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OMSV enables accurate and
comprehensive identification of large
structural variations from nanochannel-based
single-molecule optical maps
Le Li1†, Alden King-Yung Leung2†, Tsz-Piu Kwok1†, Yvonne Y. Y. Lai3, Iris K. Pang2,
Grace Tin-Yun Chung4, Angel C. Y. Mak3, Annie Poon3, Catherine Chu3, Menglu Li5, Jacob J. K. Wu5,
Ernest T. Lam6, Han Cao6, Chin Lin3, Justin Sibert7, Siu-Ming Yiu5, Ming Xiao7, Kwok-Wai Lo4,
Pui-Yan Kwok3,8, Ting-Fung Chan2,9,10,11* and Kevin Y. Yip1,9,10,11*

Abstract

We present a new method, OMSV, for accurately and comprehensively identifying structural variations (SVs) from
optical maps. OMSV detects both homozygous and heterozygous SVs, SVs of various types and sizes, and SVs with or
without creating or destroying restriction sites. We show that OMSV has high sensitivity and specificity, with clear
performance gains over the latest method. Applying OMSV to a human cell line, we identified hundreds of SVs
>2 kbp, with 68% of themmissed by sequencing-based callers. Independent experimental validation confirmed the
high accuracy of these SVs. The OMSV software is available at http://yiplab.cse.cuhk.edu.hk/omsv/.

Keywords: Optical mapping, Nanochannel, Single-molecule analysis, Structural variation

Background
Structural variations (SVs), defined as genomic alterations
involving segments larger than 1 kbp [1], are prevalent
in human genomes. They represent characteristic differ-
ences among human populations [2], and are associated
with various diseases [3, 4].
Current sequencing technologies, including second-

generation and commercial third-generation sequencing
platforms, produce sequencing reads from a hundred to
tens of thousands of base pairs only, making it challeng-
ing to study long repetitive regions and complex structural
rearrangements. For instance, some large insertions can-
not be contained in a single read, and their detection
requires either sequence assembly [5] or reference align-
ment [6, 7], with the help of paired-end or mate-pair
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sequencing with large insert sizes [8, 9]. In general, these
methods are not ideal for detecting large SVs accurately
and comprehensively, especially SVs that involve long
DNA sequences not present in the reference sequence
[10, 11].
Optical mapping (OM) [12] is a promising alternative

technology that provides structural information about
individual long DNA molecules. In nanochannel-based
OM [13, 14], DNA molecules are digested by a nicking
endonuclease to create single-strand nicks, which are then
repaired with fluorescent dye conjugated nucleotides. The
resulting DNA molecules are linearized in nanochannels
and imaged using high-resolution fluorescent microscopy
(Additional file 1: Figure S1). The final outputs are the
optical maps, which record restriction site label locations
on each DNA molecule. SVs can be identified by compar-
ing the observed label pattern with the expected pattern
based on the reference sequence (Fig. 1a). For example,
two sites significantly farther apart on an optical map
than their corresponding locations on the reference could
indicate an insertion.
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Fig. 1 Underlying concepts of OMSV. a Different types of genetic variations and their idealized appearance patterns on optical maps. Real
optical-mapping data contain various types of errors that make these patterns less apparent. Inversions are shown as an example type of complex
SVs, while OMSV can also detect translocations and copy number variations. b The overall OMSV pipeline for identifying SVs from optical maps.
Optical maps from a study sample are aligned to the reference map using two different aligners. Their results are integrated to form a single list of
consensus alignments, which are then passed to three SV-calling modules to identify different types of SVs. SV, structural variation

Due to the much longer length of optical maps (up to
1Mbp) compared to sequencing reads, OM is very power-
ful in SV discovery [13, 15–18]. Current high-throughput
OM methods can produce optical maps for a hundred
thousand molecules within a few hours, at an average
size of several hundred kilobase pairs per molecule. These
molecules can be full-length DNA derived from species
with a small genome, or fragments of very long DNA
molecules such as human chromosomes.
Analyzing optical maps is non-trivial due to various

types of error in the data [19, 20]. False positives (false
labels observed but not from true restriction sites) can
occur due to non-specific enzymatic cuts or DNA break-
age. False negatives (true restriction sites not observed on
the optical maps) can occur due to incomplete enzyme

digestion. Sizing errors (deviations betweenmeasured and
actual distance between two restriction sites on an optical
map) can occur due to DNA fragments that are over-
stretched or not completely linearized. Finally, labels of
close restriction sites may merge into a single label in the
observed data due to limitations in imaging resolution. As
a result of all these error types, specialized methods have
been proposed for various computational tasks related
to the analysis of optical maps, including error modeling
[19, 21], molecule alignment [18, 20, 22–24], de novo and
reference-assisted assembly [20, 25, 26], and detection of
SVs [13, 17, 18, 27].
Existing methods for calling SVs from optical maps

have several major limitations (Additional file 1: Table
S1). First, most of them require a de novo assembly of
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the optical maps or the construction of a consensus map
[13, 15, 18], making the accuracy of SV calls dependent on
the reliability of these difficult procedures. Second, none
of the current methods can simultaneously (1) detect both
homozygous and heterozygous SVs, (2) handle SVs of a
wide range of sizes, and (3) evaluate SV probabilities based
on a formal error model and the optical maps that sup-
port or do not support the SVs. Besides, almost none of
the existing methods have made their software publicly
available, which hampers the widespread use of OM in
studying SVs.
Here we describe a comprehensive SV-calling pipeline

and corresponding open-source software, OMSV (avail-
able at the supplementary website, http://yiplab.cse.cuhk.
edu.hk/omsv/, under the MIT license), which overcomes
these limitations. We demonstrate the effectiveness of
OMSV using both simulations and optical maps produced
from a family trio. In addition, we show that when OMSV
was applied to detect SVs in a human cell line, many of our
detected SVs were missed by typical sequencing-based SV
callers. Some of our detected SVs were experimentally
tested using DNA isolated from the cell line, and most
of them were successfully validated. Finally, we describe
how OMSV can combine optical maps and sequencing
data to identify precise SV break points and uncover novel
sequences involved in the SVs.

Results
The OMSV pipeline
OMSV contains two main steps (Fig. 1b, “Methods”). In
the first step, it aligns optical maps to the reference map,
which is deduced from the reference sequence and the
recognition motif of the nicking enzyme by in silico diges-
tion. Two different aligners are used, namely RefAligner
[24], which can efficiently align optical maps highly simi-
lar to the reference, and OMBlast [22], which can handle
more complex genomic rearrangements by split-aligning
a single optical map to multiple regions on the reference.
The alignment results from the two aligners are integrated
to form a single set of consensus alignments. In the second
step of OMSV, these alignments are passed to three sep-
arate SV-calling modules for three corresponding types
of SVs: (1) SVs involving the creation or removal of
restriction sites, (2) SVs involving large distance changes
between restriction sites, and (3) more complex SVs, such
as inversions and translocations. SVs identified from these
modules are then integrated and de-duplicated to form a
final list of SVs.
In the SV-calling modules, a formal error model is used

to compare the likelihoods of the reference genotype (i.e.,
no SVs), homozygous SVs, and heterozygous SVs. An SV is
called only if a set of stringent criteria are satisfied (Fig. 2,
“Methods”).

Simulations confirm the effectiveness of OMSV
To test the effectiveness of OMSV, we generated simu-
lated OM data from artificial haploid and diploid human
genomes, by introducing various types of genetic variants
into the reference genome hg38 followed by simulating
noisy optical maps with all types of error (“Methods”). We
defined a default error setting, and additional settings that
covered a wide range of false positive and false negative
rates of nicking sites and depths of coverage, leading to a
total of 28 sets of simulated OM data (Additional file 1:
Tables S2 and S3). In the original paper that describes
the nanochannel-based OM method [13], the false posi-
tive and false negative rates were reported to be 21% and
4%, respectively. According to our experience, the current
systems have around 10% false negative labels and one
false positive label per 100 kbp. In the default error set-
ting, we set these parameters to slightly higher values to
test OMSV’s ability to handle noisy data (Additional file 1:
Table S2).
Next, we applied OMSV to identify SVs from these sim-

ulated OM data sets, and compared the results to the
actual lists of synthesized SVs to determine OMSV’s pre-
cision (fraction of called SVs that are correct) and recall
(fraction of simulated SVs correctly called by OMSV).
Here we first focus on insertions and deletions (indels)

larger than 2 kbp in the data sets with the default set-
ting, since they constitute a large fraction of our simulated
SVs and these large SVs are difficult for short-read-based
methods to identify accurately. For the haploid genome,
both the precision and recall of OMSV were 98% for dele-
tions and 95% for insertions (Fig. 3a, b), showing that it
was highly effective. For the diploid genome, when the
goal was to identify SV locations only without consider-
ing the correctness of zygosity, OMSV again achieved high
precision (99%) and recall (92%) for deletions, and high
precision (97%) and moderate recall (81%) for insertions
due to fewer optical maps supporting the SVs in the het-
erozygous cases. When correct zygosity was also required
for an SV to be considered correctly called, OMSV still
achieved 90% precision and 81% recall on average. For the
SVs correctly identified from the two data sets, we further
compared their sizes estimated by OMSV with the actual
sizes up to the closest defining nicking sites, and found
them to be very similar in most cases (Fig. 3c, d), with a
median size ratio of 1.0028 and 1.0029 for the haploid and
diploid data sets, respectively.
To benchmark the performance of OMSV, we com-

pared it with the latest version of the assembly-based SV
caller BioNano Solve, which is the only other SV caller for
nanochannel-based OM with publicly available software
(the SV caller used in Cao et al. [15] is a previous ver-
sion of this software). We found that the precision of the
two methods was comparable, but OMSV had 10–31%
higher recall (Fig. 3e, f). Moreover, since BioNano Solve

http://yiplab.cse.cuhk.edu.hk/omsv/
http://yiplab.cse.cuhk.edu.hk/omsv/
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Fig. 2 Illustration of methods used by OMSV for identifying SVs from optical maps. a The three hypotheses compared in the procedure for detecting
missing restriction sites. b Comparing the distance between two restriction sites on the reference and the corresponding observed labels on the
optical maps, for detecting large SVs. c Simplification of the likelihood function for the heterozygous insertion hypothesis. In the full likelihood
function, each optical map could come from the chromosome with the reference allele (ref) or the insertion allele (ins), and all combinations are
considered. In the simplified likelihood function, only the k optical maps with the largest distance between the two nicking site labels are
considered to have the insertion, and all values of k are considered. In this illustration, the minimum number of optical maps supporting each allele,
kmin, is set to 0. d SVs that require partial alignments to identify. e Translocations and large inversions can be identified by two-round split
alignments. fMedium-sized inversions are identified by looking for regions with a reverse palindromic CIGAR string (DIDIDI in this example) with
matched segment sizes when reversed (d1 with d′

1 and d2 with d′
2 in this example). ins, insertion allele, ref, reference allele, SV, structural variation

required a de novo assembly of the optical maps, its run-
ning time was 16–21 times longer than OMSV (including
the alignment time).
To evaluate the robustness of OMSV, we performed

three additional sets of tests. First, using the diploid data
set with default settings, we checked the SVs with var-
ious numbers of optical maps aligned to their loci and
having different likelihood ratios as computed by OMSV.
We found that OMSV’s precision remained highly sta-
ble at different values of these variables (Additional file 1:
Figure S2), and the default parameter values of OMSV
(at least ten aligned optical maps and a null-to-alternative
likelihood ratio of at most 10−6 for an SV to be called)
provided a good trade-off between precision and recall.
Second, we compared the performance of OMSV on data
sets with different depths of coverage. To separate the
effects of alignment errors and SV-calling errors, we also
considered an idealized situation with no alignment errors
(“Methods”). The coverage depth was found to have vir-
tually no effect on the precision of OMSV for the depths

considered (Additional file 1: Figure S3a), but it corre-
lated with the recall (Additional file 1: Figure S3b), with
almost no SVs being called when the coverage went down
to around 5×. Importantly, by comparing our results pro-
duced with and without optical map alignments, we found
that the decreased recall at low coverage depth was largely
due to alignment errors, as seen by the big drop in recall
with the actual alignment compared to perfect alignment
at the same data coverage. Third, we altered the false pos-
itive and false negative rates of the OM data, and found
that the performance of OMSV remained stable for most
settings until the error rates reached unrealistically large
values not typically seen in real data (Additional file 1:
Figures S4 and S5). Again, we found that the perfor-
mance drop at high false positive and false negative rates
correlated strongly with alignment errors, and thus the
performance of OMSV should be automatically improved
with better alignment accuracy. Overall, these three sets of
tests show that OMSV is generally robust against different
data properties and parameter settings.
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Fig. 3 Results based on the default simulated data sets. Precision (a) and recall (b) of OMSV. Ratio of SV sizes determined by OMSV to their actual
sizes, for the haploid (c) and diploid (d) data sets. Precision (e) and recall (f) of OMSV compared to BioNano Solve. Results in (a) to (f) are all based on
insertions and deletions larger than 2 kbp. Precision (g) and recall (h) of OMSV in calling complex SVs from the simulated data, including the whole
set (All) and only the intrinsically feasible (IF) ones. IF, intrinsically feasible; SV, structural variation

We also compared different alignment strategies involv-
ing alignments from only one of the two aligners, their
intersection, and their union. The results (Additional
file 1: Figure S6) show that taking the union of the two
aligners had the best trade-off between precision and
recall, especially when the data set had a low coverage
depth.
For complex SVs (Fig. 3g, h), OMSV achieved 80–85%

precision but only 30–50% recall on the two default sets.
Many of the missed SVs were intrinsically infeasible to

call, including inversions that contain no nicking sites or
symmetric nicking site patterns that do not change on
inversion. After filtering out these cases, the recall rate of
the resulting intrinsically feasible (IF) complex SVs was
substantially improved to 45–80%. BioNano Solve con-
tained a function for calling complex SVs, but failed to
detect any of them from the simulated data.
Taken together, the simulation results show that OMSV

can identify large SVs accurately and comprehensively on
data sets with properties typical of real data.
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In terms of the running time for OMSV, the main bot-
tleneck was the optical map alignments (Additional file 1:
Table S4). This limitation can be overcome by running
the aligners on multiple threads in parallel, leading to an
overall running time for OMSV of less than 5 h for each
simulated human sample with a 100× genome coverage.

OMSV identifies SVs concordantly from different members
of a family
We next tested OMSV on the optical maps produced
from a family trio in a former study [28] (Additional
file 1: Table S5). Genetic variants from this trio have
been previously reported [29], but they are mostly small
variants. OMSV called 1,054–1,126 large indels from the
three samples independently (Additional file 1: Table S6,
Additional file 2, “Methods”), with an average size of
6.4 kbp and a maximum of 89 kbp. In addition, there were
22 other loci with two indels called at the same locus.
OMSV also called 86–158 complex SVs from the three
individuals in this trio. Since the actual SVs in these indi-
viduals were not known, we used four different methods
to estimate the accuracy of OMSV.
First, we hid the sex of the samples from OMSV, and

checked the number of SV-calling errors related to the sex
chromosomes (Additional file 1: Table S6). When pseudo-
autosomal regions were excluded, for the female samples
NA12878 and NA12892, 59 and 55 SVs were called on
the X chromosome, respectively, whereas no SVs were
wrongly called on the Y chromosome. In terms of zygos-
ity, the male sample NA12891 had 18 indels wrongly
called as heterozygous among the 53 indels called on the
non-pseudo-autosomal regions of the sex chromosomes.
Based on these numbers, the estimated zygosity precision
was (53 − 18)/53 = 66%.
Second, we compared the indels called from the

three individuals. Among the high-confidence calls
(“Methods”), 99%were concordant withMendelian inher-
itance when the zygosity of the SVs was ignored, and
86% were concordant when the zygosity was considered.
We used the precision and recall from our simulations to
estimate the expected Mendelian concordance to be 96%
when zygosity was ignored and 83% when zygosity was
considered (“Methods”), suggesting that the accuracy of
OMSV on the trio data was comparable to that on the
simulated data.
Third, we compared our SV calls with the manual

checks made by Mak et al. [28] based on nicking site pat-
terns of aligned molecules (Additional file 1: Table S7).
Among our SVs withmanual checking results for the three
individuals, 96–97% of them were considered correct by
the manual checking results when zygosity was ignored,
which is similar to the precision values in the simulation
study. When zygosity was considered, 73–74% of our SVs
were considered correct by the manual checking results,

which is lower than that in the simulation. Together, these
results suggest that OMSV could identify SV locations
accurately but determining the correct zygosity of SVs
could be more difficult with real data.
Finally, we compared our indel list for NA12878 with

two lists of indels previously detected from this sam-
ple using sequencing-based methods [2, 30]. Focusing on
large (>2 kbp) indels, the intersection of the OMSV list
and either of these two sequencing-based lists (81 and
90 indels, respectively) was similar to the intersection of
these two lists (84 indels) (Additional file 1: Figure S7).
Interestingly, 500 (96%) of the insertions and 178 (38%)
of the deletions called by OMSV were unique among the
three lists. Based on the above estimation of the accu-
racy of OMSV, a large fraction of these novel indels
are expected to be real. These observations suggest that
OMSV is able to identify SVs commonly called by other
sequencing-based methods as well as uncover novel ones
missed by them.
We select two examples to illustrate the SVs identi-

fied by OMSV. In the first example for chromosome 6
(Fig. 4a), the father (NA12891) has a heterozygous inser-
tion of around 14.6 kbp, the mother (NA12892) has a het-
erozygous insertion of around 22.7 kbp, and the daughter
(NA12878) has inherited both insertions from the parents.
This example demonstrates the capability of OMSV to
identify heterozygous SVs and loci with two distinct alleles
both different from the reference. In the second example
(Fig. 4b), a large inversion of around 123.3 kbp was consis-
tently found on chromosome X from all three individuals,
with clear nicking site patterns that support the inversion.

OMSV identifies many SVs missed by short-read-based SV
callers
To evaluate further the capability of OMSV to detect novel
SVs, we produced optical maps from the human C666-1
cell line [31] (Additional file 1: Table S8). C666-1 cells
consistently harbor multiple Epstein–Barr virus (EBV)
episomes. As a first check of the data produced, we aligned
the optical maps to the EBV reference in C666-1 [32], and
found a large number of well-aligned optical maps (Addi-
tional file 1: Figure S8). Comparing the average coverage
depth of the optical maps aligned to the human (72×)
and EBV (847×) references, we estimated an average of 24
copies of the EBV genome per C666-1 cell, which is highly
consistent with a previous estimate based on sequencing
data [33].
We then applied OMSV to identify SVs in the C666-1

cellular genome (Additional file 1: Table S9, Additional
file 3). In total, 810 loci containing indels larger than
2 kbp were called, with an average size of 6.6 kbp and a
maximum of 106 kbp. Among the large indels identified,
67% were insertions while 33% were deletions, and 69%
were homozygous while 31% were heterozygous. Since
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Fig. 4 Examples of SVs identified from the trio. a An insertion identified on chromosome 6, visualized by OMView [51] using the anchor view with
the nicking site immediately before the insertion as the anchor. The red horizontal bars show the reference, with the nicking sites marked as black
vertical lines. Each yellow horizontal bar represents an optical map, with the two aligned nicking site labels defining the SVs in blue, other aligned
labels in pink, and unaligned labels in black. For each individual, optical maps are arranged into different sections based on the allele that they
support. The father has a heterozygous insertion of around 14.6 kbp (insertion type I) and the mother has a heterozygous insertion of around
22.7 kbp (insertion yype II). The daughter inherited both insertions from her parents. b An inversion identified on chromosome X, visualized using
the alignment view of OMView. For each individual, the top horizontal bar shows the reference and the bottom horizontal bar shows a
representative optical map. Black solid and dashed lines linking the reference and the optical map, respectively, represent aligned nicking sites and
nicking sites that should probably be aligned but were missed by the alignment pipeline

C666-1 was originally derived from a male sample, we
checked the number of indels wrongly called as heterozy-
gous on the sex chromosomes (Additional file 1: Table S9),
and found six such errors among the 21 (29%) SVs iden-
tified, which is close to the error rate we obtained from
NA12891 (34%). To investigate the origin of our identified

indels, we intersected them with segmental duplications
in the human genome [34, 35].We found 143 of the C666-1
large indels overlapping with segmental duplication
regions, among which 78 involved segmental duplications
that overlap exons of protein-coding genes (Additional
file 4). Therefore, at least 18% of the SVs found in C666-1
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were likely due to common segmental duplications, while
others could be more specific to C666-1.
In addition to indels, OMSV also identified 68 copy

number variations (CNVs), 28 medium-sized inversions,
13 large inversions, and six translocations (two intra-
chromosomal and four inter-chromosomal) (Additional
files 3 and 5). A translocation in C666-1 between intron 1
of UBR5 and intron 6 of ZNF423 was previously reported,
leading to a fusion transcript [36]. We were able to con-
firm the existence of this translocation in the list of
complex SVs identified by OMSV (Fig. 5).
Whole-genome sequencing data for C666-1 were previ-

ously produced at 75× coverage with 100 bp paired-end
reads and an average insert size of 290 bp [32]. We used
two sequencing-based SV callers, Manta [37] and Pindel
[38], to identify large (>2 kbp) SVs from the sequenc-
ing data. Among the 810 indels identified by OMSV,
552 of them (68%) were missed by both short-read-
based SV callers (Fig. 6a). In particular, among the 543
insertions, 459 of them (85%) were missed by both.
Even for the insertions detected by Manta or Pindel,
only the locations of the break points were provided,
but not the sizes of the insertions, which are reported
by OMSV.
On the other hand, some large SVs were called by the

short-read-based methods but not by OMSV. Assuming
that SVs identified by at least two methods are more likely
to be real, we found that OMSV had the highest fraction
of deletions belonging to this category of high-confidence
SVs (174/267 = 0.65), compared to Manta (264/6534 =
0.04) and Pindel (215/742 = 0.29). Since Pindel did
not call any large insertions, we could not perform this
analysis on the insertions.

We further investigated the 111 non-redundant dele-
tions commonly called by Manta and Pindel but not by
OMSV. We found that two overlapped with N-gaps in
the reference genome or fragile sites and 34 were in
regions with low optical map coverage, both represent-
ing SVs that are impossible for OMSV to detect based
on the data produced. Another 18 cases were missed by
OMSV due to errors in the alignment of optical maps.
There were 33 cases in which the alignments of the optical
maps were good but did not support an SV, which could
mean either the optical maps supporting the SVs were
not aligned successfully or the SVs identified by the short-
read-based callers were false positives. Of the remaining
cases, 19 had low likelihood scores that could not pass
the OMSV parameter threshold we chose, and five were
missed by OMSV for no obvious reasons. The 24 SVs in
these last two categories may be detectable by improving
the SV-calling modules in OMSV.
Of the 115 complex SVs identified by OMSV, Manta

and Pindel together detected only one large inversion and
two translocations. On the other hand, these two short-
read-based methods identified only eight inversions in
common, with none of the 116 translocations detected by
Manta also detected by Pindel.
To check further the accuracy of the SVs identified by

OMSV, we performed a polymerase chain reaction (PCR)
validation. We focused on insertions and complex SVs,
which are more difficult for short-read-based callers to
identify accurately. Considering the maximum possible
product size of PCR, we selected 17 SVs for valida-
tion experiments, including seven homozygous insertions,
seven heterozygous insertions, and three complex SVs
(Additional file 1: Tables S10–S12). For each of these, we

Fig. 5 The previously reported UBR5–ZNF423 translocation in C666-1 re-identified by OMSV, visualized using the alignment view of OMView. For
each of the two gene loci, the top horizontal bar shows the reference and the bottom horizontal bar shows a representative optical map. Black solid
and dashed lines linking the reference and the optical map represent, respectively, aligned nicking sites and nicking sites that should probably be
aligned but were missed by the alignment pipeline. The vertical red dashed lines show the break points previously reported [36]
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a b

c d

e

Fig. 6 SVs identified by OMSV from C666-1. a Overlap between the large (>2 kbp) indels identified by OMSV and the two short-read-based callers,
Manta and Pindel. In the common regions, the number of a certain color indicates the number of SVs called by the respective method that overlap
SVs called by the other method(s). b–d Polymerase chain reaction results for selected homozygous insertions (b), heterozygous insertions (c), and
complex SVs (d). For the heterozygous insertions, Ie2 was tested separately from the other six cases due to the large expected product size of its
insertion allele. For the inversion case C3, p1 and p2 correspond to the two primer pairs. e Alignment of sequencing reads to the inferred C666-1
sequences of SV Io2 and SV Io3. The L and R boxes mark the primer locations. Definitions of o1, o′

2, b
′
1, b

′
2, g

′
1 and g′

2 are given in Additional file 1:
Figure S9. Sequencing read alignments are visualized by IGV [49]. SV, structural variation

designed primers based on its predicted break points on
the reference sequence, and compared the length of the
resulting PCR-amplified product with its expected length
with or without the SV (Additional file 1: Tables S10–S13,
“Methods”).
For the homozygous insertions (Fig. 6b), all seven cases

showed a single band much closer to the expected size

with the insertion than the expected size without the
insertion, although in one case (Io7), the band was weak.
For the heterozygous insertions (Fig. 6c), the two bands

having the expected product sizes with or without the
insertions were seen in four of the seven cases (Ie2–Ie4
and Ie7), although the one corresponding to the insertion
allele was weaker in general, likely due to their longer
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products. Additional bands were also observed in several
cases, suggesting that the insertions could be due to tan-
dem duplications and the additional bands correspond to
another copy number. For two of the cases (Ie5 and Ie6),
a band was observed at the expected size of the reference
allele, while another relatively strong band was observed
with a size slightly different from the expected size with
the insertion, illustrating a limitation of precisely estimat-
ing SV sizes from optical maps. Finally, for one case (Ie1),
only one band was observed at the expected size of the
reference allele, indicating that it could be a false positive
call.
For the complex SVs (Fig. 6d), in all three cases, PCR

products were seen with a size in agreement with the size
estimated by OMSV.
Altogether, among the 17 validated cases, 14 were

clearly validated, two had issues with the estimated SV
size, and one could not be validated.
Since optical maps estimate SV break points only up

to the closest nicking sites, we used the sequencing
reads to determine the break points more precisely and
to deduce the inserted sequences in insertions using
local sequence assembly (Additional file 1: Figure S9,
“Methods”). The inferred sequences for the seven PCR-
validated homozygous insertions and the precise SV break
points are all supported by a large number of aligned
sequencing reads (Fig. 6e, Additional file 1: Figure S10).

Discussion
Currently, it is difficult to detect large or complex SVs
from sequencing alone, and even harder to estimate SV
sizes, due to the short read length and limited insert size
between read pairs. In particular, large insertions are espe-
cially difficult for short-read-based SV-calling methods to
detect since the alignment of supporting reads that con-
tain contents not in the reference is difficult, and the read
coverage is only locally dropped around the insertion site.
Having repeat elements around the SV break points could
also make SV detection from short sequencing reads dif-
ficult. In contrast, using nanochannel-based optical maps,
whole SVs are easily contained in a single optical map,
making SV detection highly feasible and accurate. Here
we demonstrated that OMSV is a powerful tool for iden-
tifying large SVs, ranging from kilobases to more than a
hundred kilobases. In fact, as long as an optical map can
be correctly aligned to the reference by having sufficient
nicking sites in the flanking non-SV portions, the larger an
SV is, the easier it is for OMSV to detect it, since the cor-
responding distance change between the defining nicking
sites is less likely due to scaling and measurement errors
alone. This property makes OMSV an ideal complement
to sequencing-based SV callers, which are generally more
accurate in detecting smaller SVs.

OMSV detects complex regions and very large SVs
with a two-round alignment strategy that allows split-
alignment of an optical map to multiple locations on
the genome. Split-alignments of optical maps could come
with a cost of extra alignment time. One way to tackle
this problem is first to quickly align optical maps that can
be aligned to single genomic loci using a standard aligner,
and then apply the split-alignment strategy only to the
remaining unaligned optical maps.
Since the SV-calling modules require only a list of opti-

cal map alignments as input, the alignment methods used
in the OMSV pipeline can be flexibly changed to other
choices. Besides, if a high-quality de novo assembly of
the optical maps is available, the optical maps can also
be first aligned to the assembly, and their alignment to
the reference can then be inferred from further aligning
the assembly to the reference. For optical maps that devi-
ate significantly from the reference map, this two-step
alignment strategy could be more accurate than directly
aligning optical maps to the reference.
With each optical map coming from oneDNAmolecule,

OMSV can potentially be extended to study haplo-
types, cell-type composition in a sample, and cell-to-cell
variability. These analyses would require highly accu-
rate alignments of individual labels of the optical maps.
Probing the nicking sites of a second enzyme using an
additional color channel may further improve the align-
ment accuracy necessary for these analyses. With such
improved accuracy, we also hope to extend OMSV to call
the zygosity of complex SVs.

Conclusions
In this paper, we described the OMSV pipeline for iden-
tifying SVs from nanochannel-based optical maps. The
accuracy of OMSV has been confirmed by both simula-
tions and optical maps from a family trio. OMSV outper-
formed the only publicly available tool for SV detection
fromOMdata in three aspects: (1) OMSV identifiedmany
more SVs at a precision level similar to that of this method,
(2) OMSV identified many of the complex SVs but this
methodmissed all of them, and (3) OMSV ranmuch faster
as it does not require a time-consuming de novo assembly
of the optical maps.
We also used OMSV to identify SVs from the C666-1

cell line, and found 68% of them were missed by
sequencing-based SV callers, including 85% of the inser-
tions. Some of these SVs were experimentally validated
independently.
We provide OMSV as open-source software, which can

be used routinely in genome projects to identify large
SVs accurately and comprehensively. This will likely have
important implications for understanding genetic diver-
sity and disease susceptibility.
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Methods
A complete error model for optical maps
We modeled the generation of optical maps from a DNA
sequence as a random process with various types of
error. This combines some ideas previously proposed
[19, 21] and several new components based on properties
observed in real human optical maps [28].
In our model, the starting locations of n DNA fragment

molecules are first uniformly and independently sampled
from the DNA sequence. Each of these starting locations
is used to produce a molecule of length l0 + lv, where l0 is
a constant minimum molecule length and lv is a random
variable that follows a Poisson distribution with mean μl.
In real experiments, l0 is a threshold chosen such that
molecules shorter than it are excluded from the analyses.
The restriction sites on each molecule can be identified

by matching its sequence against the recognition motif of
the nicking enzyme selected. In our model, each restric-
tion site has a false negative rate of f− for not having a
corresponding observable label in the optical map due to
incomplete enzymatic digestion or a measurement error.
False positive labels not originating from actual restric-

tion sites but caused by artifacts such as non-specific
enzymatic cuts are then introduced. For every two adja-
cent restriction sites, the number of false positive labels is
randomly sampled from a Poisson distribution with mean
df+, where d is the distance between the two sites and f+
is the false positive rate. If the resulting number of false
positive labels is non-zero, the locations of these false pos-
itives are uniformly and independently sampled from the
locations between the two sites.
After these steps, each random molecule is represented

by a list of distances between adjacent observed labels
(including both true positives and false positives). For the
convenience of discussion, we also assume the beginning
and end of each molecule are marked by two artificial
labels, the locations of which in actual optical maps can
be determined by the span of the stained DNA back-
bone. Each molecule then undergoes a random stretch or
compression to model sizing errors in the experiments,
by multiplying the distance between every two observed
labels by a factor α, where α is sampled from a Cauchy
distribution with the values of the location and scale
parameters set to oα and sα , respectively. We chose the
Cauchy distribution since it had a good fit with the real
data we produced (Additional file 1: Figure S11).
To model the finite resolution of optical measure-

ments, any two adjacent labels on a stretched/compressed
molecule at a distance of d bp from each other are merged
into one single label at their midpoint with a probability of

1 − 1
1 + exp

[−0.01(d − d1/2)
] ,

where d1/2 is a reference distance at which the chance for
the two labels to be merged is 1/2.
Finally, measurement errors are modeled by moving

each label by an offset that follows a uniform distribution
defined on [−e, e] for a given parameter e.

SV-calling modules
Based on the above generative model, we developed two
statistical modules for identifying SVs from optical maps.
The first module looks for individual extra or missing sites
on the molecules compared to the reference sequence.
Some small SVs with only a small change in the dis-
tance between restriction sites are detected better by
this method. The second module compares the distance
between two restriction sites on the molecules with that
on the reference genome. It can detect larger SVs not
necessarily involving extra or missing restriction sites.
Both modules require an alignment of the optical maps

to a reference map obtained from the in silico diges-
tion of the reference sequence, where adjacent labels are
merged in the way described above. Based on the align-
ments, OMSV extracts three types of information as input
to the two SV-calling modules: (1) the expected locations
of restriction sites on the reference sequence, (2) the dis-
tance (in base pairs) between every two adjacent observed
labels on each molecule, and (3) an alignment of the labels
on the molecules to the restriction sites on the reference.
Every label can be aligned to zero or one restriction site
on the reference, and each restriction site on the reference
can be aligned to zero or one label on each molecule.
There is a third module, which uses additional align-

ment and coverage information to identify complex SVs.

Module for identifying SVs involving extra ormissing
restriction sites
To identify missing restriction sites on the molecules, we
adopted a method originally developed for refining opti-
cal map assemblies [20], and extended it to detect both
homozygous and heterozygous genetic variants.
Suppose there are M molecules aligned to a region

that covers a restriction site on the reference sequence,
of which m support the existence of the restriction site
(Fig. 2a). Each of them supporting molecules either actu-
ally contains the site or has a false positive label. Each
of the M − m non-supporting molecules either actually
does not contain the site or has a false negative. We con-
sider three hypotheses for the observed data: (1) the null
hypothesis H(miss)

0 that the restriction site actually exists
on the subject DNA sequence in homozygous form (and
thus, there are no false positives), (2) the first alternative
hypothesis H(miss)

hom that the site is missing on the subject
sequence in homozygous form (and thus, there are no
false negatives), and (3) the second alternative hypothesis
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H(miss)
het that the site is missing on the subject sequence in

heterozygous form.
Under the null hypothesis H(miss)

0 , the probability of
observingm or fewer supporting molecules is

Pr
(
x ≤ m|H(miss)

0

)
=

m∑

x=0

(
M
x

)
(1 − fn)xfnM−x,

where fn is the false negative rate to be estimated
from the observed data. Similarly, depending on whether
H(miss)
0 , H(miss)

hom or H(miss)
het is true, the data likelihood is,

respectively,

LH(miss)
0

=
(
M
m

)
(1 − fn)mfnM−m,

LH(miss)
hom

=
(
M
m

)
fpm(1 − fp)M−m, and

LH(miss)
het

=
∑M

k=0

⎧
⎨

⎩

(
M
k

) (
1
2

)M min(k,m)∑

l=max(0,m−M+k)
[(

k
l

)
(1 − fn)lfnk−l

(
M − k
m−l

)

fpm−l(1 − fp)M−k−m+l
] }

,

where fp is the false positive rate to be estimated from
the observed data, k is, in the heterozygous case, the
unknown number of molecules from the chromosome
with the restriction site, and l is the number of molecules
among the k on which the restriction site is observed. In
the model, we assume for a molecule that there is an equal
probability of it coming from either chromosome.
Based on these definitions, if both the p value

Pr
(
x ≤ m|H(miss)

0

)
and the likelihood ratio LH(miss)

0
/

max
(
LH(miss)

hom
, LH(miss)

het

)
are smaller than the corresponding

thresholds for a site, it is considered a homozygous miss-
ing site if LH(miss)

hom
≥ LH(miss)

het
or a heterozygous missing site

if LH(miss)
hom

< LH(miss)
het

.
A similar procedure is used for calling homozygous and

heterozygous extra restriction sites. Suppose there are M
molecules aligned to a region on the reference sequence,
among which m support the existence of a restriction site
in a region that does not exist according to the reference
sequence. Under the null hypothesisH(extra)

0 that the site is
absent in homozygous form, the probability of observing
m or more supporting molecules is

Pr
(
x ≥ m|H(extra)

0

)
=

M∑

x=m

(
M
x

)
fpx(1 − fp)M−x.

Similarly, depending on whether the site is absent

in homozygous form
(
null hypothesis H(extra)

0

)
, exists

in homozygous form
(
alternative hypothesis H(extra)

hom

)
,

or exists in heterozygous form
(
alternative hypothesis

H(extra)
het

)
, the data likelihood is defined as

LH(extra)
0

= LH(miss)
hom

,

LH(extra)
hom

= LH(miss)
0

,

and

LH(extra)
het

= LH(miss)
het

.

Based on these definitions, if both the p value
Pr

(
x ≥ m|H(extra)

0

)
and the likelihood ratio LH(extra)

0
/

max
(
LH(extra)

hom
, LH(extra)

het

)
are smaller than the corresponding

thresholds for a site, it is considered a homozygous extra
site if LH(extra)

hom
≥ LH(extra)

het
or a heterozygous extra site if

LH(extra)
hom

< LH(extra)
het

.
In practice, we also define a minimum number of sup-

porting molecules Mmin. For any site with less than Mmin
molecules covering the locus (regardless of whether they
support the presence of the restriction site or not), we did
not call genetic variants from it since the result would not
be reliable.

Module for identifying SVs involving large size changes
Large SVs are usually associated with a deviation of the
distance between two restriction sites on the reference
sequence (Fig. 2b, d0) and that on the molecules (d1),
which may or may not involve extra or missing restriction
sites on the molecules. To identify these cases system-
atically, we first check the distances between every two
adjacent restriction sites on the reference sequence and
compare them with the corresponding label distances on
the aligned molecules (which would cover the first two
cases of Fig. 2b). We then check the distances between
every two adjacent labels on the aligned molecules that
have not been checked, and compare them with the dis-
tance between the aligned restriction sites on the refer-
ence (which would cover the third case). Each of these
checks is performed with the following statistical method.
Suppose there are two (not necessarily adjacent) restric-

tion sites on the reference sequence with a distance d0,
and there are M aligned molecules covering the region.
Suppose the distances of the corresponding aligned labels
on the molecules are d1, d2, . . . , dM, where d1 ≤ d2 ≤
· · · ≤ dM. Our method computes the ratios ri = di/d0 for
each of the M molecules. It then compares the following
hypotheses according to the error model we defined:

1. Null hypothesis H0, that there are no insertions or
deletions between the two sites
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2. Hhom, that there is a homozygous indel between the
two sites

3. H(ins)
het , that there is a heterozygous insertion between

the two sites
4. H(del)

het , that there is a heterozygous deletion between
the two sites

5. Htri, that the locus is triallelic, i.e., there are two
different insertions, two different deletions, or one
insertion and one deletion between the two sites,
where each chromosome bears one of the two
variant alleles

Under the null hypothesis H0, the likelihood of observ-
ing the distance ratios r1, r2, . . . , rM is

LH0 =
M∏

i=1
Cauchy(ri, r0, γ ),

where Cauchy(ri, r0, γ ) = γ /(π
[
(ri − r0)2 + γ 2]) is the

probability density function of the Cauchy distribution
with position parameter r0 and scale parameter γ . In SV
detection, using the Cauchy distribution to model the dis-
tance ratios has an advantage that it is not heavily affected
by extreme outliers caused by alignment errors.
Under the alternative hypothesis Hhom, the distance

ratios r1, r2, . . . , rM are sampled from a Cauchy distribu-
tion with a different value for the location parameter but
the same value γ for the scale parameter. The likelihood
of observing the distance ratios is, therefore,

LHhom =
M∏

i=1
Cauchy(ri, r′0, γ ),

where r′0 is the location parameter of the distribution of
distance ratios for this indel event. Finding the maximum
likelihood estimate of r′0 would require using numerical
methods to solve a high-degree polynomial. Instead, we
used the sample median of the M ri’s as an imperfect
estimate [39].
Under the alternative hypothesis H(ins)

het , some of the
distance ratios are sampled from the null distribu-
tion and the others are sampled from an alternative
Cauchy distribution with a larger value r′0 for the
location parameter but the same value for the scale
parameter. The likelihood of the distance ratios is
LH(ins)

het
= 1

2M
∑

S⊂{1,2,...,M}
[∏

j/∈S Cauchy(rj, r0, γ )
∏

i∈S
Cauchy(ri, r′0, γ )

]
, where S represents the set of

molecules from the chromosome with the insertion,
assuming there is an equal probability for each molecule
coming from either chromosome. Practically, this
likelihood is difficult to compute due to the expo-
nential number of terms in the summation. We made
an assumption that the two distributions are suffi-
ciently separated, with |r′0 − r0| � γ . Based on this

assumption, we consider only the summation terms
of which S takes the form {rM−k+1, rM−k+2, . . . , rM},
which involves only the k largest distance ratios. We
then try all possible values of k such that at least kmin
molecules come from each chromosome (Fig. 2c).
As a result, the likelihood formula is simplified as
LH(ins)

het
= 1

2M
∑M−kmin

k=kmin

[∏M−k
i=1 Cauchy(ri, r0, γ )

∏M
j=M−k+1

Cauchy(rj, μ̃M−k+1..M, γ )
]
, where μ̃M−k+1..M is the

sample median of rM−k+1, rM−k+2, . . . , rM.
Similarly, for heterozygous deletions, a simplified like-

lihood formula is defined as LH(del)
het

= 1
2M

∑M−kmin
k=kmin[∏k

i=1Cauchy(ri, μ̃1..k ,γ)
∏M

j=k+1 Cauchy(rj, r0, γ )
]
, where

μ̃1..k , the sample median of r1, r2, . . . , rk , is expected to be
smaller than r0 in this case (and a heterozygous deletion
would not be called if this expectation is not satisfied).
For the triallelic cases, the simplified likeli-

hood formula is defined as LHtri = 1
2M

∑M−kmin
k=kmin[∏k

i=1 Cauchy(ri, μ̃1..k , γ )
∏M

j=k+1 Cauchy(rj, μ̃k+1..M, γ )
]
,

where μ̃1..k is the median of r1, r2, . . . , rk and μ̃k+1..M is
the median of rk+1, rk+2, . . . , rM.
Finally, our method compares the likelihood values. If

the likelihood ratio LH0
max

{
LHhom ,L

H(ins)
het

,L
H(del)
het

,LHtri

} is smaller

than a threshold, an SV is called according to the following
rules. If max

{
LHhom , LH(ins)

het
, LH(del)

het
, LHtri

}
is equal to

• LHhom : If r′0 > r0, a homozygous insertion is called.
Otherwise, a homozygous deletion is called.

• LH(ins)
het

: A heterozygous insertion is called.
• LH(del)

het
: A heterozygous deletion is called.

• LHtri : An SV of the multiple type is called. If μ̃1..k and
μ̃k+1..M are both smaller than r0, two different
deletions are called. If both are larger than r0, two
different insertions are called. Otherwise, an insertion
and a deletion are called.

Practically, if the distance change is too small, either
absolutely or relative to the distance on the reference, the
SV calls are less reliable. We, therefore, keep only SVs with
a distance change larger than a threshold δ, where the dis-
tance on the molecules is defined as the median distance
of the set of molecules that lead to a term with the largest
value in the likelihood calculation.

Module for identifying complex SVs
We also developed a module for identifying three types
of complex SVs, namely inversions, translocations, and
CNVs.

Using split-alignment to identify large inversions
and translocations The split-alignment capability of
OMBlast [22] allows different parts of a single optical
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map to be separately aligned to different locations
of the same chromosome (Fig. 2d). The default set-
ting of OMBlast limits the maximum distance between
these different locations to reduce the false alignment
rate and thus, it permits direct calling of only intra-
chromosomal translocations involving close loci. To
detect other intra-chromosomal translocations and inter-
chromosomal translocations, we used a two-round align-
ment strategy (Fig. 2e), in which the first round performed
standard alignments of optical maps, with some optical
maps only partially aligned. For these optical maps, the
unaligned regions were then independently aligned again
in the second round, thus allowing the detection of all
types of translocations. In addition, by allowing different
portions of the same optical map to be aligned in dif-
ferent orientations, large inversions can also be detected.
To reduce false positives, only translocations and large
inversions supported by two or more optical maps are
considered.

Using reverse palindromic CIGAR strings to iden-
tify medium-sized inversions Inversions with a size
between 2 and 100 kbp can be contained in a single optical
map, and are detected by locating a region in an opti-
cal map alignment with (1) a reverse-palindromic CIGAR
(Compact Idiosyncratic Gapped Alignment Report) string
and (2) matching distances between adjacent restriction
sites on the reference and those between adjacent labels
on the reversed optical map (Fig. 2f). In a CIGAR string, a
matched, missing, or extra label is denoted as M, D, or I,
respectively. The reverse complement of a CIGAR string
is its reverse with I’s and D’s interchanged. For exam-
ple, the reverse complement of MDDI is DIIM. A CIGAR
string is reverse palindromic if it is the same as its reverse
complement, such as DIDIDI. Two distances d1 and d′

1
are considered matched if d1 × (1 − et) − em ≤ d′

1 ≤
d1×(1+et)+em, where et and em are themaximum scaling
and measurement errors (set to 0.1 and 500 bp), respec-
tively. To control the quality, we called an inversion only if
it had at least ten supporting molecules and at least four
nicking sites within the inverted region.

Using coverage depth to identify CNVs We modified
an event-wise significance testing method [40] to identify
large CNVs. The original method uses a sliding window
(with 100 bp) to scan the reference and look for win-
dows with a coverage depth significantly different from
other windows, based on the distribution of depths of
windows with similar GC contents. Neighboring windows
are then grouped into blocks to identify the span of the
CNVs, with a method for correcting for multiple hypoth-
esis testing. To adopt this method for OM data, first the
window size was enlarged to 2d1/2 to accommodate for
the lower resolution of OMdata, where d1/2 is the imaging

resolution. Then, to determine the statistical significance
of each window, instead of grouping windows by GC con-
tent, we grouped them by nicking site counts. The depths
(number of aligned optical maps) of all windows within a
groupwere fitted to a Gaussian distribution, and a window
was considered a CNV candidate if it received a Z-test p
value <0.05. The same procedure for determining CNV
spans in the original method was then applied.

The overall OMSV pipeline
The overall OMSV pipeline is illustrated in Fig. 1b. In
the alignment pipeline, we used default parameter val-
ues for RefAligner and OMBlast for all the simulated and
real data except C666-1, for which we used the RefAligner
parameter values for complex genomes (available on our
supplementary website) suggested by the BioNano techni-
cal team. The referencemapwas deduced from the human
reference hg38 in all cases. RefAligner and OMBlast align-
ments were integrated based on the following rules:

1. If the two methods align an optical map to genomic
regions within half the length of the optical map
from each other, they are considered to agree on the
alignment, and the alignment of RefAligner is taken.

2. If only one of the two methods can align an optical
map, the alignment is taken directly.

3. If neither method can align an optical map, or both
of them can align but their alignments do not agree
with each other, the optical map is left unaligned.

We call this the union strategy in Additional file 1:
Figure S6. We also considered an intersection strategy,
which involved only the alignments satisfying the first rule
above.
The resulting integrated list of alignments is sent to

the three modules for SV identification. The results from
the three modules are then integrated to form a final
list of SVs. The parameter values for OMSV used in our
experiments are listed in Additional file 1: Table S14.

Filtering of SVs detected from real data
We considered only optical map alignments with a confi-
dence score of 9 or more. For the indels identified from
the family trio and the C666-1 cell line, we filtered those
that overlappedN-gaps, fragile sites, or pseudo-autosomal
regions on the reference genome. These mask regions
are listed in Additional files 6, 7, and 8. We applied the
same filtering to the NA12878 SV lists obtained from
sequencing-based methods. For the complex SVs, we fil-
tered out those located within the pseudo-autosomal
regions or overlapping with regions with a ultra-high den-
sity of nicking sites, defined as regions spanning 200 kbp
or more with at least 333 nicking sites per megabase
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pair. This density threshold was chosen because it corre-
sponds to an average distance between adjacent nicking
sites of 3 kbp, for which it is hard to detect complex SVs
accurately.

Generation of simulated data
We generated simulated data with either only homozy-
gous variants or both homozygous and heterozygous vari-
ants. Two steps were involved in both cases, namely a
first step for generating genomic sequences with genetic
variations introduced into the human reference genome,
and a second step for simulating optical maps based on
the resulting genomic sequences using the error model
described above.

Simulated data with only homozygous variants
For the data set with homozygous variants only, we first
downloaded the human reference sequence hg38 from the
UCSC Genome Browser [41]. We then generated muta-
tions (single nucleotide variants, small and large indels,
and complex SVs) on it using pIRS (Profile-Based Illumina
Pair-end Reads Simulator) [42]. This software was origi-
nally developed for generating short sequencing reads.We
took its intermediate file containing themutated sequence
without generating the short reads. In the second step, we
used the mutated sequence as input to generate simulated
optical maps based on our generative model. The param-
eter values used in the two steps are shown in Additional
file 1: Tables S15 and S16, respectively. The parameter
values for the first step were determined based on cor-
responding estimates from human genomes reported in
previous studies [43–45]. The parameter values for the
second step were estimated from our actual optical maps
by aligning all molecules to the reference sequence using
RefAligner, and estimating the parameter values by likeli-
hood maximization. None of these parameter values were
made known to our SV detection methods.

Simulated data with both homozygous and heterozygous
variants
For the data set with both homozygous and heterozy-
gous variants, we generated a diploid genome as follows.
It was initialized with our generated haploid genome and
the reference genome as the two haplotypes. Then, each
variant on the first haploid genome received a probabil-
ity of phom to be copied to the second haploid genome,
resulting in a homozygous variant. Each of the remaining
variants, which remained heterozygous, received a prob-
ability of phet of moving from the first haploid genome
to the second. We used phom = 0.5 and phet = 0.5
in our simulations based on a previous study [46]. As a
result of this procedure, the total number of SV loci in
this diploid genome was the same as that in the haploid
genome.

We then considered the two haploid genomes together
as a diploid genome, and used the corresponding DNA
sequences as templates to produce OM data using our
generative model. The parameter values used in the two
steps of the simulation are again shown in Additional
file 1: Tables S15 and S16, and 26 additional data sets were
generated by changing the false positive rate, false nega-
tive rate, and coverage depth, as shown in Additional file 1:
Table S2.

Evaluation metrics of SV calling on simulated data
For the simulated data, we used the known locations of the
generated SVs to compute the precision (the fraction of
identified SVs that are real) and recall (the fraction of real
SVs that are identified) rates of an SV-calling method. An
SV call was considered correct if it overlapped the location
of a generated SV of the same type.

Comparison with BioNano Solve
We compared OMSV with the SV caller included
in BioNano Solve v3.0 (downloaded from https://
bionanogenomics.com/support/software-downloads/),
which was the only SV caller for nanochannel-based
optical maps with publicly available software. The exact
command-line arguments used can be found on the
supplementary website.

Evaluating the performance of OMSV in the ideal situation
with no alignment errors
To estimate the performance of OMSV in the ideal sit-
uation with no alignment errors, instead of supplying
optical map alignments as inputs to OMSV, we provided
observed-to-reference distance ratios between neighbor-
ing nicking sites directly. For each locus, the number of
distance ratios was drawn from a Gaussian distribution
estimated based on the coverage depth of the data set.
These distance ratios were produced by adding scaling
errors to the actual distance ratio of the corresponding
allele based on the sizing error parameter of the default
simulated data set. The ratio of loci with and without SVs
also followed the ratio in the default data set.

Evaluation metrics of the alignment pipeline with
simulated data
We also defined metrics for evaluating the performance
of our alignment pipeline. First, an optical map was con-
sidered correctly aligned if it was aligned to the cor-
rect haplotype of the simulated genome with the aligned
location overlapping the actual location from which the
optical map was generated. The alignment precision was
then defined as the fraction of aligned optical maps that
were correctly aligned, and recall was defined as the
fraction of generated optical maps that were correctly
aligned.

https://bionanogenomics.com/support/software-downloads/
https://bionanogenomics.com/support/software-downloads/


Li et al. Genome Biology  (2017) 18:230 Page 16 of 19

Integrating and de-duplicating indels from the trio
In the comparisons with the results of the manual checks
and the SVs reported in the two previous studies [2, 30],
we first integrated the indels from the three individu-
als. For indels that overlapped, we de-duplicated them by
merging them into a larger indel that spanned over all
these original indels. For each resulting indel, we consid-
ered that it was present for an individual if the individual
originally had an indel that overlapped it.

Definition of Mendelian concordance
For the family trio, a locus was defined as concordant
with Mendelian inheritance if the daughter’s genotype
could be produced by the genotypes of the father and
the mother. When zygosity was not considered, an SV
identified from an individual could mean that the indi-
vidual had the SV in homozygous or heterozygous form.
As a result, a Mendelian error was reported only when
the daughter had an SV at a locus of a type that both
parents did not have. When zygosity was considered, a
Mendelian error was reported when the two alleles of the
daughter could not have come from the two parents. For
this part of the analysis, we considered only loci at which
each of the individuals had an SV confidently called or
it was highly unlikely that an SV could be called. The
former was defined as SVs with at least ten supporting
optical maps and a likelihood ratio of at most 10−6 for
each other hypothesis. The latter was defined as cases in
which an SV could not be called even at the loose thresh-
olds of four supporting optical maps and a likelihood
ratio of 1.

Computation of expected Mendelian concordance
To check whether the observed Mendelian concor-
dances of the SVs identified from the trio were con-
sistent with the precision and recall estimates of our
simulation, we computed the expected Mendelian con-
cordance as follows. First, we estimated the probabil-
ities P(G2|G1) where G1 and G2 are, respectively, the
actual genotype and the genotype called by OMSV, each
with possible alleles A (the reference allele) and a (the
alternative allele). The probabilities P(aa|aa), P(Aa|aa),
P(AA|aa), P(aa|Aa), P(Aa|Aa), and P(AA|Aa) were all
estimated based on the fraction of homozygous and het-
erozygous variants generated in our simulated data that
were called by OMSV to have the corresponding geno-
types. For the remaining three conditional probabilities,
P(Aa|AA) = P(AA|Aa)P(Aa)/P(AA) ≈ P(AA|Aa)P(Aa),
where P(AA|Aa)was again estimated from our simulation
result and P(Aa) was estimated as half the prior SV prob-
ability of the human genome, 8 × 10−3/2 (based on the
median total SV size of 20Mbp per individual reported
in Sudmant et al. [2]), assuming an equal probability
for homozygous and heterozygous SVs. P(aa|AA) was

estimated in exactly the same way. Finally, P(AA|AA) =
1 − P(Aa|AA) − P(aa|AA).
With all these nine probabilities computed, we charted

the probability for each combination of actual and
called genotypes of the trio. Specifically, the father,
mother, and daughter genotypes were denoted as a
triple. For example, (AA, aa,Aa) represents where the
father has the reference genotype, the mother has an
SV in homozygous form, and the daughter has the
SV in heterozygous form. The probability for an actual
genotype combination C1 to be called as a genotype
combination C2 was calculated as the product of the
three corresponding conditional probabilities, assuming
the SV-calling errors of the three individuals are inde-
pendent. For example, P ((AA,AA, aa)|(AA, aa,Aa)) =
P(AA|AA)P(AA|aa)P(aa|Aa).
When zygosity was considered, the actual genotype

combination must come from the set of 15 combina-
tions concordant with Mendelian inheritance, O =
{(AA,AA,AA), (AA,Aa,AA), (AA,Aa,Aa), (AA, aa,Aa),
(Aa,AA,AA), (Aa,AA,Aa), (Aa,Aa,AA), (Aa,Aa,Aa),
(Aa,Aa, aa), (Aa, aa,Aa), (Aa, aa, aa), (aa,AA,Aa),
(aa,Aa,Aa), (aa,Aa, aa), (aa, aa, aa)}. The overall
expected Mendelian concordance rate was then calcu-
lated as

∑
C1∈O

[
P(C1)

∑
C2∈O P(C2|C1)

]
. We estimated

the prior probabilities P(C1) by the number of times such
genotype combination was called by OMSV in the trio
data.
When zygosity was ignored, the expected Mendelian

concordance rate was calculated as

1−
∑

C1∈S P(C1)[P(AA,AA,Aa|C1) + P(AA,AA, aa|C1)].

Comparingwith sequencing-based results for NA12878 SVs
We lifted over the SV lists of NA12878 from Parikh et al.
[30] and Sudmant et al. [2] from hg19 to hg38. We then
filtered both these lists and our list of SVs by removing SVs
with a size smaller than 2000 bp or overlapping the mask
regions. The remaining SVs on the three lists were then
compared.

Production of optical maps from C666-1
High-molecular-weight DNA extraction
The C666-1 cell line was washed with phosphate-buffered
saline (PBS) and spun down to a pellet. Next, 106 cells/mL
were obtained upon resuspension in PBS, and embed-
ded in 1.5% low-melting agarose plugs in 0.5× TBE
(Tris-Borate-EDTA) (CHEF Genomic DNA Plug Kit, Bio-
Rad). Subsequent handling of the DNA followed BioNano
Genomics recommended protocols. The agarose plugs
were incubated with proteinase K with lysis buffer at 50
°C overnight. The plugs were washed with a wash buffer
to stabilize the DNA in the plugs, and the quality was
assessed using pulsed-field gel electrophoresis. A plug
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was then washed with TE (Tris-EDTA) buffer and melted
at 70 °C. After being solubilized with 0.4 U of GELase
(Epicentre), the purified DNA was subjected to 2.5 h of
drop-dialysis and was shredded by nine strokes of gen-
tle pipetting. The viscous DNA was allowed to equilibrate
overnight at room temperature to increase the homogene-
ity. It was then quantified using a Qubit Broad Range
dsDNA Assay Kit (Life Technologies).

DNA labeling
The DNA was labeled using the IrysPrep Reagent Kit
(BioNano Genomics). Specifically, 300 ng of purified
genomic DNA was nicked with 0.3 U of nicking endonu-
clease Nt.BspQI (New England BioLabs, NEB) at 37 °C
for 2 h in buffer BNG3. The nicked DNA was labeled
with a fluorescent-dUTP nucleotide analog using Taq
polymerase (NEB) for 1 h at 72 °C. After labeling, the
nicks were ligated with Taq ligase (NEB) in the presence
of dNTPs. The backbone of fluorescently labeled DNA
was counterstained with YOYO-1 (BioNano Genomics
IrysPrep Reagent Kit).

Data collection and assembly
The DNA was loaded onto a BioNano Genomics IrysChip
and linearized and visualized by the Irys system. The
DNA backbone length and locations of fluorescent labels
along each molecule were detected using the Irys soft-
ware. Single-molecule maps were assembled de novo into
genome maps using the IrysSolve software tools devel-
oped at BioNano Genomics [15].

Comparing C666-1 indels with human segmental
duplications
We downloaded segmental duplication regions in the
human reference genome hg38 from the UCSC Genome
Browser, and annotated them with gene information for
those overlapping gene exons. We then compared the
C666-1 indels identified by OMSV with these segmental
duplication regions to look for overlaps.

Identifying SVs from C666-1 using short reads
We used the default settings of Manta and Pindel to
identify SVs from the sequencing data of C666-1. We con-
sidered only large (>2 kbp) SVs supported by at least 20
reads/read pair.

Selection of C666-1 SVs for experimental validation
We selected SVs identified by OMSV from C666-1 cells
for experimental validation based on the following two
criteria: (1) We selected only insertions and complex SVs,
since these SVs are particularly difficult to identify and
their sizes are difficult to determine from sequencing
reads alone. (2) We selected SVs with primers that could
be designed from non-repeat regions and which would

lead to amplicons analyzable by PCR. The selected SVs
and the designed primers are listed in Additional file 1:
Tables S10–S13.

Integrating sequencing reads to infer precise break points
and inserted sequences
For each homozygous insertion identified by OMSV from
C666-1 that occurs within the region [ o1, o2] of the human
reference genome sequence hg38 with an estimated size
of s, we performed the following steps (Additional file 1:
Figure S9, Table S10):

1. Construct a tentative C666-1 sequence by replacing
the region [ o1, o2] by x copies of N (i.e., unknown)
nucleotides, where x = o2 − o1 + s for an insertion
and x = o2 − o1 − s for a deletion.

2. Use GapCloser [47] to infer the actual sequence of
this N region based on a local assembly of
sequencing reads and the flanking sequences, which
may or may not resolve all the N’s.

3. Align sequencing reads to the region [ o1, o2] of the
reference sequence using BWA [48], visualizing only
read pairs with both sides aligned using IGV [49].

4. Align sequencing reads to the inferred C666-1
sequence using BWA, visualizing only read pairs with
both sides aligned.

5. Use the alignment results to evaluate the confidence
of the SV, the break points, and the inserted
sequences for insertions.

Additional files

Additional file 1: Supplementary tables and figures. Containing Tables
S1–S16 and Figures S1–S11. (PDF 1930 kb)

Additional file 2: SV lists from the CEU (Northern Europeans from Utah)
trio. This file provides the SVs identified by OMSV from the CEU trio. The
first three sheets list the indels identified from NA12878, NA12891, and
NA12892, respectively. The fourth sheet lists the union of these three lists.
The fifth sheet lists all the sites with multiple indels called at the same site
(two insertions, two deletions, or one insertion and one deletion). The sixth
sheet lists the high-confidence indels and non-indels for evaluating
Mendelian concordance. The last sheet lists the complex SVs. (XLSX 570 kb)

Additional file 3: SV list from the C666-1 cell line. This file provides the
SVs identified by OMSV from the C666-1 cell line. The first sheet lists the
indels identified. The second sheet lists all the sites with multiple indels
called at the same site (two insertions, two deletions, or one insertion and
one deletion). The third sheet lists the complex SVs. (XLSX 110 kb)

Additional file 4: Overlapping of C666-1 indels with segmental
duplications. This file provides the overlap of C666-1 indels identified by
OMSV with human segmental duplications. The first three columns show
the genomic location of the SVs. The fourth column shows the SV type. The
fifth and sixth columns show the overlapping segmental duplications (if
any) and the genes of which the exons overlap the segmental duplications
(if any). (XLSX 72 kb)

Additional file 5: Case studies of complex SVs of C666-1. This file provides
visualizations of selected cases of complex SVs identified by OMSV from
C666-1. (PDF 487 kb)
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Additional file 6: Fragile sites in the in silico map based on hg38. This file
provides the locations of fragile sites in the human reference genome
hg38. (BED 90 kb)

Additional file 7: Gaps in hg38. This file provides the locations of
unspecified nucleotides (N’s) in the human reference genome hg38.
(BED 18 kb)

Additional file 8: Pseudo-autosomal regions in hg38. This file provides
the locations of pseudo-autosomal regions in the human reference
genome hg38. (BED 0.078 kb)
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