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Biophysical Letter
Macrodiscs Comprising SMALPs for Oriented
Sample Solid-State NMR Spectroscopy
of Membrane Proteins
Jasmina Radoicic,1 Sang Ho Park,1 and Stanley J. Opella1,*
1Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
ABSTRACT Macrodiscs, which are magnetically alignable lipid bilayer discs with diameters of >30 nm, were obtained by sol-
ubilizing protein-containing liposomes with styrene-maleic acid copolymers. Macrodiscs provide a detergent-free phospholipid
bilayer environment for biophysical and functional studies of membrane proteins under physiological conditions. The narrow
resonance linewidths observed from membrane proteins in styrene-maleic acid macrodiscs advance structure determination
by oriented sample solid-state NMR spectroscopy.
Styrene-maleic acid (SMA) macrodiscs advance structure
determination of membrane proteins by providing a deter-
gent-free bilayer environment that affords superior align-
ment in the magnetic field of an NMR spectrometer.
Membrane proteins are high-profile targets for structure
determination. They account for �30% of all expressed
genes, and their locations within the membrane barriers of
cells, viruses, and organelles endow them with unique bio-
logical functions, including as receptors, ion channels, and
transporters. The need for new techniques for structure
determination of membrane proteins is evident in the limited
number of structures that have been determined. Moreover,
with few exceptions, the accuracy of the available structures
is compromised by the experimental requirements of current
methods, e.g., truncated or modified protein sequences,
detergent-containing samples, or non-native conditions.
Notably, NMR spectroscopy has the potential to be a general
method for determining the structures of membrane proteins
under near-native conditions. Although earlier studies em-
ployed a variety of micelle, bicelle, and amphipol samples,
current NMR approaches reflect the availability of protein-
containing phospholipid bilayer samples, such as unoriented
liposomes studied by magic angle spinning solid-state NMR
(1,2), rapidly reorienting nanodiscs studied by solution
NMR (3,4), and aligned bilayers studied by oriented sample
(OS) solid-state NMR (5–8).
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The modern era of bilayer samples for membrane proteins
started with the development of nanodiscs by Sligar and co-
workers (9). They introduced a class of amphipathic helical
proteins to the role of membrane scaffold proteins, which
self-assemble as a circular ‘‘belt’’ around phospholipids in
a bilayer to form nanodiscs with �10 nm diameter and are
suitable for chemical, physical, and functional studies of
membrane proteins (10). Moreover, because protein-con-
taining nanodiscs are a chemically defined system, many pa-
rameters can be manipulated, such as lipid composition,
diameter, and lipid-to-protein ratio.

SMA is an amphipathic copolymer with alternating sty-
rene (hydrophobic) and maleic acid (hydrophilic) moieties
that spontaneously solubilizes biological membranes by
forming circular boundaries of defined diameter around
lipid bilayers (11–13) in a manner similar to that of a 14-res-
idue amphipathic polypeptide (14A) (14). As a result, SMA
polymers offer a detergent-free route to the isolation and pu-
rification of membrane proteins. They also enable the prep-
aration of samples from purified proteins in liposomes with
specified lipid compositions. Following the initial incorpo-
ration of PagP and bacteriorhodopsin into SMA nanodiscs
(11), a variety of membrane proteins have been studied us-
ing similar preparations (12,15,16). Further development
has led to similar polymers with greater pH stability and
decreased susceptibility to divalent metal cations, among
other favorable properties (17–22).

Previously, we described the use of 14A to form both
small (nano, �10 nm diameter) and large (macro, �30 nm
diameter) discs by varying the lipid-to-peptide ratio (14).
In contrast to nanodiscs, macrodiscs are large enough to
‘‘immobilize’’ the proteins on NMR timescales and are
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FIGURE 1 31P chemical shift NMR spectra

of DMPC bilayers as a function of tempera-

ture at a resonance frequency of 283 MHz

with 1H decoupling. (A) Bicelles consist of

DMPC and Triton X-100 with q ¼ 5. (B) Mac-

rodiscs consist of DMPC and 14A at amolar

ratio of 13.3. (C–E) Macrodiscs consist of

DMPC and three different SMA polymers.

(C) SMA(1.4:1) are shown with qd ¼ 7.4.

(D) SMA(2:1) are shown with qd ¼ 27.7.

(E) SMA(3:1) are shown with qd ¼ 49.1.

The lipid concentration in all samples is

10% (w/v).

FIGURE 2 Solid-state NMR spectra of the membrane-bound

form of uniformly 15N-labeled Pf1 coat protein in macrodiscs

consisting of DMPC/dimyristoylphosphatidylglycerol (1:1) and

SMA(3:1) with qd ¼ 49.1. The samples are aligned with their

bilayer normals (n) perpendicular to the direction of the 21.1 T

magnetic field, as illustrated in the cartoon. (A) One-dimensional
15N chemical shift spectrum was obtained by cross-polarization

with a 25 ms acquisition time. (B) Two-dimensional 1H-15N

dipolar coupling/15N chemical shift spectrum was obtained us-

ing polarization inversion spin exchange at the magic angle

with 80 t1 increments. Both spectra were obtained at 40�C with

45.5 kHz 1H irradiations and 1 ms cross-polarization mix times.
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magnetically alignable. Higher lipid-to-SMA polymer ratios
result in the formation of larger diameter discs (23–26).
Chemically modified SMA macrodiscs have been shown
to align in a magnetic field, and a solid-state NMR spectrum
of an associated protein has been obtained (17).

Here, we describe the formation of macrodiscs from three
different unmodified SMA polymers and phospholipids.
These discs have favorable properties for OS solid-state
NMR spectroscopy, which we demonstrate with one- and
two-dimensional spectra that display the narrowest linewidths
observed to date from an aligned protein sample. Highly
homogeneous and translucentmacrodiscs are obtained by sol-
ubilizing liposomes with polymers having average styrene:
maleic acid monomer ratios of 1.4:1, 2:1, and 3:1, with molar
ratios of lipid to SMA polymer (qd) of 7.4, 27.7, and 49.1,
respectively. Each qd was optimized by titration of the poly-
mers to the liposomes. The longer the length of the polymer
(SMA(3:1) > SMA(2:1) > SMA(1.4:1)), the smaller the
amount needed to form macrodiscs. Nanodiscs typically
form immediately upon addition of amphipathic peptides or
SMA polymers to liposomes, whereas SMA macrodiscs
require many hours to form (Fig. S3).

In Fig. 1, the alignment and phase behavior of three
SMA macrodisc samples are compared to those of samples
of high q dimyristoylphosphatidylcholine (DMPC)/Triton
X-100 bicelles (27) and DMPC/14A macrodiscs (14). The
31P NMR spectra of bicelles (Fig. 1 A), 14A macrodiscs
(Fig. 1 B), and three different SMA macrodiscs (Fig. 1,
C–E) demonstrate that the DMPC bilayers are well aligned
between 30 and 50�C with their normals perpendicular to
the direction of the applied magnetic field because
they display a single resonance with a chemical shift of
�13 5 2 ppm. However, differences are observed among
the samples at temperatures below the gel to liquid crystal
phase transition of DMPC. The 31P chemical shift of
DMPC in SMA macrodiscs does not change between 20
and 50�C for SMA(2:1) macrodiscs or between 25 and
50�C for SMA(1.4:1) and SMA(3:1) macrodiscs. This indi-
cates that their magnetic alignments are stable over a wide
range of temperatures. Triton X-100 bicelles exist in an
isotropic phase below 10�C. The 14A macrodiscs exist in
an isotropic phase between 5 and 15�C. Notably, SMA
macrodiscs display no evidence of an isotropic phase above
5�C and exist as aligned discs above 25�C.

The protein-containing SMA macrodiscs were prepared
by solubilizing the proteoliposomes with SMA polymer
(see Supporting Materials and Methods for further details).
The 15N amide backbone resonances of Pf1 coat protein in
SMA macrodiscs (Fig. 2 A; Fig. S1 A) have linewidths as
Biophysical Journal 115, 22–25, July 3, 2018 23



FIGURE 3 (A) 15N chemical shift NMR

spectrum of ‘‘flipped’’ Pf1 coat protein in

SMA(3:1) macrodiscs was obtained by

cross-polarization after addition of 5 mM

TmCl3 to the sample used in Fig. 2. The

membrane normal is parallel to the field,

as illustrated in the cartoon. (B) 31P chemi-

cal shift NMR spectrum of DMPC:SMA(3:1)

macrodiscs in the presence of 4 mM

YbCl3. (Also shown in Fig. S4)
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narrow as 0.3 ppm, which provide better spectral resolution
than previously observed in Triton X-100 bicelles (27)
(Fig. S1 B) and 14Amacrodiscs (14). The chemical shift dif-
ferences between the spectra of Pf1 coat protein in SMA
macrodiscs and in Triton X-100 bicelles are due mainly to
the larger order parameter of the SMA macrodiscs (Figs.
S1 and S2). Resonances from residues in the transmembrane
helix (60–100 ppm) as well as those from residues in the
adjacent loop region (110–140 ppm) have similar, uniform
line shapes, suggesting that the protein adopts a single
conformation in SMA macrodiscs.

The two-dimensional 1H/15N polarization inversion spin
exchange at the magic angle (28) spectrum shown in
Fig. 2 B is fully resolved with narrow linewidths in both the
15N chemical shift and 1H-15N dipolar coupling frequency di-
mensions. The orientationally dependent frequencies of the
resonances provide the angular constraints used in protein
structure calculations. We note that two sets of signals (G23/
I26 and G24/G28) that overlap in the equivalent spectrum of
the protein in Triton X-100 bicelles (14) (Fig. S2 B) are fully
resolved in the spectra in Fig. 2 B and Fig. S2A because of the
narrower linewidths observed in SMA macrodiscs.

The lipid bilayer normal of magnetically aligned bicelles
and 14Amacrodiscs is generally perpendicular to the direction
of the magnetic field, as illustrated by the cartoon in Fig. 2.
However, it is possible to ‘‘flip’’ the normal to the parallel di-
rection with the addition of lanthanides (29). This is also the
case for SMAmacrodiscs, as shown by the spectra of the pro-
tein and lipids in Fig. 3, whichwere obtained after the addition
of TmCl3 or YbCl3. The total span of the 15N chemical shift
frequencies is increased to �170 ppm (Fig. 3 A), and that of
the 31P chemical shift frequencies is increased to 18.5 ppm
(Figs. 3 B and S4), which is consistent with a 90� change of
the direction of alignment of the SMA macrodiscs. Quantita-
tive titration ofYbCl3 toSMAmacrodiscs did not yield spectra
with any 31P chemical shift values other than those observed in
Fig. 1E and Fig. 3B; thus, we find no evidence of intermediate
orientations of the bilayer normal in SMA macrodiscs
(Fig. S4). This is in contrast to the continuous range of 31P
chemical shift frequencies observed for macrodiscs prepared
from chemically modified SMA polymers (17).

SMA macrodiscs provide a stable lipid bilayer environ-
ment that is well suited for biophysical and functional
24 Biophysical Journal 115, 22–25, July 3, 2018
studies of membrane proteins. They can be prepared using
a variety of phospholipids and a number of different SMA
polymers. They are well aligned over a broad range of
temperatures, and their orientation can be shifted from
perpendicular to parallel with the addition of lanthanides.
Moreover, they are applicable to membrane proteins and
binding partners that are sensitive to detergents. SMA
macrodiscs are particularly well suited for immobilizing
and aligning membrane proteins for OS solid-state NMR
structure determination. Notably, in these samples the pro-
teins are in a near-native environment under physiological
conditions, as required to ensure that their structures
represent the functional conformations of the proteins.
SUPPORTING MATERIAL

Supporting Materials and Methods and four figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(18)30627-1.
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