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Abstract

This paper analyzes how mathematicians prove theorems. The
analysis is based upon several empirical sources such as re-
ports of mathematicians and mathematical proofs by analogy.
In order to combine the strength of traditional automated theo-
rem provers with human-like capabilities, the questions arise:
Which problem solving strategies are appropriate? Which rep-
resentations have to be employed? As a result of our analysis,
the following reasoning strategies are recognized: proof plan-
ning with partially instantiated methods, structuring of proofs,
the transfer of subproofs and of reformulated subproofs. We
discuss the representation of a component of these reasoning
strategies. as well as its properties. We find some mechanisms
needed for theorem proving by analogy, that are not provided
by previous approaches to analogy. This leads us to a compu-
tational representation of new components and procedures for
automated theorem proving systems.

Introduction

Automated theorem proving is a well-established area of Arti-
ficial Intelligence, not least because reasoning in mathematics
is a potent special case of human reasoning that lends itself
particularly well to mechanization and computer support. Au-
tomated theorem proving systems have attained a remarkable
strength when it comes to pure deductive search. They are,
however, still weak with respect to a comprehensible presen-
tation of computer-generated proofs, to long range planning
or other global search and control issues. Therefore meth-
ods and techniques become more prominent again that more
closely follow the reasoning patterns observed in humans, e.g.,
by Allen Newell [Newell 1981] and, more recently, by Alan
Bundy [Bundy 1988]. To combine the strength of traditional
automated theorem provers with human-like capabilities, the
questions arise: Which problem solving strategies are appro-
priate? Which representations have to be employed?

This paper addresses these questions by analyzing human
mathematical theorem proving, and by drawing conclusions
for the design of a new generation of automated and inter-
active theorem provers. First we present and analyze some
reports on human mathematical theorem proving and text-
book proofs, then we summarize requirements for ingredients
of theorem proving systems, and finally we suggest computa-
tional representations which meet these requirements.

'This work was supported by the Max Kade Foundation
’On leave from University of Saarbriicken, Germany

Empirical Evidence

The hypothesis is that the traditional way of automated theo-
rem proving® (as captured in most of todays textbooks, e.g.,
[Boyer and Moore 1979]) does not reflect how humans find
and present mathematical proofs. Also, previous techniques
of computational analogy in theorem proving which, in a nut-
shell, are symbol mapping and transfer of single proof steps,
are inadequate.

Reports of Mathematicians

In the early 80ies the German mathematician Gerd Faltings
solved a mathematical problem, called Mordell’s Conjecture®.
Mordell’s Conjecture has been considered a hard mathemat-
ical problem and it took over 60 years to solve it. Faltings
gave an interview to a German scientific journal [Faltings
and Decker 1983] informally explaining the way he solved
the problem. This interview provides several general insights
into problem solving and proof mechanisms in mathematics.
Hence, itis also a matter of interest for the design of automated
theorem proving systems. Faltings reported:

e “Ich mufi sagen, daf ein wesentlicher Teil des Beweises im
Prinzip schon da war, den ich nur entsprechend iibertragen
habe"

Translated: I should say that basically an important part of
the proof was already there, and I only transferred this
part appropriately.

e “Man hat Erfahrungen, dafl bestimmte Schliisse unter bes-

timmten Voraussetzungen funktionieren. Als erstes iiberlegt
man sich daher, wie der Weg aussehen konnte. Man
itberlegt sich also im Groben: Wenn ich das habe, kénnte
ich das zeigen und dann das ndchste. Hinterher muf§ man
die Details einfiigen und sieht, ob man es auch wirklich so
machen kann.”
Translation: We know from experience that certain infer-
ences are usually successful under certain prerequisites. So
first we ponder about a reasonable way to proceed to prove
the theorem. In other words, we roughly plan: If we get
a certain result the next result will follow and then the next
etc. Afterwards we have to fill in the details, and to check
whether the plan really works."”

e “Es kommt aber auch durchaus vor, dafs man mal da sitzt,
nicht mehr weiter weif$ und dann probiert, wohin der Weg

*Which is characterized by a stepwise and linear application of
basic rules,

“Mordell's Conjecture: Algebraic curves of order 2 or more have
finitely many rational points.
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fiihrt."”
Translation: It sometimes happens that there is no other
way than trial and error.

These quotations not only characterize ways of proving ex-
traordinarily difficult mathematical theorems, but also high-
light some common mathematical theorem proving proce-
dures.

An additional feature of mathematical theorem proving
shows up in the report [Leron 1983] of a mathematical journal.
There, Uri Leron shows, how proofs are better comprehensi-
ble (and easier to find - E.M.) by structuring them intodifferent
levels. He describes a common procedure to present proofs
of mathematical theorems that can be seen, from our point of
view, as a procedure supporting proofs of theorems:

— Start with a top level partial proof that gives the essence of
the proof (“proof idea").

- A second level then supplies (partial) proofs for un-
substantiated statements, details for general descriptions, spe-
cific constructions for objects, whose existence has been
merely asserted etc. If some subproof is itself complicated,
we may choose pushing the details further down to lower lev-
els. And so we continue down the hierarchy of subprocedures.
Here is one of his examples:

THEOREM 1: There exist infinitely many triadic primes (i.e.,
numbers of the form 4k+3).

Proof in the structured style:

Level I: Suppose the theorem is false and let py,p2,...pn
be all triadic primes. We construct (in level 2) a number M
having the following properties:

(a) M as well as all its factors are different from py, pa, ... Pn,
(b) M has a triadic prime factor.

These two properties clearly produce a contradiction, as we
get a triadic prime which is not one of py,p2,...Pn.

Level 2: Letpy =3and M=p,,...pn + 3.

(a) can be proved, since none of 3, p1, ... pn divides M.

(b) can be proved indirectly, assuming that all of M's prime
factors were monadic (i.e., of form 4k+1). Then M, as a prod-
uct of monadic numbers, is itself monadic (which is proved
on level 3). This yields a contradiction.

Level 3: Any product of monadic numbers is monadic.
Figure 1 shows the structure of this proof. Leron mentions
a theorem that is built by exchanging “triadic” by “monadic”
in THEOREM 1, and which can be proved analogously. The
two proofs are similar on “top-level”, but all lower levels have
to be modified, and this modification is not easy to find. On
the other hand, he also presents proofs whose analogues are
similar down to level 3, which means that only subproofs of
level 4 and lower have to be adjusted. From these examples
and our experience we generalize that proofs can be analogous
at different levels of detail and, hence, analogy is executed by
transferring partial proofs at different levels.

The analysis of these two sources (other examples can be
found in [Polya 1957; Polya 1954; Hadamard19 45; van der
Waerden19 64]) suggests a change of the traditional theorem
proving paradigm and highlights the following human prob-
lem solving strategies:

I. Proof planning with partially instantiated methods, where
also incomplete proof plans are allowed. Top level methods
are refined by lower level methods,

level 1

assume:  pl,....pn are the only triadic primes

PROVE: there exists M with

{a) M and its factors are different from pl, ..., pn (LEMMA 2.2)

(b) M has a triadic prime factor (LEMMA 2.1)

infer contradiction /

E \

level 2(2)

level 2(1)

M=4dpl .pn+3 M=4pl _pn+3

assume: all prime factors of M are monadic

PROVE: M is monadic (LEMMA 3)
\

infer contradiction

PROVE: p2.....pn do not divide M
3 does not divide M

level 3
any product of monadics is monadic

Figure 1: Plan of the proof of THEOREM 1

2. Structuring of methods, a process, which has to be em-
bedded into proof planning,

3. Trial and error,

4. Analogy which is embedded into proof planning. Analogy
includes the transfer of proof ideas, partial proofs, and
methods.

The presented sources provided details on how mathemati-
cians solve problems. The next examined source is a text-
book. Even though we don’t believe that textbooks always
reflect mathematician’s ways of problem solving, the analysis
provides insights in what actually is considered by mathemati-
cians to be an analogy. The examination also shows which
mechanisms are involved in theorem proving by analogy.

Textbook Analysis

Theorem proving by analogy, as sketched in figure 2, means to
find a proof for a target problem on the basis of a given proof
of a source problem, which is similar to the target problem.

Traditionally, the analogy between the source proof and the
target proof was realized by establishing a mapping from the
primitive symbols of the source theorem onto the symbols
of the target theorem, and by extending this map such that
it provides a proof of the target theorem when applied to the
single steps of the source proof. Here, the primitive symbols
are those symbols of the signature in which the theorems are
expressed. In other words, traditional approaches [Klingl19
71; Munyer 1981; Owen 1990] are centered around symbol
mapping and the transfer of single proof steps. They do not
try to find another representation of, say, the source theorem
and are, thus, highly dependent on the actual representation
of the theorems.

For our research on automated theorem proving by anal-
ogy we studied the mathematical textbook “Halbgruppen und
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source proof

source problem target problem

Figure 2: Analogy in theorem proving

Automaten” [Deussen 1971] that is commonly used in under-
graduate classes on automata theory in Germany. The book
is divided into three chapters:

Semi-groups and Relations

Semi-groups and Semi-moduls

Automata.

In this book many theorems are proved by analogy to theo-
rems in a previous chapter and this gives some of the distinct
flavor of this particular textbook. So, we scanned and an-
alyzed all analogies mentioned in this textbook. We found
that many analogies do not fit into the framework offered by
traditional approaches to analogy in theorem proving (For a
detailed analysis of the analogous proofs see [Melis 1993b])
and [Melis 1993a)):

For some analogies (e.g., theorem 5.7 and theorem 5.2°)
you first have to find the right level of abstraction before
any transfer of proofs.

Reformulations are involved in many of these analogies
(e.g., theorem 5.7 and theorem 6.9) that are not just symbol-
or even term mappings. A striking example for a more
complicated reformulation is the change of unary functions
to binary functions that additionally requires to add certain
proof lines and to change others. We have found several
classes of reformulations, namely

— Normalization
— Abstraction
— Direct reformulation

Many proofs by analogy (e.g.. theorem 4.8) result from
transferring parts of source proofs to parts of the target
proof. In order to obtain appropriate subproofs, we have to
decompose the original proofs.

Very often, mathematicians describe their analogy pro-
cedure as applying the same method, in particular if the
method is named, such as the well known Diagonalization
method of Cantor. Otherwise they state that the target proof
is done analogously to the source proof.

Design Requirements
The above analysis suggests the following strategies for the-
orem proving:

*The numbers follow the original numbering of theorems in
[Deussen 1971].

a planning framework that employs (partially specified,
methods and subproofs

decomposition of proofs
analogical transfer of subproofs found by decomposition

analogical transfer based on some reformulation, rather
than just by symbol mapping

Since our aim is to automate theorem proving, we need
a computational simulation of the strategies and a computa-
tional representation of their ingredients. Planning is a field of
Artificial Intelligence and we can use a planning framework
and its ingredients, namely operators, for proof planning®.
Then theorem proving by analogy can, in principle, be mod-
elled as derivational analogy (see [Carbonell 1986]). The
model for analogy-driven proof plan construction, given in
[Melis 1993b; Melis and Veloso 1994], employs planning
operators, defined as methods, and requires meta-methods in
order to change these operators. Now we present a represen-
tation for both operators and meta-methods.

L

L]

Operators According to the previous sections, the repre-
sentation of planning operators should meet the following
conditions:

e Operators must have pre- and postconditions, as usual in

planning, which contain problems to be subgoaled on.
They should contain constraints to restrict the search for
operators.

Operators should cover mathematical methods, such as the
Diagonal method.

Operators must be able to represent partially unspecified
methods, and incomplete proofs, i.e., the language for oper-
ators should contain variables for methods and parameters.
Operators should be ready for reformulation and restruc-
turing.

The last requirement can be satisfied by splitting the rep-
resentation of an operator into a declarative part, suitable for
reformulations, and a procedure that interprets the declarative
part. We suggest to represent operators by methods which
are frame-like structures, where all slots, but procedure, have
declarative fillers (see also [Huang, Kerber, and Kohlhase
1992)); the slots of methods are:

parameters which can be instantiated.

preconditions which are inputs that specify the applicability
of a method.

postconditions which are outputs of the method application,
e.g., a derived problem.

e constraints to restrict the search for methods.

e proof scheme which is a declarative proof scheme and con-
tains lines of a partial proof’, maybe with variables for
terms, formulas, and even for the justifying method (the
most right entry of a line).

procedure which is a schema-interpreting procedure that is
applied to the scheme.

history which contains a trace of certain changes of the
method, particularly abstractions, for the purpose of their
revision.

®This has also been proposed by Alan Bundy in [Bundy 1988).
7In the Natural Deduction calculus.
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Method: Diagonal
parameter F,c,non: function, M 1, M2: structures, 1,0: elements
= (WOWVzp23ym (Fy) = £) S)Vz(z = z) (6)0 # 1
preconditions ()(H V ~H),
postcondition | L
constraints
| F Vran(G(z) = non cF(zz) AG € M2) (PLANI)
2. ; F 3ym(F(y) = G) (vD,(1) 1)
3 F F(zo)=GC @D 2)
4. ; F  F(zo)(z0) = G(z0) (equ 3)
S.. 3 F ((eF(zozo) =0 — cG(z0) = 1) (PLAN2 1)
A&EF(InIo) # 0 — cG(z0) =0))
6. - F c(F(zozo0)) =0V e(F(zoz0)) #0 VD7)
T 5 F c¢F(zozo) =0 (HYP)
8. ;7 F cG(zg) =0 (equ.7 4)
proof scheme | % 7 F eG(z) =1 gV%-"'\D —D
10. ;7 F 0=1 (ALequ,(5) 9
8)
.7 F oL (ALLL(6))
12.;12 F cF(zozo) #0 (HYP)
13.;12 F ¢G(zo) =0 (VD,AD,—D
128)
14, ; F ¢F(zgz9) =0 (equ 13 4)
15,512 F cF(zoxo) =0 A —cF(z0z0) =0 (AL14 12)
16. ;12 B ik (LI15)
175 & L (vD 16 11
procedure schema-interpreter L
history

An example is the Diagonal method, which in fact cov-
ers a mathematical method and is applicable inter alia in the
proof of Cantor’s theorem, the proof of the uncountability
of real numbers, the proof of the unsolvability of the halting
problem, as well as in the proof of Gédel’s theorem of the in-
completeness of arithmetic (this method is discussed in detail
in [Melis 1994]). Here, PLANs are variables for unspecified
submethods and the first line of the proof scheme expresses,
for instance, that a lemma has to be proved somehow, which
is also known as the diagonal lemma.

Meta-methods In order to meet the requirements for re-
structuring and reformulation, to reduce the dependence on
the actual representation of the given theorem, and in order
1o obtain analogies at several levels of abstraction and sev-
eral levels of detail, we use meta-methods. Meta-methods
are procedures which map a method to another method or to
several connected methods respectively. The meta-methods
employed for analogy-driven proof plan construction have as
a parameter the postcondition of the, only partially specified,
target method.

Besides normalizing, abstracting, and direct reformulating
meta-methods, restructuring meta-methods are defined that
split one method into several connected methods. A very
simple example is the splitting of methods with a conjunctive
postcondition (/) A F3) into two methods, one with postcon-
dition F and another with postcondition F3.

The restructuring meta-methods are applied to obtain those
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parts of proofs that can be transferred analogically at once
and to keep subproofs, that can not be transferred, small.
Normalizing meta-methods are applied, e.g., to make post-
conditions of somehow analogous methods comparable, by
simple reformulations such as replacing a proof assumption
which is a conjunction by a set of two proof assumptions.
The abstracting meta-methods are used to enable analogies
on a more abstract level. An example is the meta-method
Functional-Abstr (see next page) that was applied to
find an analogous proof to theorem 5.2 in the analyzed text-
book. This meta-method is applicable to a source method M
with a target problem P as parameter, if its precondition is
satisfied.

In the representation of this meta-method the z; are the
maximal terms in ¢(z;...,z,). termis a metavariable for
a reference term that contains only one variable.
Functional -Abstrreformulates amethod M to a method
M’ by executing PROCFUNC:

¢ Replace in M all occurrences of instances of the reference
term term(f;) by fa(t;) ., where f, is a new function
variable.

Delete membership declarations that became superfluous
by the introduction of f,, and delete the corresponding
quantifiers.

For example, if Functional-Abst replaces the refer-
ence term (h - z) by fa(2), then the quantifier and member-
ship declaration of h, (h € F') become superfluous.



Metamethod: Functional-Abstr

parameter P: problem

V.’\‘.‘l,..

preconditions

there exists a formula @ of the form

v Tny Ui -.- Yk (membership declaration —
$(z1...,20) — d(term(zy),..., term(z,)))
and ® € postcondition(M)and ¢ ¢ P

postconditions

M'=M([term(z;)/ fa(zi))i

procedure PROCFUNC((see below)

rating

¢ Add (Functional-Abst: ) to the history slot of M.
e Add the new parameter f, to the parameter slot of M.

The traditional reformulations, such as symbol mapping,
belong to the direct reformulating meta-methods. But we
need more of them, for instance, a meta-method that changes
unary functions to binary functions. More complicated meta-
methods are presented in [Melis 1993b]. The meta-methods
correspond to heuristics employed by mathematicians and
have to be extracted empirically which we did by analyzing
the analogies occurring in the examined textbook.

Conclusions

By analyzing empirical sources we examined real proof strate-
gies and methods. The results challenge traditional automated
theorem proving on the basis of reports by mathematicians of
how they solve problems. We revealed several strategies and
components of human mathematical reasoning that are inter-
esting for automated and computer-supported reasoning. The
insights into how mathematical analogies compare to current
models of theorem proving by analogy include that analogical
reasoning may require non-trivial reformulations and restruc-
turing.

Following the analysis, we discussed some requirements
that the empirical results impose on components of a com-
putational system, which have to be considered for the im-
plementation of human-style theorem proving system. This
led us to a computational representation of a structure used
in proof planning and procedures employed by an analogy-
driven proof plan construction. The actual analogy-driven
proof-plan construction, that is an extended and modified
analogical replay (see [Veloso 1992]), is presented in [Melis
1993b] and [Melis and Veloso 1994).
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