
pluripotency-associated miRNA miR-302 (78]. In terms
of histone modifications, a recent genome-wide analysis
of the binding sites of pluripotency factors, POUSF1/
OCT4, SOX2, KLF4 and -MYC (OSKM) was con-
ducted during the first 48 h of reprogramming [79].
Genomic regions lacking OSKM binding were iden-
tified as loci that were potentially bound by endog-
enous factors that were impediments to reprogram-
ming. Interestingly, it was found that the repressive
H3K9me3 mark was found to be associated with these
regions lacking OSKM binding, and was therefore
inferred to be an impeding factor [79].

It has been observed that global DNA methylation
is higher in hPSCs than in differentiated human cells
(9,52,57]. This is true not only at CpG sites, but also for
cytosines at non-CpG sites [9,57]. In fact, consistent with
an earlier paper reporting non-CpG methylation in
mouse ESCs [80] more recent reports have shown that
non-CpG methylation was markedly more prevalent in
hESCs than somatic cells, accounting for up to 20% of
DNA methylation in hESC:s [9,57]. It has also been shown
that loci that are specifically hypomethylated in certain
tissue types are uniformly hypermethylated in hPSCs,
and that a subset of these sites become hypomethylated
upon 7 vitro differentiation to the relevant lineage [s2].

Histone modification patterns can affect the develop-
mental potential of hPSCs. One important histone mod-
ification feature among PSCs is bivalent domains. Biva-
lent domains are marked by poised/active (H3K4me3)
and repressive marks (H3K27me3), and are typically
associated with transcription factors and genes associ-
ated with development and lineage specification [s1,82].
This is thought to provide rapid access to lineage speci-
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fication factors during differentiation through the loss of
H3K27me3. Changes in histone modifications are gen-
erally thought to precede DNA methylation during cel-
lular differentiation, as they are more dynamically regu-
lated during differentiation [83]. ESCs have a more open
chromatin configuration with abundant active chroma-
tin marks such as H3K4me3 and fewer H3K9 trimeth-
ylation regions compared to differentiated cells [84,85].
Other chromatin modifications important for develop-
ment include histone H3 at lysine 4, 9 and 27 [s4].

Chromatin modifications at enhancers are another
prevalent feature of differentiation and cell lineage
decisions. Beyond the H3K4me3 and H3K27me3
marks, which are predominantly found at promoters,
the active enhancer marks, H3K4mel and H3K27ac,
are of increasing interest. Several studies identified the
presence of over 7000 enhancers in hESC that can be
grouped as either active or poised enhancers and can be
distinguished by the H3K27ac mark [87,88]. Recently, it
was shown that approximately <1% of enhancers form
50 kb domains, known as ‘super-enhancers, which
are marked by epigenetic regulatory features such as
the Mediator coactivator complex [89), H3K4mel and
H3K27ac. These super-enhancers are frequently associ-
ated with transcription factors that have been identified
as critical regulators of cell fate [90]. These results high-
light an important interaction between transcription
factors and global chromatin engagement.

Several studies in a variety of biological systems
have suggested that regulation of gene expression by
DNA methylation and histone modifications is a com-
plex combinatorial process [91], wherein some histone
marks are well-correlated with DNA methylation,
while others regulate sets of genes that do not appear
to be regulated by DNA methylation [92], and yet oth-
ers show complex relationships that seem to be context-
dependent. One of the most interesting interactions is
between DNA methylation and the H3K27me3 mark.
As mentioned above, in mouse ESCs, it was shown that
repressive H3K27me3 marks were frequently colocal-
ized with activating H3K4me3 marks, resulting in
a ‘poised’ bivalent state [83], which resolves into the
fully active or fully repressed state upon differentia-
tion (82,93]. In HeLa cells, the polycomb group protein
EZH2, which catalyzes the methylation of H3K27,
physically associates with DNA methyltransferases
and promotes DNA methylation [94]. Furthermore,
studies in mouse ESCs showed that DNA meth-
ylation prevents the placement of H3K27me3 marks
(95,96], and recently, a study was published that dem-
onstrated a correlation between 5-hydroxymethylcy-
tosine and H3K27me3 in a variety of cell types [97].
Taken together, these studies suggest that there may be
a temporal hierarchy, in which the polycomb repres-

sive complex first places the repressive H3K27me3
mark, and then recruits DNA methyltransferases to
solidify repression of gene expression. In this repressed
state, DNA methylation inhibits the placement of new
H3K27me3 marks. However, conversion of 5-methyl-
cytosine to 5-hydroxymethylcytosine appears to again
allow the placement of H3K27me3 marks.

Two recent studies have reported on integrative anal-
ysis of DNA methylation, histone modification and
transcriptome data in hESCs in the undifferentiated
state and during early 77 vitro differentiation toward
the three germ lineages [98,99]. In the Gifford ez al.
study, it was observed that in hESCs, some CpG-poor
regions of the genome switched from a highly methyl-
ated state (highly methylated regions [HMRs]) to high
enrichment for H3K27me3 when the cells were differ-
entiated to definitive endoderm, but remained HMRs
during early differentiation to ectoderm or mesoderm
[99]. This suggests that some genomic regions that are
activated upon differentiation go from a highly DNA
methylated state to a H3K27me3 state, the comple-
ment of the findings in mouse ESCs discussed above
which showed that regions of the genome that became
repressed with differentiation were first marked by
H3K27me3, and then switched to a DNA methylation
state. The same authors also reported that these regions
frequently included binding sites for the endoderm-
associated transcription factor FOXA2, suggesting
that certain transcription factors may be able to bind
to methylated DNA and stimulate demethylation [99].

In contrast to the sequential role for the H3K27me3
marks and DNA methylation in gene repression of the
same genomic loci suggested by the earlier studies in
mouse ESCs and the Gifford ez a/. study discussed above
[99], the Xie ¢t al. study found that H3K27me3 and
DNA methylation appear to repress different genomic
loci [98]. Namely, genes that were differentially expressed
during early lineage specification had promoters that
were CG-rich and were repressed by H3K27me3, while
genes that were differentially expressed at later stages of
differentiation had promoters that were CG-poor and
were controlled by DNA methylation. These results sup-
port the notion that histone chromatin marks are the
predominant repressive marks in open chromatin, medi-
ating transcriptional repression in the rapidly changing
cellular milieu during early lineage commitment, while
DNA methylation mediates a more stable form of repres-
sion, and therefore would be better suited for setting
long lasting marks necessary for stable maintenance of
the cellular phenotypes produced by late stage differen-
tiation. It is important to note that in these studies, the
characterization of genomic loci involved in early lineage
commitment was performed by studying hESCs under-
going in vitro differentiation, while the identification of
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loci involved in later differentiation was performed using
data from tissue samples. Although 77 vitro differentia-
tion of hESCs appears to recapitulate iz vivo differentia-
tion in many respects, including sequential changes in
cellular morphology and expression of key markers, it
should be kept in mind that it has not been rigorously
verified that they correspond in all respects.

In addition to interrogating histone modifications,
the Gifford et al. study also used ChIP-seq to character-
ize the binding patterns of the pluripotency-associated
transcription factors POUSF1, SOX2, and NANOG
(99]. The combinatorial binding patterns for these
transcription factors were assessed, revealing that sites
bound by POU5F1 alone were primarily associated with
promoter regions, in contrast to sites bound by all three
factors, SOX2 only or NANOG only, which tended
to be in intergenic or intragenic regions. Integrating
the transcription factor and histone modification data
revealed that dual POUSF1/H3K4mel occupancy in
the undifferentiated state was associated with HMRs
regions. The study by Gifford ez 4/. also discovered an
enrichment for predicted binding sites for a number of
early lineage-specific transcription factors in regions
bound by different combinations of POU5F1, SOX2,
NANOG and activating histone marks in hESCs in
the undifferentiated and early differentiated states
[99]. This finding suggests that pluripotency-associated
transcription factors might ‘set up’ pluripotent cells
for differentiation by ensuring that certain genomic
regions are permissive for the proper epigenetic modifi-
cations involved in differentiation, or even play a direct
role in early differentiation of certain lineages.

In another approach, a recent manuscript from the
Sander laboratory used integrative analysis of histone
modifications (H3K4me3 and H3K27me3) and tran-
scriptome data to compare the later stages of differentia-
tion iz vivo and in vitro [100]. In this study, hESCs were
subjected to 77 vitro lineage commitment to the pancre-
atic endoderm stage, and then either transplanted into
mice or maintained in vitro for further differentiation.
The resulting two populations of cells were analyzed
by ChIP-seq and RNA-seq, and compared to human
islets. Undifferentiated hPSCs were found to have biva-
lent marks (H3K4me3 and H3K27me3) for definitive
endoderm, pancreatic endoderm and endocrine regula-
tors. The regulators of definitive endoderm were appro-
priately activated during 77 vitro differentiation at the
definitive endoderm stage and repressed at the pancreatic
endoderm stage, and these modulations in transcription
were mirrored by the appropriate loss of the H3K27me3
mark. Moreover, regulators of pancreatic endoderm
were also appropriately activated during in vitro dif-
ferentiation at the pancreatic endoderm stage, with the
corresponding loss of H3K27me3. However, the proper

The epigenome in pluripotency & differentiation

derepression of late endocrine markers occurred only in
the cells transplanted into mice for iz vivo maturation;
in the cells maintained 7 vitro, late endocrine markers
were poorly expressed, and their promoters remained in
the bivalent state. From these results, the authors con-
cluded that lack of proper histone remodeling is at least
in part responsible for the dysfunction of in vitro dif-
ferentiated pancreatic endocrine cells [100].

Genome-wide profiling methods

& epigenome maps

Advances in high-throughput profiling methods, such
as microarrays and next-generation sequencing (NGS)
greatly advanced our understanding of the epigenome.
NGS platforms have provided the capacity to tackle the
complexity and multidimensionality of the epigenome.
Several methods have been adopted to profile the DNA
methylation and histone modification status of plu-
ripotent cells and differentiated cells. We will briefly
describe the most commonly used high-throughput
methods (reviewed in detail in [101)).

DNA methylation profiling involves bisulfite treat-
ment of DNA, which results in the conversion of
unmethylated cytosine residues to uracil residues,
while methylated cytosines are protected from bisul-
fite conversion, and remain as cytosines. Following
PCR, the converted cytosines become thymidines. The
bisulfite-treated DNA can then be analyzed on micro-
arrays, such as the Infinium HumanMethylation450K
BeadChip (Illumina), designed to detect the presence
of a cytosine versus thymidine at selected positions
in the genome or subjected to NGS to directly read
the presence of a cytosine versus thymidine, either in
selected regions of the genome (e.g., using reduced rep-
resentation bisulfite sequencing (RRBS) [102] or across
the entire genome [103]. One of the major limitations of
the standard microarray or bisulfite sequencing meth-
ods is that they do not distinguish between 5-methyl-
cytosine (5mC) and 5-hydroxymethylcytosine (5hmC)
(104,105], the latter being an intermediate during DNA
demethylation and shown to mark regulatory regions
in fetal brain cells [106] and enriched at enhancers in
ESCs [107-109]. However, a new method, called oxida-
tive bisulfite sequencing (0xBS-seq), when compared to
standard bisulfite sequencing of the same sample, does
allow distinguishing betweenallows one to distinguish
between unmethylated, methylated and hydroxymeth-
ylated cytosines [110]. Comparisons between genome-
wide DNA methylation profiling technologies have
been reviewed in detail elsewhere [111,112] and summa-
rized in Figure 1. As an adjunctive approach, RNA-seq
or allele-specific qRT-PCR can be used to detect allele-
specific expression and thereby infer the DNA meth-
ylation status of loci subject to imprinting or XCI [s1].
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(A) Hydroxymethylation
* oxBS-seq: quantitative measurement

specifically of 5mC at all cytosines
in the genome, which when compared with
the results from BS-seqg/MethylC-seq allows
determination of the sites of 5hmC
Advantages: allow differentiation between
5mC and 5hmC
Disadvantages: high cost due to current
protocols requiring two separate sequencing
runs to determine 5ShmC through subtraction
of the 5mC profile from oxBS-seq from the
composite 5mC+5hmC profile from BS-seq
or MethylC-seq

®
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Chromatin immunoprecipitation (ChIP) is the
primary method used to detect physical interactions
between DNA sequences and proteins. Using anti-
bodies specific for the modified histone or transcrip-
tion factor of interest, the genomic regions bound by
the selected protein are isolated and identified by til-
ing array (ChIP-chip [82,113)) or NGS analysis. One
of the major advantages of ChIP-seq is the ability to
profile and detect repetitive sequences. Other deriva-
tions of the technology include ChIP-PET, where
pair-ended reads are obtained for the ChiP fragments
(114]. Integrative, epigenomic profiling approaches such
as the combination of ChIP and bisulfite sequencing
(ChIP-BS-seq, BisChIP-seq) [96,115] will enable inter-
rogation of the same molecule and yield insights into
the crosstalk between DNA methylation and histone
modifications.

DNA methylation

and 5hmC

cytosine loci
Advantages: low cost

Large-scale epigenetic project initiatives have capi-
talized on NGS technologies to create and compile
genome-wide, epigenome maps of cell types and tissues
important in development and diseases [116]. The Road-
map Epigenomics [117] and the Encyclopedia of DNA
Elements (ENCODE) [118] consortiums are both NTH-
funded projects. ENCODE represents an international
consortium of research groups with the primary aim
to discover and identify functional and regulatory ele-
ments in the genome. In humans alone, ENCODE
hosts over 4000 individual datasets from a wide variety
of platforms on 147 cell lines. The goal of the Road-
map Epigenomics Project is to create reference maps
of normal and primary cell types and to host these
datasets in Human Epigenome Atlas public database.
The current release includes 61 complete epigenome
datasets as of May 2012. Both consortia host many

* BS-seq or MethylC-seq: quantitative measurement of both 5mC and 5hmC marks
Advantages: determine DNA methylation of each cytosine in the genome
Disadvantages: high cost of sequencing and unable to distinguish between 5mC

* RRBS: measurement of most cytosines contained in high CpG content areas of the
genome, such as CpG islands
Advantanges: reduces the amount of nucleotides to be sequenced lowering the cost
of both sequencing and downstream analysis
Disadvantages: unable to determine cytosine methylation in low CpG content regions
* Methylation arrays: interrogation of methylation status of certain representative

Disadvantages: bias in which cytosine loci are tested, less than half the cytosines of
RRBS, few non-CpG loci and unable to determine allelic specific methylation

(© Histone modifications:
* ChlIP-seq: genome-wide determination of histone modification profiles as well as other protein—DNA and RNA interactions by

coupling ChIP and high-throughput sequencing

G
\ &
”Q:Q:é\“ .

Advantages: better signal:noise ratio, detection of more peaks and less bias compared to ChIP—-ChIP

Disadvantages: large amounts of sample needed, many regions are difficult to map and numerous false-positive peaks

* ChIP-ChIP: genome-wide mapping of histone modifications by pairing ChIP with genomic tiling microarrays
Advantages: well characterized, low cost and widely available

Figure 1. Key genome-wide approaches for profiling the epigenome.
5mC: 5-methylcytosine; 5hmC: 5-hydroxymethylcytosine; ChIP: Chromatin immunoprecipitation; oxBS-seq: Oxidative bisulfite
sequencing; RRBS: Reduced representation bisulfite sequencing.

Disadvantages: inherent bias, lower spatial resolution, lower dynamic range, large amount of sample required and less genomic
coverage compared to ChIP-seq
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datasets of PSC and differentiated lines. The success of
these initiatives have spurred additional projects, such
as the latest consortium, BLUEPRINT, an European
initiative aimed to generate 100 reference epigenomes
from hematopoietic cells and their malignant leukemic
counterparts. The epigenome maps from these initia-
tives and other sources have immensely improved our
understanding of the epigenetic regulatory mechanism
during pluripotency and its dynamic use during differ-
entiation (Table 1) as described throughout this review.
The ENCODE [119] and Roadmap Epigenomics [120]
datasets are available online and is also hosted at the
UCSC Genome Browser for visualization [121].

Conclusion

The studies discussed here have demonstrated that
characterization of early in wvitro differentiation of
hPSCs using genome-wide transcriptome and epig-
enome datasets can reveal patterns and associations
that suggest a complex combinatorial mechanism
for epigenomic regulation of early differentiation. It
is clear that further work is necessary to verify and
determine the functional consequences of the interac-
tions between general epigenomic marks (i.e., DNA
methylation and histone modifications), pluripotency-
associated transcription factors and lineage-specific
transcription factors suggested by these studies. More-
over, as methods for differentiation of hPSCs to more
mature cell types are developed and optimized, it
will be intriguing to see whether the same patterns of
epigenomic regulation will apply, or whether distinct
mechanisms will be uncovered.

Future perspective
As noted above, it still remains to be determined
which type of hPSC best represents the pluripotent

The epigenome in pluripotency & differentiation

stem cells in the human embryo, and how closely
in vitro differentiation of hPSCs resembles the
bona fide cellular differentiation that occurs during
development. For some applications, such as high-
throughput screening for cell type-specific drug tox-
icity, modeling of certain diseases, or cell therapy,
it may not be critical for hPSC-derived cells to be
perfect epigenomic matches of the corresponding
tissue-derived cell, as long as the hPSC-derived cells
possess specific phenotypic properties (e.g., the abil-
ity to secrete insulin in a glucose-dependent man-
ner for cell therapy for Type 1 diabetes mellitus).
However, for accurate modeling of development and
developmental or degenerative diseases, discrepan-
cies between 77 vivo and in vitro differentiation may
be problematic. Although technically challenging,
it is important that studies delineating the dynamic
role of the epigenome in mammalian development
continue to be performed.
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Review

Executive summary

The epigenome in mammalian development

¢ Mammalian development is tightly regulated by epigenetic events and can be studied using pluripotent stem cells (PSCs),
including human embryonic stem cells and induced PSCs. Although PSCs can be valuable in vitro models to study the
differentiation process, care must be taken due to epigenetic aberrations, such as instability of X chromosome inactivation and
hypo- or hyper-methylation of imprinted loci, which can be induced during derivation and long-term culture.

The epigenomics of reprogramming & differentiation

e Recent studies have shown that regulation of gene expression by DNA methylation and histone modifications is an intricate
combinatorial process in which some histone marks are well-correlated (or anti-correlated) with DNA methylation, others
regulate sets of genes that do not appear to be regulated by DNA methylation, and yet others show complex relationships with
DNA methylation that seem to be context-dependent.

Genome-wide profiling methods & epigenome maps

e Advances in high-throughput profiling methods, such as microarrays and next-generation sequencing (NGS), have greatly
advanced our understanding of the epigenome. More recently NGS platforms have provided the capacity to tackle the complexity
and multidimensionality of the epigenome. Methods that are becoming increasingly popular for profiling of the DNA methylation
and histone modification status of pluripotent cells and differentiated cells include reduced representation and whole-genome
bisulfite sequencing and chromatin immunoprecipitation profiling on microarrays and high-throughput sequencing.
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