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ABSTRACT OF THE DISSERTATION

Improving SQL Performance Using Middleware-Based Query Rewriting
By
Qiushi Bai
Doctor of Philosophy in Computer Science
University of California, Irvine, 2023

Professor Chen Li, Chair

Query performance is critical in database-supported applications where users need answers
quickly to make timely decisions. For decades, databases have relied heavily on query rewrit-
ing to optimize SQL query performance. However, with the current prevalent use of business
intelligence and interactive visualization systems, purely relying on the rewriting capabilities
inside databases is insufficient to optimize queries generated by those modern applications.
On the one hand, different applications have various performance requirements. Some ap-
plications prioritize responsiveness, requiring queries to be executed within strict time con-
straints, and others may prioritize accuracy. Traditional database-centric approaches fail to
exploit such information and adapt to diverse application requirements. On the other hand,
developers and domain experts possess valuable insights into the data and query patterns
specific to their applications. However, the query optimization techniques customized using

domain knowledge can be infeasible inside databases.

In this thesis, we focus on providing middleware-based query-rewriting techniques to help

databases seize opportunities to optimize queries.

First, for many applications with stringent response time constraints, such as interactive
visualization systems, we propose a machine learning-powered query rewriting framework

(called Maliva) to rewrite the queries with various options and help the databases generate

xil



efficient plans. Maliva leverages those expensive and high-accuracy query cost estimators to
guide their rewriting process. By considering a pre-defined time constraint, Maliva judiciously
explores different rewriting options and balances the query planning time and the execution

time to find an efficient rewritten query that meets the time constraint.

Second, in many cases, developers want to use their domain knowledge about the applications
and datasets to rewrite queries for better performance. We propose a human-centered query
rewriting solution (called QueryBooster) to provide users with an express and easy-to-use rule
language to define rewriting rules. In addition, QueryBooster allows users to express their
rewriting intentions by providing example query pairs. QueryBooster then automatically

generalizes them into rewriting rules and suggests high-quality ones to the users.

Finally, to lower the bar of users adopting the proposed rewriting framework, we implemented
QueryBooster as middleware-based multi-user system to provide query rewriting between
applications and databases as a service. Treating both the applications and databases as
black boxes, QueryBooster requires no code modifications to them. To use the service, users
only need to replace the database connector between the application and the database with
a customized version provided by QueryBooster. The customized connector automatically
intercepts application queries and sends them to QueryBooster to rewrite them based on
user-defined rewriting rules. QueryBooster’s service model brings SQL query rewriting to a
new paradigm where (1) users can easily formulate, control, and monitor query rewriting;
(2) they can share rewriting knowledge and benefit from the wisdom of the crowd; and (3)

they enjoy the non-intrusiveness security and pay-as-you-go convenience.

xiil



Chapter 1

Introduction

Data analytics has emerged as an important discipline in today’s digital era. As information
permeates every aspect of our lives, organizations increasingly recognize the pivotal role
of data-driven insights in shaping strategic decisions and driving growth. At the heart of
this data revolution lies a crucial element: database-supported applications. Ranging from
business intelligence (BI) platforms to visualization systems, these tools enable organizations
to uncover meaningful patterns, extract actionable insights, and make informed decisions. As
organizations deal with ever-increasing volumes of data, the ability to efficiently retrieve and
process data becomes critical. The speed of query execution directly impacts the timeliness

of gaining insights, making decisions, and the overall user experience.

For decades, databases have relied heavily on query rewriting to optimize SQL query per-
formance. However, with the current prevalent use of business intelligence and interactive
visualization systems, purely relying on the rewriting capabilities inside databases is insuf-
ficient to optimize queries generated by those modern applications. There are two main
Challenges. (C1) On the one hand, different applications have various performance require-

ments. Some applications prioritize responsiveness, requiring queries to be executed within



strict time constraints, and others may prioritize accuracy. Traditional database-centric
approaches fail to exploit such information and adapt to diverse application requirements.
(C2) On the other hand, developers and domain experts possess valuable insights into the
data and query patterns specific to their applications. However, the query optimization

techniques customized using domain knowledge can be infeasible inside databases.

To seize those opportunities to help databases optimize application queries, we focus on
middleware-based query rewriting solutions, which have a few unique advantages. First,
unlike the approach of modifying the application or database code, which is time-consuming
and error-prone, middleware can be seamlessly integrated into the existing infrastructure.
Second, middleware can be tailored to address specific application needs by taking into
account factors such as response time and query accuracy to rewrite queries. Finally, sitting
in between the application and database, middleware can facilitate domain-specific query
optimization techniques by rewriting application queries before sending them to the database
with developer-customized rewriting rules. In this thesis, we proposed two solutions to

address the aforementioned two challenges.

1. Maliva: Using Machine Learning to Rewrite Visualization Queries Under Time
Constraints. Visualization is becoming increasingly important in the Big Data era as a
powerful way for people to gain insights from data quickly and intuitively. Responsiveness is
critical in visualization applications, and a request needs to be served within a time budget,
e.g., 500ms. This requirement is especially challenging when the data volume is large and the
user request has ad-hoc conditions on attributes of various types. In Chapter 2, we study the
problem of answering visualization requests with a predetermined time constraint. We focus
on middleware-based solutions, with the advantage that they treat the backend database as
a black box without changes and can leverage computing capabilities to do in-situ analytics.
We consider rewritings that return exact results and rewritings that return approximate

results. We propose a machine learning-powered query rewriting framework (called Maliva)



to rewrite the queries with various options and help the databases generate efficient plans.
Maliva leverages expensive and high-accuracy query cost estimators to guide their rewriting
process. By considering a pre-defined time constraint, Maliva judiciously explores different
rewriting options and balances the query planning time and the execution time to find an
efficient rewritten query that meets the time constraint. Our experiments on both real and
synthetic datasets show that Maliva performs significantly better than a baseline solution
that does not do any rewriting in terms of the probability of serving requests interactively

and query execution time.

2. QueryBooster: Improving SQL Performance Using Middleware Services for
Human-Centered Query Rewriting. In a wide range of database-supported systems,
there is a unique problem where both the application and database layer are black boxes,
and the developers need to use their knowledge about the data and domain to rewrite queries
sent from the application to the database for better performance. For example, in one of
our experiments using Apache Superset to analyze social media tweets on top of a MySQL
database, a human-crafted rewriting rule that translates the textual filtering condition from
a LIKE predicate to a full-text search predicate can improve the query performance by 100
times faster. However, since this rewriting is valid only for a particular dataset, it cannot be
adopted by native optimizers inside databases. In addition, existing query rewriting solutions
inside and outside databases do not give the users enough freedom to express their rewriting
needs. In both Chapter 3 and Chapter 4, we propose a middleware-based human-centered

query rewriting system (called QueryBooster) to address this problem.

In Chapter 3, we focus on the core technical aspects of the QueryBooster system. Query-
Booster provides users with an express and easy-to-use rule language (VarSQL) to define
rewriting rules. In addition, QueryBooster allows users to express their rewriting intentions
by providing example query pairs. QueryBooster then automatically generalizes them into

rewriting rules and suggests high-quality ones to the users. A user study and experiments on



various workloads show the benefit of using VarSQL to formulate rewriting rules, the effective-
ness of the rule-suggestion framework, and the significant advantages of using QueryBooster

to improve the end-to-end query performance.

In Chapter 4, we focus on the system design aspects of the QueryBooster system to provide
query rewriting between applications and databases as a service. QueryBooster requires
no code modifications to the applications and databases. To use the service, users only
need to replace the connector between the application and the database with a customized
connector provided by QueryBooster. This connector automatically intercepts application
queries and sends them to QueryBooster to rewrite them based on user-defined rewriting
rules. QueryBooster’s service model brings SQL query rewriting to a new paradigm where
(1) users can easily formulate, control, and monitor query rewriting; (2) they can share
rewriting knowledge and benefit from the wisdom of the crowd; and (3) they enjoy the

non-intrusiveness security and pay-as-you-go convenience.

In Chapter 5, we conclude the thesis, and we identify several interesting research opportu-

nities as future work.



Chapter 2

Using Machine Learning to Rewrite
Visualization Queries Under Time

Constraints

2.1 Introduction

As a powerful way for people to gain insights from data quickly and intuitively, visualization
is becoming increasingly important in the Big Data era. A common architecture to support
data visualization has three tiers: a backend database, a middleware layer, and a user-facing
frontend. The middleware translates a visualization request to a query (typically in SQL)
to the database and sends the query answers to the frontend to display. This architecture
is widely used due to its benefits of supporting in-situ analytics at the data source, and
utilizing the database’s built-in capabilities of efficient storage, indexing, query processing,
and optimization. Responsiveness is critical in these systems [56, 21, 13], and a request needs

to be served within a time budget, e.g., 500ms. This requirement is especially challenging



when the data volume is large, and the user request has ad-hoc conditions on attributes of

various types.

In this chapter, we study the problem of answering visualization requests with a predeter-
mined time constraint. We focus on middleware-based solutions, with the advantage that
they treat the backend database as a black box without changes, and can leverage the com-
puting capabilities to do in-situ analytics. We consider both rewritings that return exact
results and rewritings that return approximate results. As a motivating example, consider a
system that visualizes social media tweets on the US map with a time constraint of 500ms.

Its backend database has a tweets table with attributes Content, Location, and CreateAt.

Traditional middleware Maliva: ML-based middleware
/*+ Index-Scan( CreateAt ) */
SELECT BIN_ID, COUNT(*) SELECT BIN_ID, COUNT(*)
FROM tweets FROM tweets
WHERE Content contains "covid" WHERE Content contains "covid"
AND Location in ((-124.4, 32.5), AND Location in ((-124.4, 32.5),
(-114.1, 42.0)) (-114.1, 42.0))
AND CreateAt on Nov-26-2020 AND CreateAt on Nov-26-2020
v GROUP BY BIN_ID(Location); | v GROUP BY BIN_ID(Location); 1
| Database | | Database |
(a) The original SQL query takes 3.35s. (b) A rewritten query with a hint takes 0.33s.

Figure 2.1: Equivalent rewriting option: adding query hints helps the database compute
results within a time budget (500m.s).

Equivalent rewriting options. Suppose a user asks for a spatial heatmap of tweets
containing the keyword covid on the Thanksgiving day of 2020 in a region. The middleware
creates a SQL query shown in Figure 2.1(a), which takes 3.35 seconds to execute. For this

query, the physical plan generated by the database uses the keyword to access the inverted



index on the Content attribute to retrieve candidate records, then filters them using the
other two conditions. If we rewrite the query to an equivalent query by adding a hint
(Figure 2.1(b)), the rewritten query takes only 0.3 seconds, as the hint helps the database
generate a more efficient physical plan that uses the temporal filtering condition to access

the B+ Tree index on the CreateAt attribute.

Approximation rewriting options. Figure 2.2(a) shows another visualization request
on a larger region, which takes at least 4.28s for the database to run, no matter what
hints we add. In this case, we rewrite the query by using random sampling, resulting in an

approximation query that takes only 0.45s to run (see Figure 2.2(b)).

Traditional middleware Maliva: ML-based middleware
SELECT Id, Location SELECT Id, Location
FROM tweets FROM sample_tweets
WHERE Content contains "covid" WHERE Content contains "covid"
AND Location in ((-132.6, 27.7), AND Location in ((-132.6, 27.7),
(-103.5, 40.0)) (-103.5, 40.0))
AND CreateAt on Nov-26-2020; AND CreateAt on Nov-26-2020;
Database ] Database j
(a) The query takes 4.28s (no hints can re- (b) A rewritten query using a sample table
duce it). takes 0.45s.

Figure 2.2: Approximation rewriting option: rewriting the query to compute an approximate
result within the time constraint.

Why does the database fail? For the query in Figure 2.1(a), there are many reasons the
database can fail to generate an efficient plan. One is the estimation error of the query cost
due to an underestimation of the keyword covid’s selectivity. The cost-estimation problem in

optimizers is notoriously hard [58]. For example, in our experiments (Section 3.7), out of the



602 visualization queries that had at least one physical plan that could finish within 500ms,
PostgreSQL failed to choose an efficient plan for 269 queries due to its cost-estimation errors.
Although there are many higher-accuracy estimators such as [124, 125, 107, 64, 78, 36, 62],
their higher estimation cost prevents them from being adopted by a general-purpose database
to meet the visualization need. In particular, for OLTP queries that need to be finished within
milliseconds, spending tens of milliseconds for the cost estimation is unacceptable. A key
observation is that for visualization applications where requests come with a time constraint,
the middleware can afford to spend more time (e.g., 300ms) on the cost-estimation using the
high-accuracy estimators to find efficient plans (e.g., within 50ms), while it can still answer

requests within a given time constraint (e.g., 500ms).

Challenges. We may enumerate all possible rewritten queries by applying different hints
to a given query. We then use one of the aforementioned query-time estimators (“QTE”
for short) to estimate the execution time of these rewritten queries and choose the most
efficient one. There are several challenges in using this approach in the context of interactive
visualization. (C1) A main challenge is that the cost of estimating the execution time of a
rewritten query can be significant given a tight time constraint. For example, in Bao [62],
estimating the execution time of all rewritten queries for one original query can take up
to 230ms in their experiments. (C2) Another challenge is the uncertainty caused by the
estimation error of the QTE, and the fact that the backend database may or may not follow
the provided hints to generate a physical plan. (C3) The third challenge is quality. For
queries without equivalent rewritten queries that can meet the time constraint, approximate
rewriting options need to be explored. It is critical to maximize the quality of the result

while ensuring the query time is within the time constraint.

We address these challenges by introducing a novel machine-learning-based technique called
Maliva, which stands for “Machine Learning for Interactive Visualization.” The technique

formulates the middleware task as a Markov Decision Process (MDP). For a given time



budget, we train an MDP agent to balance the planning time and the execution time of the
rewritten queries. By learning from previous experiences, the MDP agent judiciously explores
different rewriting options, so that the total time (including planning and query execution) is
within the time limit. (We address challenge C1 in Section 2.4.) Using reinforcement learning
to train the models, Maliva can handle the uncertainties introduced by the inaccurate time
estimation and the fact that the database could ignore the query hints. (We address challenge
C2 in Section 2.5.) By considering visualization qualities of rewritten queries in the reward
design of the MDP model, Maliva makes the best effort to maximize the result’s quality while
ensuring the query time is within the time limit. (We address challenge C3 in Section 2.6.)
Our experiments show that Maliva has a much higher chance (70x) than the original query
to generate an execution plan such that the total time is within a time limit. Interestingly,
it can also reduce query execution time. Both improvements show the significant benefits of

adding learning capabilities to the middleware to support responsive visualization.

The rest of the chapter is organized as follows. After formulating the middleware query-
generation problem in Section 2.2, we give an overview of Maliva in Section 2.3. We present
the details of this MDP-based solution, including its states, actions, transitions, and rewards
(Section 2.4). We present how Maliva trains an MDP agent offline and uses it to gener-
ate a rewritten query online (Section 2.5). We generalize the MDP-based solution to be
quality-aware by considering approximation rewriting (Section 2.6). Lastly, we report the
results of a thorough experimental evaluation of Maliva to show its performance and benefits

(Section 3.7).

2.1.1 Related Work

Visualization is a broad topic studied in many communities, and here we focus on efficiency-

related works. A survey [31] summarized studies on interactive data analytics and visualiza-



tion, and there are several recent studies on this topic [44, 87, 53, 50].

Approzimate Query Processing (AQP). There are many techniques for computing approxi-
mate answers to queries [130, 129, 69, 77, 54, 34, 76, 117, 25, 92, 80, 15]. These approaches
focus on developing approximation solutions to compute high-quality visualization. Existing
solutions can be adopted as approximation rules in Maliva, such as Sample+Seek [25], which

generates error-bounded visualization results by running queries on a small sample table.

Datacube-based approaches. Related studies include [55, 24, 120, 57, 43, 21, 46, 68]. In these
approaches, the predefined cube intervals cannot support visualization queries with arbitrary
numerical range conditions. The proposed Maliva system efficiently computes results for

visualization queries with arbitrary conjunctive selection conditions.

Progressive visualization. There are solutions to show visualization results progressively [67,
42,20, 29, 21, 15]. For instance, DICE [21] uses random and stratified samples to present an
approximate result and then incrementally updates the result. These progressive visualiza-
tion systems can adopt the proposed Maliva middleware to further optimize the intermediate

queries to increase their efficiency.

Prefetching-based approaches. Techniques including [12, 126, 97, 3] accelerate visualization
queries by prefetching or caching their results. For example, ForeCache [12] divides visualiza-
tions into tiles and prefetches them based on predicted user behaviors. Maliva is orthogonal

to these techniques, and it can be adopted by them to further optimize the database queries.

Visualization using big data systems. These techniques use Hadoop, Spark, and Hive to sup-
port visualizations [127, 15, 110, 26, 16]. For instance, HadoopViz [26] and GeoSparkViz [127]
use Hadoop and Spark to generate high-resolution visualizations. Their focus is on offline
construction, not on an interactive visualization for queries with ad-hoc conditions. The

proposed Maliva middleware technique is complementary to these solutions.
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ML for visualization. A survey by Wang et al. [118] summarized studies of applying ML
techniques to different stages during the whole visualization pipeline. Examples are [59, 119]
for data cleaning and preparation and [40, 89, 60] for visualization recommendation. Our
proposed system focuses on applying ML techniques to solve performance issues at the

middleware.

ML-based query optimization. ML has recently used in database optimizers [62, 63, 128, 64,
101, 51, 115], selectivity estimation [78, 36], and cost estimation [107]. Comparison with
Bao: The recent Bao technique [62] uses hints to generate optimized queries by modeling
the optimization as a multi-armed bandit problem. It applies Thompson sampling to min-
imize the training time and maximize the accuracy of its neural-network-based query time
estimator (QTE). We have a detailed discussion about the differences between Maliva and
Bao in Section 2.6.3. We also conducted extensive experiments in Section 3.7 to compare
their performance, and the results show Maliva outperformed Bao in various metrics (See

Section 2.7.6).

2.2 Problem Formulation

Visualization architecture. We consider a typical three-tier data-visualization system
that consists of a backend database, a middleware layer, and a frontend. For each frontend
visualization request, let () be the original SQL query for the request. Let 7 be a time limit
that quantifies the expected responsiveness of the system. Ideally, we want the total delay,
from the time the user submits a request to the time the result is shown on the frontend, to
be within 7. The original query () may not meet the time-limit constraint when the backend
database cannot generate a physical plan that is fast enough. To solve this problem, Maliva
rewrites () with two kinds of options: query hints and approzimation rules. By adding a

query hint to ), Maliva can help the backend database generate an efficient physical plan
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that computes the result within the time limit. For expensive queries where no physical plan
can meet the time limit, Maliva can add an approximation rule to the original query such
that the backend database computes an approximate result to trade the visualization quality
for responsiveness. Note that the proposed approach also works in a more general setting of

approximate query processing (AQP) where a time constraint is given.

Query hints. A query hint in a database is an addition to the SQL statement that instructs
the database engine on how to execute the query. For example, a hint may tell the engine
to use or not to use an index (even if the query optimizer would decide otherwise) [38]. A
query hint does not change the semantic meaning of the query, i.e., the result computed
by the database engine with the hint remains the same. Databases such as AsterixDB [9],
MySQL [71], Oracle [75], PostgreSQL [86], and SQL Server [105] support a variety of query
hints. For example, in Figure 2.3(b), Maliva adds two hints + Indez-scan(t CreateAt) and
Nest-Loop-Join(t u) to the original query. They suggest the engine to use the index on the

CreateAt attribute to scan the table t, and do a nest-loop join on tables t and u.

(a) Original Query (Q) (b) Rewritten Query (RQ)

/*+ Index—scan(t CreateAt),
Nest—Loop—Join(t u) */
SELECT BIN_ID, COUNT(x)

SELECT BIN_ID, COUNT()
FROM tweets t, users u

WHERE t.Content contains ”covid”

AND t.Location in ((-124.4, 32.5),
(-114.1, 42.0))

AND t.CreateAt on 'Nov-26-2020’

FROM tweetsSample20 t, users u
WHERE t.Content contains ”covid”
AND t.Location in ((-124.4, 32.5),
(-114.1, 42.0))

AND u.TweetCnt in [100, 5000]
AND t.user_id = u.id
GROUP BY BIN_ID(t.Location);

AND t.CreateAt on 'Nov-26-2020’
AND u.TweetCnt in [100, 5000]
AND t.user_id = u.id

GROUP BY BIN_ID(t.Location);

Figure 2.3: A original query and a rewritten query.

Approximation rules. An approzimation rule is a method to rewrite the original SQL
query to compute an approximate result, and the new query takes less time. There are
various approximation rules available in database systems, such as adding a “Limit” clause,

applying a SQL-standard “TableSample” operator on a table, or substituting a table with
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a smaller table randomly sampled from the original table. For example, in Figure 2.3(b),
Maliva rewrites the original query by substituting the table tweets with a sample table

tweetsSample20 with 20% randomly selected records.

Now we formally define rewriting options, rewritten queries, and the query-rewriting prob-

lem.

Definition 2.1. (Rewriting Option) Let H be a set of query-hint sets and A be a set of
approzimation-rule sets. A rewriting option (“RO” for short) is a tuple (h,a), where h € H

and a € A. Note that both h and a can be the empty set ().

For instance, the rewriting option in Figure 2.3(b) is a tuple with a query-hint set of “use
the index on CreateAt and do a nest-loop join on t and u” and an approximation-rule set
of “substituting the table tweets with the sample table tweetsSample20”. We assume the
user-defined candidate set of rewriting options does not contain invalid query-hint sets or
approximation rules. A query-hint set is considered to be invalid if it contains conflicting

hints, e.g., Nest-Loop-Join(t u) and Hash-Join(t u).

Definition 2.2. (Rewritten Query) Given an original SQL query () and a rewriting option
RO, a rewritten query (“RQ” for short) is a new SQL query generated by applying RO onto
Q. If RO = (0,0), then RQ = Q.

For example, Figure 2.3(b) is a rewritten query for the original query in Figure 2.3(a).

Query-rewriting problem. Given a visualization request’s original SQL query (), and
a time limit 7, we want to generate a rewriting option, such that the total time of the
corresponding rewritten R(), including planning and query execution, is within 7 and the
quality of RQ)’s result is maximized. To quantify the quality, we assume a given visualization
quality function F'. Let r(Q) be the result of the original query @ and r(RQ) be the result

of the rewritten query RQ). Then F(r(Q),r(RQ)) computes the quality of r(RQ).
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Figure 2.4: The Query Rewriter acts like an agent who makes a sequence of decisions to
generate a rewritten query (with a total time < 500ms). At time 0, the agent considers
rewritten query RG); due to its low estimation cost (estimated 25ms, the actual 30ms is
updated once R(Q); is explored). After estimating its execution time (1,300ms), the agent
knows that R(Q); is not viable since the total time is longer than 500ms. The estimation of
RQ), affects the costs for estimating RQ)5 and R(Q);. The agent explores RQ)5 and then R(Q);.
With the estimated execution time being 300ms and the elapsed time being 150ms, RQ)7 is
decided as a viable rewritten query because the total time (450ms) is within 500ms.

In Sections 2.3, 2.4, and 2.5, we study the case of using query hints only (i.e., without
changing query results). In Section 2.6, we study the case where approximation rules are

also used.

2.3 Maliva: ML-based Query Rewriting

We now introduce the middleware technique called “Maliva” to solve the aforementioned
query-rewriting problem. We first give an overview of the technique, then use an example

to explain the details.

Overview. As illustrated in Figure 2.5, Maliva rewrites the original SQL query to answer a
visualization request within a time budget. It considers a predefined set of rewriting options,
which we denote as Q = {ROy,...}. For each RO;, the rewritten query is denoted as RQ);.

The set of candidate rewritten queries is ® = {RQ, . ..}.

Maliva has a Query Rewriter that enumerates possible RQs and uses a Query Time Estimator
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Figure 2.5: Overview of Maliva.

(QTE) to estimate the execution time of each of them. The Query Rewriter uses the best
effort to choose an RQ such that the total time, including the planning process and query
execution, is within the time budget 7. Such an RQ is called viable. The middleware then
sends the rewritten query to the database. The Query Result Handler sends the retrieved

result to the frontend to visualize.

Naively enumerating all available RQs in ® is computationally prohibitive due to two reasons.
First, the cost of Query Time Estimator to estimate the execution time of a rewritten query
is not negligible. For instance, in some cases it could take up to 70ms [107] on a TG B dataset
or 300ms [124] on a 10G B dataset. Second, the number of RQs increases exponentially when
the number of applicable indexing choices increases. For example, consider a selection query
on a table with filtering conditions on m attributes, and the database has an index on each
attribute. The number of query-hint sets in H would be 2™, since the database can use any
subset of the m indexes to do filtering and then intersect the record lists to compute the
final result. Therefore, the Query Rewriter needs to balance the exploration time for query

estimation and the execution time of each chosen RQ to find a viable RQ.

An example. Maliva views query rewriting as a Markov decision process (MDP) [108]

and adopts machine learning (ML) to solve this problem. We use the running example in
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Section 2.1 to illustrate how Maliva uses an MDP agent to make a sequence of decisions to
find a viable RQ. For simplicity, we assume the rewrite-options (RO) set to involve query
hints only. We will generalize the technique to consider approximation rules in Section 2.6.
As shown in Figure 2.4, a query has three selection conditions on three attributes, and each
of which has an index. Suppose in the set H of query-hint sets, each attribute has a query
hint of using or not using the index. Thus, we have 22 = 8 query-hint sets to choose from.
The agent makes a sequence of decisions to estimate the execution times of several rewritten
queries and find a viable one RQ); (that uses the indexes on all three attributes). Next, we

present the details of this MDP-based technique.

2.4 MDP Model for Adding Query Hints

In this section, we present the details of using an MDP model in Maliva to solve the query-

rewriting problem and discuss how to implement the Query Time Estimator (QTE).

2.4.1 MDP Model for Query Rewriting

MDP [108] is a formalization of sequential decision-making problems where an agent learns
to achieve a goal from interaction with an environment. At each time step, the agent is in a
state s, and chooses an action a available in state s. The environment transits the agent to
a new state s, and gives the agent a corresponding reward R(s,a). To train an MDP agent
is to find a good policy 7, such that if the agent follows the policy to choose an action for

each state, it maximizes the total reward.

Motivation of using MDP. In the example shown in Figure 2.4, we observed some unique
properties in the decision-making process. (1) The rewritten queries considered earlier can

influence the agent’s later decisions because exploring earlier queries also provides additional
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information. (2) Since the agent’s goal is to find a viable rewritten query of which the total
time is within the time budget, it has to balance between the time spent to estimate rewritten
queries and their execution time. Based on these observations, instead of machine learning
models that decide on a rewritten query directly by looking at the query itself, MDP is a

promising candidate mathematical model that captures those properties.

We use the MDP model to solve the query-rewriting problem. For simplicity, we first focus
on the case where rewriting options do not contain any approximation rules, which means
no rewritten queries have quality loss. We will generalize the technique to consider approx-
imation rules in Section 2.6. Without considering quality loss, the MDP agent learns to
maximize the chance of finding a viable rewritten query for a given visualization request.
The agent takes a sequence of actions, and each action chooses an RQ to explore. That
is, it asks the query time estimator (QTE) to estimate the execution time of the RQ. The
agent chooses an RQ) based on the current state, and considers the future cost it needs to
pay and the execution time of RQs already explored. The agent gets a bonus if it finds a
viable RQ, or a penalty if it runs out of time. In the offline phase, by analyzing queries in
the training workload, the agent learns to maximize the chance to receive a bonus. In the
online processing phase, given a new query, the agent decides which RQ to explore in each
step to receive a bonus in the end. Now we present the details of how to use MDP to model

the process of choosing RQs.

States. A state represents the past decisions, based on which the agent decides an RQ to
consider next. Suppose we are given a predefined set of n ROs, i.e., Q = {RO,...,RO,}.
Correspondingly, we have n candidate RQs, denoted as ® = {RQ,..., RQ,}. A state is a
vector

s = (E7CIJCZ7'"7Cn7T17T27"'7Tn)7

which includes three pieces of information, as shown in Figure 2.6. (1) The elapsed time

(E) captures how much time we have spent. (2) The estimation cost (C;) for each possible
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rewritten query RQ); captures how much time is needed for the agent to estimate its running
time. Each Cj is initialized with a rough estimation collected offline and updated during the
online planning phase. Note that the MDP state does not require the initial C; values to be
accurate, and a rough estimation from history statistics suffices. The actual estimation costs
will be collected while the MDP agent processes a query, as will be described soon in the
definition of Transitions. (3) T; is the estimated time for each already explored R(Q);. Each

T; is initialized with a 0 value until it is filled with an estimated execution time.

Elapsed Estimation cost C; |Estimated time T;
time |RQ; RQy ... RQ, |RQ; RQy ... RQ,
States=( E ¢, C - C TT Ty - T,)

Figure 2.6: An MDP state in Maliva.

We assume for each rewritten query R(@);, collecting the physical plan and its statistics
(e.g., cardinality and cost estimations of each operator) is done by the QTE, and its time
is captured by the MDP model’s estimation cost (C;). We assume the rewritten queries’
physical plans and statistics are not available to the MDP model. Thus, the proposed MDP
model is general, and can be applied to any query template (a query template has a fixed
set of join tables, a fixed set of filtering attributes, and a fixed set of projection attributes)
with any predefined query-hint set. A natural question is that without the statistics of the
explored RQs stored in the state, how can the MDP model make a good decision on which
RQ to choose next? Our answer is that the execution time of a rewritten query implicitly
captures the statistics of the physical operators (e.g., the cost of doing an R-Tree index
scan on the Location attribute). By keeping the estimated execution time of each explored
RQ in its state, the MDP model can learn the correlations of the execution times between
different rewritten queries and make good decisions. Note these correlations are dependent
on the dataset (e.g., data distribution, available indexes, etc.) and the database configuration
(e.g., RAM budget). Thus the model needs to be re-trained if the dataset or the database

configuration changes.
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Actions. An action, denoted as a, is to explore an RQ next. For each RQ, the agent asks
the QTE to estimate its execution time. Meanwhile, the agent needs to pay a cost as it takes
time for the QTE to extract query features, possibly by collecting online statistics from the
database, and running the estimation model to do the estimation. In the running example,
at time 0, the agent decides to explore RQ);. It asks the QTE to estimate R();’s execution

time.

Transitions. A transition function defines how the environment computes the next state,
given the agent’s action in the current state. Let the RQ considered by action a in state
s be RQ;. We define the transition function 7 as follows. First, the QTE (a black-box to
the MDP agent) estimates the time of RQ);, and we add the estimated time T; to the state.
Second, the estimation costs for other RQs could change. In the running example, to estimate
R@), that uses the R-Tree index on the Location attribute, we need to collect the spatial
filtering condition’s selectivity on the Location attribute. To estimate R()s that uses both
the inverted index on the Content attribute and the R-Tree index on the Location attribute,
we need to collect the selectivity values of the filtering conditions on both attributes. After
the agent takes the R(@); action, we update the estimation cost of R(Q); to be the actual
time it costs and update the approximated estimation cost of RQ)s by excluding the cost to
collect the selectivity value of the spatial filtering condition. Figure 2.7 shows an example
of state transition. After estimating the time of R, we add the estimated time 1,300ms
of R(Q): to the state, update the estimation cost for R(); from the estimated 25ms to the
actual 30ms, and update the estimation cost for RQ); from the previous estimated 90ms to
the new estimated 60ms. Lastly, the estimation takes time C’i, and we add it to the elapsed
time so far to indicate how much time the agent has spent exploring different RQs. Note
that the C’, is the actual cost of estimating R(@);, which could be different from C; because Cj;
is an approximated cost for estimating R(Q);. For example, if the QTE estimates the cost of
R@Q by running a query on a sample table, the actual cost of QTE estimating R(); is only

obtained after we pay the cost.
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Figure 2.7: Transition after estimating execution time of RQ);.
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Rewards. A reward function defines the agent’s immediate gain when it takes a particular
action a in a given state s. In our setting, consider two cases to compute the reward function.
(1) The first case is when the agent is at an intermediate state where it still has time for
planning but has not yet found a viable rewritten query. In this case, the agent should not
be awarded or punished since it has not made a decision yet. Thus the reward value is 0. (2)
The second case is when the agent is at a termination state where it decides the rewritten
query RQ, runs it against the database, and collects the execution time T of RQ. In this
case, the agent should be awarded if the total time (including both the planning time and
rewritten query execution time) is less than the time budget, or punished if the total time

is more than the budget.

The agent decides on a rewritten query by considering three situations. The first one is that
the agent finds an RQ to be viable based on the estimation of the QTE before running out
of time. For example, in Figure 2.4, after spending 150ms for planning, the agent decides
R(@)7 as the chosen rewritten query, since the predicted total time of R(Q)7 is 450ms, which is
within the 500ms budget. The second situation is when the agent uses up the time budget
and has to stop planning. The third situation is when the agent has exhausted all candidate
rewritten queries and has to decide which RQ to choose. In the latter two situations, the

agent chooses the fastest RQ known so far as the final decision.

Formally, suppose the generated rewritten query by the agent is RQ and the actual running

time of query RQ is 7. Then the reward function R(s,a) is defined as follows,

R(s,a) = w) (2.1)

T

where s.E denotes the elapsed time so far in state s. If the total time s.E +17 is less than the

time budget 7, which makes R(s,a) positive, then the agent receives a reward. The faster
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the rewritten query is, the larger the reward will be. On the other hand, if the total time
exceeds the time budget, which makes R(s,a) negative, then the agent receives a penalty.
The slower the rewritten query is, the larger the penalty will be. Thus, guided by the reward

function, the MDP model will learn to find an efficient rewritten query as soon as possible.

2.4.2 Query Time Estimator (QTE)

Take the sampling-based QTE described in [124] as an example. It first builds an analytical
cost model (e.g., linear regression model), and uses it to estimate the execution time of
a rewritten query by collecting its statistics online. Specifically, it estimates the selectivity
values of the query conditions by running count (*) queries on a small sample table, provides
the values as input features to the cost model, and uses the model’s prediction as the query’s
execution-time estimation. There are also other possible solutions in the literature [125, 107,
64] that can be used by Maliva. Note that QTEs are the focus of this chapter, and Maliva
leverages a given QTE intelligently to balance the planning time and the query execution

time.

2.5 Training and Using the MDP Agent

In this section, we discuss how to train the MDP agent offline in Maliva on a workload of

visualization requests and use it to generate a viable rewritten query online.

2.5.1 Training the MDP Agent

Suppose we have a workload of queries W = [q1, ¢a, - . ., ¢n|. Our goal is to find an optimal

policy 7* such that for any query ¢; € W, the agent following policy 7* maximizes the
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chance to generate a viable rewritten query. We adopt the deep Q-learning algorithm [65]
for finding an optimal policy for the MDP agent. Its main idea is to use a neural network
(called @Q-network) to represent a policy . Given an input of a state vector, the q-network
outputs a @Q-value [122] for each possible RQ in the state. A higher g-value means that
the rewritten query is more likely to be viable given the current information. Its training
process includes two main steps. The first step is to generate a set of experiences by exploring
different planning sequences for queries in the workload repeatedly. The second is to replay
those experiences to update the g-network’s weights gradually such that the g-network can

approximate the g-values of the optimal policy for each state-action pair.

Training an MDP agent for query rewriting. Algorithm 1 details how we train the
MDP agent. To apply deep g-learning, we generate the replay memory M of experiences. For
a given visualization query workload W = [q1, qa, . .., qm|, We generate a set of experiences.
Each experience is a 4-tuple

(87 a? 8,7 T/)7

where the agent in a state s estimates the time of the hinted query represented by an action
a and observes the next state s’ with a reward r’. Note that different queries can have
different optimal policies. Our goal is to learn an optimal policy for the whole workload. We
let the agent explore all the queries in the workload W in multiple iterations until the policy
converges or the number of runs exceeds a maximum threshold. In each iteration, we shuffle
the order of queries to reduce the bias caused by earlier queries on the exploration direction
of later queries. For each query ¢ in W, we let the agent complete a sequence of decisions.
At each step, it selects an RQ to estimate. It pays the cost to estimate the rewritten query’s
execution time, transits to the next state, and receives an immediate reward. The agent
repeats the process until it reaches a termination state (line 9) in one of the three cases. The
first case is when the estimated time T'(a) of the rewritten query in action a suggests it is

potentially viable, i.e., s.E + T (a) < 7. The second case is when the agent runs out of time,
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Algorithm 1: Training an MDP agent

Input: A query workload W = [q1, g2, - - - , Gm]
A transition function 7
A reward function R
A time budget 7
Output: An agent’s policy =
1 Replay memory M «+ {} with capacity C;
2 Initialize policy m with random weights;
3 while 7 does not converge do

4 W < shuffle the queries in W;
5 for each query q in W do
6 State s « (0,C1,Cy, ..., C,,0,0,...,0);
7 Remaining set p <— query ¢’s all possible RQs {RQ1, RQs, ..., RQ,};
8 Reward r < 0;
9 while (s, 7, p) is not at a termination state do
10 f < generate a random number from [0,1];
11 if f < e then
12 ‘ a < a random RQ from p;
13 else
14 ‘ a < argmaxpg, o, Q7 (s, RQ;);
15 end
// Estimate query a and transit to state s’
16 s' < T(s,a);
// Compute the immediate reward
17 < R(s,a);
18 Store experience tuple (s, a, s, r’) in M,
// Remove query a from the remaining set p
19 p+ p—A{a}; s+ s;r 1
20 end
21 Update 7 using a random sample from M;
22 end
23 end
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i.e, s.F > 7. The third case is when the agent has exhausted all possible RQs, i.e., p = 0).

When the agent decides which RQ to explore at each step (lines 12 to 14), we adopt an
e-greedy strategy [65, 112] to balance between the exploration of RQs with uncertain values
and the exploitation of RQs known with high values. With an e probability, the agent chooses
a random RQ that has not been considered before (line 12). Otherwise, it selects an RQ
that has not been explored with the highest g-value based on the current policy weights
(line 14). We start with a high probability (¢) of exploration and gradually decrease it to

favor exploitation with the training progress.

Once an RQ is decided by the agent as an action a, we call the transition function 7
(Section 2.4.1) to transit the agent to the next state s’ (line 16). We estimate the query
a’s running time and update the new state s’ by adding the estimated time for a, adding
the cost to the elapsed time, and modifying the costs of affected RQs. We then call the
reward function R (Section 2.4.1) to compute an immediate reward 7’ for estimating the RQ
in a (line 17). To this end, we have generated a new experience tuple (s,a, s’,7’), and store
it in the replay memory M (line 18). When M reaches its capacity C, we replace existing

experiences in a FIFO manner.

After processing a query, we update the policy 7 following the original deep ¢-learning
algorithm [65] (line 21). We sample a random subset M’ of experiences from M. For each
experience tuple (s, a,s’,7’) in M’, we first compute the target g-value y of the state-action
pair (s,a) using the Bellman equation [122]. We then update the weights in policy = by
minimizing the loss value L between the target g-value y and the current g-value, where L

is defined as:

L=(Q(s,a) —y)*.

We keep updating the policy 7 until it converges, i.e., the total accumulated reward of the

training workload w does not improve much in new iterations (e.g., less than 1%).
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Accommodating estimation inaccuracy using MDP. One advantage of using the MDP
framework where an approximate QTE may give inaccurate estimations is its tolerance of the
inaccuracy. The MDP model captures the uncertainty in two places. One is the transitions
between states that store the estimated times of explored RQs. Although estimated times
can have errors, statistically, after learning from the historical queries, the agent understands
which action has the highest expected total reward. Another place is the reward definition,
where the penalty for making a wrong decision will lead the agent to understand the QTE’s

mistakes and avoid them in the future.

2.5.2 Using MDP to Rewrite Queries Online

After we train an MDP agent, the query rewriter utilizes the agent to generate a rewritten
query for a new visualization query ¢ online. Algorithm 2 shows the pseudo-code. Starting
from an initial state s, we use the trained policy 7 to compute the g-values for all the RQs
and select the one with the highest g-value as the action a (line 5). We then estimate the
running time of query a and transit to state s’ (line 6). We compute the immediate reward
r’ for estimating RQ in a (line 7). If the action a is a potentially-viable RQ (line 9), we
output the query RZQZ- in a as the generated rewritten query. Otherwise, we run out of time
for the remaining RQs (line 11). Then we select the rewritten query RQ; with the minimum
execution time estimated so far and output it. If neither cases happen, we repeat the above

process.

2.6 Approximation Rewriting Options

In this section, we generalize Maliva by considering rewriting options with approximation

rules. Recall that using a query-hint set to rewrite an original query () into an R(Q) can help
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Algorithm 2: Generating an RQ online

10
11
12
13

Input: A new query g

A trained policy 7

A transition function 7
A reward function R

A time budget 7

Output: An RQ

1 State s < (0,C1,Cs, ..., C,,0,0,...,0);

2 Remaining set p < query ¢’s all possible RQs {RQ1, RQs, ..., RQ,}
3 Reward r < 0;

4 while True do

end

// Select a query with the highest q-value predicted by 7
a < argmaxpg, o, Q7(s, RQ;);

// Estimate query a and transit to state s’

s T(s,a);

// Compute the immediate reward

' R(s,a);

// Remove query a from the remaining set p
pp—Aaf; im0y

if s.F+T(a) <7 then

‘ return RQi represented by a;

if s. £ >17 orp= 0 then

‘ return R(Q); with the minimum execution time estimated in s;

I
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the database generate an efficient physical plan that computes the actual result without
any approximation. However, for expensive queries where no physical plan can meet the
time constraint, by applying an approximation-rule set to (), Maliva can generate an R()
that efficiently computes an approximate result within the time budget. We first extend the
MDP model in Section 2.4 to consider approximation rules. We then discuss two approaches
to applying the MDP model to implement a quality-aware query rewriter. The quality-aware
query rewriter makes the best effort to generate a viable rewritten query and maximize the

result’s quality. In the end, we discuss the trade-offs between the two approaches.

2.6.1 Quality-Aware MDP Model

Consider the case where the rewriting options contain both query hints and approximation
rules. A rewritten query can return an approximate result with quality loss. We need
to let the MDP agent learn to maximize the chance to generate a viable rewritten query
and maximize the quality of the query result simultaneously. To quantify the quality of
a rewritten query, we assume a given visualization quality function F. Let r(Q) be the
result of the original query @, and r(RQ) be the result of the rewritten query R(Q). Then
F(r(Q),r(RQ)) computes the quality of r(RQ). For example, suppose we use the Jaccard
similarity function to measure the quality of an approximate result. Figure 2.8 shows that
the quality of the scatterplot visualization result of an approximate rewritten query R
compared to the original query @ is 0.76. Note that Maliva does not have restrictions on
quality functions, and many functions can be used, such as VAS in [76] for scatterplots and

the function of distribution precision in [25] for pie charts.

Reward function for a quality-aware MDP model. To achieve the goal of guiding the
MDP agent to learn to maximize the chance to generate a viable rewritten query and max-

imize the quality of the query result simultaneously, we extend the definition of the reward

28



N

F(

/*+ Index-scan(t CreateAt) */
SELECT Id, Location
FROM tweetsSample60 t
WHERE Content contains "covid"
AND Location in ((-132.6, 27.7),
(-103.5, 40.0))
AND CreateAt in Nov-2020;

SELECT Id, Location
FROM tweets t
WHERE Content contains "covid"
AND Location in ((-132.6, 27.7),
(-103.5, 40.0))
AND CreateAt in Nov-2020;

Q

Figure 2.8: The quality of R() compared to () using a Jaccard-based quality function as an
example.

function in Section 2.4. Recall that the learning goal of an MDP agent is to maximize the
accumulative reward. In Section 2.4, once the agent decides on a rewritten query, it receives
a reward that reflects the query performance in terms of the total running time. Guided
by the reward, the agent learns to generate a viable rewritten query quickly. Similarly, the
MDP agent can also learn to quickly generate a viable rewritten query with a high result
quality if the final reward reflects both the decided rewritten query’s efficiency and quality.
The main idea is to combine the efficiency defined in Section 2.4 and the quality. The new
reward function is a weighted summation of both. Formally, suppose the generated rewritten
query by the agent is BQ and the actual running time of query RQ is 7. Then the new

reward function R(s, a) is defined as follows:

(r—s.E—T) .

Ris,a) = + (1= B)F(r(Q),r(RQ)). (2.2)

The term (PSTLT) represents the efficiency of the rewritten query in terms of running time

compared to the time budget. The function F(r(Q),r(RQ)) represents the quality of the
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RQ’s result. Note that computing F' could be expensive since the actual result 7(Q) of the
original query is required. However, we only need to pay the cost in the offline training
phase once. In the online phase, we don’t need to compute the F' value for a new query
when we use the MDP model to explore different RQs. Since the MDP model learns from the
final reward values only, we do not require every query to use the same quality function. In
particular, different quality functions can be applied for different training queries to evaluate
their visualization qualities, e.g., some queries are visualized as scatterplots and others as
heat-maps. [ € [0,1] is a parameter that indicates how important the running time is

compared to the result quality.

2.6.2 Quality-Aware Query Rewriter

Now we discuss how to apply the extended MDP model to implement a quality-aware query
rewriter. We present the technical details of two approaches and discuss their pros and cons.

We will show the evaluation results in Section 3.7.

4 Original  Hint Original  Hint Approx.
Query Set Query Set Rule Set
RO RQy | n
RQs RQ32 | I
/

/ .
t Agent (Quality-Aware MDP Model)
»
l | ] ]

- ¥ >
- TN~ 500 Time (ms)

RQ¢ ... RQas RQ17

Figure 2.9: One-stage MDP approach.

One-stage approach. A natural idea is to replace the MDP model in Section 2.4 with the
quality-aware MDP model. We let the MDP agent simultaneously consider query hints and

approximation rules as rewriting options. By applying the new reward function combining
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both the efficiency of the rewritten query and the result’s quality, the MDP agent learns to

maximize the chance of generating viable rewritten queries and maximize the quality.

4 Original ~ Hint 4 Original ~ Hint Approx.
Query Set Query Set Rule Set

RQ RQq | ‘
o . o | . ,

t Agent (MDP Model) t Agent (Quality-Aware MDP Model)
» »
1 | ] ||

s P AN P . >
et - .- .- v 500 Time (ms)
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Figure 2.10: Two-stage MDP approach. After running the original agent that considers
the 8 query-hint sets defined in Figure 2.4 without approximation rules, we cannot find a
viable RQ. We then run the new agent with the quality-aware MDP model that considers
all 8 query-hint sets combined with 3 approximation-rule sets (e.g., substituting the tweets
table with 20%, 40%, or 80% sample tables), resulting in 24 rewritten queries in total. After
spending extra time exploring a few RQs, the quality-aware agent chooses R(Q)o; as the final
decision.

Two-stage approach. A drawback of the previous approach is that the agent might miss
a non-approximate viable rewritten query. To solve this problem, we consider a two-stage
approach, with a main idea to let the MDP agent exhaust all candidate query hints first
and then explore those approximation rules. In the two-stage approach, Maliva first runs the
original MDP model, excluding the approximation rules. If the agent finds a viable rewritten
query, it outputs the R(Q as before. If the agent exhausts all candidate RQ)s without finding
a viable one, and the elapsed time has not exceeded the time budget 7, then we run the new

quality-aware MDP model that considers the approximation rules to find a viable RQ).

When the planning time for the original agent is longer than the time budget, the two-
stage approach reduces to the case described in Section 2.4. In this case, the one-stage
approach is preferred since it can increase the chance of generating a viable rewritten query

considering approximation rules. When the planning time for the original agent is relatively
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small compared to the time budget, the two-stage approach has the advantage of not missing

any non-approximate viable rewritten queries.

2.6.3 Differences between Maliva and Bao

The recent Bao technique [62] also uses hints to rewrite queries. Maliva is closely related
to Bao but different at multiple levels. First, to select a potentially viable query plan
from all the candidate query-hint sets, Bao takes a brute-force approach by enumerating all
options (using QTE). Maliva, in contrast, trains an MDP agent that explores the options
by carefully balancing the planning time and query execution time. This difference makes
Bao’s method inapplicable in many visualization problems in the main application domain
of Maliva. Secondly, as we will demonstrate in Section 2.7.6, when the number of candidate
rewriting options is large (e.g., > 16), the planning time of Bao can exceed the time budget.
Maliva, on the other hand, has a significantly shorter planning time and thus is capable of
generating much more viable rewritten queries. Lastly, Bao does not consider approximate
rewrites. Maliva, in contrast, offers flexibility by allowing approximate rewriting queries with

minimal quality loss.

2.7 Experiments

We conducted experiments to evaluate Malival. In particular, we want to answer the following
questions: (1) How well does it rewrite queries to support visualization requests? (2) How
well does it generalize to different numbers of rewriting options? (3) How well does it perform
for different types of queries (e.g. single-table selection queries and multiple-table joining

queries)? (4) How well does it generalize to different time budgets, unseen queries and other

Maliva is open-sourced on Github (https://github.com/baiqiushi/maliva)
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databases? (5) How does it compare with related solutions? and (6) How much is its training

overhead?

2.7.1 Setup

Datasets. We used two real datasets and a synthetic one as shown in Table 2.1. The Twitter
dataset included 100 million geo-located tweets in the US from November 2015 to January
2017. We kept the timestamp, geo-coordinate, text message, and several user attributes
for each tweet in a tweets table. For the experiment on join queries, we used the tweets
table and a users table. The former had a foreign key of “user_id” referencing the “id”
in the latter. We used the geo-coordinate attribute as the output for visualization (e.g.,
choropleth map, heatmap, or scatterplot). The NYC Taxi dataset [72] included taxi trip
records within three years from 2010 to 2012. The third dataset was generated from the
TPC-H benchmark [113]. We used the line-item table as the fact table. The attributes we

used for query selection conditions are shown in Table 2.1.

Table 2.1: Datasets.

Dataset | Record # | Size |Filtering Attributes

text, created_at, coordinates,

Twitter 100,000,000 | 57GB | users_statues_count, users_followers_count
pickup_datetime, trip_distance,

NYC Taxi | 500,412,914 | 146GB | pickup_coordinates

TPC-H 300,005,811 | 65GB | extended_price, ship_date, receipt_date

Query workloads. We generated random queries on each dataset for training and eval-
uation. Take Twitter dataset as an example. We first randomly sampled a set of tweets
from the base table. For each tweet, we generated a query as follows. We chose the text,
created_at, and coordinates attributes for the selection conditions in the query. We gen-
erated three conditions based on the values in the sampled tweet. For text, we randomly
selected a non-stop word in the original tweet’s text message as the keyword condition. For

created_at, we generated a temporal range condition with the value in the original tweet
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as the left boundary. We divided the maximum range on the created_at attribute in the
base table into multiple zoom levels, and randomly selected a level to generate the length
of the range condition. Suppose the maximum range on created at had L days. We com-
puted the maximum zoom level on created at as Z = [logs(L)]. If we randomly chose a
zoom level from range [0, Z] as z, we computed the length of the query condition range as
[ = max(L/2%,1). Similarly, for the coordinates attribute, we used the exact coordinates
in the sampled tweet as the center. We randomly chose a zoom level and generated a spatial

bounding box as the spatial range condition for the query.

In the experiments, we divided the queries into three disjoint sets: a training set, a valida-
tion set and an evaluation set. We used a hold-out validation strategy to choose the best
agent. When evaluating different approaches, the “difficulty” of the queries in the evalua-
tion workload played an important role. That is, if none of the physical plans of a query
were viable, then no approach can generate a viable plan without approximation. On the
contrary, if a high percentage (e.g., over 50%) of the physical plans are viable, it would be
easy for any method — even a trivial one that picks plans at random — to find a viable
plan. In this regard, we further divided the evaluation workload into subsets of queries based
on their difficulty measured by the number of viable plans. In our evaluation, we focus on
“difficult” queries where less than 50% plans are viable since they can better distinguish the

performance of different methods.

QTE implementations. We implemented two QTEs to evaluate the Maliva’s performance.
1) Accurate-QTE. To isolate the effect of estimation errors on the Maliva’ performance, we
used the actual execution time of the hinted queries as the estimation, and set up a unit cost
parameter to represent the time of collecting the selectivity value of one filtering condition
in a given rewritten query. Unless otherwise stated, we used 40ms as the unit cost of
collecting one selectivity value for the Accurate-QTE. 2) We also implemented the ML-based

approzimate-QTE as presented in Section 2.4.2. We used a random sample table [124] to
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estimate the selectivity values of query conditions. The selectivity values were used by the

approximate-QTE’s ML model to estimate the execution time of queries.

Performance metrics. We used two metrics to evaluate the performance of different
approaches. Recall that a generated rewritten query is “viable” if its total response time
(including both the planning time and the querying time) is within a given time budget.
The “viable query percentage” (VQP) of a solution was the ratio of viable queries over all
the queries in the workload. The other metric was called “Average Query Response Time’

(AQRT), which was the average total response time of all the queries in the workload.

Query-rewriting Approaches. We compared the proposed MDP-based approaches with
three related methods, i.e., baseline, naive, and Bao [61]. MDP-based approaches included
an MDP agent using an approximate-QTE, i.e., MDP (Approximate-QTE), and an MDP
agent using an accurate QTE, i.e., MDP (Accurate-QTE). In the baseline approach, the
middleware relies on the database optimizer to generate a physical plan for the original
query. In the naive approach, we used the same approximate QTE as the MDP-based
approach, but enumerated all possible RQs in a brute-force way, then chose the best RQ
as the output. The third approach was Bao [61]. We used its open-source release [11] as
the server, which provided interfaces for training the model and using the model to choose
the best plan for a given set of query plans. Its original client, which was a PostgreSQL
plug-in, did not support query hints for using a specific index, which were required by our
visualization queries. To solve this problem, we implemented a new client in Python to

support such query hints while keeping their server implementation.

In the experiments, we ran both the database and the middleware on the same AWS t2.xlarge
instance with four vCPUs, 16GB RAM, and a 500GB SSD drive. We implemented the
middleware in Python 3.6 and the neural network using Pytorch 1.7. We evaluated Maliva
on both PostgreSQL and a commercial database. All figures were results on PostgreSQL if

not stated otherwise.
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2.7.2 Performance on Using Query Hints

We evaluated the performance of Maliva for only considering query hints in rewriting op-
tions (i.e., no approximations). For each dataset, we generated queries with three filtering
conditions and set up the rewrite-option set with 8 query-hint sets, i.e., using or not using
the index on each attribute. Since one of the 8 hint sets was “no hint at all”, which was the
original query, the total number of candidate physical plans was 7, i.e., the original query’s
physical plan was one of the 7 hinted queries. We varied the evaluation workloads with dif-
ferent numbers of viable plans (i.e., 1 —4 out of 7), and collected the VQP and AQRT metrics

for each approach. Table 2.2 shows the number of queries in the evaluation workloads.

Table 2.2: Number of queries in evaluation workloads.

# of viable plans 0 1 2 3 41 >5
Twitter 518 | 97| 234 | 118 | 153 | 69
NYC Taxi 408 | 91 | 146 | 13 | 181 3
TPC-H 381 | 107 | 310 | 66 | 47 0

Figures 2.11(a), 2.12(a), and 2.13(a) show viable-query percentages (VQP) on the three
datasets. The MDP-based approaches and Bao outperformed the baseline approach signif-
icantly, with MDP (Accurate-QTE) as the best. For example, on the Twitter dataset, for
the queries with a single viable plan, both MDP-based approaches increased the VQP from
the baseline’s 1% and Bao’s 20% to more than 70%. In most cases, MDP (Approximate-
QTE) performed better than or comparable to Bao. In one case of the TPC-H dataset, Bao
performed better than MDP (Approximate-QTE) mainly because Bao’s QTE had a much
higher accuracy than the approximate QTE for TPC-H. When the number of viable plans
increased from 1 to 4, the VQP of all approaches increased because the more viable plans
existed for a query, the easier it was for each approach to find a viable plan in a short amount

of time.

Figures 2.11(b), 2.12(b), and 2.12(b) show the results of the average query-response time
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Figure 2.11: Performance on the Twitter dataset (7 = 500ms).
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Figure 2.13: Performance on the TPC-H dataset (7 = 500ms).
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(AQRT) of different approaches. On the Twitter dataset, Bao had a comparable AQRT
to the baseline, while MDP (Approximate-QTE) had much lower time than the baseline
and Bao for queries with one or two viable plans. For example, MDP (Approximate-QTE)
reduced the average response time from the baseline’s 1.11 seconds and Bao’s 1.01 seconds
to 0.4 seconds. On the NYC Taxi dataset, Bao and MDP-based approaches had comparable
performance and were slightly better than the baseline. On the TPC-H dataset, Bao was
better than or comparable to the baseline. In two cases, Bao performed better than MDP
(Approximate-QTE) because Bao’s QTE had a much higher accuracy than the approximate
QTE on TPC-H. However, in all cases, MDP (Accurate-QTE) always had a lower query time
than Bao and the baseline, which means it generated a more efficient plan. In cases where
MDP (Accurate-QTE) had a longer response time, the extra planning time was the main
reason. At the same time, the high VQP of MDP (Accurate-QTE) proved the ability of
the MDP model balancing the planning time and the query-execution time to maximize the

chance of generating a viable rewritten query.

2.7.3 Effect of Rewrite-Option Number

We evaluated the effect of the number of rewriting options on the Twitter dataset. We set
up workloads of queries with different numbers of filtering conditions, resulting in different
numbers of rewriting options. To illustrate the planning efficiency of MDP-based approaches,
we also evaluated a naive approach, i.e., Naive (Approximate-QTE), which enumerated all
possible RQs, estimated their time using the approximate QTE, and chose the best RQ as

output. Table 2.3 shows the number of queries for the workloads.

Table 2.3: Workloads with 16 rewriting options.

# of viable plans 0] 1-2| 34 (56| 78|>9
# of queries 485 | 150 | 241 | 90 | 132 | 93

As shown in Figure 2.14(a), the two MDP approaches performed the best, generating up to
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40x more viable queries than both Bao and the baseline approach on queries with one or

two viable plans.
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Figure 2.14: Performance for 16 ROs on the Twitter dataset (7 = 500ms).

Figure 2.14(b) shows the AQRT results. Consistent with the VQP results, MDP-based ap-
proaches outperformed both Bao and the baseline approach. For example, MDP (Approximate-
QTE) reduced the average response time from the baseline’s 1.13 seconds and Bao’s 1.05
seconds to 0.66 seconds for queries with one or two viable plans. Note that in both VQP
and AQRT results, the MDP-based approach performed significantly better than the naive
approach using the same approximate QTE. These results show the benefit of MDP-based

careful planning strategy over a brute-force enumeration approach.

2.7.4 Effect of Time Budget

We evaluated the effect of time budget on the performance of different approaches. We

varied the time budget on the Twitter dataset. We show results for 1-second time budget.

As shown in Figure 2.15(a) and (b), the MDP-based approaches outperformed both Bao and
the baseline approach significantly. MDP (Accurate-QTE) outperformed MDP (Approximate-
QTE) since the agent could afford the expensive estimation cost for more accurate estima-

tions to find better-rewritten queries. These results show that the MDP model is adaptive
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Figure 2.15: Performance for 1-second time budget on the Twitter dataset.

to QTEs with different costs and accuracies for different time budgets. Compared with the
results in Figure 2.11 where the time budget was 500ms, MDP (Accurate-QTE) performed

better when the budget was higher, and MDP (Approximate-QTE) performed better when

the budget was lower.

2.7.5 Performance on Join Queries

To evaluate the performance of Maliva on queries with joins, we set up a workload of queries
joining the tweets and users tables with filtering conditions on three attributes. For the
MDP-based approaches and Bao, we considered 7 different ways of using or not using indexes
on the three attributes and 3 different join methods (i.e., nest-loop-join, hash-join, and merge-
join) between the two tables. Thus we had 21 query-hint sets in total as the rewriting options.
Figure 2.16(a) shows that for all workloads, the MDP-based approaches outperformed Bao.
For the queries with only one or two viable plans, MDP (Approximate-QTE) generated more
than twice as many viable plans as Bao. Figure 2.16(b) shows that MDP (Approximate-
QTE) outperformed Bao in all cases. For queries with one or two viable plans, the MDP-

based approach reduced the average query response time from Bao’s 0.87 second to 0.34

second.

40



,}00 ; 2 = ’03‘1'2 Baseline Query mummm
80 o 1t MDP/Bao Plan 7 1
= 0§ €08 | Bao Query [ |
@ 60 4 = MDP (Appr.—QTEg Query ==
=1 20.6 | MDP (Accu.-QTE) Query Ez |
S 40 MDP (Acc.-QTE o
2 MDP (Appr.-QTE) —g5— 50.4 |
-ESie] I [N R
0 | Baseline —— | 2 sl [N |ﬁﬂ e
1-2 3-4 5-6 7-8 9-10 1-2 -4 9-10
Number of viable plans Number of V|able plans
(out of 21 candidates) (out of 21 candidates)
(a) Viable query percentage. (b) Avg. query response time.

Figure 2.16: Performance for join queries (Twitter dataset, 7 = 500m.s).

2.7.6 Additional Comparison with Bao

We further compared the performance of Maliva with Bao to demonstrate the advantage
of our approach (see Figure 2.17). Besides the original Bao approach, we included two
additional variants — Bao (Approzimate-QTE) and Bao (Accurate-QQTE) — that integrated
Bao’s enumeration strategy on top of our QTEs. We focused on “difficult” queries where less
than 50% physical plans were viable. We used the Twitter dataset and varied the number of

rewrite options from 8 to 32 (as described in Section 2.7.3).

Table 2.4: Workloads of queries where less than 50% plans were viable.

# of rewrite options 8| 16| 32
# of queries 449 | 481 | 497

As shown in Figure 2.17, our MDP-based approaches outperformed both the baseline ap-
proach and Bao-based approaches significantly in all the cases. For the 8 rewrite-option
workload, both Bao-based approaches using the approximate-QTE and the accurate-QTE
outperformed the original Bao. The reason was that Bao’s own QTE relied on the plan
tree and operators’ cost estimations from the physical plan generated by PostgreSQL. As
a result, it suffered from the significant estimation errors by PostgreSQL for textual and
spatial filtering conditions. With the help of the approximate and accurate QTEs’ more

accurate estimations, the performance of Bao was improved. However, when the number
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Figure 2.17: Comparison with Bao on the Twitter dataset (7 = 500ms).

of rewrite options was 32, both Bao (Approximate-QTE) and Bao (Accurate-QTE) per-
formed even worse than the baseline due to the high cost of estimating all the candidate
plans in the brute-force query-planning phase. The VQP of Bao (Accurate-QTE) dropped
to 0% because the planning time exceeded the 500ms time budget. As shown in the 32
rewrite-option column of Figure 2.17(b), by judiciously choosing which rewritten queries to
run the expensive accurate-QTE, the MDP (Accurate-QTE) reduced the average planning
time from Bao (Accurate-QTE)’s 1.24 seconds to 0.37 seconds, with a reduction of more
than 70%. This result showed the superiority of using the MDP-based approach for query

planning over Bao’s brute-force approach.

2.7.7 Unseen Queries and Other Databases

To evaluate how well Maliva can be generalized to handle unseen queries, we did experiments
on the Twitter dataset to train and test the MDP model using two workloads with differ-
ent query shapes. The training queries were on a single tweets table with three filtering
conditions (textual, temporal, and geospatial). In comparison, the testing queries joined
the tweets table and the users table on user_id with three filtering conditions (textual,

temporal, and geospatial) on the former table. As shown in Figure 2.18(a), the MDP-based
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approaches outperformed the baseline significantly on the workload with unseen queries.
For example, for queries with a single viable plan, the MDP (Approximate-QTE) approach
increased the VQP from the baseline’s 2% to 55%, and the MDP (Accurate-QTE) approach

further increased it to 74%.
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Figure 2.18: Generalization to (a) handle unseen queries and (b) use a commercial database.

We also did experiments on the Twitter dataset using a commercial database. We used a
smaller table with 10 million records and thus a smaller time budget (250ms). The result is
shown in Figure2.18(b). Due to the commercial database’s complex behaviors, the approxi-
mate QTE had a much lower accuracy (two orders of magnitude) than it had on PostgreSQL.
The reason was the approximate QTE only considered predicates’ selectivities for estimation,
but more factors in the commercial database affected the query time, such as buffering and
dynamic execution plan change. However, MDP (Approximate QTE) still had comparable
performance (VQP) to the baseline. With a more accurate yet more expensive QTE, MDP
(Accurate-QTE) outperformed the baseline for all the queries. For example, for queries with
one or two viable plans, the baseline had a VQP of 23%, MDP (approximate-QTE) had a
VQP of 36%, and MDP (Accurate-QTE) increased the VQP to 50%.
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2.7.8 Performance of Quality-Aware Rewriting

We evaluated the performance of the two quality-aware query rewriting approaches (i.e.,
one-stage and two-stage) described in Section 2.6. We used the same Twitter dataset and
workload as in Section 2.7.2. We compared them with the baseline approach and the MDP
approach without considering approximation rules. For the quality-aware rewriting ap-
proaches, we considered five approximation rules (i.e., adding a LIMIT clause with 0.032%,
0.16%, 0.8%, 4%, and 20% of the estimated cardinality of the query) in addition to the eight
query-hint sets considered in Section 2.7.2. All MDP approaches used an accurate-QTE. Be-
sides the AQP and AQRT metrics, we collected a new metric called Jaccard-based Quality,
which computed the Jaccard similarity between the visualization result of a rewritten query

and that of the original query.
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Figure 2.19: Performance of quality-aware rewriting (Twitter, 7 = 500ms).

Figure 2.19(a) shows the VQP of these approaches. For the group of queries without any
viable plan, the MDP approach without considering approximation rules and the baseline
approach had a zero VQP. By generating approximate rewritten queries, the two-stage MDP
approach increased the VQP to 24%, and the one-stage MDP approach further increased
the VQP to 31%. There were 518 queries in the 0-viable-plan workload (Table 2.2), and
the one-stage MDP approach generated more than 35 viable queries than the two-stage

approach. In terms of efficiency, the one-stage MDP approach outperformed the two-stage

44



approach in all cases. Figure 2.19(b) shows the average Jaccard-based quality of the rewritten
queries generated by different approaches. Both the baseline and the MDP approach without
considering approximation rules had no quality loss. The two-stage MDP approach had a
significant advantage over the one-stage approach in terms of quality. For example, The
former increased the quality of the O-viable-plan queries from the one-stage approach’s 0.43

to 0.79.

2.7.9 Training Performance

We evaluated the training performance for workloads with different numbers of rewriting
options on the Twitter dataset. For each workload, we divided a set of about 1,400 queries
into a training set and a validation set. Then we varied the number of training queries
and randomly sampled those from the training set without replacement. We then used the
sampled queries to train an MDP agent and tested its performance on both the training
queries and the validation queries. We repeated the step ten times for each number of
training queries and collected the mean and standard deviation of the VQPs. We conducted
the experiments on the MDP approach using the Accurate-QTE. We show results for 8

rewriting options.

Figure 2.20(a) shows the trend when we varied the number of training queries. The VQP
on the validation set was close to the VQP on the training set for about 50 training queries.
Figure 2.20(b) shows the training time of different numbers of rewrite options on the training
sizes. For the same number of training queries, more rewrite options resulted in a larger -
network, which took more time to update the weights. For the workload with thirty-two

rewrite options, it took about 150 seconds to train an MDP agent on 150 training queries.

Remarks: The experiments show that Maliva outperformed the baseline in terms of both

the number of viable queries and average query response time. Maliva generated up to
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Figure 2.20: Learning curve and training time on the Twitter dataset. The shaded area
is plotted with “mean + standard deviation” as the upper bound and “mean — standard
deviation” as the lower bound.

70x more viable queries than the baseline. The advantages of Maliva were shown in both
the real and synthetic datasets, for different numbers of rewriting options, time budgets
and query workloads. Its offline training overhead was relatively small. By considering
approximation rules, Maliva generated even more viable queries. The comparison with Bao
shows the advantage of Maliva due to the fact these two techniques were designed with

different settings and optimization goals.

Limitations: One limitation of Maliva is that when the number of rewriting options was
significant (e.g., > 32), both the training and the online planning overhead of the MDP mod-
els became expensive. Also, for different sets of rewriting options, Maliva requires training

different models.

2.8 Conclusions

In this chapter, we studied how to rewrite database queries to improve execution performance
in middleware-based visualization systems. We explored two optimization options of adding
hints and doing approximation. We developed a novel solution called Maliva, which adopts

a Markov Decision Process (MDP) model to rewrite a visualization request under a tight
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time constraint. We gave a full specification of the solution, including how to construct an
MDP model, how to train an agent, and how to use approximating rewriting options. Our
experiments on both real and synthetic datasets showed that Maliva performed significantly
better than the baseline without no-rewriting options in terms of both the probability of

serving a visualization request within a time budget and query execution time.
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Chapter 3

Supporting Human-Centered Query

Rewriting in Middleware

3.1 Introduction

System performance is critical in many database applications where users need answers
quickly to gain timely insights and make mission-critical decisions. In the large body of op-
timization literature [28, 49, 81], one family of technique is query rewriting, which transforms

a query to a new query that computes the same answers with a higher performance.

Application
Tableau

A
(4) Result (1)|Query Q
A

A

JDBC Driver

A
(3)|Result (ZZVQuery Q
S I—

Database (Postgres)

Figure 3.1: Query lifecycle between Tableau and Postgres.
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Motivating example. Figure 3.1 shows a case where a user runs Tableau on top of a Post-
gres database to analyze and visualize the underlying data of social media tweets. Tableau
formulates and sends a SQL query to the database for each frontend request through a con-
nector such as a JDBC driver. The database returns the result to Tableau to render in the

frontend.

Figure 3.2a shows an example SQL query @) formulated by Tableau to compute a choro-
pleth map of tweets containing a substring, e.g., covid, which matches covid-19, covid19,
postcovid, covidvaccine, etc. Without any index available on the table, the database en-
gine uses a scan-based physical plan, which takes 34 seconds in our evaluation. To improve

the performance, the developer is tempted to create an index on the content attribute of

the table.
SELECT SUM(1) AS "cnt:tweets”, SELECT SUM(1) AS "cnt:tweets”,
"state_name” AS "state_name” "state_name” AS "state_name”
FROM ”"tweets” FROM ”"tweets”
WHERE STRPOS(LOWER(”content”), WHERE ”content” ILIKE
>covid’) > 0 *%covid%’
GROUP BY 2; GROUP BY 2;

(a) An original query @ formulated by Tableau  (b) A rewritten query @' equivalent to @ but
to compute a choropleth map of tweets contain-  runs 100 times faster by using a trigram index
ing covid as a substring. on the content attribute.

Figure 3.2: An example query pair (differences shown in blue).

Unfortunately, Postgres does not support an index-based physical plan for the STRPOS (
LOWER( "content"), s) expression in (), where s is an arbitrary string. Interestingly, another
query @', shown in Figure 3.2b, is equivalent to @), and uses an ILIKE predicate. This
expression can be answered using a trigram index on the content attribute [85], and the
corresponding physical plan takes 0.32 seconds only. Notice that the optimizer does not

produce an index-based plan for the original STRPOS predicate using this trigram index [94].
A natural question is whether we can let Tableau generate @0’ instead of ) for the database.
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Tableau is a proprietary application layer, and has its own internal logic to generate queries,
which the developer, in this example, cannot change. We may also consider using the CREATE
RULE interface provided by Postgres [83] to introduce a rewriting rule inside the database, but
as we will show in Section 3.2, this language has limited expressive power and does not allow
us to rewrite @ to @)'. As a consequence, we miss the rewriting opportunity to significantly
improve the query performance. Note that as shown in Section 3.7.5, the rewriting need is

not limited to simple predicate levels but also includes complex statement levels.

Problem Formulation. Besides the above example, as more cases in Section 3.2 and
our experiments using different applications and databases on both synthetic and real-world
datasets in Section 3.7.5 show, there is a unique problem in a wide range of database-
supported systems with the following setting. (1) The developers need to treat the application
layer as a black box and cannot modify its logic of generating SQL queries. Reasons include i)
the application is proprietary software (e.g., Tableau) and its source code is not available; and
ii) the source code of the application is too complicated or old to modify, especially for legacy
systems [48]. For example, reports [103] show that there are many applications where parties
have even lost their original source code. (2) The developers need to treat the database as a
black boz. Reasons include i) the developers do not have the privileges to modify the database;
and ii) the database is used by many clients, and the developers want to avoid side effects of
database changes to these clients. (3) The developers want to use their knowledge about the
data and domain to rewrite queries sent from the application to the database to significantly
improve their performance. For example, they may introduce rewriting rules that are valid
for their particular database with certain properties (e.g., specific attribute types, certain
cardinality constraints, known content properties, or primary keys and foreign keys), even
though these rules may not be valid for all databases. Specifically, the experimental results
in Section 3.7.5 illustrate cases where a rewriting is valid only for a particular dataset, and

may not be correct in general, thus it cannot be adopted by a database query optimizer.
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Thus we want to allow developers to be “in the driver’s seat” during the lifecycle of a query
to generate an equivalent and more efficient query as “human-centered query rewriting”.
Note that we do not seek to replace query optimizers inside databases but only provide a
chance for users to inject their knowledge to optimize queries before they are sent to the

database. Hence, the problem is stated as:

Problem Statement: Given an application and a database as black boxes, develop a

middleware solution for users to easily express their rules to rewrite application queries

for a better performance.

Solution overview. In this chapter and the following chapter, we propose QueryBooster, a
novel middleware-based service for human-centered query rewriting. It is between an appli-
cation and a database, intercepts SQL queries sent from the application, and rewrites them
using human-crafted rewriting rules to improve their performance. By providing a slightly-
modified JDBC/ODBC driver or a RESTful proxy for the query interception, QueryBooster
requires no code changes to either the application or the database. In this chapter, we focus
on the core technical aspects of the QueryBooster system. QueryBooster provides an expres-
sive and easy-to-use rule language (called VarSQL) for users (SQL developers or DBAs) to
define rewriting rules. Users can easily express their rewriting needs by providing the query
pattern and its replacement. They can also specify additional constraints and actions for
complex rewriting details. In addition, QueryBooster allows users to express their rewriting
intentions by providing examples. That is, users can input original queries and the desired
rewritten queries. Then QueryBooster automatically generalizes the examples into rewriting
rules and suggests high-quality rules. The users can confirm the rules to be saved in the

system or further modify the rules as they want.

Challenges and contributions. To develop the QueryBooster solution, we face several
challenges. (C1) How to develop an expressive and easy-to-use rule language for users to

formulate rules? (C2) How to generalize pairs of original and rewritten queries to rewriting
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rules and measure their quality? (C3) How to search the candidate rewriting rules to sug-
gest high-quality ones based on the user-given examples? In this chapter, we study these

challenges and make the following contributions.

e We propose a novel middleware-based query rewriting solution to fulfill the need of

human-centered query rewriting (Section 3.3).

e We study the suitability of existing rule languages in the literature and show their
limitations. We then develop a novel rule language (VarSQL) that is expressive and

easy to use (Section 3.4).

e We develop transformations to generalize pairs of rewriting queries to rules and propose

using the metric of minimum description length to measure rule quality (Section 3.5).

e We present a framework to search the candidate rewriting rules efficiently and suggest

high-quality rules based on user-given examples (Section 3.6).

e We conduct a thorough experimental evaluation, including a user study, to show the
benefits of the VarSQL rule language, the effectiveness of the rule-suggesting framework,

and the advantages of human-centered query rewriting (Section 3.7).

3.2 Limitations of Existing Solutions

In this section, we show why existing solutions cannot solve the formulated problem. Fig-
ure 3.3 gives an overview of various solutions for query rewriting in the lifecycle of a query
in a database system [5, 22, 62, 121, 131] and the position of the proposed QueryBooster
solution. At a high level, these solutions can be classified into two categories: native writing

plugins and third-party solutions.
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Figure 3.3: Query-rewriting solutions for databases (native solutions in brown and third-
party solutions in blue).

Native rewriting plugins. Most databases such as AsterixDB [4], IBM DB2 [41], Mon-
goDB [66], MS SQL Server [104], MySQL [70], Oracle [74], Postgres [83], SAP HANA [99],
Snowflake [102], and Teradata [91], do not have capabilities for users to rewrite queries sent
to the database. Notice that even though “hints” can be included in a query to make sug-
gestions to the database optimizer, they are technically not used to change the query (i.e.,
the SQL code), thus, are not a query-rewriting solution. To our best knowledge, only two
database systems, Postgres and MySQL, provide a plugin for users to define new rules to
rewrite queries before sending them to the database. However, their rule-definition languages

have limited expressive power, as discussed below.

Postgres. A rewriting rule in the Postgres plugin can only define a pattern matching a table
name in a SELECT clause of a SQL query and replace the table with another table or a
subquery [83]. Its rule language cannot express the rewriting in the running example in
Figure 3.2. In particular, it does not support a pattern that matches a component in a
SQL statement at the predicate level, e.g., the STRPOS (LOWER("content"), _) > 0 portion
in the WHERE clause in the original query. Safety could be a major consideration behind
this rule language. For instance, the Postgres 14 documentation [84] explained that “this

restriction was required to make rules safe enough to open them for ordinary users, and it
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restricts ON SELECT rules to act like views.”

MySQL. The MySQL plugin uses the syntax of prepared statements to define query-rewriting
rules, and a rule replaces a SQL query matching the rule’s pattern with a new statement [70].
A rule includes placeholders that can only match literal values in a SQL query, such as a
constant in a predicate in the WHERE clause. A main limitation of this language is that a
placeholder cannot match many components in a query, such as table names and attribute
names. For instance, the following is a predicate from a query formulated by Tableau to
MySQL:

adddate(date_format(‘created_at‘, '%Y-%m-01 00:00:00’), interval 0 second)
= TIMESTAMP(’2018-04-01 00:00:00’)

And if we rewrite the predicate by removing the type-casting on the right-hand constant, as

shown below:

adddate(date_format('created_at’, *%Y-%m-01 00:00:00’), interval 0 second)
= "2018-04-01 00:00:00’

The corresponding rewritten query is significantly faster (2.68s) than the original query (87s).
Unfortunately, the MySQL plugin does not support this rewriting because a pattern in the
MySQL plugin has to be an entire statement instead of a single predicate. In other words,
using the MySQL plugin for this rewriting requires the enumeration of all other parts of the

target SQL query.

Third-party solutions. Bao [62] and Galo [22] rewrite queries by adding hints to help the
database optimizer generate more efficient physical plans based on their cost estimations and
searching methods. They take a physical plan and query performance as the input and pro-
duce hints to the original query. WeTune [121] generates new rewriting rules automatically
by searching the logical-plan space and considering the performance of rewritten queries.
LearnedRewrite [131] utilizes built-in rewriting rules inside the database to optimize queries,

and the users have no control over when and which rules are applied. None of these solu-
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tions allow users to formulate their own rewriting rules to fulfill the human-centered query
rewriting need. PgCuckoo [39] opens an opportunity for users to inject intelligent logic to
manipulate query plans in Postgres. It only works for Postgres and the proposed middleware

solution works for any databases.

Commercial systems. There are also commercial systems that do query rewriting for
applications on top of databases. For example, Keebo [47] uses data learning and approz-
imate query processing (AQP) techniques to accelerate analytical queries. It runs queries
on summarized tables instead of the raw data as much as possible to reduce query time.
EverSQL [27] uses AI/ML techniques to recommend rewriting ideas for queries on MySQL
and Postgres. Other systems such as ApexSQL [8], Query Performance Insights for Azure
SQL [90], and Toad [111] help database developers analyze query performance bottlenecks
and tune database knobs. None of these systems allow users to formulate their own rewriting

rules to fulfill the human-centered query rewriting need.

General pattern-matching tools. These tools can be used to rewrite any program and
are not limited to SQL code. For instance, Quasiquotation [79, 1] is a general technique
to rewrite programs using meta-programs. A main issue of the tools is that they are not
designed for SQL queries, and they do not consider the unique semantics (tables, columns,

etc.) of SQL, which is considered by the proposed QueryBooster.

3.3 QueryBooster: A Human-Centered Query Rewriting

Solution

In this section, we present a novel middleware solution called QueryBooster, to fulfill the

need for human-centered query rewriting.

%)



Figure 4.2 shows the query lifecycle using QueryBooster to rewrite application queries. It

includes two phases, an offline rule formulation phase and an online query rewriting phase.
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Figure 3.4: Query lifecycle of using QueryBooster to rewrite application queries.

For the offline rule formulation phase, QueryBooster provides a powerful interface for users
to formulate rewriting rules. It allows users to formulate rules in the following two ways.
First, it provides an expressive and easy-to-use rule language for users to define rewriting
rules. Users can easily express their rewriting needs by writing down the query pattern
and its replacement. They can also specify additional constraints and actions to express
complex rewriting details. Second, it allows users to express their rewriting intentions by
providing examples. A rewriting example is a pair of SQL queries with the original query
and the desired rewritten query. The “Rule Suggestor” automatically suggests high-quality
rewriting rules based on the examples. The users can choose their desired rewriting rules
and further modify suggested rules as they want. All user-confirmed rules are stored in the

“Rule Base,” and the “Query Rewriter” will rewrite online queries based on the rules.

For the online query rewriting phase, QueryBooster provides a customized connector that
communicates with its service to rewrite application queries. In particular, the connec-
tor accepts an original query () formulated by the application and sends () to the “Query
Rewriter” service, which applies rewriting rules stored in the “Rule Base” to rewrite () to

a new query Q. The new query is sent back to the connector, which forwards @’ to the
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backend database to boost the application’s performance. Note that QueryBooster focuses
on rewriting queries based on user-specified rules and assumes no access to the backend

database to create indexes.

To use the QueryBooster rewriting solution, users do not need to modify any code of the
applications or databases or install any plugins. They only need to replace the existing DB
connector with a QueryBooster-customized one. In this Chapter, we focus on the technical
aspects of the solution. We will discuss more how the connector is implemented and the
license considerations in Chapter 4, where we focus on the system aspects of the proposed

solution. To implement such a powerful solution, we have the following two tasks.

(Task 1) Developing an expressive and easy-to-use rule language. The first task of
QueryBooster is to provide an expressive and easy-to-use rule language for users to formulate
rules. It should meet the following three requirements. (R1) Powerful expressiveness in
SQL semantics. It needs to understand SQL-specific semantics where users can specify
pattern-matching conditions on the elements of a SQL query, e.g., two tables have the same
name, or a column is unique in the table schema. (R2) Fasy to use by SQL users. Users
of QueryBooster are application developers who are familiar with SQL. QueryBooster should
require users to have little prior knowledge other than SQL to define their rewriting rules.
(R3) Independent of databases or SQL dialects. As a general query-rewriting service, the rule
language should be independent of any specific database or SQL dialect. Providing a rule
language that meets the aforementioned three requirements is challenging. In Section 3.4
we first study the suitability of existing rule languages in the literature and then develop
a novel rule language that combines advantages from existing languages to meet all the

requirements.

(Task 2) Suggesting rules from examples. The second task of QueryBooster is to provide
a rule-suggestion framework that automatically generalizes user-given rewriting examples

into rewriting rules and suggests high-quality ones. Manually formulating a rewriting rule
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that covers many queries is tedious. We want a better experience in which a user expresses the
rewriting intention by providing query rewriting pairs. Then, the system can automatically
suggest rewriting rules to achieve the rewritings of the given examples. For instance, if a
user inputs the rewriting pair in Figure 3.2 as one of the examples, the rule suggestor can

automatically generalize it and recommend the following rule to the user.

STRPOS(LOWER(<x>), '<y>’) --> <x> ILIKE "%<y>%’

Developing such a rule suggestor is also challenging since we need to answer a few questions,
such as how to measure the quality of rewriting rules, how to generalize query rewriting pairs
into rewriting rules, and how to search the candidate rewriting rules to suggest high-quality

ones. We answer them in Sections 3.5 and 3.6.

Correctness of rewriting rules. In the case where users make mistakes when formulating
rewriting rules, we can leverage existing query equivalence verifiers (e.g., [18, 121]) to validate

the rules and guarantee their correctness.

3.4 VarSQL: A Rewriting-Rule Language

In this section, we focus on providing an expressive and easy-to-use rule language for Query-
Booster’s users to formulate rewriting rules that work for different applications and databases.
We first study the suitability of existing rule languages in the literature and then develop a

novel rule language that meets all the requirements desired by QueryBooster.

3.4.1 Suitability of Existing Rule Languages

We study existing rule languages and their suitability for QueryBooster. These languages [33,

100, 28, 81, 23, 17, 82, 123, 19, 5] are summarized in Figure 3.5. We categorize the languages
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in two aspects: general versus SQL-specific and declarative versus imperative, and then sum-
marize how the languages in different categories meet the requirements of the rule language

of QueryBooster.

: Optimizer
. Regex Comby KOLA, EDS:
SQL String Parsed Logical > Physical
Tree = L Oy . Plan
Parser ! Ex0d1-1s., Starbl.lrst, i
: Prairie, Calcite !
. Imperative Languages |
General (Non-SQL-specific)y @ temmesommmmmmmmemooio oo SQL-specific
D e Rt e L TP >

Figure 3.5: Existing rule languages (shown in brown) in the lifecycle of a SQL query.

General versus SQL-specific. The languages on the left are more general (i.e., non-
SQL-specific) since they have fewer SQL-specific restrictions. For example, regular expres-
sions [123] (shown as “Regex”) do not require the input string to be a SQL query. On the
contrary, rule languages on the right such as EDS [28] only accept valid SQL query plans as

the input.

The main advantage of SQL-specific languages is that they are very powerful for users to
express rewriting rules in SQL-specific semantics. For instance, to achieve the rewriting
of replacing “STRP0OS” functions with “ILIKE” predicates, we can write a rule using either
regex as shown in Figure 3.6a, or EDS as shown in Figure 3.6b. Compared to regex, the
EDS language has two advantages. First, we do not need to specify SQL-specific syntax
requirements such as white spaces and arguments in functions. Second, we can specify SQL-
specific constraints for variables that are not supported by regex, such as “x is a column and

y is a String literal.”

There are also disadvantages of the more specific languages. First, they can be limited to a

particular SQL dialect or database. For instance, EDS is designed for a particular extensible
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Pattern Replacement Pattern Replacement

STRPOS\ (
LOWER (
> (STRPOS (LOWER (x) ,y) ,0)
whe U T e

\' (2<val>\w+) \' ISA(y, String)

\)\s+\>\s+0

— matching parentheses — matching argument variables
— matching whitespaces — specifying constraints on variable types
(a) A rule written in regex. (b) A rule written in the EDS language [28].

Figure 3.6: Rewriting rules to replace STRPOS functions with ILIKE predicates in two different
languages.

system (called “EDBMS”) and its SQL dialect [28]. Second, they require the users to deeply
understand how a SQL query is translated into a plan and how the database optimizer works.
For example, to formulate the rule in the EDS language shown in Figure 3.6b, a user has to
translate the original SQL predicate of “STRPOS(---) > 0” into a logical plan tree format
with “>” as the parent node, which can be counter-intuitive for end users who are familiar

with the SQL syntax but not a database engine.

Declarative versus Imperative. The existing rule languages are either declarative or
imperative. In a declarative rule language, users describe how a rule (e.g., pattern and
replacement) looks, but not how a rule should be implemented. On the contrary, in an
imperative rule language, users specify a sequence of steps that should be taken to do the
rewriting. For example, regex is declarative. Calcite [5] is imperative, and it uses Java to
formulate a rule. The primary disadvantage of using an imperative language to define rules
is that it requires users to have prior knowledge about the internal structures of the rule
engine and define rules by writing code. For example, in Calcite, a user has to write a Java

class that implements an interface to define a new rule.

The main advantage of imperative languages is the expressive power offered by the program-
ming language (e.g., C++), such as defining schema-dependent pattern-matching conditions.

For example, a rewriting rule that removes unnecessary self-joins may need to verify the join-
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ing attribute is unique, which cannot be inferred just from the SQL query itself. Thus, we
need schema information from the database to implement this rule. Using an imperative rule
engine, we can easily write a rule with a few lines of C code [82] that accesses the schema

data and checks the matching condition.

To this end, we summarize how existing languages meet QueryBooster’s requirements on its
rule language in Table 3.1. An observation is that no existing rule language satisfies all the

requirements. Next, we develop a novel rewriting-rule language called VarSQL.

Table 3.1: Suitability of existing languages for QueryBooster.

Rule Expressive Power Independent | Additional
Language | SQL Semantics | SQL Schema | of DB Knowledge Needed
Regex No No Yes

Comby No No Yes

KOLA Yes No Yes OIS)6)
EDS Yes Yes No 0I®)
Exodus Yes Yes No 0I®)
Starburst | Yes Yes No OIOIOIO
Prairie Yes Yes No @ @ @
Calcite Yes Yes Yes @ @ @ @
VarSQL Yes Yes Yes

(D Query Optimization; (2) Relational Algebra; (3) Combinator-based Algebra;
(4) Internal Data Structure; (5) C++ Programming; (6) Java Programming;

3.4.2 VarSQL: A Novel Rule Language

We develop a novel rewriting-rule language (called VarSQL!) for QueryBooster that meets all
the requirements. In particular, VarSQL understands SQL-specific semantics and supports
schema-dependent pattern-matching conditions (R1). It is easy to use, requiring no prior
knowledge other than SQL (R2). Also, it is independent of any specific database or SQL

dialect (R3). Next, we present the technical details of VarSQL.

The syntax of VarSQL to define a rewriting rule is as follows:

[Rule] : := [Pattern] / [Constraints| --> [Replacement] / [Actions].

VarSQL stands for “Variablized SQL”.
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VarSQL uses a four-component structure adopted by most rule languages (e.g., EDS [28] and
Comby [19]). The “Pattern” and “Replacement” components define how a query is matched
and rewritten into a new query. The “Constraints” component defines additional conditions
that cannot be specified by a pattern such as schema-dependent conditions. The “Actions”
component defines extra operations that the replacement cannot express, such as replacing
a table’s references with another table’s. We first discuss how a pattern and a replacement

are formulated using VarSQL.

Extending SQL with variables. The main idea of using VarSQL to define a rule’s pattern
is to extend the SQL language with variables. A variable in a SQL query pattern can
represent an existing SQL element such as a table, a column, a value, an expression, a
predicate, a sub-query, etc. In this way, a user can formulate a query pattern as easily
as writing a normal SQL query. The only difference is that, using VarSQL, one can use a
variable to represent a specific SQL element so that the pattern can match a broad set of
SQL queries. We call this pattern-formulating process “variablizing” a SQL query, and we
call the formulated pattern query a “variablized” SQL query. Similarly, a rule’s replacement
is formulated by writing the rewritten SQL query using variables introduced in the rule’s
pattern. Particularly, both the pattern and replacement in a VarSQL rule have to be a full
or partial SQL query optionally variablized. The variables and their matching conditions

are defined in Table 3.2.

To minimize the learning cost for end-users to define rules in VarSQL, we introduce only two
variables, namely “element-variable” and “set-variable.” An element-variable can match any
individual element in a SQL query, such as a table, a column, etc. A set-variable can match
any collection of elements in a SQL query, such as the column list in the SELECT clause. Note
that keywords and delimiters cannot be represented as variables. An entire clause cannot
be represented as any type of variable either. For example, a set-variable can match all the

columns in the SELECT clause, but no type of variable can match the entire SELECT clause.

62



- . !/
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SELECT el.name, el.age, e2.salary

FROM employee el, SELECT el.name, el.age, el.salary
employee e2 FROM employee el
WHERE el.age > 17 WHERE el.age > 17
AND el.id = e2.id AND el.salary > 35000;

AND e2.salary > 35000;
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Rewriting Rule R- Removing an Unnecesary Self-Join
Figure 3.7: The process of pattern matching and replacing of a VarSQL rule R on an example

query (). The gray nodes in both syntax trees of ) and the R’s pattern are matched keywords.
The colored dashed boxes show the variables in R’s pattern and their matched ()’s elements.
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Table 3.2: Variable definitions in VarSQL.

Name Syntax (regex) Description Example
An el t-variabl
11 ¢ CIEnt-vatable | srrpos(LOWER (<x>), ’iphone’) > 0
matches
a table,
o column <x> matches any
Element-Variable | <[a-zA-Z0-9_]*> ’ value,
a value,
. column,
an expression, ;
expression,

a predicate,
or a sub-query.
A set-variable

or sub-query.

SELECT <<x>>

matches FROM <t>
a set of WHERE <<p>>
tables,

Set-Variable <<[a-zA-Z0-9_]*>> | columns, <<x>> matches any
values, set of values,
expressions, columns,
predicates, expressions,

or sub-queries. or sub-queries.

SQL syntax tree-based pattern matching and replacement. VarSQL does the pattern
matching and replacement at the SQL syntax tree level. Consider the rule R shown at the
bottom of Figure 3.7, where the pattern and replacement are shown in their syntax tree
formats. This rule specifies that when two tables with the same name join on the same
unique column, we can safely remove the join and keep only one copy of the table. The
remaining of Figure 3.7 shows the process of pattern matching and replacement of this rule
on an example query (). We first obtain the syntax tree of the query, and compare it node by
node against the syntax tree of the rule’s pattern. The keyword nodes match each other, and
the variables in the pattern match those elements in the query. Under the node “and”, the
subtree “<t1>.<al>=<t2>.<a2>” in the pattern matches the predicate “el.id=e2.id” in
the query, and the set-variable “<<p>>" matches the two remaining predicates in the query.
Next, we use the rule’s replacement syntax tree as a template to generate the rewritten
query’s syntax tree by replacing the variables with their matched elements in the pattern.
Finally, we assemble the rewritten query from the syntax tree. For completeness, we also

show the string representation of the rule R in Figure 3.8.

Providing pre-implemented imperative procedures. Based on SQL, VarSQL is a
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Pattern Constraints Replacement Actions

tl=t2
Substitute
SELECT <<s>> AND
FROM <tl>, <t2> al=a2 ——>SE3§$ ::T Ii;]; £2, &)
WHERE <tl>.<al>=<t2>.<a2> | AND .
WHERE <<p>> // Substitute
AND <<p>> UNIQUE (t1,al)

al NOT NULL (p, t2, tl1)

Figure 3.8: An example rule in VarSQL that removes an unnecessary self-join.

declarative language. Omne problem with declarative languages is that they lack the ex-
pressive power to define complex logic in the replacement of a rule and schema-dependent
pattern-matching conditions where imperative programs are needed to access the database
schema. To solve this issue, VarSQL adopts the idea used in declarative languages such as
EDS and Comby that it provides pre-implemented imperative procedures for users to de-
fine complex logic in the constraint and action components of rules. For example, the last
constraint “UNIQUE(t1, al)” defined in the “Constraints” component in the rule shown in
Figure 3.8 calls the pre-implemented imperative procedure “UNIQUE” supported by VarSQL,

which verifies if “a1” in table “t1” is a unique column by referring to the database schema.

VarSQL also provides imperative procedures for users to define complex actions in a rule. For
example, the rule in Figure 3.8 does two actions on the replacement SQL query. The first
action “Substitute(s, t2, t1)” is to replace the table “t2” with table “t1” in the scope
represented by the set-variable “<<s>>”. Consider the query () in Figure 3.7 that matches
the rule. The set-variable “<<s>>” matches the entire selection list “el.name, el.age,
e2.salary”. Since the replacement of the rule removes table “t2” from the query, the column
“e2.salary” needs to be substituted by “el.salary”. And, the action “Substitute(s,

t2, t1)” achieves this purpose.

To make sure the pattern-matching and replacement at the syntax tree level can handle SQL
semantics, VarSQL understands important SQL concepts, e.g., an element-variable “<x>” in

the FROM clause can match either a table name or a table name with an alias.
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3.4.3 VarSQL-Based Rewriting Engine

In this section, we discuss how to design an extensible rewriting engine to support the
VarSQL rule language. First, rewriting SQL queries using VarSQL-based rules can happen
at the string level, abstract syntax tree (AST) level, or the logical plan tree level. We will
discuss the pros and cons of implementing the engine at different levels and why we choose
the AST level. Second, we discuss a few problems in implementing the engine, such as the
termination of the rewriting process and the uniqueness of the rewriting results. Finally, we

briefly discuss how the rewriting engine can support different databases and SQL dialects.

Order-insensitive rewriting at the abstract syntax tree (AST) level. VarSQL oper-
ates the pattern matching and replacing at the abstract syntax tree level, other than general
languages such as Regex and Comby that operate at the string level or SQL-specific lan-
guages such as EDS and KOLA that operate at the query logical plan level. A major problem
of operating at the string level is that the order of elements in the pattern is important. For

example, in Comby, if the pattern is defined as

SELECT orders.*, customers.* FROM orders, customers,

it does not match a query with a different order of joining the same two tables, such as

SELECT orders.*, customers.* FROM customers, orders.

This is counter-intuitive for SQL users because, in SQL semantics, the above two queries

share the same pattern.

Operating at the logical plan level can solve the problem. However, we know that one SQL
query can have many equivalent logical plan trees with different orders of joins and different

positions of filtering predicates. Thus, it requires the rewriting engine to enumerate all

66



possible logical plans for a specific query to do pattern-matching, which can be expensive.
For instance, in Figure 3.9, all the three logical plans are possible output for a particular
input query. In this case, checking a pattern matching against all possible logical plans of
the query requires varying not only different join orders but also the positions of filtering

predicates, which can make the implementation of the rewriting engine complex.

HA.z,B.y HA.a:,B,y Hzlél.m,B.y
‘ ‘ 0C.2>1
> >
> oC.>1 > A o5 )
/
A ”CI'ZZ\ /\
A B C C B C B

P Py Ps

Figure 3.9: An example of three possible logical plans for a single SQL query which joins
tables A, B, and C with a filtering predicate on the z column of C.

Thus, VarSQL operates at the AST level and does order-insensitive pattern-matching inside
a clause to solve the problem. We have explained the pattern-matching process of a VarSQL-
based rule on an example query in Section 3.4.2. We now focus on the order-insensitivity of
the process. When a pattern matches a SQL query, VarSQL does not enforce the ordering of
elements under a specific clause. Figure 3.8 shows a rule that specifies when two tables with
the same name join on the same unique column, we can safely remove the join and keep only
one copy of the table. This rule’s pattern can match both queries shown in Figure 3.10, in
which the join predicate (i.e., “<t1>.<al>=<t2>.<a2>") and the predicate set-variable (i.e.,
“<<p>>") have different orders. This behavior is also consistent with the order-insensitive
nature of SQL queries, where different orders of the same set of predicates under a WHERE

clause should yield the same result.

Termination of the rewriting process and the uniqueness of the result. We have
talked about how the rewriting engine does the pattern matching and replacing for given

a SQL query and a rewriting rule. We now briefly discuss the entire rewriting process for
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SELECT el.name, el.age, e2.salary SELECT sum(ol.total_price)

FROM employee el, FROM orders o1,
employee e2 orders o2
WHERE el.id = e2.id WHERE o1l.0s in (’ios’, ‘macos’)
AND el.age > 17 AND o1.0id = 02.0id
AND e2.salary > 35000; AND o2.state_code = 'CA’;
(a) An original query (Q1). (b) An original query (Q2).

Figure 3.10: Two original queries that both match the pattern of the rule in Figure 3.8.

an arbitrary online query. All user-formulated rules are stored in the rule base as shown in
Figure 4.2. When an original query () comes, the query rewriter accesses each rule r in the
rule base and checks its pattern and constraints against query ). If the rule r matches @),
the query rewriter rewrites (Q to Q' according to the rule’s replacement and actions. It then
treats ()’ as ) and repeats the rule matching and rewriting process until the query cannot
match any rule in the rule base. Note that the same rule can be matched and used multiple

times.

To ensure the process always terminates, the query rewriter tracks the rewriting path and
discovers cycles by checking if the same rewritten query appears more than once on the path.
It breaks a cycle by returning the repeated rewritten query as the result. One concern is
that different orders of applying rules on a query may result in different rewritten queries.
To address this concern, QueryBooster allows users to specify a priority for each rule so that
high-priority rules can be applied first. For example, a user may ask the system to apply
general optimization rules (e.g., removing unnecessary type-castings) before applying specific

optimization rules (e.g., replacing substring functions).

Supporting different databases and SQL dialects. QueryBooster can support different
databases and SQL dialects for two reasons. One is its simple design of extending SQL with
variables. The other is that the query rewriter operates at the Abstract Syntax Tree (AST)

level and adopts existing SQL parsers to parse the queries and rules. Existing rules are
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parsed into ASTs and then stored in the rule base. For an input query, the query rewriter
first parses the query into an AST. It then does the pattern matching by comparing each
rule’s AST with the query’s AST. Once a rule pattern matches the query, the query rewriter
assembles the rewritten query’s AST based on the replacement AST of the rule. Finally, it

uses the same SQL parser to assemble the rewritten query’s AST back to a SQL query.

Thus, QueryBooster can be easily extended to support different databases with different SQL
dialects. To support a new database and its SQL dialect, we replace the SQL parser inside
the query rewriter with the corresponding SQL parser for the new database, and both the

rule language and the query rewriting process can be adapted automatically.

3.5 Rule Quality and Transformations

In this section, we focus on providing a powerful interface for QueryBooster that suggests
high-quality rules for user-given rewriting examples. We first discuss how to measure the
quality of rules and formally define the rewriting-rule suggestion problem. We then propose
a framework to solve the problem, which comprises two major steps: transforming rules into
more general forms and searching for high-quality rules greedily. We discuss the first step in

this section and the second step in the next section.

3.5.1 Quality of Rewriting Rules

Adopting MDL principle to measure the quality of rules. When the rule suggestor
generates rules from the user-given examples, there can be many different sets of rules that
can achieve the example rewritings. For instance, consider the five input examples in Fig-
ure 3.11. The rule suggestor can output the original five rewriting pairs as five rules to the

user. Apparently, this suggestion is an overfit to the given examples since the suggested rules
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Figure 3.11: Suggesting rewriting rules from user-given examples. The rule suggestor sug-
gests two rewriting rules (r; and r5) that cover all five query rewriting pairs provided by the
user, and the total description length of r; and r, is minimized compared to other sugges-
tions.

cannot rewrite queries slightly different from the examples. Intuitively, we want to suggest
more general rules that capture the pattern of the given examples. At the same time, we
do not want to over-generalize the rules, which may underfit the examples. For instance, in
Figure 3.11, both rules 75 and r3 can achieve the rewritings for the example pairs (Qy4, Q)
and (@5, Q%), which removes the ORDER BY clause from the subquery. In this case, 79 is less
general than r3 but is a better suggestion, because lacking the context of a COUNT aggregation

in the outer query, r3 can be erroneous in many cases.

To this end, we want to avoid underfitting or overfitting the given examples when measuring
the quality of rewriting rules. An effective way is through the Minimum Description Length
(MDL) principle [96], which minimizes the total length required to describe the underlying
patterns in the data. There are MDL-based metrics for pattern extractions in domains such
as data mining[30], data cleaning [93, 37], and regex learning [14]. We can adapt these
existing metrics to measure our rewriting rules’ quality or derive our own description length

functions as needed. From the rule-suggestor’s perspective, we assume a rule-quality metric
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is given.

For the MDL metric, we assume no access to the target database. If we are granted access,
we can also consider the rewriting rules’ effectiveness in improving the performance of the
historical workload as the rules’ quality. For simplicity, we first use MDL as the quality
function and then discuss how to extend the framework to include query performance to

measure the rules’ quality in Section 3.6.3.

Rewriting-rule suggestion problem. Next, we formally define the problem of suggesting

high-quality rules from given examples.

Definition 3.1. (Covering) Let Q be a set of query rewriting pairs {(Q1,Q}) , (Q2,Q%) ;...
,(Qn,@Q))}, and R be a set of rewriting rules {ry ;7o ,... ,rx}. We say R covers Q if for

each pair (Q;, Q) in Q, there is at least one rule rj in R such that rj can rewrite Q); into

/
77

and there is no rule ry in R such that ry can rewrite Q; into a query different than Q.

Definition 3.2. (Rewriting-rule suggestion problem) Let Q) be a given set of query rewriting
pairs {(Q1,Q)) ,(Q2, Q%) ,... ,(Qn, @)}, G be a given rule language, and L be a given
description length function. The rewriting-rule suggestion problem s to compute a set R of
rewriting rules {ry ,ro ..., 1} such that R covers Q and the total length of rules 31, xL(r;)

18 manimal.

We propose a two-step solution. First, we define a set of transformations that can generalize
a rewriting rule into a more general form such that the transformed rule can cover more
rewriting pairs than the original rule. By applying the transformations on the given rewriting
pairs iteratively, we identify a set of candidate rules to consider for the final suggestion.
Second, we adopt a greedy-search strategy to efficiently explore different subsets of rules as
candidates and minimize the total description length. Next, we present the technical details

of both steps.
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3.5.2 Transforming Rules to More General Forms

Transformations on rules. A transformation on a rewriting rule can generalize the rule
into a more general rule such that the new rule covers more rewriting pairs than the orig-
inal one. The instantiation of transformations is dependent on the given rule language.
We now define transformations (shown in Figure 3.12) on rewriting rules formulated in
the VarSQL language, namely Variablize-a-Leaf, Variablize-a-Subtree, Merge-Variables, and
Drop-a-Branch. The last three transformations only happen if the replaced variables are not

referred to in other places in the rule’s pattern or replacement.

Variablize-a-Leaf. This transformation replaces an instantiated element (table, column,
or value) in a rule with a variable. In this way, the transformed rule can match more queries
than the original one. As shown in the first example in Figure 3.12, the transformed rule
can match a query with any column name in the first argument of the STRPOS function. In

contrast, the original rule can only match a query with the specific “msg” column.

Variablize-a-Subtree. This transformation replaces a complex element (expression, pred-
icate, or subquery) in a rule with a variable. In this way, we can generalize the pattern
of a rule by hiding the details within an expression, predicate, or subquery. In the second
example in Figure 3.12, the common expression “CAST(<x> AS DATE)” appears without any
modifications in both the rule’s pattern and replacement, which means that it might be
an irrelevant pattern in the original rule. Summarizing the common expression with a new

variable makes the rule more general.

Merge-Variables. Notice that in the VarSQL language, an element-variable can only match
a single element in queries. We introduce this transformation to generalize a set of variables
to a set-variable to suppress the quantity restriction when matching queries. As shown in the
third example in Figure 3.12, the original rule only matches queries with the two columns in

the SELECT clause, and the transformed rule can match queries with any number of columns
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Transformation Description Example
[Notate a leaf in a rule's o . "
Variablize-a- [P2tte™ AST as a variable. STRPOSinsg, mac)>0 [jmsciiEE e
Leaf
A leaf has to be a table, STRPOS(<x>),'mac")>0 | <x> ILIK '%mac%'
column or value.
Notate a common subtree CAST(
in both a rule's pattern and || pATE TRUNC( PATE_TRUNC(
replacement ASTs as a 'day’, day’,
Variablize-a- A su.btree.has Fo satisfy: AS DATE)
Subt (1) its height is one; \
ubtree (2) none of children are a CAST(
table, column or value; DATE _TRUNC( [DATE TRUNC(
(3) the root is not a clause- 'day’, 'day’,
leading keyword such as <y>) <y>)
select, from, where, etc. AS DATE)
SELECT <a>, <b>
FROM <t1>, <t2> |SELECT <a>, <b>
Merge a common set of WHERE <t1><c>=| FROM <t1>
sibling variables in both a <t2>.<c>
Merge- &
Vari %)l rule's pattern N
ariables  1.nd replacement ASTs into SELECT <<s>>
one variable. FROM <tl1>, <t2> |SELECT <<s>>
WHERE <t1>.<c>=| FROM <t1>
<t2>.<c>
SELECT <a> SELECT <a>
FROM <t> FROM <t>
Remove a common WHERE WHERE
branch (starting from the STRPOS(<x>),'<y>")>0 |<x> LIKE '%<y>%'
Drop-a-Branch . ( g . B =2
root) in both a rule's pattern
and replacement ASTs. FROM <t> FROM <t>
WHERE WHERE
STRPOS(<x>),'<y>")>0 [<x> LIKE '%<y>%'

Figure 3.12: Transformations on rewriting rules formulated in VarSQL. A transformation is
applied to the pattern and replacement ASTs of a rewriting rule to generalize it into a more
general rule.
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STRPOS (<z>,

'<y>') >0

<z> LIKE '$%<y>%'

R

| Drop-a-Branch

SELECT <<s>> SELECT <a>, <b>
FROM <t> FROM <t>
WHERE STRPOS ( WHERE STRPOS (
CAST (<x> AS TEXT), <z>,
<y>') >0 - <y>') > 0
A
r—-’l 7 ----- ~~r J“""~\
Merge-Variables ’ SEggg; P <b> ‘ Variablize-a-Subtree

WHERE STRPOS (

CAST (<x> AS TEXT),
<y>') > 0

A}
\

SELECT id, msg
FROM <t>
WHERE STRPOS (
CAST (msg AS TEXT),
'mac') > 0

\
SELECT id, msg
FROM tweets
WHERE STRPOS (
CAST (<x> AS TEXT),
'mac') > 0 .

. /4-;-{ Variablize-a-Leaf ‘

SELECT id, msg C?
FROM tweets

WHERE CAST (msg AS TEXT)
LIKE

SELECT id, msg
FROM tweets
WHERE STRPOS (
CAST (msg AS TEXT),
'mac') > 0

'$mac%’

Figure 3.13: A rule graph generated from a given rewriting pair (@, Q’). The vertices are
generalized rules (only showing patterns due to the space limit). The solid edges show one

path of generalizing the pair into a general rule. The green tags on the edges illustrate which
transformations are applied.
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in the selection list. This transformation is useful when we want a more general rule where

the quantity of elements does not matter for the pattern.

Drop-a-Branch. This transformation is a complement of the Variablize-a-Subtree transfor-
mation. Since VarSQL requires the pattern of a rule to be a valid full or partial SQL query,
we cannot variablize an entire clause. For example, in the fourth example in Figure 3.12, if
we variablize the SELECT <a> subtree as a new variable <y>, the transformed pattern “<y>
FROM <t> WHERE ...” is not valid SQL syntax. Thus, we introduce the Drop-a-Branch
transformation, which removes a common branch in a rule’s pattern and replacement. In
this way, we can gradually remove the irrelevant context of a rule’s pattern from the top to

the bottom of the pattern’s AST.

Rule Graph. Until now, starting from an initial rewriting pair, by applying the transforma-
tions iteratively, we can generalize it into more and more general rewriting rules gradually.
If we treat each newly-generated rewriting rule as a vertex and a transformation as an edge,
we can obtain a graph of rewriting rules. We call it a rule graph. Figure 3.13 shows an
example rule graph. As we can see, a rule graph for a single rewriting pair can be big, and
the union of all rule graphs for a set of rewriting pairs can be even bigger, so searching for a
set of high-quality rules is difficult. In the next section, we discuss how to navigate through

the search space and make final suggestions to the users.

3.6 Searching For High-Quality Rules

To solve the rewriting-rule suggestion problem defined in Definition 3.2, we defined a set
of transformations in Section 3.5.2 to generalize the initial rewriting pairs to more general
rewriting rules. However, the candidate sets of generalized rules that can cover the initial

rewriting examples may be large. It can be computationally expensive to search all possible
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sets to compute an optimal solution with the minimum description length. To solve the
problem, we adopt a heuristic-based strategy to expand the candidate-rule set greedily and
rely on a local set of rules to make final suggestions. In this section, we first present the
greedy searching framework, then propose several heuristics to further reduce the search

overhead.

3.6.1 A Greedy Searching Framework

We develop a method to search for rules, as shown in Algorithm 3. Its main idea is the
following. We start with the original rewriting pairs as a basic solution, and treat each
query pair as a rewriting rule (line 1). We iteratively replace rules in the solution with a
more general rule that reduces the total description length the most. In each iteration, we
first explore a set of candidate rules by applying transformations to the rules in the current
solution (line 3). We say a rule x covers another rule y if z’s pattern matches y’s pattern
and x can rewrite y’s pattern to y’s replacement. For each candidate rule, we compute the
reduction of the total description length if we use it to replace its covered rules in the solution
(lines 4-7). We then choose the rule that has the maximum reduction (line 8) and replace its
covered rules with the new rule (line 12). We stop the iteration if there is no more reduction

(line 9). In this case, we return the current solution (line 10).

The algorithm follows the hill-climbing paradigm [98], where in each iteration, it explores
a set of candidate rules to consider as the possible next directions. The exploration of
candidates is implemented in the FEzplore_Candidates(R,T ) procedure, and the decision of
which set of candidates to explore can affect how easily the algorithm is stuck at a local
optimum. Ideally, the explored candidates should include all possible rules transformed
from the current rule set. However, the size of the transformed rules can be large. Thus, we

need to consider the trade-off between the exploration size and the probability of trapping
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Algorithm 3: A greedy algorithm for suggesting rules
Input: A set of rewriting pairs Q = {(Q1,Q}), ..., (Qn, @)}
A set of transformations 7 = {11, Ts, ..., T)n}
A description length function £ on a rule
Output: A set of rewriting rules R

1 R+ Q
2 while True do
3 | C < Explore_Candidates(R,7)
4 for c € C do

// find rules that can be replaced by ¢
5 R. <+ {R; € R | R; is covered by c}

// compute the length reduction if ¢ replaces R.
6 AL < Y per, L(R:) — L(c)
7 end

// choose a candidate rule with the largest length reduction

8 ¢ <+ argmax,.. AL,

// stop when there is no more reduction
9 if AL; <0 then

10 ‘ return R

11 end

// update the result set

12 R+ R-—-—Rs+¢

13 end

in a local optimum. We discuss different methods in the following.

A naive candidate-exploration method. A naive method is to parameterize the number
of hops when we transform the rules in the given rule set. As shown in the rule graph in
Figure 3.13, starting from a base rule, we can transform it into different child rules by
applying different transformations. We call a child rule a “1-hop rule” if it is obtained from
the base rule by applying one transformation. Similarly, a rule is a “k-hop rule” if it is
obtained after applying k transformations on the base rule one by one. The parameter k
decides the exploration overhead of the searching framework. We can increase k to allow the
algorithm to look ahead before settling down at a local optimum at a higher computational

cost. We call this method “k-hop-neighbor exploration” (KHN for short).

This method has two problems. One is that it is hard to decide the k value. A k value may
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be good for some input examples but can be bad for others. The second problem is that
a fixed k value for all base rules ignores their different amounts of potential to discover a
high-quality rule. To solve these two problems, we propose an adaptive exploration method

next.

3.6.2 Exploring Candidate Rules Adaptively

In this subsection, we discuss how to explore candidates in an adaptive way by considering
the different amounts of potential of transforming different base rules to discover a high-
quality general rule. The goal is to explore more promising candidate rules first to fill a fixed

size of the candidate set.

m~promising neighbors. Its main idea is that instead of exploring neighbors a fixed
number of hops away from the current rule set, we explore a fixed number (denoted as
m) of neighbors that can reduce the total length of the rule set the most. The value m
directly decides the computation overhead of the rule-suggestion algorithm. We can decide
its value by considering the running time (e.g., 2 seconds) allowed to run the algorithm and
the hardware resources we have. To find the m neighbors, we explore the given base rule set
iteratively. In each iteration, we choose a rule that is most promising to be transformed into
a more general rule that reduces the total length the most. In this way, we can generate a
set of candidate rules with different numbers of hops transformed from different base rules

in the given rule set.

Algorithm 4 shows the pseudo-code of the method of m-promising-neighbor exploration
(MPN for short). For a given function P that measures a rule’s promisingness score, the
algorithm starts from the initial rule set, chooses one rule with the highest score, replaces
it with all its 1-hop transformed rules in the candidate rule set, and stops until the rule set

reaches the given size m.
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Algorithm 4: m-promising-neighbor exploration
Input: A set of rewriting rules R = {Ry, R, ..., R,}
A set of transformations 7 = {11, Ts, ..., T)u}
A function P that measures a rule’s promisingness score
A parameter m that limits the output size
Output: A set of candidate rewriting rules C
C+— R
while |C|<m do
// choose the most promising candidate rule
3 | €< argmax, P(c)
// replace it with its 1-hop transformed child rules
for T; € T do
T;(¢) + {all possible child rules by applying T; to ¢}
C+ CUTe)
end
C+—C-—-c¢
end
10 return C

N =

© ® N o o s

Measuring the promisingness score of a rule. We consider three signals to measure
a rule’s promisingness score. First, one signal is the total length of those base rules that
can be covered if we transform a candidate rule into a more general form. Second, another
signal is the number of transformations needed to apply to a candidate rule if we want it
to cover more base rules in the rule set. This signal measures how far we can reach a more
general rule starting from a particular candidate rule. Third, the last signal is the length of

a candidate rule.

Formally, suppose we are given a set of base rewriting rules R = {R;, Ry, ..., R,} and a
candidate rule ¢. We compute rule ¢’s promisingness score P(c) as follows. For each base
rule R; € R, we compute a distance D(c, R;), which is the number of transformations on
rule ¢ to cover rule R;. We will discuss how to compute this value shortly. Let £ be the

given description length function. The promisingness score of rule c is:
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If a rule can be generalized with fewer transformations to cover longer base rules and its
own length is shorter, it should have a higher promisingness score. We now describe how to
compute the distance D(c, R;) of transforming rule ¢ to cover the base rule R;. We count
the number of transformations on ¢ to produce a more general form ¢’ to cover rule R;. A
rule ¢’ covers rule R; if the pattern of ¢’ matches R;’s pattern, and we can rewrite it to R;’s
replacement. Therefore, we can run the pattern-matching process of ¢ on R; similar to that
of a rule on a query. The only difference is that when we find any mismatching part, instead
of immediately returning false, we compute the number of transformations needed for the

mismatching part in ¢ to match that in R;.

3.6.3 Including Query Cost in Rule Quality

To this end, we use MDL as a metric for rewriting rules’ quality. We now show how to include
the effectiveness in improving the performance of a historical workload W to measure the
rules’ quality. For a given candidate rewriting rule set R (in Algorithm 3), we can obtain a
set Wy of rewritten queries by rewriting W using the rules in R. Suppose we know the cost
of queries to the target database. We can obtain the total cost of all rewritten queries in
Wi, denoted as C(Wg). When we evaluate the benefit of replacing a few rules in R, with
a candidate rule ¢ (line 6), we compute the reduction of query cost when using the new rule
set to rewrite W, denoted as AC.. Then, we compute a weighted sum of both the reduction
of description length and the reduction of query cost as the total benefit for the candidate

rule ¢ as
AC,
C(Wr)’

Benefit. < [ x AL + (1 - ) x
Lr

where (3 is a parameter to tune the balance between the importance of the description length
and performance improvement of the rewriting rules. We replace the original AL. with the

new Benefit. at lines 6, 8, and 9, and extend Algorithm 3 to include the effectiveness in
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improving workload performance to measure the quality of rewriting rules. Similarly, we
also include the new benefit value when computing the promisingness score of a rule in

Algorithm 4.

3.7 Experiments

We conducted experiments to evaluate QueryBooster regarding three aspects: formulating
rules using the VarSQL rule language, suggesting rules from user-given examples, and the
end-to-end performance using QueryBooster to rewrite queries. In particular, we want to
answer the following questions: (1) How easy is it for SQL developers to use the VarSQL
language to formulate query rewriting rules? (2) What is the expressive power of VarSQL?
(3) Are the transformations defined in QueryBooster enough to generate general rules from
example pairs? (4) How do different search strategies perform in terms of running time and
rule qualities? (5) How much benefit can QueryBooster provide on the end-to-end query

performance with the human-centered query rewritings?

3.7.1 Setup

Workloads. We used four workloads as shown in Table 3.3. Each workload had a set of
SQL rewriting pairs, and each pair consisted of an original query and a rewritten query.
Each rewritten query was equivalent to and usually outperformed its original query. The
WeTune workload included 245 pairs of SQL queries published in the appendix table in the
paper [121]. WeTune [121] is a technique that generates new rewriting rules automatically by
searching the logical-plan space and considering the performance of rewritten queries. They
collected those original queries from 20 open source applications on GitHub and generated

the rewritten queries by applying their machine-discovered rewriting rules. The Calcite
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workload comprised 232 rewriting pairs of SQL queries designed for the Apache Calcite test

suite [6].

To consider the real-world use cases where business intelligence (BI) users do interactive anal-
ysis on their data residing in a database, we created three more workloads using Tableau [109]
and Apache Superset [7] on top of both PostgreSQL and MySQL. The “Tableau + TPC-
H” workload included 20 rewriting pairs of SQL queries, which corresponded to the top
20 queries in the TPC-H benchmark [114]. We first inserted a 10GB TPC-H synthesized
dataset into a PostgreSQL database (indexes were created using Dexter [2], which automat-
ically creates indexes based on the database and workloads), then used Tableau Desktop
software to connect to the PostgreSQL database in its live mode. For each query in the
TPC-H benchmark, we manually built a Tableau visualization workbook that could answer
the corresponding business question, then collected the backend SQL query generated from
Tableau for the workbook. We then analyzed the Tableau-formulated SQL query and came
up with a rewritten query with a better performance. Similarly, we generated the “Tableau
+ Twitter” and “Superset + Twitter” workloads by building visualization dashboards using
Tableau and Apache Superset to analyze 30 million tweets on their textual, temporal, and
geo-spatial dimensions on top of both Postgres and MySQL databases. In the workloads, 14
pairs of queries were generated on top of PostgreSQL, and 11 pairs were generated on top
of MySQL.

Table 3.3: Workloads used in the experiments.

Id | Workload # of query pairs
1 | Calcite 232
2 | WeTune 245
3 | Tableau+TPC-H 20
4 | Tableau+Twitter | 14 (Postgres) + 6 (MySQL)
5 | Superset+Twitter 5 (MySQL)

Testbed. We implemented the QueryBooster solution using Python 3.9 and used the “mo-

sql-parsing” package [52] as the SQL parser. All experiments were run on a MacBook Pro
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2017 model with a 2.3GHz Intel Core i5 CPU, 8GB DDR3 RAM, and 256GB SSD. The
Tableau Desktop software version was 2021.4, and the Apache Superset version was May

2023. The PostgreSQL software version was 14, and the MySQL software version was 8.0.

Description length function. To evaluate the performance of the rule-suggestion algo-
rithms, we implemented a description length function designed for rules rewritten in VarSQL.
We followed the design principles proposed in [93]. The main idea was that each rule had a
constant basic length, and the more variables it had, the larger its description length should
be. In this case, the description length metric made sure that high-quality rules could match
as many given examples as possible, but they were not over-generalized to match unseen
queries. We computed the description length £ of a particular rule r as the following. Let
W be the constant basic length of any rule, Wy be the weight of an element-variable, and
Ws be the weight of a set-variable. We used three counters in the given rule. We counted
the number of element-variables in the rule as C'r and the number of set-variables as Cs.
In addition, we counted the number of non-variable elements in the rule as Cp, where non-
variable elements included keywords, values, table names, column names, etc. In the end,

we computed the length £ of rule r as

,C(T) :W+(WE X CE+WS X Cs>/CO

3.7.2 A User Study to Evaluate Rule Languages

Table 3.4: User profiles in the user study.

Background | Faculty | Staff | Software Engineers | Ph.D. students | M.S. students
% of users 4.5% | 4.5% 4.5% 72.7% 13.6%

We conducted a user study to evaluate how easy it was for SQL users to use VarSQL to
formulate rewriting rules. Besides VarSQL, we considered two other languages for compari-

son. One was regular expression [123], and we used its C Sharp implementation provided by
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regex101 [95]. The other was the internal rule language used by WeTune [121], and we used
its own implementation provided by its demo website WeRewriter [45]. We selected three
rewriting pairs of SQL queries from two workloads on two databases. One pair was from the
WeTune workload, and the other two pairs were from the “Tableau + Twitter” workload on
both PostgreSQL and MySQL. For each rewriting pair, we showed the original and rewrit-
ten queries to the user, along with three rewriting rules defined in the three languages that
could achieve the same rewriting. We asked the user to “select one of the three rules that
you think is the easiest to understand.” In the questions, we randomized the orders of the

rule languages and hid their names to make the comparison fair.

Table 3.5: Results in the user study (% of users selected the rule language as the easiest to
understand).

Pair Id 1 2 3
Workload Twitter(Postgres) | Twitter(MySQL) | WeTune(Q91)
% of Regex 13.6% 4.5% 0%
% of WeTune 0% 13.6% 13.6%
% of VarSQL 86.4% 81.8% 86.4%

We invited 22 users who were familiar with SQL and with different backgrounds. The profiles
of users are shown in Table 3.4, and the results are summarized in Table 3.5. Among all
the rewriting pairs, more than 80% of users selected the rule formulated in VarSQL as the
easiest to understand, and it outperformed the other two languages significantly. The user

study results show that VarSQL is an easy-to-use language and was preferred by SQL users.

3.7.3 Comparison of Rule-Searching Strategies

We evaluated the performance of different searching strategies in the rule-suggestion search-
ing framework. We compared the three strategies discussed in Section 3.6. The first was
“Brute-Force” (“BF” for short), which explored all possible rules that were transformed

from the current rule set in the Fxplore_Candidates procedure. The second was the “k-
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hop-neighbor exploration” (“KHN” for short), where we explored the neighbors of a fixed
number (k) of hops away from the base rules for each iteration’s consideration. The last was
the adaptive exploration method, “m-promising-neighbor exploration” (“MPN” for short),
where we explored a fixed number (m) of neighbors that were the most promising to finally
reduce the total description length of the resulting rule set. We used the “Tableau + Twit-

7

ter” workload and varied the number of rewriting examples as the input to the searching
algorithms. For each input set of examples, we first ran the BF method to get a high-quality
set of suggested rules as the benchmark. We then ran the KHN and MPN methods and
made sure they both output the same set of suggested rules as the BF method by gradually

increasing the k and m parameters. In this way, we ensured the fairness of the comparison

between different methods.
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Figure 3.14: Comparison of different candidate exploration methods to suggest the same set
of rules on the “Tableau + Twitter” workload.

The results are shown in Figure 3.14. As shown in Figure 3.14a, as the number of input
examples increased, the running time of the brute-force method increased sub-exponentially.
The reason was for each example added to the input set, the number of candidate rules
generated from the new example was exponential to its number of elements in the original
query. Compared to the brute-force method, the KHN method had significantly less running
time since it only explored a small set of candidate rules during the exploration phase.

However, its running time still went up to 50 seconds for 5 input examples. The reason
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was that to reach the high-quality rules, the KHN method had to tune its k value to 4,
and the number of explored rules increased exponentially with the increase of the k value.
In comparison, the MPN method outperformed both other methods significantly, and the
running time increased linearly as the input set size increased. These results are consistent
with those shown in Figure 3.14b, and both figures illustrate the correlation between the

running time and the number of candidates explored in the searching framework.

3.7.4 Effect of m in m-promising Neighbors

We evaluated the effect of the m value in the m-promising-neighbor searching strategy on the
WeTune workload. We randomly chose 30 rewriting pairs within the first three applications
in the workload as the testing set. We then chose the top two frequent rewriting patterns
and named them as “Rule!” and “Rule2’. Among the 30 pairs, there were 5 pairs matching
Rulel and 4 pairs matching Rule2. For each rule, we used one matching pair as the seed
and manually generated 4 rewriting examples as the input examples for the rule-suggestion
algorithm. We ran the algorithm using the m-promising-neighbor strategy with different m
values. We measured the total description length of the output rule set and the result is
shown in Figure 3.15a. It shows that for both rules’ input example sets when the m value
increased, the output of the rule-suggestion algorithm converged to the optimal rule set with
the minimum description length. Referring to the corresponding running time shown in
Figure 3.15¢, it only took about 5 to 6 seconds for the algorithm to output the optimal rule

set. Figure 3.15d also shows the numbers of candidates explored for different m values.

We evaluated the output rule set from the rule-suggestion algorithm on the unseen 30 testing
rewriting pairs in the workload. We measured both the precision and recall computed as
follows. Suppose the rule set rewrote x unseen pairs of queries, among which x1 pairs satisfied

the intent of the user. Then the precision is %1 Suppose the user wanted y pairs of queries
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Figure 3.15: Effect of the m value in the m-promising-neighbor searching strategy on the
WeTune workload.

in the testing set to be successfully rewritten, and the rule set only rewrote y1 out of .
Then the recall is % The result is shown in Figure 3.15b. The precision was always 100%
(omitted in the figure) because the design of the description length function enforced that
the rules were never over-generalized. And the recall was initially low for a small m value
because the output rules were very specific to the input examples, and the output rules were
not optimal yet. As the m value increased to 50 or more, the algorithm started to output
the optimal suggested rules that could cover unseen query pairs with similar patterns, which

led to a 100% recall in the end. Thus, for this dataset, we recommend 50 for the m value.
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3.7.5 End-to-End Query Time Using QueryBooster

We evaluated the end-to-end query time (the time between the frontend sending the SQL
query to and receiving the result from the database) using QueryBooster to rewrite queries
in the “Tableau + TPC-H” and “Tableau + Twitter” workloads on PostgreSQL and the
“Superset + Twitter” workload on MySQL. For each query in the workload, besides the
running time of the original query formulated by Tableau or Superset on PostgreSQL or
MySQL, we also collected the running time of two rewritten queries using different rewriting
rules. One rewritten query (noted as “Rewritten Query (WeTune Rules)”) was obtained from
the WeRewriter [45] system, which used rewriting rules automatically discovered by WeTune.
The other rewritten query (noted as “Rewritten Query (Human Rules)’) was obtained from
QueryBooster using human-crafted rewriting rules based on manual analysis of the original

query and its physical plan.
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Figure 3.16: End-to-end query time (Log-scale) using QueryBooster to rewrite queries with
WeTune-generated rules and human-crafted rules on “Tableau + TPC-H” workload com-
pared to original query time in PostgreSQL.

Figure 3.16 shows the result for the workload of “Tableau + TPC-H” on Postgres. Among the
20 queries, only two rewritten queries (@2 and Q18) using the WeTune-generated rules could

reduce the query time. At the same time, using human-crafted rewriting rules, QueryBooster
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reduced 10 queries’ running time, which comprised 50% of all the queries. Within the
10 rewritten queries using human-crafted rules, 70% of them reduced the original queries’
running time significantly (by more than 25%). For example, Q2 was reduced by 86% (1.555s
to 0.207s) and Q17 was reduced by 61% (47.046s to 17.802s). Note that in the 10 queries
optimized using human-crafted rules, 7 of them used statement-level reshaping rules such
as “join-to-exists”, “remove-subquery”, etc., and 3 of them used hints such as “force-join-

order”.

Figure 3.17a and 3.17b show the results for the workloads of “Tableau + Twitter” and “Su-
perset + Twitter” on MySQL. The result of “Tableau + Twitter” on PostgreSQL was similar
to MySQL, thus not shown. For the 5 Tableau queries on MySQL, the human-crafted rewrit-
ing rules were mainly predicate-level removing unnecessary ADDDATE calculation, as discussed
in Section 3.2. For the 5 Superset queries on MySQL, the human-crafted rewriting rules were
mainly translating the textual filtering condition from a LIKE predicate to a full-text search
predicate since MySQL does not support any index-scan for LIKE predicate but does for
full-text search. For example, in one query, the human-crafted rule rewrote the predicate
“text LIKE ’Ystopasian hate),’” to “MATCH(text) AGAINST (’stopasianhate stopasian
hatecrime stopasianhatecrimes’), which was equivalent only for this particular dataset
because all substring “stopasianhate” matched records could be matched using the three
full-text keywords: “stopasianhate”, “stopasianhatecrime”, and “stopasianhatecrimes”. As
shown in Figure 3.17b, all 5 queries were accelerated by 100+ times (e.g., 83s to 0.8s) due
to this human-crafted rewriting rule, which shows the importance of the proposed human-

centered query rewriting approach.
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Figure 3.17: End-to-end query time using QueryBooster to rewrite queries with WeTune-
generated rules and human-crafted rules compared to original query time in MySQL.

3.7.6 Generality of Rule Transformations

To evaluate the generality (covering more rewriting examples) of rule transformations, we
used 178 rewriting pairs in the Calcite workload after removing some examples that the
third-party SQL parser failed to parse. We applied the transformations defined in Sec-
tion 3.5.2 to each rewriting example iteratively as long as they are applicable to generate
more general rules. If multiple examples were generalized to the same rule, we only kept
one copy of the rule. We divided the transformations into 5 categories: “variablize-a-table”,
“variablize-a-column”, “variablize-a-value”, “variablize-a-subtree”, and “merge-variables”,
and we gradually increased the number of categories applied in the rule generalization pro-
cess. We compared the rewriting result of the generated rules on the 178 examples. Since
most rewriting pairs in the Calcite workload were designed for a unique rule, most of the ex-
amples were rewritten by the rules generated from themselves. We collected the percentage
of examples that were rewritten by rules generated by other examples and named it “sharing-
rule examples (%)”. We also collected the precision and recall of using the generalized rules

to rewrite the original queries of the input examples.

Figure 3.18a shows that with more transformation categories used in generating rules, there

were more examples rewritten by rules generated from other examples, which means the
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Figure 3.18: The generality of rules generalized from the Calcite examples using different
sets of transformations.

generated rules were more general. Figure 3.18b shows that with more transformations used
to generalize rules, the recall remained 100% because more general rules could always match
the seed examples. However, the rewriting precision went down. The reason was that the
more transformations resulted in over-generalized rules that matched examples they should
not match and rewrote the original queries to unintentional forms. This result also motivated
our consideration of using MDL as an objective function to suggest rules, which prevented

over-generalization for given examples.

3.7.7 Effect of Different Rule Quality Metrics

We also evaluated the effect of using different importance weights 5 in the benefit value
(defined in Section 3.6.3) using the “Tableau + Twitter” workload. We used four query
pairs as input examples for the rule-suggesting framework and another five queries as a
historical workload to compute the benefit value in Algorithm 3. We varied 8 from 1.0 (i.e.,
only considering the MDL as rule quality) to 0.0 (i.e., only considering query cost as rule
quality). For each g value, we first ran the rule-suggesting framework with the “MPN”
strategy to obtain the suggested rules. We then evaluated the suggested rules based on three

metrics. We used the rules to rewrite the five queries in the workload and collected the
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query “cost reduction” by comparing the rewritten queries’ cost and the original queries’
cost. We treated the suggested rules with § = 1.0 as the baseline and then computed the
“description length increase” and rule-suggesting algorithm “running time increase* for the

rules suggested by other g values.

Time Increase’ mmmm
5300 | Description Length Increase E= ,gq
Cost Reduction =]

1.0 0.75 0.25
Beta

Figure 3.19: Effect of different [ values.

The results are shown in Figure 3.19. When £ was 1.0, the suggested rules only reduced the
query cost by 18%. When f decreased to 0.75, the suggested rules reduced the query cost by
90%. However, the cost was both the description length of rules and the running time of the
rule-suggesting algorithm increased by 40%. The cost increased when § further decreased.
When 8 was 0.0, which means the algorithm did not consider the description length at all,
the total description length of suggested rules increased by 280%. Therefore, we recommend

0.75 as the g value for this dataset.

Remarks: The user study shows that more than 80% SQL users preferred using the VarSQL
rule language to formulate rewriting rules. QueryBooster suggested high-quality (high preci-
sion and recall and low description length) rules from user-given examples quickly (< 5s) on
different workloads. Compared to existing query rewriting solutions with machine-discovered
rewriting rules, using QueryBooster with human-crafted rewriting rules improved the perfor-

mance of 50% TPC-H queries by up to 86%.
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3.8 Conclusions

In this chapter, we proposed QueryBooster, a middleware solution for human-centered query
rewriting. We developed a novel expressive rule language (VarSQL) for users to formulate
rewriting rules easily. We designed a rule-suggestion framework that automatically suggests
high-quality rewriting rules from user-given examples. A user study and experiments on vari-
ous workloads show the benefit of using VarSQL to formulate rewriting rules, the effectiveness
of the rule-suggestion framework, and the significant advantages of using QueryBooster to

improve the end-to-end query performance.
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Chapter 4

Supporting Middleware-Based SQL

Query Rewriting as a Service

4.1 Introduction

System performance is critical in database applications where users need answers quickly
to make timely decisions. SQL query rewriting [28, 81] is an optimization technique that
transforms an original query to a rewritten one that computes the same answers with higher
performance. Although query rewriting has been studied extensively as part of the query
optimizer inside a database [28, 32], recent works [121, 10] have shown that purely rely-
ing on the rewritings inside traditional databases is insufficient to optimize modern query
workloads. For instance, as previously discussed, with the prevalent use of business intelli-
gence systems (e.g., Tableau and PowerBI), these machine-generated queries can be difficult
for databases to optimize [121] and domain-specific knowledge and human-crafted rewriting
rules are necessary to optimize workloads from different applications [88]. We can miss query

rewriting opportunities (e.g., rewritings shown in Figure 4.7) due to various reasons. For
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instance, both the application and the database layers are black boxes and cannot be modi-
fied. Another reason is that existing rewriting plugins of databases have limited expressive

power for users to express their rewriting needs.
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Figure 4.1: QueryBooster overview.

In this chapter, we detailed the design and architecture of QueryBooster, a middleware-based
multi-user system to provide query rewriting between applications and databases as a service.
The service intercepts and rewrites an original query from an application before it is sent to
a backend database. It provides a web-based interface, using which customers manage their
rewritings for different applications and databases. Users formulate rewriting rules using a
language or by providing examples. They can see the statistics of different rewritings, such
as the number of queries rewritten using a rewriting and the query’s performance before
and after the rewriting. Since rewriting SQL queries can be hard and time-consuming [131],
instead of seeking advice from online forums (e.g., StackOverflow), users can also share and
access rewriting rules using QueryBooster. The service requires no plugin installations to the
user applications or databases. It also ensures high security as no user data goes through

a third-party server. To summarize, QueryBooster has the following benefits. (1) It is easy
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to use, as users can use the interface to formulate, control, and monitor rewriting rules.
(2) It enables users to share their rewriting knowledge and benefit from the wisdom of the
crowd. (3) It is non-intrusive, as it requires no plugin installations to the user applications

or databases.

Related Work: Most databases such as AsterixDB, IBM DB2, MS SQL Server, MySQL,
Oracle, Postgres, Snowflake, and Teradata do not allow users to customize the rewritings
of queries sent to the database. To our best knowledge, only Postgres and MySQL provide
a plugin for users to define rules to rewrite queries before sending them to the database.
However, their rule-definition languages have too limited expressive power, as shown in [88].
Commercial systems also do query rewriting for applications on top of databases. Keebo [47]
uses machine learning and approximate query processing (AQP) techniques to accelerate
analytical queries. It requires data to go through its server, which may introduce overhead
and cause security concerns. EverSQL [27] uses Al techniques to recommend rewriting ideas
for queries on MySQL and Postgres. Other systems such as ApexSQL [8] and Toad [111]
help database developers analyze query performance bottlenecks. However, none of these
solutions allow users to formulate their own rewriting rules to fulfill their rewriting needs.
There are also service models such as database-as-a-service [35], function-as-a-service [106],
etc. Compared to these systems, QueryBooster is the first system that supports SQL query

rewriting as a service.

In the process of developing the QueryBooster system, we encountered many technical chal-
lenges and made a few decisions among different design choices. Next, we discuss those
challenges and how we weigh the pros and cons of different approaches in designing each
component. The remaining sections are organized as follows. We first introduce the system
architecture of QueryBooster in Section 4.2. We use real-world applications and datasets
to demonstrate the user experience of using QueryBooster to analyze application workloads,

and introduce new rewriting rules to improve the queries performance and share rewriting
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knowledge among different users in Section 4.3. In Section 4.4, we discuss how to provide a
user experience of managing and sharing rewritings intuitively and interactively. We discuss
those design choices to minimize the intrusiveness of the QueryBooster system as a SQL

query rewriting service in Section 4.5.

4.2 QueryBooster System Overview

Figure 4.2 shows the architecture of QueryBooster. Using the Web UI, users can log in to
the system through the User Manager and manage applications through the Application
Manager. They can have different sets of rewriting rules for different applications. Through
the Rule Manager that integrates the technique proposed in Chapter 3, QueryBooster provides
a powerful interface for users to formulate rewriting rules. It provides an expressive rule
language (called VarSQL) for users to define rules. Users can easily express their rewriting
needs by specifying the query pattern and its replacement. They can specify additional
constraints and actions to express complex rewriting details. In addition, the service allows
users to express their rewriting intentions by providing examples, each of which includes
an original query and a rewritten one. QueryBooster automatically suggests high-quality
rewriting rules based on the examples. The users can choose their desired rules and further

modify suggested rules as they want. Rewriting rules are stored in the Rule Base.

QueryBooster provides database Connectors for users to download. Without any applica-
tion or database modifications, a user replaces the original connector with a QueryBooster-
provided connector. The connector forwards an original query from the application to the
Query Rewriter, and sends the rewritten query to the database. When the database returns
the result of the new query, the connector sends the query performance information back
to the Query Manager. Note that the connector does not send the query result to Query-

Booster. Thus it ensures high security as no user data goes through a third-party server.
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Figure 4.2: QueryBooster system architecture.
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All the query rewriting path and corresponding performance information are stored in the
Query Log. As a background process, the Query Manager periodically runs rewriting rules
shared by different users against the workloads in the query log and marks those queries

with suggested rules useful to the queries.

4.3 Demonstration of the User Experience

In this section, we use real-world applications and Twitter datasets to demonstrate the ex-
perience of the QueryBooster service for two users to rewrite their application queries and

share rewriting knowledge.

Suppose Alice is a database administrator who manages a PostgreSQL database that stores
tweet data to support a data analysis team. The team uses Tableau to study the spatial
and temporal distributions of keyword-related tweets. After creating a Tableau dashboard
on top of PostgreSQL, Alice tries a few visualization queries, and the performance is not
satisfying. Therefore, she uses QueryBooster to rewrite the queries for better performance.
Through QueryBooster’s Web U, she creates an application and receives an application GUID
(Global Unique Identifier) generated from the system. Then, she downloads the provided
JDBC driver and places it in the folder of Tableau connectors. Finally, she configures the
JDBC driver with the provided application GUID. Alice has now completed setting up

QueryBooster.

4.3.1 Formulating Rules through a Rule Language

To identify the queries with performance bottlenecks, Alice utilizes QueryBooster’s query
logging feature. She first tries the slow analytics operations on Tableau, and goes to the

Query Logs page to check the SQL queries sent from Tableau to PostgreSQL. Figure 4.3
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shows the Web Ul illustrating the information of one query formulated by Tableau. It shows

the query, its timestamp, latency, and whether it has been rewritten or not.

Query Logs

Before After
Timestamp Boosted sqL
Latency(s) Latency(s)

SELECT CAST(tweets.state_name AS TEXT) AS

2023-03-16 state_name FROM public.tweets AS tweets WHERE

16:30:08.225865 35.969 35.969 STRPOS(CAST(LOWER(CAST(CAST (tweets.text AS TEXT)
D AS TEXT)) AS TEXT), CAST('iphone' AS TEXT)) > 0
GROUP BY 1

Figure 4.3: The “Query Logs” page of QueryBooster shows information about queries from
the application.

After investigating those queries, Alice identifies a lot of type-casting expressions (i.e.,
CAST(--- AS TEXT)), as shown in the query in Figure 4.3. Tableau adds those type-casting
expressions to prevent computational overflow or datatype mismatching errors [116]. Based
on her knowledge of the tweet data and its schema, Alice knows that the type-casting ex-
pressions are not necessary for the queries. Thus, Alice wants to input a rewriting rule to
remove those type-castings from the queries. The VarSQL rule language is easy-to-use, and

Alice manually formulates the rule (called “Remove Cast Text”) as shown in Figure 4.4.

Pattern Replacement

CAST (<x> AS TEXT) ——>Z>

Figure 4.4: Alice formulates a rule to remove CAST(--- AS TEXT) expressions using the
VarSQL language [88]. In VarSQL’s syntax, <x> is an element-variable that represents a
table, column, value, expression, predicate, or sub-query.

With the “Remove Cast Text” rewriting rule enabled, Alice tries the slow operations on
Tableau again, but the performance is not improved. However, the query’s rewriting path
page (Figure 4.5) shows that the rule is correctly triggered, and the rewritten query is as

expected. Therefore, Alice continues to optimize this query.

100



Qo Query Rewriting Path

SELECT Sum(1l) AS "cnt:tweets"
tweets.state name AS state_name
FROM public.tweets AS tweets
WHERE STRPOS (CAST (Lower (
CAST (CAST (tweets.text AS TEXT) AS TEXT)
) AS TEXT)
CAST ('iphone' AS TEXT)) 0

Remove Cast Text: CAST (<x> As TEXT)E
Q1 v

SELECT Sum(1l) AS "cnt:tweets"
tweets.state_name AS state_name
FROM public.tweets AS tweets
WHERE STRPOS (Lower (CAST (CAST (tweets.text AS TEXT) AS TEXT))
CAST ('iphone' AS TEXT)) 0

Remove Cast Text: CAST (<x> As TEXT)E

Q4 v

SELECT Sum(l) AS "cnt:tweets"
tweets.state_name AS state_name
FROM public.tweets AS tweets
WHERE STRPOS (Lower (tweets. text) 'iphone') 0
GROUP BY 2

GROUP BY 2

GROUP BY 2

Figure 4.5: QueryBooster shows the rewriting path of a query.
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4.3.2 Formulating Rules by Providing Examples

After a deeper investigation into the query and some online search, Alice finds that a trigram
index on the ¢‘tweets’’.‘‘text’’ attribute in PostgreSQL supports wildcard filtering
predicates such as LIKE and ILIKE. However, PostgreSQL fails to use this index because
the wildcard predicate formulated by Tableau is STRPOS( LOWER( ‘ ‘tweets’’.‘‘text’’),
>iphone’) > 0, which is equivalent to ‘ ‘tweets’’.‘‘text’’ ILIKE ’%iphone%’. Alice
identifies that replacing the STRPOS()>0 predicate with the ILIKE predicate in the query
can produce a much more efficient plan in PostgreSQL (as shown in Figure 4.6). Thus, Alice
wants to introduce another rewriting rule that achieves this replacing logic. However, for
this rewriting, Alice is not sure how to manually input the rewriting rule, so she uses the

QueryBooster’s rule-suggestion feature by providing a rewriting example.

Before Rewriting After Rewriting

{SELECT Sum(1)
state_name
FROM tweets
WHERE text ilike '%iphone$%'

state_name
FROM tweets
WHERE STRPOS (Lower (text) , 'iphone') >0

on tweets
duration: 37s 531ms

E L[Gather Merge ] '

GROUP BY 2 ! GROUP BY 2
Finalize GroupAggregate E
by state_name i [HashAggregate
i | by state_name
! Bitmap Heap Scan
L[Sort by state_name ]] ! on tweets
! duration: 7s 604ms
Partial HashAggregate '
by state_name \ Bitmap Index Scan
' using index on text

Parellel Seq Scan ]

Figure 4.6: Queries and plans before and after the rewriting of replacing the STRPOS () >0
predicate with the ILIKE predicate.

After copying and pasting the original query to both the original query and rewritten query
text boxes on the Rule Formulator page, Alice modifies the rewritten query to her desired

format and clicks the “Formulate” button. Next, QueryBooster automatically generalizes the
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example pair of queries into a rewriting rule that achieves the rewriting intention of Alice
(as shown in Figure 4.7). Finally, Alice saves the new rewriting rule to the system with the

name “STRP0OS To ILIKE.”

Pattern * Rewrite *

STRPOS(LOWER(<x1>. Constraints <x1>.<x2> ILIKE '%<x5>%' Actions
<x2>),'<x5>") > 0

ADD
System auto-generate
Alice input
Formulating a Rule using Rewriting Example
f Original SQL Rewritten SQL )
SELECT tweets.state_name AS state_name SELECT tweets.state_name AS state_name
FROM public.tweets AS tweets WHERE FROM public.tweets AS tweets WHERE
STRPOS(LOWER(tweets.text), 'iphone’) > 0 tweets.text ILIKE '%iphone%' GROUP BY 1
GROUP BY 1

FORMULATE RULE GRAPH | Use more examples

Figure 4.7: QueryBooster suggests a rule given a rewriting example.

With the two rewriting rules enabled, the query performance is significantly improved. For
example, the original query takes 37.5 seconds, and the rewritten query only takes 7.6 sec-

onds.

4.3.3 Suggesting Useful Rules from Other Users

Suppose Bob is a database administrator (DBA) and supports a business team who wants
to analyze the TPC-H [114] dataset using Tableau on top of PostgreSQL. For one of the
analytical queries in Bob’s workload, QueryBooster identifies the potential of boosting the
query performance by applying the two rewriting rules provided by Alice. QueryBooster

automatically suggests the potential rewriting of the query to Bob, as shown in Figure 4.8.

Bob inspects the rewritten query through the “Rewriting Suggestion” page of QueryBooster
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Query Logs

. Suggested
SQL Suggestion
Latency(s)
SELECT lineitem.l_shipmode AS 1_shipmode,
SUM(lineitem.l_quantity) AS "sum:1_quantity:ok:1"
FROM public.lineitem AS lineitem WHERE ® 062

STRPOS(CAST(LOWER(CAST(lineitem.1_comment AS
TEXT)) AS TEXT), CAST('late' AS TEXT)) = @ GROUP
BY 1

Figure 4.8: QueryBooster suggests Bob a rewriting for a query.

(Figure 4.9) and decides to enable these two rules for his application. Note that Bob may
modify the rules slightly to fit his dataset, e.g., adding a “LOWER” function on top of the
keyword constant to make sure the keyword constant is always lowercase. Bob then returns

to Tableau and observes a significant query performance improvement.

To this end, we demonstrate the powerful experience of using the QueryBooster service to

rewrite application queries and share knowledge.

4.4 Supporting Management and Sharing Rewritings

In this section, we demonstrate the experience of using QueryBooster to manage rewriting
rules and discuss its ability to give users full control over the rewritings on their workloads.
We then show how users share rewriting knowledge intuitively and interactively through
the QueryBooster service and discuss the trade-off between privacy and accuracy of using

different approaches to suggesting rewritings.
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Rewriting Suggestion
Qo g Sugg

SELECT lineitem.l_shipmode AS 1_shipmode
SUM(lineitem.l_quantity) AS "sum:1l_quantity:ok:1"
FROM public.lineitem AS lineitem
WHERE STRPOS (CAST (Lower (CAST (lineitem.l_comment AS TEXT))
AS TEXT) 6 CAST('late' AS TEXT)) 0

@ Alice (alice@company.com)

Remove Cast Text: CAST (<x> AS TEXT) > <x> >|

GROUP BY 1

Qs v

SELECT lineitem.l_shipmode AS 1_shipmode
SUM(lineitem.l_quantity) AS "sum:1l_quantity:ok:1"
FROMpublic.lineitem AS lineitem

WHERE STRPOS (Lower(lineitem.l_comment) 'late') 0
GROUP BY 1

@ Alice (alice@company.com)

) STRPOS (Lower (
STRPOS To ILIKE: 15 <x25), '<x557)>

3 v

SELECT lineitem.1l_shipmode AS 1_shipmode
SUM(lineitem.l quantity) AS "sum:1l quantity:ok:1"
FROMpublic.lineitem AS lineitem

WHERE lineitem.l_comment ILIKE '%late%'
GROUP BY 1

0><x1>.<x2> ILIKE '%<x5>%'

- /

Figure 4.9: QueryBooster suggests a rewriting for Bob’s query by applying Alice’s two rules.
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4.4.1 Informative and Fully-Controllable Rewriting Management

In this section, we show that QueryBooster provides a user experience to manage rewriting

rules and gives the users full control over the rewritings on their query workloads.

Rewriting Rules 2l Statistics N
ID Name Pattern Rewrite # of ql:IeI'IeS Total latency (h)
rewritten
10 |Remove Cast Date| CAST (<x> AS DATE) <x> .| 50K Est. latency
(h) w/o rule
.
11 | Remove Cast Text | CAST (<x> AS TEXT) <x>
°| 25K Real
Repl S STRPOS (LOWER (<x> Real latency
21 eplace Strpos ( (<x>) /| (x> TLIKE "a<y>3 (h) w/ rule
Lower '<y>')>0
4/18 4/20 4/18 4/20
e o o
Queries (rewritten) N
Original Que Rewritten Que Before After
9 i v Latency (s)|Latency (s)
SELECT lineitem.l_shipmode AS 1_shipmode SELECT lineitem.l_ shipmode AS 1_shipmode
SUM(lineitem.l_quantity) AS "sum:1l_quantity:ok:1" SUM(lineitem.l_quantity) AS "sum:1l quantity:ok:
FROM public.lineitem AS lineitem FROMpublic.lineitem AS lineitem 206 57
WHERE STRPOS (Lower (lineitem.l_ comment) 'late') 0 | WHERE lineitem.l comment ILIKE '%late%'
GROUP BY 1 GROUP BY 1
SELECT Sum(1l) AS "cnt:tweets" SELECT Sum(1l) AS "cnt:tweets"
tweets.state_name AS state_name tweets.state_name AS state name
FROM public.tweets AS tweets FROM public.tweets AS tweets 35 8
WHERE STRPOS (Lower (tweets. text) 'iphone') 0 WHERE tweets.text ILIKE '$iphone%’
GROUP BY 2 GROUP BY 2
12345678910 Next >>
- J

Figure 4.10: The dashboard of rewriting-rule analysis in QueryBooster.

Showing rewriting effect and performance statistics of rewriting rules. In the early
discussions, we presented a user experience of using QueryBooster to analyze queries and the
rewriting effects on them. Now we show a user experience of using QueryBooster to analyze
rewriting rules and their effects on query workloads. Figure 4.10 shows the dashboard of a
rewriting rule chosen by a user. The dashboard shows the statistics of how the rewriting
rule affects the query workloads, such as how many queries have been rewritten using this
rule, how much query execution time has been saved by using this rule to rewrite queries,
etc. In addition, the dashboard includes the rewriting history of using the specific rule to
rewrite queries, such as its original and rewritten queries. Using this informative dashboard,

users can gain better insights into the effectiveness of their rewriting rules and make wise
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decisions about whether to apply the same set of rules on broader applications or refine some

rewriting rules to avoid performance regression of the workloads.

To support such a dashboard, we design an ER diagram for the database of QueryBooster,

as shown in Figure 4.11.

query_time_ms

internal_rule

rewritten_sq|l @

n
m

user 1 owns

T~

column in 1 table

Figure 4.11: The ER diagram of the database of QueryBooster.

We keep track of a sequence of rewriting an original query using different rewriting rules
in the rewriting sequence relation. Each tuple in rewriting sequence is one rewriting
step. The sequence numbers indicate the order of the steps. Each step includes the rule_id
of the rewriting rule applied and the rewritten_sql after applying the rule. The rewrit-
ing sequences of each original query can be obtained internally when the rewriting engine
rewrites a query. The query latency is stored in the query relation. If the QueryBooster

service cannot have access to the users’ databases, we track the query latency through the
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database connector (e.g., JDBC/ODBC drivers) customized by QueryBooster. This approach
is non-intrusive compared to other approaches and provides high security and privacy for

the QueryBooster service. We will further discuss the details in Section 4.5.

Qo

SELECT

FROM

Desired rewriting sequence

Sum (1)
t.state_name
tweets AS t

STRPOS (Lower (CAST (t.text AS TEXT)) 'covid') 0
CAST (t.created_at AS DATE) '2022-12-25"
BY 2

Normal rewriting sequence

STRPOS to ILIKE
Ry R, Remove Cast Text

STRPOS (Lower ( <x1> ILIKE
( <x1>),'<x2>')>0/ '%<x2>%' CAST (<x> AS TEXT)E
Q1 l Qs l
SELECT Sum(1) SELECT Sum(1)
t.state_name t.state_name
FROM tweets AS t FROM tweets AS t
WHERE CAST (t.text AS TEXT) ILIKE '%covid$%' WHERE STRPOS (Lower (t.text) 'covid') 0
AND CAST (t.created at AS DATE) 12022-12-25" AND CAST (t.created at AS DATE) 12022-12-25"
GROUP BY 2 GROUP BY 2
R3 Use Materialized View tweets_covid R5 STRPOS to ILIKE
SELECT <<x1>> STRPOS (Lower( \<x1> ILIKE
FROM tweets SELECT <<x1>> <x1>) ,'<x2>')>0/ '%<x2>%'
1 WHERE CAST (text AS FROM tweets covid
TEXT) ILIKE '%covid$' WHERE <<x2>>
AND <<x2>>
Q4
Q2
SELECT Sum(1)
SELECT Sum(1) t.state name
t.state_name FROM tweets AS t
FROM tweets covid AS t WHERE t.text ILIKE '%covid$'
WHERE CAST (t.created_at AS DATE) '2022-12-25" AND CAST(t.created at AS DATE) 12022-12-25"
GROUP BY 2 GROUP BY 2
N R3 Use Materialized View tweets_covid
Macro Rule  Rs3
>
SELECT <<x1>>
\_) FROM tweets covid,
—— WHERE <<x2>>

R, R;
Figure 4.12: An example of using macro rules to enforce a user-desired rewriting sequence

for a query.

Using macro rules to allow users to control the rewriting sequences. As mentioned
earlier, different orders to apply the same set of rules on a query may result in different
rewritten queries. QueryBooster provides a mechanism for users to specify the priority of

each rule, such that the users can enforce a partial order of applying the same set of rules for
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a query. However, there are cases where for different queries, the users may want different
orders of applying the rules for particular rewriting sequences that can improve their query
performance. Figure 4.12 shows an example query with two different rewriting sequences if
applying the same set of rules in two different orders. The typical rewriting sequence shown
on the right-hand side fails to apply rule R3 to utilize the materialized view tweets_covid
to accelerate the query. The user prefers the rewriting sequence on the left-hand side, which
applies rule Ry before rule R; (assuming the priority of Ry is higher than Ry) and produces
query ()1 that can match the pattern of Rz, which can further rewrite the query to a more

efficient form.

To solve this problem and give the users full control over the rewritings of their query
workloads, QueryBooster provides a rewriting-rule management framework where users can
bundle a sequence of rules as a “macro-rule”. A macro-rule has the highest priority and will
be checked against a given query before applying any basic rules. QueryBooster also checks
the pattern of a new input macro-rule against existing macro-rules to enforce that no two
macro-rules can match the same query. Then, any query that can match the sequence of rules
in a macro-rule will be enforced into the rewriting sequence desired by the user specified in
the macro-rule. Note that using a macro-rule to rewrite a query is an atomic process, which
means that each intermediate rewritten query inside a macro-rule has to match the pattern
of the following rule in the sequence. If any intermediate step fails in the pattern-matching,

the entire macro-rule is treated as not matching the original query’s pattern.

4.4.2 Intuitive and Interactive Sharing of Rewriting Knowledge

In this section, we first discuss a policy of sharing rewriting rules among users. Then, we
show the user experience that QueryBooster can suggest different rewriting sequences to

users interactively. Finally, we discuss the trade-off between privacy and accuracy of using
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different methods to estimate the benefits of different rewriting sequences.

A policy of sharing rewriting rules. One major advantage of using a centralized ser-
vice of QueryBooster to rewrite queries is allowing users to share their rewriting knowledge.
Rewriting rules accumulated from different users and applications can be an invaluable asset
to the entire user community. However, a major concern is maintaining the privacy and
security of users’ data. In QueryBooster, we propose the following policy to keep a high
privacy and security level for users’ data. First, the queries should always be protected and
not revealed to third parties. The user account used to download the database connector
and collect those queries is the owner of the collected queries. Second, we only allow sharing
of rewriting rules. We also do not allow sharing of rewriting rules with sensitive information.
For example, if the pattern of a rewriting rule is a SQL query containing specific table or
column names, we can disallow the rewriting rule to be shared. In this case, both the user
queries and database schema are protected. Third, we adopt a common sharing model as the
policy of sharing rewriting rules among different users. A user can only retrieve rewriting
suggestions using other users’ rewriting rules if the user agrees to share their own rewriting

rule base. In this sharing model, everyone contributes and benefits.

Suggesting different rewriting sequences interactively. Users can analyze their query
performance through QueryBooster, which also suggests rewriting rules shared by other users
for their slow queries. As shown in Figure 4.13, when a user selects a slow query in her
application workload, a rewriting-suggestion dashboard will show potential rewriting rules
applicable to the query. As discussed earlier, for a particular query and a set of applicable
rewriting rules, there can be different orders to rewrite the query, which may result in different
final forms of the rewritten query. To allow users to control their rewriting sequences,
QueryBooster also shows different rewriting rules to the user interactively, where the user
can select which rule to apply first. For example, in Figure 4.13, for the slow query @, the

user first clicks the rule Ry (i.e., “Create Temp Table for Subquery”) to rewrite it and sees
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the rewritten query (Jo. For the new rewritten query ()2, QueryBooster shows a new set of
applicable rules for the user to choose and repeats this process. Another important piece of
information for users to decide whether to adopt the suggested rules is the query performance
improvement of different rules or rewriting sequences. QueryBooster provides this information
to the users in the process of suggesting rewriting rules. For example, QueryBooster shows
the real query time of running the original query () in the user’s database, as shown in the red
box. For the new rewritten query (s, it also shows the estimated query time or real query
time obtained from different sources based on user selection or the system configuration.
For example, based on the information that the rewriting rule Ry accelerates queries in
other users’ workloads, QueryBooster can show a rough estimation of how much time can
be saved if the rule is applied to the query () in this workload, as shown in the grey box.
Similarly, if given access to the target database of the query @, QueryBooster can use the
target database’s optimizer to better estimate the query time of the rewritten query @), as
shown in the blue box. However, different estimations may require different security levels
and also use different system resources. Thus, we let the users choose whether to conduct
the estimation or even run the query for the benefit of rewriting the query. In this way,

QueryBooster enables the users to manage their rewritings intuitively and interactively.

Different methods to estimate the benefits of rewriting sequences. When suggesting
rules for users’ queries, an intuitive metric for users to understand the benefit of rewriting
a query using a particular rule is the query time acceleration, i.e., how much running time
can be saved if we rewrite the original query. In practice, it is not straightforward to obtain
this information, given the restrictions of access level security and the amount of resources
needed. In QueryBooster, we consider three different methods to estimate the benefit of

improving the running time of queries for a rule suggestion.

The first method is to estimate the query performance improvement based on the reduction

ratio of the running time of queries in other users’ workloads. For example, suppose the rule
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SELECT MAX (DISTINCT L1.coll) Real Query Time in Your DB
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OR ( C.col2 < 2 AND L2.col2 - 5)
)
GROUP BY C.coll
N
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R; Remove Disctinct R2 Create Temp Table for Subquery R3 Normalize Predicate
SELECT <<x1>> WITH t AS ( (<x1> AND <x2>)
MAX (DISTINCT <x>) MAX (<x>) FROM <y1> e e <x1> AND
(<x2> OR <x3>)
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FROM lineitem L1 s
WHERE Ll.coll IN (SELECT t.m key FROM t); 15 mins
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Figure 4.13: QueryBooster suggests rewriting rules interactively. The user can select interest-
ing rules and see the corresponding rewritten query by applying the rule and the estimated
or real query time of both the original and rewritten queries. Users can explore different
rewriting rules and sequences based on their database and rewriting needs.
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R in Figure 4.13 was formulated by a user (Alice) and has been used on her workload for a
while. QueryBooster accumulates the query running time of both the original and rewritten
queries of rule Ry in Alice’s workload. Therefore, QueryBooster can compute an aggregated
ratio of how much the query time is reduced by utilizing the Ry to rewrite queries in Alice’s
workload. Then for a new query @) analyzed by a different user (called Bob), we can compute
the estimated query time of the rewritten query ), after applying R, on () based on the
ratio and the original query @’s query time. The main advantage of this method is that it
does not require any additional access to Bob’s database, and the computation is fast due to
its low cost. However, the disadvantage of this method is its low accuracy. In most cases, a
query’s running time depends on the database software and the dataset’s properties, such as
its distribution, volume, and available indexes. The accuracy of the estimation can be low

since it is based on other users’ datasets.

The second method is to use the target database’s query optimizer to estimate the running
time of rewritten queries. For example, suppose the user Bob configures QueryBooster with
the username and password of his target database and gives QueryBooster access to use
the “EXPLAIN” command against its query optimizer. QueryBooster can send an EXPLAIN
statement for each of the rewritten queries generated by applying the suggested rewriting
rules. Usually, the EXPLAIN command only shows an estimated cost of a query instead of
its running time. In this case, we can EXPLAIN the original query to get its estimated query
cost and compare the costs of the original query and the rewritten query as the benefit of
the rewriting rule. Compared to the first method, this method gives a much more accurate
estimation since it uses the target database’s optimizer, which depends on the target dataset.
However, the disadvantage is that it requires access to the target database and a high cost

of explaining the query plan for each rewritten query.

The third method is to directly run the rewritten query against the target database to

obtain its real running time. Apparently, this method requires Bob to give QueryBooster full
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access to the target database to run queries against his business dataset. The advantage
is we can obtain the accurate benefit of applying a suggested rewriting rule on an original
query since the running time of both the original and the rewritten queries are accurate.
The disadvantages include the highest level of access to the user’s database and running the
rewritten queries, which introduces a high cost of using resources of the user’s database (e.g.,

computation, memory, etc.).

In summary, different methods require different levels of security access and different re-
sources to compute. In return, they offer different levels of accuracy. We can provide all of

them and allow users to choose appropriate methods based on their needs.

4.5 Minimizing Database Intrusiveness

In this section, we first study the intrusiveness levels of different design choices to develop
a SQL query rewriting system and their trade-offs. We then discuss the unique problems
encountered in developing our proposed SQL query rewriting service and solutions. Par-
ticularly, we first survey the connector licenses of common database vendors to show the
applicability of our proposed QueryBooster service. We then discuss how to customize the

database connectors to profile application queries’ performance.

4.5.1 Intrusiveness of SQL Query Rewriting Systems

In this section, we study the architectures of three typical SQL query rewriting systems on
the market (including the proposed QueryBooster system) and discuss the intrusiveness of

their different design choices. Table 4.1 summarizes the three systems.

EverSQL [27] is a cloud-based software tool designed to help developers and database
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administrators (DBAs) optimize the performance of their SQL queries. Users copy their
application SQL queries and paste them to the Web-based input box provided by Ever-
SQL. EverSQL then analyzes the queries and provides optimization suggestions based on
known database performance patterns and Al techniques. By highlighting problematic SQL
snippets and pointing out missing indexes, EverSQL aims to assist developers and DBAs
in optimizing their queries to achieve better performance. Without any integration into
the users’ application and database layer, EverSQL is non-intrusive, for which we name the
intrusiveness level L0O. The advantage of this L0 intrusiveness is that EverSQL has good
security and privacy, as no user queries or data go through a third-party server. (Although
EverSQL still sees the query string copied by the user, the user can easily “sanitize” the query
string by removing sensitive information before pasting it to the EverSQL.) However, the
disadvantage is that it cannot rewrite online queries automatically and requires developers

to modify the application code to apply the optimized rewriting.

Table 4.1: Intrusiveness levels of systems.

System EverSQL Squidster Keebo
Intrusiveness Lo L1 L2
Level

manipulate SQL strings
and data through
a middleware server

copy & paste | customize DB connectors

A h ; i i
pproac query strings | to rewrite SQL strings

Automatic Rewrite

Online Queries No Yes Yes
Query through a

Third-Party Server No Yes Yes
Data through a No No Yes

Third-Party Server

QueryBooster provides a powerful and easy-to-use rule language (VarSQL) for users to define
rewriting rules and also suggests rewriting rules to users. The QueryBooster service also pro-
vides features that allow users to profile their application workloads, manage their rewriting
rules, and share rewriting knowledge with the community. QueryBooster minimizes its intru-

siveness into the SQL query lifecycle of user applications and databases. Users do not need
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to modify any code of the application or database. The only change on the user side is to
replace the original DB connector (e.g., a JDBC/ODBC driver) with a slightly customized
version provided by QueryBooster. In this architecture, no data goes through a third-party
server. We name the intrusiveness level LI1. The advantages of this level are that Query-
Booster does not introduce much overhead of transferring data between the application and
the database, and QueryBooster provides a high privacy and security level without seeing
any user data. In addition, QueryBooster does not require users to grant access to the target

database.

Keebo [47] is a middleware system sitting between the application and the database layers.
It uses machine learning and approximate query processing (AQP) techniques to accelerate
analytical queries by rewriting online queries automatically to use offline-built data models
or materialized views. Keebo sits on top of existing databases and provides native interfaces
of them to applications. To use Keebo, users need to modify the entry point configuration
of applications to point it to the Keebo server instead of the original database server. Once
Keebo is installed, in its offline analysis phase, it will run a series of analytical queries and
data manipulation commands to the user database to learn models and create materialized
views. Then, for online application queries, Keebo will rewrite the queries to use those
learned data models and materialized views to improve the query performance and assemble
the result dataset. In this architecture, both the SQL queries and database are exposed to the
Keebo’s server. We name the intrusiveness level L2. The advantage of the L2 intrusiveness
is that the Keebo service has full control of how to rewrite queries and assemble the result.
The disadvantages are two folds. The first is the overhead of occupying the target database
resources to build data models and create materialized views and online query result data
going through a third-party server. The second is the low privacy and security level in which

a third-party server sees all user data and query results.

In summary, the proposed QueryBooster service benefits from automatically rewriting online
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application queries to improve performance by sacrificing a minimum level of intrusiveness
in the users’ application and database stack. Providing a customized database connector,
QueryBooster requires no code change to the application or database. It provides high privacy
and security without user data going through a third-party server. Providing a powerful
and easy-to-use interface for users to manage their rewritings on their application queries,

QueryBooster helps developers and DBAs improve their application performance efficiently.

4.5.2 A Survey of Database Connector Licences

QueryBooster provides customized database Connectors for users to download. A user re-
places the original connector without application or database modifications with a QueryBooster-
provided connector. The connector forwards an original query from the application to Query-
Booster’s server and sends the rewritten query to the database. When the database returns
the query result, the connector sends the query performance information back to Query-

Booster. Note that the connector does not send query results to QueryBooster.

In QueryBooster’s architecture, the customized database connector is a critical module.
Therefore, we surveyed popular database vendors for the licenses of their JDBC/ODBC
connectors to validate the applicability of QueryBooster to these databases. The result is
shown in Table 4.2.

Table 4.2: JDBC driver licenses for database vendors.

Database License Open source? | Redistribution?
MS SQL Server | MIT Yes Yes
MySQL GNU GPL V2 Yes Yes
Oracle Oracle Free Yes No
PostgreSQL BSD-2-Clause Yes Yes
Snowflake Apache-2.0 Yes Yes

Most database vendors provide JDBC/ODBC drivers with an open-source license. For such

drivers, QueryBooster provides a slightly modified version of the driver that communicates
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with the proposed QueryBooster service to rewrite queries for these databases. For instance,
we added only 112 lines of code to the PostgreSQL JDBC driver to develop the customized
version. For databases with redistribution restrictions on their drivers (e.g., Oracle JDBC
driver [73]), QueryBooster provides a software patch for users to compile the customized
driver themselves. For applications and databases that communicate through a RESTful
interface, QueryBooster provides a proxy web server that intercepts requests between them
transparently. We assume the RESTful API endpoint in the application is configurable, i.e.,

we can switch the target database endpoint to our service.

4.5.3 Profiling Application Queries through Database Connectors

In earlier discussions, we show that through QueryBooster, users can analyze the perfor-
mance of historical queries and the effects of rewriting rules on improving them. In addition,
QueryBooster also supports showing aggregated performance of rewriting rules on applica-
tion workloads. To support these features, QueryBooster needs to profile both the original
application queries and their rewritten queries about their running time against the backend

database.

There are multiple ways to fulfill this need. Many database performance monitoring sys-
tems [8, 111] profile workloads by looking at the native logs of the databases. This approach’s
main advantage is its non-intrusiveness; it does not run any third-party code on top of the
target databases. However, to use this approach, database administrators must reconfigure
the database to enable more informative logging modes to expose performance information
and historical query statements in database logs. This reconfiguration usually requires a high
level of privilege and may significantly increase the volume of logs. Another disadvantage of
this approach is that the logging information might be obsolete as the dataset evolves, the

software updates, and the configurations change. Another approach is running the queries
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Figure 4.14: The workflow of profiling the database running time of a rewritten query gen-
erated by the QueryBooster rewriting service through a PostgreSQL JDBC driver.
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against the target databases when we need the queries’ performance profiles. The main ad-
vantage of this approach is that it has the most recent information. However, this approach
is very intrusive to the target databases. It requires users to grant the system full access to
run queries against the target databases and can occupy a significant amount of resources of

the target database.

In QueryBooster, we propose a new approach that combines the advantages of both ap-
proaches mentioned above to minimize intrusiveness and maintain the freshness of the pro-
filing result. Since we already provide a customized database connector to replace the original
database connectors between the applications and the databases, we utilize the opportunity
of opening the logic of the connectors to add query performance profiling logic into it. The
main idea is to profile the original and rewritten queries’ performance during the online

query rewriting phase and store the profiling result back to the QueryBooster server.

Consider the JDBC driver of PostgreSQL as an example. Figure 4.14 shows the workflow
to profile the database running time of a rewritten query generated by QueryBooster. When
the application sends a SQL query @ to the JDBC driver, the driver first generates a GUID
(globally unique identifier) for ). Next, the driver sends the original query @ along with
its GUID to the QueryBooster’s online rewriting service to rewrite the query into Q)’. Query-
Booster stores the mapping between the GUID and the rewritten query @’ in its internal
storage and then sends the rewritten query @’ back to the JDBC driver. The driver also
stores the mapping between the query Q' and its GUID into an in-memory hash table,
and then executes the query @)’ against the PostgreSQL database. This execution is a syn-
chronous function call; thus, the driver can profile Q"’s running time by starting a timer
before calling the function and ending the timer after the function returns. Once the query
result is returned from the database to the driver, the driver first forwards the result back to
the application without any delay, then looks up the query @’’s corresponding GUID from

the in-memory hash table, and finally sends the profiling result along with the GUID back
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to QueryBooster. QueryBooster uses the GUID to look up its corresponding query string ',
and then stores the running time of )’ as the profiling result in its internal store. In this
way, all queries going through the JDBC driver will be profiled and stored in QueryBooster’s

internal store to support its query analysis and rewriting management services.

4.6 Conclusions

In this chapter, we detailed the design and architecture of QueryBooster, a middleware-based
multi-user system to provide query rewriting between applications and databases as a ser-
vice. First, we used real-world applications and datasets to demonstrate the user experience
of using QueryBooster to analyze application workloads and introduce new rewriting rules to
improve the query performance. We also demonstrated the experience of using QueryBooster
to manage rewriting rules and showed its ability to allow users to control the rewriting se-
quences of applying different rules on their queries. Second, we showed how users share
rewriting knowledge through the QueryBooster service and discussed the trade-off between
privacy and accuracy of using different approaches to suggest rewritings. Finally, we studied
the intrusiveness levels of different design choices to develop a SQL query rewriting sys-
tem and their trade-offs. We discussed the unique problems encountered in developing our
proposed SQL query rewriting service and their solutions. Particularly, we surveyed the
connector licenses of common database vendors to show the applicability of our proposed
QueryBooster service. We also presented how to customize the database connectors to profile

application queries’ performance in QueryBooster.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we presented middleware-based solutions to help databases optimize SQL

queries through rewriting.

In Chapter 2, we studied how to rewrite database queries to improve execution performance
in middleware-based visualization systems. We explored two optimization options, namely
adding hints and making approximations. We developed a novel solution called Maliva,
which adopts a Markov Decision Process (MDP) model to rewrite a visualization request
under a tight time constraint. We gave a full specification of the solution, including how
to construct an MDP model, train an agent, and use approximating rewriting options. Our
experiments on both real and synthetic datasets showed that Maliva performed significantly
better than the baseline without no-rewriting options in terms of both the probability of

serving a visualization request within a time budget and query execution time.

In Chapter 3 and Chapter 4, we proposed QueryBooster, a middleware-based service for
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human-centered query rewriting.

In Chapter 3, we presented the core techniques of QueryBooster. We developed a novel
expressive rule language (VarSQL) for users to formulate rewriting rules easily. Furthermore,
we designed a rule-suggestion framework that automatically suggests high-quality rewriting
rules from user-given examples. A user study and experiments on various workloads show the
benefit of using VarSQL to formulate rewriting rules, the effectiveness of the rule-suggestion
framework, and the significant advantages of using QueryBooster to improve the end-to-end

query performance.

In Chapter 4, we presented the system design of QueryBooster. We used real-world ap-
plications and datasets to demonstrate the user experience of analyzing application work-
loads, introducing new rewriting rules to improve query performance, and sharing rewriting
knowledge among users. We discussed the technical challenges and our design decisions in

developing QueryBooster and showed its advantages.

5.2 Future Work

Our work has focused on middleware-based solutions to help databases to optimize SQL
queries through rewriting. To decide how to rewrite an online query into a more efficient
format, we have explored two directions: one is based on machine-learning models, and
the other is based on human-crafted rewriting rules. We have identified several interesting

research opportunities in both directions as future work.

Identifying Query Templates and Managing MDP Models Dynamically. In Chap-
ter 2, we presented how to train an MDP model to optimize queries following a given query
template. The Maliva framework assumes the developers can specify the query template for

their applications. It can be even more powerful if the framework automatically identifies
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query templates from application workloads and starts training a new MDP model once it
discovers a new query template. One approach is to adopt query clustering techniques to dy-
namically discover query templates by analyzing their filtering attributes and query shapes.
We can maintain a set of query clusters and treat each as a query template. We can maintain
an MDP model as its associated query rewriting agent for each discovered template. We can
also keep the freshness of the models by adaptively adding more queries into the training
set as we discover more queries clustered into the query template. In this way, the proposed

Maliva framework can be more useful to practitioners.

Discovering a Rewriting Sequence from User-Given Rewriting Examples. We
proposed a novel technique in Chapter 3 that can generalize a user-given rewriting pair of
queries into a rewriting rule. In some cases, to achieve the user-given rewriting example,
a more general solution is to apply multiple general rewriting rules sequentially instead of
applying only one specific rule. In our proposed rule-suggestion framework, we assume the
examples provided by the users require only one-step rewriting (i.e., only one rule is applied).
If we relax this assumption, it can lower the bar for users to formulate rewriting rules
through the proposed QueryBooster system. Assuming the rewriting sequence has two steps,
one approach is identifying the intermediate rewritten query between the original and final
rewritten queries and then generalizing two rules, respectively. One is between the original
query and the intermediate rewritten query, and the other is between the intermediate and
final rewritten queries. We can enumerate the number of intermediate rewritten queries for
rewriting sequences with more than two steps. To identify the intermediate rewritten queries,
we can expand the graph of editing the original query into the final rewritten query, where
each editing operation is similar to the operations in computing the edit distance between
two SQL strings. If the computational cost is high, we can explore different heuristic-based

searching strategies or adopt machine-learning techniques to reduce the search space.

Using ChatGPT and Large Language Models to Improve the User Experience.
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In Chapter 4, we demonstrated the user experiences that the VarSQL language and the rule-
suggestion framework make the QueryBooster system very easy to use to formulate rewriting
rules. As the ChatGPT service and large language models (LLM) attract significant atten-
tion from research communities, we can also consider how ChatGPT and LLMs can help
improve our proposed QueryBooster system. On the one hand, ChatGPT cannot replace
the online query rewriting feature of QueryBooster due to its inaccuracy in reasoning about
the correctness of rewritings. Therefore, human-crafted rewriting rules are still necessary to
optimize application queries. On the other hand, LLMs are proven to be good at under-
standing human intentions through a natural language interface. Thus, one idea is to adopt
LLMs to help users formulate rewriting rules by providing rewriting examples. We can train
an LLM model on data labeled by generalizing rewriting pairs of queries into rewriting rules

and suggest the rewriting rules generalized by the LLM model to users.
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