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The amount of mental simulation tracks uncertainty in the outcome

Jessica B. Hamrick1 (jhamrick@berkeley.edu), Kevin A. Smith2 (k2smith@ucsd.edu),
Thomas L. Griffiths1 (tom griffiths@berkeley.edu), & Edward Vul2 (evul@ucsd.edu)

1University of California, Berkeley, Department of Psychology, Berkeley CA 94720 USA
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Abstract
In this paper, we investigate how people use mental simula-
tions: do people vary the number of simulations that they run
in order to optimally balance speed and accuracy? We com-
bined a model of noisy physical simulation with a decision
making strategy called the sequential probability ratio test, or
SPRT (Wald, 1947). Our model predicted that people should
use more samples when it is harder to make an accurate pre-
diction due to higher simulation uncertainty. We tested this
through a task in which people had to judge whether a ball
bouncing in a box would go through a hole or not. We var-
ied the uncertainty across trials by changing the size of the
holes and the margin by which the ball went through or missed
the hole. Both people’s judgments and response times were
well-predicted by our model, demonstrating that people have a
systematic strategy to allocate resources for mental simulation.
Keywords: mental simulation; intuitive physics; SPRT; com-
putational modeling

Introduction
How should the mind allocate its computational resources?
Consider the game of Angry Birds, where the goal is to
launch birds to knock down a tower. To take a shot, the player
can imagine—or mentally simulate—the path the bird will
take and how it will affect the tower. How long should the
player spend thinking before they let each bird fly? If they
spend very little time thinking, they are likely to miss the tar-
get. But, if they spend too long thinking, it will take much
longer to receive the satisfaction of beating the level. More
generally, if running simulations will provide a more accurate
forecast but incur a sampling cost, how long should an agent
spend simulating before acting?

In the domain of physical reasoning, research suggests
that people make predictions about physical scenes—such as
those found in Angry Birds—by running noisy physical sim-
ulations (Sanborn, Mansinghka, & Griffiths, 2013; Smith &
Vul, 2013; Battaglia, Hamrick, & Tenenbaum, 2013; Smith,
Dechter, Tenenbaum, & Vul, 2013; Smith, Battaglia, & Vul,
2013; Smith & Vul, 2014; Ullman, Stuhlmüller, Goodman,
& Tenenbaum, 2014; Hamrick, Battaglia, Griffiths, & Tenen-
baum, in prep.). However, while this research has investi-
gated the mechanism for making these predictions, there has
been very little investigation into how people use this mecha-
nism. In particular, because the simulations are noisy, it may
be beneficial to run multiple simulations in order to obtain
more accurate predictions. Is there an optimal number of sim-
ulations to run in these situations? If so, do people behave
optimally?

To investigate how many simulations people run, we focus
on a dichotomous prediction task—will a ball in motion on a

computer screen go through a hole, or miss it? To model this
task, we combine a mechanism of noisy physical simulation
with a decision strategy for sample-based agents. We con-
sider the sequential probability ratio test, or SPRT, in which
an agent takes samples that point to one hypothesis or an-
other, and continues to do so until the net samples in favor
of one hypothesis reaches a threshold, at which point that hy-
pothesis wins (Wald, 1947). Often under the name of the
drift-diffusion model, SPRT has been used to explain behavior
in a number of decision-making tasks (e.g. Gold & Shadlen,
2007; Ratcliff & McKoon, 2008; Bitzer, Park, Blankenburg,
& Kiebel, 2014), as it provides an optimal cost-benefit trade-
off between sampling and exploiting information (Wald &
Wolfowitz, 1950). Importantly, the SPRT strategy predicts
that people need to take more samples—and thus also will
take a longer time to respond—when there is roughly equal
evidence for both hypotheses.

Drawing on the results from both physical simulation and
decision-making, we hypothesize that people make predic-
tions by running mental simulations, and that they vary the
number of simulations based on their uncertainty. In this
paper, we first formalize our model, combining the simula-
tion model from Smith and Vul (2013) with the SPRT deci-
sion strategy. Next, we describe an experiment in which we
asked participants to respond to the question of, “will the ball
go through the hole?”, and analyze peoples’ judgments and
response times. We then demonstrate that our model can ex-
plain the empirical pattern of responses and response times
we observed. Finally, we discuss the implications of our re-
sults on the broader, underlying question: how should people
make use of mental simulations?

Making decisions from mental simulations
Consider the task in Figure 1, in which people observe a ball
moving inside a box, and must predict whether it will go
through the hole. How do people solve this problem? Here,
we formalize a model that answers this question by combin-
ing noisy physical simulations with a decision-making strat-
egy known as the sequential probability ratio test, or SPRT.

Modeling physical simulation
There is a growing body of evidence that people reason about
physical scenes like the one in Figure 1 by running noisy
simulations. This hypothesis, referred to as the “noisy New-
ton” hypothesis (Sanborn et al., 2013), states that people have
approximate knowledge of physical laws instantiated in a
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Figure 1: Example experimental trial. Each panel shows a different part of the trial. A: the initial screen presented to the
participant. The arrow was not part of the actual stimuli; it has been added to reflect the animation that participants observed
after pressing “space”. B: the screen is occluded after observing the stimulus presentation. The faded gray line shows the path
the ball took during the initial presentation. C: the final position of the ball, after observing the feedback. As in the middle
panel, the faded gray line shows the path of the ball.

runnable model of intuitive physics. Using this model, they
can extrapolate the future by running a series of noisy sim-
ulations (Smith & Vul, 2013; Battaglia et al., 2013; Smith,
Dechter, et al., 2013; Smith, Battaglia, & Vul, 2013; Smith &
Vul, 2014; Ullman et al., 2014; Hamrick et al., in prep.).

Smith and Vul (2013) investigated the various sources of
uncertainty in these simulations, finding that people’s judg-
ments were best captured by a model that took into account
both perceptual uncertainty (noise in object locations and
their trajectories) and dynamic uncertainty (noise in the ob-
ject’s motion—e.g., a textured floor would cause a ball to de-
viate from a straight line). Using this model, we hypothesize
that people reason about the task in Figure 1 by running noisy
physical simulations to estimate where the ball will go.

The SPRT strategy
If people are running simulations to reason about physical
scenes, then how many simulations do they run? Because
the simulations are noisy, it might be beneficial to run mul-
tiple simulations in order to get a better estimate of the out-
come. However, each simulation comes with a time cost. To
optimize this speed-accuracy tradeoff, we apply the sequen-
tial probability ratio test, or SPRT (Wald, 1947) to the sam-
ples drawn from the physical simulation. By combining these
two models, we can make predictions both for people’s judg-
ments, and how long they take to make those judgments.

We consider binary (or two-alternative forced choice) deci-
sions, where an agent must choose one of two hypotheses, H0
or H1. In the case of the task in Figure 1, H1 is the hypothesis
that the ball goes in, and H0 is the hypothesis that it does not.
The agent may take samples Xi from a Bernoulli distribution
with an unknown parameter p (the probability of sampling
evidence for H1), and from these samples estimate the prob-
ability that H1 is correct: p̂ = 1

N ∑
N
i=1 Xi, where N is the total

number of samples. Then, the decision rule that minimizes
the probability of error is Ĥ(X1, . . . ,XN) = H0 when p̂ < 0.5
and Ĥ(X1, . . . ,XN) = H1 when p̂ > 0.5.

In the best possible case, the agent takes infinitely many

samples and chooses the maximum a posteriori (MAP) hy-
pothesis with probability p. In practice, the agent cannot take
infinitely many samples. Thus, to determine when to stop
sampling (i.e., what the value of N is), the agent continues
to sample until the net evidence YN reaches some threshold,
either YN = T to select in favor of H1 or YN =−T to select in
favor of H0. The net evidence is the sum of samples in favor
of H1 minus those in favor of H0, or YN = ∑

N
i=1 2Xi−1.

Independent of the actual number of samples taken, the
probability of choosing the MAP hypothesis (H1) is:

Pr[Ĥ(YN) = H1 |H1,T, p] =
pT

pT +(1− p)T , (1)

and the expected number of samples taken before reaching
either YN = T or YN =−T is given by:

E[N |T, p] =
T

1−2p
− 2T

1−2p
· 1− ((1− p)/p)T

1− ((1− p)/p)2T , (2)

which is derived by Feller (1968, ch. XIV, eq. 3.4).

Combining simulation and SPRT

In order to combine simulation and SPRT, we used the model
from Smith and Vul (2013) to sample possible trajectories of
the ball, from which we estimated a truncated normal poste-
rior predictive distribution of where the ball will go. From
this distribution, we compute the probability p that the ball
goes in the hole as the probability mass overlapping the hole.
This probability can then be used to compute Equations 1 and
2, which give a formal hypothesis for what decisions people
make, and how long it takes them.

Because our experiment (described in the next section) was
performed online, we needed to fit the parameters of the
model from Smith and Vul (2013) to reflect these different
viewing conditions. To do this, we performed an online repli-
cation of the experiment from Smith and Vul (2013) in which
we asked people to catch a ball like the one in Figure 1 using
a paddle that could move up and down along the y-axis (see
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Figure 2: Response characteristics as a function of trial type. A: each bar shows the proportion of participants saying that
the ball will go in the hole for a particular trial type (x-axis) and hole size (color). B: like the left subplot, but the y-axis
shows bootstrapped logarithmic means of RTs. C: each point corresponds to a different stimulus, trial type, and hole size. The
x-axis is the proportion of participants saying the ball will go in the hole, and the y-axis is the logarithmic mean RT. The black
line indicates a 2nd-order polynomial fit between responses and RTs and the shaded gray region indicates the 95% confidence
interval around the fit.

Appendix). If we assume participants in this auxiliary experi-
ment took on average M samples, then the standard deviation
of their judgments (σ judgments) is not equal to the standard de-
viation of their simulations (σsims), but is instead related by
the equation: σ judgments = σsims/

√
M. Therefore, to estimate

σsims, we allowed for a free parameter, σad j =
√

M, which
multiplied our original estimate of the standard deviation.

Testing the SPRT model of mental simulation

To determine whether people choose simulations in a way
consistent with SPRT, we ran an experiment in which peo-
ple made a binary judgment about whether a ball traveling
across a computer screen would go through a hole (see Fig-
ure 1). We designed the trials to elicit a range of responses by
varying the margin by which the ball either missed or went
through the hole. According to SPRT, when people’s simu-
lations are uncertain—i.e., when the probability that the ball
goes in the hole is close to p = 0.5, such as when the ball
just barely goes through the hole—they should be slower to
respond. People should be faster to respond when their sim-
ulations are more certain, such as when the ball misses the
hole by a wide margin.

Participants

We recruited N = 328 participants on Amazon’s Mechanical
Turk using the psiTurk (McDonnell et al., 2014) experimental
framework. Participants were treated in accordance with UC
Berkeley IRB standards and were paid $0.60 for 6.5 minutes
of work. Participants were randomly assigned to one of eight
conditions, which determined which stimuli they judged (see
Stimuli). We excluded N = 8 participants for answering in-
correctly on more than one control trial (see Stimuli), leaving
a total of N = 320 participants.

Procedure
On each trial, participants were shown the scene, including
the initial position of the ball and the location of the hole.
Participants were instructed to press “space” to begin the trial,
after which an animation of the initial stimulus began (see
Stimuli). As soon as this animation concluded, a gray box
was drawn over the screen, occluding the ball (but not the line
depicting the path it had traveled so far; this was left in as a
reminder of where the ball had come from). Participants were
asked, “will the ball go in the hole?”, and were instructed to
press ‘q’ if they thought it would, and ‘p’ otherwise. After
responding, text appeared saying “Correct!” or “Incorrect.”
The gray occluder was removed, and participants were shown
a feedback animation of the path of the ball (see Stimuli).
The final frame of this animation remained on the screen until
participants pressed “space” to advance to the next trial.

Participants were given seven instruction trials prior to the
experiment to familiarize them with the procedure. Then, par-
ticipants made judgments on 48 experimental trials in a ran-
dom order. There were also eight control trials, which were
shown in a random order after every seven experiment trials.

Stimuli
The stimuli consisted of two animations—the stimulus pre-
sentation and the feedback animations—depicting a blue ball
with a radius of 10px moving in a box with dimensions 900px
× 650px. In both animations, the ball had a velocity of
400px/s, and as it moved, it traced a gray line (see Figure 1).
The stimulus presentation had a duration of 0.775s and de-
picted the ball moving in a particular direction. The feedback
had a duration of 1.5s and picked up where the stimulus pre-
sentation left off; it showed the ball either going into the hole
or bouncing off the wall that contained the hole for. Across
all stimuli, the ball traveled the same distance during both an-
imations, and could bounce on the other walls 0, 1, or 2 times
before going into the hole or hitting the wall with the hole.
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A: Responses to "will the ball go in the hole?"
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Figure 3: Model vs. human comparison. In both plots, each point corresponds to a different stimulus, trial type, and hole size.
Dashed lines indicate perfect correspondence between model and people. A: The x-axis is the probability the model says the
ball will go in the hole, and the y-axis is the proportion of participants saying the ball will go in the hole. B: Color and shape
indicate the number of times the ball bounced during feedback. The x-axis is the model RTs, and the y-axis is the logarithmic
mean RTs of participants.

There were 48 different initial animations, equally bal-
anced by number of bounces during feedback (16 each for 0,
1, and 2 bounces). For each of these initial animations, there
were four trial types and two hole sizes, for a total of eight
versions of each stimulus. The four trial types were: “far in”
(FI), where the ball went through the center of the hole; “far
miss” (FM), where the ball missed the hole by a wide mar-
gin; “close in” (CI), where the ball just barely went through
the hole; and “ close miss” (CM), where the ball just barely
missed the hole. The two hole sizes were 100px and 200px.

In order to ensure that participants never saw the same ini-
tial animation twice, we used a Latin square design of Initial
Animation × Trial Type × Hole Size. Thus, each participant
saw each initial animation once, each trial type 12 times, and
each hole size 24 times. This also ensured that the ball would
go through the hole half the time, so that participants would
not be biased to respond either way. Additionally, there were
seven instruction trials and eight control trials, which were
the same for all participants. The control trials were designed
to be easy and were either of type “straight hit” (with a hole
size of either 300px or 350px) or “far miss” (with a hole size
of 100px). Thus, participants saw a total of 63 trials.

Results

Responses On average, participants were correct 72.4% of
the time and responded that the ball would go in the hole
53.2% of the time (N = 15216), excluding catch trials. There
was a significant effect of trial type on participants’ responses
(χ2(3) = 4477.182, p < 0.001) as well as a significant ef-
fect of hole size (χ2(1) = 168.598, p < 0.001). There was
also an interaction between trial type and hole size (χ2(3) =
64.469, p < 0.001). There was a significant difference be-
tween responses for the two hole sizes (for CI, p < 0.001; for
FI, p < 0.001; and for FM, p < 0.001) except on the CM tri-
als (p = 0.45). Figure 2A shows responses as a function of

trial type and hole size.

Response times For all analyses of response time (RT),
we computed averages using bootstrapped logarithmic means
(exponential of the mean of the log RTs), using 10000
bootstrap samples. On average, participants responded in
RT = 1009.88 msec, 95% CI [998.48,1022.41], excluding
catch trials. There were effects of both trial type (χ2(3) =
63.611, p < 0.001) and hole size (χ2(1) = 8.981, p < 0.01),
as well as an interaction between trial type and hole size
(χ2(3) = 27.146, p < 0.001). As in Figure 2B, hole size only
had an effect in the case of the FI trials (p < 0.001; for CI,
p = 0.11; for CM, p = 0.37; and for FM, p = 0.71).

Participants were fastest to respond on trials with zero
bounces (RT = 799.76 msec, 95% CI [783.01,817.10]),
slower to respond on trials with one bounce (RT =
1027.48 msec, 95% CI [1006.92,1048.72]), and slow-
est to respond on trials with two bounces (RT =
1251.57 msec, 95% CI [1226.62,1277.71]).

Relationship of responses and RTs According to SPRT,
participants should be slower on trials for which they are less
certain (i.e., when their average response is closer to 0.5), and
faster when they are more certain (i.e., when their average re-
sponse is closer to 0 or 1). Figure 2C illustrates that this trend
does indeed appear. To demonstrate this more quantitatively,
we fit both 1st- and 2nd- order polynomial functions to the
relationship between responses and RTs. The 1st-order func-
tion had AIC = 5326 and BIC = 5334, while the 2nd-order
function had AIC = 5065 and BIC = 5077.

Participants’ responses do not fully account for their RTs,
however: the number of bounces is also a strong predic-
tor of RT. Although people do make more variable predic-
tions as bounces are added (Smith & Vul, 2013), and more
variable trials have longer RTs, there appears to be an ad-
ditional time cost. We modified the 2nd-order polynomial
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Model Bounces Correlation

T = 1 0 r = 0.09, 95% CI [−0.00,0.18]
1 r =−0.05, 95% CI [−0.16,0.07]
2 r = 0.05, 95% CI [−0.06,0.16]
all r = 0.66, 95% CI [0.62,0.69]

T = 2 0 r = 0.45, 95% CI [0.37,0.53]
1 r = 0.19, 95% CI [0.07,0.29]
2 r = 0.18, 95% CI [0.07,0.28]
all r = 0.67, 95% CI [0.64,0.70]

Table 1: Correlations between human and model RTs. The
SPRT model (T = 2) can capture variations in RTs within
bounce conditions, while the single sample model (T = 1)
cannot. To compute the correlations within bounce condi-
tions, we grouped stimuli by the number of bounces shown
in the feedback, but within bounce conditions we estimate
E[B] from the simulation model. Thus, the expected number
of bounces varies slightly across stimuli, which is why the
correlations for the T = 1 model are non-zero.

to include the number of bounces as an regressor, and found
that the number of bounces is a strong predictor of RT above
and beyond the responses (with bounces, AIC = 4915 and
BIC= 4931; without bounces, AIC= 5065 and BIC= 5077).
From the coefficient, we find that the each bounce adds RT =
150.38 msec, 95% CI [128.61,172.14]. Thus, even if people
are using a SPRT-like strategy, there is a time cost per bounce
that cannot be explained by simulation variance alone. This
suggests that there is a discrepancy between our simulation
model and the manner in which people are actually running
simulations; investigating the details of this discrepancy is an
area for future work.

Learning To check for practice effects, we computed
Spearman rank correlations (with 95% confidence inter-
vals computed from 10000 bootstrap samples) between
trial number and accuracy, as well as between trial
number and RT. We found an overall effect of prac-
tice on accuracy (ρ = 0.27, 95% CI [0.07,0.45]), though
in the second half of the experiment, this effect dis-
appeared (ρ = −0.08, 95% CI [−0.38,0.22]). There
was also an overall effect of practice on RT (ρ =
−0.89, 95% CI [−0.93,−0.84]), which was strong both in
the first (ρ = −0.88, 95% CI [−0.94,−0.82]) and second
(ρ = −0.66, 95% CI [−0.83,−0.41]) halves of the experi-
ment. Future work will need to include a longer training pe-
riod to alleviate these practice effects.

Model comparison If we assume that every sample takes
the same amount of time, RTs as predicted by the model
should be directly proportional to E[N |T, p]. However, be-
cause bounces were a strong predictor of RT, we also in-
corporated the number of bounces, B, according to RT =
β0 +(β1 +β2 ·E[B]) ·E[N |T, p]. Briefly, β0 is the time to set
up the simulation(s) and to respond, β1 is the time to simulate
with no bounces, and β2 is the time needed to simulate each

bounce. We used the physical simulation model to determine
E[B] as the average number of times the ball bounced across
all model simulations. We then fit all parameters (T , σad j,
β0, β1, and β2) to minimize sum squared error between mod-
eled and observed RTs, using 10000 samples from the physi-
cal simulation model. The best fitting values were: T = 2,
σad j = 0.9,1 β0 = 684.02 msec, 95% CI [601.74,766.31],
β1 = 46.00 msec, 95% CI [19.67,72.33], and β2 =
63.59 msec, 95% CI [57.18,70.00].

We computed Pearson correlations between the model and
people with 95% confidence intervals computed from 10000
bootstrap samples. The fitted model explains participants’
judgments of whether the ball would go in the hole very
well (r = 0.77, 95% CI [0.75,0.78], see Figure 3A), and is
also a good predictor of RT (r = 0.67, 95% CI [0.64,0.70]).
A model that takes one sample each time (equivalent to
SPRT with T = 1) is slightly better at explaining people’s
responses (r = 0.80, 95% CI [0.78,0.81]), and is equally
good at explaining overall RT in terms of correlation (r =
0.66, 95% CI [0.62,0.69]). However, according to both BIC
and AIC, the T = 1 model is slightly worse (BIC = 5040 and
AIC = 5032) than the full model (BIC = 5024 and AIC =
5012) at explaining RTs. Moreover, the T = 1 model can-
not explain variance in RTs within bounces, whereas the full
model with T = 2 can (see Table 1). If the number of bounces
is excluded, the model with T = 2 can predict human RTs to
a moderate degree (r = 0.32, 95% CI [0.28,0.36]), while the
model with T = 1 cannot predict RTs at all.

Discussion
In this paper, we asked the question: do people optimally use
mental simulations? We hypothesized that people use noisy
physical simulations to predict whether a ball would go in a
hole, and that they vary the number of simulations in order to
exploit the fact that some judgments are easier to make than
others. The results of our experiment paint a clear picture that
people do vary the number of samples they take, as evidenced
by the increase in response time on the trials they were most
uncertain about. Comparing people’s responses and response
times to those of the model, we found a strong fit. This pro-
vides evidence that people not only rely on approximate phys-
ical simulations, but that they vary the number of simulations
that they run according to SPRT.

If SPRT is the optimal strategy, then what is the optimal
threshold? We found the best fitting SPRT threshold to be
T = 2, which is consistent with previous research. Accord-
ing to Vul, Goodman, Griffiths, and Tenenbaum (2014), a
sample-based agent should only take a small number of sam-
ples before making a judgment so long as there is any cost
to taking samples. While taking a small number of samples

1If σad j = 0.9, then M < 1. How could people be taking less than
one sample? We suspect that σad j < 1 because the model overesti-
mates the standard deviation of the ball’s trajectory; thus, it is likely
that people are taking one sample, and σad j is adjusting for inflated
uncertainty in the model.
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provides a worse chance of making a good decision than tak-
ing multiple samples, over the long run, this strategy max-
imizes expected utility across a large number of judgments.
There has been some evidence that this story also holds true
for mental simulations. For example, Battaglia et al. (2013)
analyzed the variability of people’s responses in tasks con-
cerning towers of building blocks, and found that participants
seemed to use between three and seven samples per judgment.
However, this paper is the first to provide evidence not only
that people use a small number of simulations, but that they
vary the number of simulations in response to task demands.

Mental simulation is a powerful and flexible tool, as it of-
fers a way to make predictions about scenarios that have not
yet (or may never) come to pass. In this work, we demon-
strated that when people use mental simulation, they are sen-
sitive to their own uncertainty in reasoning about the task and
accordingly adjust how many simulations they run. This re-
sults joins others (e.g. Hamrick & Griffiths, 2014) in explain-
ing not just that people use simulation to reason about the
world, but how they use it. While there are still many ques-
tions left unanswered—e.g., how do people use simulations
in non-binary tasks?—this work brings us one step closer to
understanding of how mental simulation is used.
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Appendix: Replication of Smith and Vul (2013)
Participants We recruited N = 60 participants using psi-
Turk (McDonnell et al., 2014). Participants were treated in
accordance with UC Berkeley IRB standards and were paid
$0.60 for 5 minutes of work. We excluded N = 18 people for
failing to catch the ball on more than one control trial.

Stimuli The stimuli were modified versions of those used
in the main experiment, with two differences. First, instead
of a wall with a hole in it, there was a paddle of length 100px
that could move up and down the y-axis. Second, instead of
a full feedback animation, we just displayed the last frame.
Because there was no hole that could vary by trial, there were
only 48 stimuli, plus seven instruction and eight catch trials.

Procedure Like the main experiment, there were two
phases: the training phase and the experimental phase. On
each trial, participants were shown the scene, including the
initial position of the ball. The paddle begin at the center of
the y-axis, and was freely movable at the start of the trial.
Participants were instructed to press “space” to begin the trial
and display the stimulus animation. After the stimulus pre-
sentation, a gray occluder appeared, as well as a timer that
began counting down for 2 seconds. During this time, partic-
ipants had to move the paddle to catch the ball in the position
it would be when the timer was up. When the timer finished,
the paddle froze, the occluder was removed, and the full path

of the ball was revealed. Participants were told whether they
caught the ball or not, and then instructed to press “space” to
begin the next trial.

Results We fit the model parameters of σp, κv, κm, κb, and
σ0 to participant’s responses (for details, see Smith & Vul,
2013), finding the best fitting parameters to be σp = 31.02,
κv = 255.60, κm = 502850.41, κb = 50.42, and σ0 = 167.06.
With these parameters, we found very similar results to those
from Smith and Vul (2013). In particular, we found a corre-
lation of r = 0.94, 95% CI [0.91,0.97] between the model’s
predicted means of where the ball would end up and people’s
average location of the paddle.
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