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ARTICLE

Decoding speech from spike-based neural
population recordings in secondary auditory cortex
of non-human primates
Christopher Heelan 1,2,6*, Jihun Lee1,6*, Ronan O’Shea1, Laurie Lynch1, David M. Brandman3,

Wilson Truccolo4,5 & Arto V. Nurmikko1,5*

Direct electronic communication with sensory areas of the neocortex is a challenging

ambition for brain-computer interfaces. Here, we report the first successful neural decoding

of English words with high intelligibility from intracortical spike-based neural population

activity recorded from the secondary auditory cortex of macaques. We acquired 96-channel

full-broadband population recordings using intracortical microelectrode arrays in the rostral

and caudal parabelt regions of the superior temporal gyrus (STG). We leveraged a new neural

processing toolkit to investigate the choice of decoding algorithm, neural preprocessing,

audio representation, channel count, and array location on neural decoding performance. The

presented spike-based machine learning neural decoding approach may further be useful in

informing future encoding strategies to deliver direct auditory percepts to the brain as

specific patterns of microstimulation.
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E lectrophysiological mapping by single intracortical electro-
des has provided much insight in revealing the functional
neuroanatomical areas of the primate auditory cortex.

Directly relevant to this work is the investigation of the role of the
macaque secondary auditory cortex in processing complex
sounds through intracortical microelectrode array (MEA) popu-
lation recordings. Whereas the core of the secondary auditory
cortex lies in the lateral sulcus, portions of the adjacent belt and
parabelt lie on the superior temporal gyrus1 (STG). This area is
accessible to chronic implantation of MEAs for large channel-
count broadband recording (see “Methods” section). Prior
seminal research into the STG has provided understanding of the
hierarchical processing of auditory objects by producing detailed
maps of the cellular level characteristics through microwire
recordings1–6. The connection of non-human primate (NHP)
research to human speech processing has been reviewed7. Addi-
tional techniques to acquire global maps of the NHP auditory
system (via tracking metabolic pathways) include fMRI8 and 2-
deoxyglucose (2-DG) autoradiography9.

Other relevant animal studies have examined the primary
auditory cortex (A1) in ferrets (single neuron electrophysiology)
to unmask representations underlying tonotopic maps10,11. This
research has demonstrated encoding properties based on spec-
trotemporal receptive fields (STRFs) of the primary sensory
neurons in A1. Further, studies in marmosets have yielded key
insights into neural representation and auditory processing by
mapping neuronal spectral response beyond A1 into the belt and
parabelt regions of the secondary auditory cortex through
intrinsic optical imaging12. Results suggest that the secondary
auditory cortex contains distributed spectrotemporal representa-
tions in accordance with findings from microelectrode mapping
of the macaque STG4. Another recent study examined feedback-
dependent vocal control in marmosets and showed how the
feedback-sensitive activity of auditory cortical neurons predicts
compensatory vocal changes13. Importantly, this work also
demonstrated how electrical microstimulation of the auditory
cortex rapidly evokes similar changes in speech motor control for
vocal production (i.e., from perception to action).

We also note relevant human research which mainly deployed
intracranial electrocorticographic (ECoG) surface electrode arrays
in the STG14–22. While surface electrodes are thought to report
neural activity over large populations of cells as field potentials,
relatively accurate reconstructions of human and artificial sounds
have been achieved in short-term recordings of patients during
clinical epilepsy assessment. The recordings generally focus on
multichannel low-frequency (0–300 Hz) local field potential
(LFP) activity, such as the high-gamma band (70–150 Hz), using
linear and nonlinear regression models. LFP decoding has been
used to reconstruct intelligible audio directly from brain activity
during single-trial sound presentations15,19. When combined
with deep learning techniques, electrophysiology data recorded by
ECoG grids has been decoded to reconstruct English language
words and sentences23. These studies provided insight into how
the STG encodes more complex auditory aspects such as envel-
ope, pitch, articulatory kinematics, spectrotemporal modulation,
and phonetic content in addition to basic spectral and temporal
content. One study augmented findings from ECoG studies by
recording from an MEA implanted on the anterior STG of the
patient where the single or multiunit activity showed selectivity to
phonemes and words. This work provided evidence that the STG
is involved in high-order auditory processing24.

In this paper, we investigated whether accurate low-order
spectrotemporal features can be reconstructed from high spatial
and temporal resolution MEA-based signals recorded in the
higher-order auditory cortex. Specifically, we explored how dif-
ferent decoding algorithms affect reconstruction quality when

availed to large channel count neural population recordings of
spikes. We implanted two 96-channel intracortical MEAs in the
parabelt areas of the secondary auditory cortex in the rhesus
macaque model and demonstrated the successful decoding of
multiunit spiking activity to reconstruct intelligible English words
and macaque call audio (see Fig. 1). Further, using a novel neural
signal processing toolkit25 (NPT), we demonstrated the effects of
decoding algorithm, neural preprocessing, audio representation,
channel count, and array location on decoding performance by
evaluating thousands of unique neural decoding models. Through
this methodology, we achieved high fidelity audio reconstructions
of English words and macaque calls through the successful
decoding of multiunit spiking activity.

Results
A Supplementary Summary Movie26 was prepared to give the
reader a concise view of this paper. We used 96-channel intra-
cortical MEAs to wirelessly record27,28 broadband (30 kS/s)
neural activity targeting Layer 4 of the STG in two NHPs (see
“Methods” section). We played audio recordings of 5 English
words and a single macaque call over a speaker in a random
order. Using a microphone, we recorded the audio playback
synchronously with neural data.

We performed a large-scale neural decoding grid-search to
explore the effects of various factors on reconstructing audio from
the subject’s neural activity. This grid-search included all steps of
the neural decoding pipeline including the audio representation,
neural feature extraction, feature/target preprocessing, and neural
decoding algorithm. In total, we evaluated 12,779 unique
decoding models. Table 1 enumerates the factors evaluated by the
grid-search. Additionally, we evaluated decoder generalization by
characterizing performance on a larger audio data set (17 English
words) and on single trial audio samples (3 English words not
included in the training set).

Supplementary movies. During our analysis, we primarily used
the mean Pearson correlation between the target and predicted
audio mel-spectrogram bands as a performance metric for neural
decoding models15. We present examples in a Supplementary
Correlation Movie29 that demonstrates various reconstructions
and their corresponding correlation scores. This movie aims to
provide subjective context to the reader regarding the intellig-
ibility of our experimental results. Additionally, we evaluated
neural decoding models with other metrics that quantified
reconstruction performance on specific audio aspects including
sound envelope, pitch, loudness, and speech intelligibility (see
“Other decoding algorithm performance metrics” section). We
have also provided a Summary Movie that describes the presented
findings26.

Neural decoding algorithms. Neural decoding models regressed
audio targets on neural features. We used the mel-spectrogram30

representation (128 bands) of the audio as target variables (one
target per band) and multiunit spike counts as neural features
(one feature per MEA channel) (see “Methods” section). Both the
mel-spectrogram bands and multiunit spike counts were binned
into 40 ms time bins, and all audio was reconstructed on a bin-
by-bin basis (i.e., no averaging across bins or trials).

Data were collected from a total of 3 arrays implanted in 2
NHPs (RPB and CPB arrays in NHP-0 and an RPB array in
NHP-1). Data for each array were analyzed independently (i.e. no
pooling across arrays or NHPs). Unless explicitly stated, all
models were trained on 5 English words using all 96 neural
channels from the NHP-0 RPB array. Each array data set
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contained �40 repetitions of each word (words randomly
interleaved) collected over multiple sessions.

To mitigate decoding model overfitting, data collected from a
given array was sequentially concatenated across recording sessions,
and the resulting array data sets were sequentially split into training
(80%), validation (10%), and testing (10%) sets. The primary

motivation for this work was to enable future active listening tasks
that will consist of a limited number of English words (�3 to 5
words) and subsequent neural encoding experiments that will elicit
auditory sensations through patterned microstimulation. As such,
multiple presentations of all 5 words were present in the training,
validation, and test sets. For an analysis of decoding performance

Fig. 1 We implanted two NHPs with MEAs in the STG. We presented the subject with six recorded sounds and processed neural and audio data on a
distributed cluster in the cloud.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0707-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:466 | https://doi.org/10.1038/s42003-019-0707-9 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


on words not included in the training set, see “Decoding larger
audio sets and single trial audio” section.

We evaluated seven different neural decoding algorithms
including the Kalman filter, Wiener filter, Wiener cascade, dense
neural network (NN), simple recurrent NN (RNN), gated
recurrent unit (GRU) RNN, and long short-term memory
(LSTM) RNN (see “Methods” section). Each neural network
consisted of a single hidden layer and an output layer. All models
were trained on Google Cloud Platform n1-highmem-96
machines with Intel Skylake processors (see “Methods” section).
We calculated a mean Pearson correlation between the target and
predicted mel-spectrogram by calculating the correlation coeffi-
cient for each spectrogram band and averaging across bands15.
We applied Fisher’s z-transform to correlation coefficients before
averaging across spectrogram bands and before conducting
statistical tests to impose additivity and to approximate a normal
sampling distribution (see “Methods” section). Results are shown
in Fig. 2.

We observed the Kalman filter (trained in 0.42 s) provided the
lowest overall performance with the top model achieving a 0.57
mean validation correlation (MVC) and 0.68 mean training
correlation (MTC). The top Wiener filter (trained in 2 s)
performed similarly to the Kalman filter on the validation set
(0.60 MVC) but showed an increased ability to fit the training set
(0.78 MTC). A Wiener cascade (trained in 3 min and 33 s) of
degree 4 beat the top Wiener filter with a MVC and MTC of 0.67
and 0.82, respectively.

A basic densely connected neural network (trained in 55 s)
performed similarly to the top Wiener cascade decoder with a
slightly improved MVC (0.69) and MTC (0.94). While the top
simple RNN (trained in 2 min and 22 s) (0.94 MTC) decoder fit
the training data as well as the dense neural network, it did
generalize better to unseen data (0.78 MVC). Lastly, top GRU
RNN (trained in 3 h and 46 min) (0.85 MVC, 0.97 MTC) and
LSTM RNN (trained in 3 h and 37 min) (0.88 MVC, 0.98, MTC)
decoders achieved similar performance with the LSTM RNN
providing the best overall performance of all evaluated decoders
on the validation set. The LSTM RNN also showed the highest

robustness to overfitting with the top model performing only 8%
worse on the validation set compared to the training set. For a
comparison of how different neural network sizes affected
performance, please see Supplementary Fig. 1. Note that neural
network models were trained without the use of a GPU due to our
heavy utilization of multiprocessing across hundreds of CPU
cores (see “Methods” section). Future software iterations will
enable multiprocessing on GPU-enabled systems.

To examine the statistical significance of these results, we
performed an unbiased multiple comparisons statistical test
followed by a post-hoc Tukey-type test31 using MVC values for
the top-performing models (see “Methods” section). We found
the LSTM RNN significantly outperformed all other decoding
algorithms on the validation set (p-value < 0.001) except for the
GRU RNN (p-value < 0.175). The GRU RNN significantly
outperformed the simple RNN (p-value < 0.017), and the simple
RNN significantly outperformed the dense NN (p-value < 0.017).
Conversely, the dense NN did not significantly outperform the
Wiener cascade (p-value < 0.900) or the Wiener filter (p-value <
0.086). These results indicate that recurrent neural networks
(particularly, LSTM RNNs) provide a significant decoding
improvement over traditional neural networks and other
decoding methods on the performed audio reconstruction task.
For a complete table of the decoding algorithm statistical
significance results, please see Supplementary Table 1. For a
comparison of reconstructed mel-spectrograms generated by each
algorithm, please see Supplementary Fig. 2.

Other decoding algorithm performance metrics. In addition to
examining the mean correlation performance of neural decoding
algorithms on the mel-spectrogram bands, we investigated how
decoding algorithms recovered specific audio aspects including
envelope, pitch, and loudness. We also quantified audio recon-
struction intelligibility using the extended short-time objective
intelligibility23,32 (ESTOI) and spectro-temporal modulation
index33 (STMI) metrics. For a description of these metrics, please
see “Methods” section.

We found LSTM RNN decoders provided the best performance
across all evaluated metrics (see Fig. 3). The LSTM RNN achieved
the highest envelope correlation on the validation set compared to
all algorithms (p-value < 0.005) except for the GRU RNN (p-value
< 0.20). For gross pitch error, the LSTM performed similarly to the
GRU RNN (p-value < 0.29) and simple RNN (p-value < 0.20) but
outperformed all other algorithms (p-value < 0.001). We observed a

Fig. 2 We evaluated the performance of seven different neural decoding
algorithms (color-coded) over both the training data set (x-axis) and
validation data set (y-axis). The top performing model for each algorithm
is marked with a star. The distance from a given point to the overfitting line
represents the degree to which the model overfit the training data.

Table 1 The searched algorithm and hyperparameter space.

Neural decoders

Kalman filter C: 0.1, 1, 10
Wiener filter
Wiener cascade Degree: 2, 3, 4, 5
Dense Neural Network (NN) # Units: 256, 512, 1024, 2048
Simple Recurrent NN (RNN) # Units: 256, 512, 1024, 2048
Gated Recurrent Unit (GRU) RNN # Units: 256, 512, 1024, 2048
Long Short-Term Memory
(LSTM) RNN

# Units: 256, 512, 1024, 2048

Neural feature extraction

Array Location: rostral parabelt (RPB), caudal
parabelt (CPB)

Filter Low Cutoff (Hz): 100 to 1000, increments of 100
Filter High Cutoff (Hz): 1000 to 10000, increments of 1000
Threshold Factor: 2, 3, 4, 5
# Channels: 2, 4, 8, 16, 32, 64, 96
Feature Window Span: 4, 8, 16

Audio processing

Sounds: “tree”, “good”, “north”, “cricket”, “program”,
macaque call

# Sounds: 1, 2, 3, 4, 5, 6
# Mel-Bands: 32, 64, 128, 256
Hop Size (ms): 10, 20, 30, 40, 50
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similar trend when evaluating the mean loudness factor as the
LSTM RNN did not significantly outperform the GRU RNN
(p-value < 0.76) or simple RNN (p-value < 0.11), but it did
outperform all other algorithms (p-value < 0.05). For intelligibility,
the LSTM RNN performed similarly to the other neural network
decoding algorithms on ESTOI including the dense NN (p-value <
0.23), simple RNN (p-value < 0.09), and GRU RNN (p-value <
0.89) while performing significantly better than all other algorithms
(p-value < 0.008). Lastly, the LSTM RNN achieved a significantly
higher STMI score than all other algorithms (p-value < 0.001)
except for the Wiener cascade (p-value < 0.08) and GRU RNN
(p-value < 0.20).

Neural feature extraction. To prepare neural features for
decoding models, we bandpass filtered the raw neural data and
calculated unsorted multiunit spike counts across all channels.

We first bandpass filtered the raw 30 kS/s neural data using a
2nd-order elliptic filter in preparation for threshold-based
multiunit spike extraction. To explore the effect of the filter’s
low and high cutoff frequencies, we performed a grid-search that

evaluated 99 different bandpass filters. For each filter, four
different LSTM RNN neural decoding models were evaluated. We
found that using a low cutoff of 500–600 Hz and a high cutoff of
2000–3000 Hz (shown with yellow dotted lines) provided a
marginal improvement in decoding performance (see Fig. 4).

We used multiunit (i.e., unsorted) spike counts as neural
features for decoding models. After filtering, we calculated a noise
level for each neural channel over the training set using median
absolute deviation34. These noise levels were multiplied by a
scalar “threshold factor” to set an independent spike threshold for
every channel (same threshold factor used for all channels). We
extracted negative threshold crossings from the filtered neural
data (i.e., multiunit spikes) and binned them into spike counts
over non-overlapping windows corresponding to the audio target
sampling (see “Audio representation” section).

While we observed optimal values for the threshold factor, we
found no clear pattern across decoding algorithms. The Wiener
cascade was the most sensitive to threshold factor with a 9.1%
difference between the most and least optimal values. GRU RNN
decoders were the least sensitive to threshold factor with a 1.1%
difference between the best and worst-performing values.

Fig. 3 We compared the effectiveness of decoding algorithms at reconstructing various audio aspects and generating intelligible audio using six
different performance metrics. The top-performing algorithm across all metrics was the LSTM RNN (red stars).
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Except for the Kalman filter which processed a single input at a
time, we used a window of sequential values for each feature as
inputs to the decoding models. Each window was centered on the
current prediction with its size controlled by a “feature window
span” hyperparameter (length of the window not including the
current value). We evaluated three different feature window spans
(4, 8, and 16).

Both the GRU RNN and LSTM RNN showed higher
performance with a larger feature window span (16); however,
the other decoding algorithms achieved top performance with a
smaller value (8). The LSTM RNN showed the most sensitivity to
this hyperparameter with a 13.4% difference between a feature
window span of 16 and 4. The Wiener filter was the least sensitive
with a 3.1% difference between the best and worst-performing
values. These results demonstrated the importance of determin-
ing the optimal feature window span when leveraging LSTM
RNN neural decoding models.

Previous work has shown that increased neuronal firing rates
correlate strongly with feature importance when using LSTM
RNN models for neural decoding35. Therefore, to investigate the
effect of channel count on decoding performance, we ordered

neural channels according to the highest neural activity (i.e.,
highest counts of threshold crossings) over the training data set.
For seven different channel counts (2, 4, 8, 16, 32, 64, and 96), we
selected the top most active channels and built LSTM RNN
decoding models using only the subselected channels.

As shown in Fig. 5, we generally observed improvements in
performance as channel count was increased. We found that
selecting the 64 most active neural channels achieved the best
performance on the validation set for an audio data set consisting
of 5 English words.

Audio representation. We converted raw recorded audio to a
mel-frequency spectrogram30. We examined two hyperpara-
meters for this process including the number of mel-bands in the
representation and the hop size for the short-time fourier trans-
form (STFT). We evaluated four different values for the number
of mel-bands (32, 64, 128, and 256) and five different hop size
values (10, 20, 30, 40, and 50 ms). To reconstruct audio, the mel-
spectrogram was first inverted, and the Griffin-Lim algorithm36

was used to reconstruct phase information.

Fig. 5 Every point represents an LSTM RNN neural decoder trained on audio data sets containing between 1 and 5 English words. In general, increased
channel counts improved performance on more complex audio data sets. Note that the silver star (64 channels) is covered by the red star (96 channels) in
the plot.

Fig. 4 A performance heat-map of the grid-searched bandpass filter cutoff frequencies. We evaluated 4 LSTM RNN neural decoding models for 99
different bandpass filters. The left and right plots show max and mean performance, respectively, for the filters. We observed a marginal improvement in
decoding performance when using a low cutoff of 500–600Hz and a high cutoff of 2000–3000Hz.
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During preliminary studies, we observed increased decoder
performance (mean validation correlations) when using fewer
mel-bands and longer hop sizes. However, the process of
performing mel-compression with these hyperparameter settings
caused reconstructions to become unintelligible even when
generated directly from the target mel-spectrograms (i.e.,
emulating a perfect neural decoding model). Therefore, by
subjectively listening to the audio reconstructions generated from
the target mel-spectrograms, we determined that a hop size of 40
ms and 128 mel-bands provided the best trade-off of decoder
performance and result intelligibility.

To investigate the effect of audio complexity on decoding
performance, we subselected different sets of sounds from the
recorded audio data prior to building decoding models. Audio
data sets containing 1 through 5 sounds were evaluated using the
following English words: “tree”, “good”, “north”, “cricket”, and
“program” (for macaque call results, see “Macaque call recon-
struction” section). For each audio data set, we then varied the
channel count (see “Neural feature extraction” section) across
seven different values (2, 4, 8, 16, 32, 64, and 96).

As shown in Fig. 5, we found the optimal channel count varied
with task complexity as increased channel counts generally
improved performance on more complex audio data sets.
However, we also observed decoders overfit the training data
when the number of neural channels was too high relative to the
audio complexity (i.e., number of sounds). Similar results have
been observed when decoding high-dimensional arm movements
using broadband population recordings of the primary motor
cortex in NHPs37.

Array location. We implanted two NHPs (NHP-0 and NHP-1)
with 96-channel MEAs in the rostral parabelt (RPB) and caudal
parabelt (CPB) of the STG (see Fig. 1). We repeated the channel
count experiment(see “Neural feature extraction” section) for three
different arrays, including the NHP-0 RPB and CPB arrays and the
NHP-1 RPB array (see Fig. 6). We successfully reconstructed
intelligible audio from all three arrays with the RPB array in NHP-
0 outperforming the other two arrays on the validation set (p-value
< 0.001). However, the successful reconstruction of intelligible
audio from all three arrays suggests the neural representation of
complex sounds is spatially distributed in the STG network. Future
work will explore the benefit of synchronously recording from
rostral and caudal arrays to enable decoding of more complex
audio data sets.

Macaque call reconstruction. In addition to the English words
enumerated in Table 1, we investigated neural decoding models

that successfully reconstructed macaque call audio from neural
activity. One audio clip of a macaque call was randomly mixed in
with the English word audio during the passive listening task.

The addition of the macaque call to the audio data set
improved the achieved mean validation correlation from a 0.88 to
a 0.95 despite increasing target audio complexity. This was due to
the macaque call containing higher frequency spectrogram
components compared to audio of the 5 English words (see
“Audio preprocessing” section). By successfully learning to
predict these higher frequency spectrogram bands, neural
decoding models achieved a higher average correlation across
the full spectrogram than when those same bands contained more
noise. While adding the macaque call improved the average
correlation scores, it also decreased the top ESTOI score from a
0.59 to a 0.56 on the validation set.

Top performing neural decoder. Given an audio data set of 5
English words and decoding all 96 channels of neural data, the
top performing neural decoder was a LSTM RNN (2048 recurrent
units) model that achieved a 0.98 mean training correlation, 0.88
mean validation correlation, and 0.79 mean testing correlation.
This model successfully reconstructed intelligible audio from RPB
STG neural spiking activity with a validation ESTOI of 0.59 and a
testing ESTOI of 0.54. Models were ranked by validation set mean
mel-spectrogram correlation.

Decoding larger audio sets and single trial audio. While the
primary objective of this work was to enable future active lis-
tening NHP tasks that will consist of a limited number of English
words (�3 to 5 words) and subsequent neural encoding work, we
also performed a preliminary evaluation of the generalizability of
the presented decoding methods on larger audio data sets and
single trial audio presentations. We used the top performing
neural decoder parameters (see “Top performing neural decoder”
section) to train a model on a larger audio data set consisting of
17 English words. We then validated the resulting model on audio
consisting of those 17 English words as well as 3 additional
English words that were not included in the training set (i.e.,
single trial audio presentations). We found the resulting model
successfully reconstructed the 17 training words (MVC of 0.90).
The model also successfully reconstructed the simplest of the
3 single trial words (“two”) with performance decreasing as the
word audio complexity increased (“cool” and “victory”) (see
Table 2). These results suggest that the utilized decoding methods
can generalize to single trial audio presentations given a suffi-
ciently representative training set. Future work will further

Fig. 6 Intelligible audio reconstructions generated using three different arrays in two different NHPs in the RPB and CPB regions of the STG with RPB
models achieving the highest performance on the validation set.
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characterize the effect of training data audio complexity on
decoder generalization.

Discussion
The work presented in this paper builds on prior foundational
work in NHPs and human subjects in mapping and interpreting
the role of the secondary auditory cortex by intracranial recording
of neural responses to external auditory stimuli. In this paper, we
hypothesized that the STG of the secondary auditory cortex is
part of a powerful cortical computational network for processing
sounds. In particular, we explored how complex sounds such as
English language words were encoded even if unlikely to be
cognitively recognized by the macaque subject.

We combined two sets of methods as part of our larger
motivation to take steps towards human cortical and speech
prostheses while leveraging the accessibility of the macaque
model to chronic electrophysiology. First, the use of 96-channel
intracortical MEAs was hypothesized to yield a new view of STG
neural activity via direct recording of neural population (spiking)
dynamics. To our knowledge, such multichannel implants have
not been implemented in a macaque STG except for work that
focused on the primary A1 and, to a lesser extent, the STG in this
animal model38. Second, given the rapidly expanding use of deep
learning techniques in neuroscience, we sought to create a suite of
neural processing tools for high-speed parallel processing of
neural decoding models. We also deployed methods developed
for voice recognition and speech synthesis which are ubiquitous
in modern consumer electronic applications. We demonstrated
the reconstructed audio recordings successfully recovered the
sounds presented to the NHP (see Supplementary Summary
Movie26 and Correlation Movie29).

We performed an end-to-end neural decoding grid-search to
explore the effects of signal properties, algorithms, and hyper-
parameters on reconstructing audio from full-broadband neural
data recorded in STG. This computational experiment resulted in
neural decoding models that successfully decoded neural activity
into intelligible audio on the training, validation, and test data
sets. Among the seven evaluated decoding algorithms, the Kal-
man filter and Wiener filter showed the worst performance as
compared to the Wiener cascade and neural network decoders.
This suggests that spiking activity in the parabelt region has a
nonlinear relationship to the spectral content of sounds. This
finding agrees with previous studies in which linear prediction
models performed poorly in decoding STG activity15,23,24.

In this work, we found that recurrent neural networks out-
performed other common neural decoding algorithms across six
different metrics that measured audio reconstruction quality
relative to target audio. These metrics evaluated reconstruction
accuracy on mel-spectrogram bands, sound envelope, pitch, and
loudness as well as two different intelligibility metrics. LSTM
RNN decoders achieved the top scores across all six metrics.
These findings are consistent with those of other studies in

decoding neural activity recorded from the human motor cor-
tex39, and recent work from our group has demonstrated the
feasibility of using LSTM RNN decoders for real-time neural
decoding40.

While LSTM RNN achieved the top performance on all eval-
uated metrics, we found no significant difference in performance
between the LSTM RNN and GRU RNN across all performance
metrics. Conversely, we observed a significant difference in per-
formance from simple RNN decoders on three of the six metrics.
These results indicated that the addition of gating units to the
recurrent cells provided significant decoding improvements when
reconstructing audio from STG neural activity. However, the
addition of memory cells (present in LSTM RNN but not GRU
RNN) did not significantly improve reconstruction performance.
These results demonstrated that similar decoding performance
was achieved whether the decoder used all available neural history
(i.e., GRU RNN) or learned which history was most important
(i.e., LSTM RNN). The similarity of the LSTM RNN and GRU
RNN has also been observed when modeling polyphonic music
and speech signals41.

In addition to the effect of decoding algorithm selection, we
also showed that optimizing the neural frequency content via a
bandpass filter prior to multiunit spike extraction provided a
marginal decoding performance improvement. These results raise
the question whether future auditory neural prostheses may
achieve practically useful decoding performance while sampling
at only a few kilohertz. We observed no consistent effect when
varying the threshold factor used in extracting multiunit spike
counts. When using an LSTM RNN neural decoder, longer
windows of data and more LSTM nodes in the network improved
decoding performance. In general, we found the complexity of the
decoding task to affect the optimal channel count with increased
channel counts improving performance on more complex audio
data sets. However, decoders overfit the training data when the
number of neural channels was too high relative to the audio
complexity (i.e., number of sounds). Due to these results, we will
continue to grid-search threshold factor, LSTM network size, and
the number of utilized neural channels during future
experiments.

While we observed some improvement in decoding perfor-
mance from the MEAs implanted in the rostral parabelt STG
compared to the array implanted in the caudal parabelt STG, this
work does not fully answer the question whether location speci-
ficity of the MEA is critical within the overall cortical implant
area, or whether reading out from the spatially extended cortical
network in the STG is relatively agnostic to the precise location of
the multichannel probe. Nonetheless, we plan to utilize infor-
mation simultaneously recorded from two or more arrays in
future work to test if this enables the decoding of increasingly
complex audio (e.g., English sentence audio or sequences of
macaque calls recorded in the home colony). We are developing
an active listening task for future experiments that will allow the
NHP subject to directly report different auditory percepts.

Table 2 A decoding model trained on 17 English words successfully reconstructed a single trial English word not included in the
training set (“two”).

Training words: “program”, “macaque”, “laboratory”, “quality”, “good”, “tree”, “moo”, “apple”, “banana”,
“cricket”, “zoo”, “fuel”, “reflection”, “north”, “sequence”, “window”, “error”

Validation words: 17 Training Words, “two”, “cool”, “victory”
Mean training correlation: 0.98
Mean validation correlation (all 20 words): 0.90
Mean validation correlation (“two”): 0.88
Mean validation correlation (“cool”): 0.65
Mean validation correlation (“victory”): 0.56
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When comparing our results with previous efforts in recon-
structing auditory representations from cortical activity, we note
especially the work with human ECoG data15,23. On a numerical
basis, our analysis achieved higher mean Pearson correlation and
ESTOI values possibly due to the multichannel spike-based neural
recordings and some advantage in such intracortical recordings
compared to surface ECoG approaches. In our work with
macaques, we also chose to restrict the auditory stimulus to
relatively low complexity and short temporal duration (single
words). Parenthetically, we note that the broader question of
necessary required and optimal neural information versus task
complexity has been approached theoretically42.

We also found that the audio representation and processing
pipeline are critical to generating intelligible reconstructed audio
from neural activity. Other studies have shown benefits from
using deep learning to enable the audio representation/recon-
struction23, and future work will explore these methods in place
of mel-compression/Griffin-Lim algorithm. Given the goal of
comparing different decoding models with our offline neural
computational toolkit, we have not approached in this work the
regime of real-time processing of neural signals such as required
for a practical brain–computer interface. However, based on our
previous work, the trained LSTM model could be implemented
on a Field-Programmable Gate Array (FPGA) to achieve real-
time latencies40. While we will continue to improve the perfor-
mance of our neural decoding models, the presented results
provide one starting point for future neural encoding work to
“write in” neural information by patterned microstimulation43,44

to elicit naturalistic audio sensations. Such future work can
leverage the results presented here in guiding steps towards the
potential development of an auditory cortical prosthesis.

Methods
Research Subjects. This work included two male adult rhesus macaques. The
animals had two penetrating MEAs (Blackrock Microsystems, LLC, Salt Lake City,
UT) implanted in STG each providing 96 channels of broadband neural recordings.
All research protocols were approved and monitored by Brown University Insti-
tutional Animal Care and Use Committee, and all research was performed in
accordance with relevant NIH guidelines and regulations.

Brain maps and surgery. The rostral and caudal parabelt regions of STG have
been shown to play a role in auditory perception3,45,46. Those two parabelt areas
are closely connected to the anterior lateral belt and medial lateral belt which show
selectivity for the meaning of sound (“what”) and the location of the sound source
(“where”), respectively4.

Our institutional experience with implanting MEAs in NHPs has suggested that
there is a non-trivial failure rate for MEA titanium pedestals47. To enhance the
longevity of the recording environment, we staged our surgical procedure in two
steps. First, we created a custom planar titanium mesh designed to fit the curvature
of the skull. This mesh was designed using a 3D-printed skull model of the target
area (acquired by MRI and CT imaging) and was coated with hydroxyapatite to

accelerate osseointegration. This mesh was initially implanted and affixed with
multiple screws providing a greater surface area for osseointegration on the NHP’s
skull. Post-surgical CT and MRI scans were combined to generate a 3D model
showing the location of the mesh in relation to the skull and brain.

Several weeks after the first mesh implantation procedure, we devised a surgical
technique to access the parabelt region. A bicoronal incision of the skin was
performed. The incision was carried down to the level of the zygomatic arch on the
left and the superior temporal line on the right. The amount of temporal muscle in
the rhesus macaques prevented an inferior temporal craniotomy. To provide us
with lower access on the skull base, we split the temporal muscle in the plane
perpendicular to our incision (i.e., creating two partial thickness muscle layers)
which were then retracted anteriorly and posteriorly. This allowed us to have
sufficient inferior bony exposure to plan a craniotomy over the middle temporal
gyrus and the Sylvian fissure.

The mesh, lateral sulcus, superior temporal sulcus, and central sulcus served as
reference locations to guide the MEA insertion (see Fig. 7). MEA arrays were
implanted with a pneumatic inserter47.

NHP training and sound stimulus. We collected broadband neural data to
characterize mesoscale auditory processing of STG during a passive listening task.
While NHP subjects were restrained in a custom chair located in an echo sup-
pression chamber using AlphaEnviro acoustic panels, complex sounds (English
words and a macaque call) were presented through a focal loudspeaker. The
subjects were trained to remain stable during the training session to minimize
audio artifacts.

The passive listening task was controlled with a PC running MATLAB
(Mathworks Inc., Natick, MA, Version 2018a). Animals were rewarded after every
session using a treat reward. Within one session, 30 stimuli representations were
played at ~1 s intervals. Data from 5 to 6 sessions in total were collected in one day.
Computer synthesized English words were chosen to have different lengths
(varying number of syllables) and distinct spectral contents (see Fig. 8).

In this work, a total of five different words were chosen and synthesized using
MATLAB’s Microsoft Windows Speech API. Each sound was played 40–60 times
with the word presentations pseudorandomly ordered. Trials that showed audio
artifacts caused by NHP movement or environmental noise were manually rejected
before processing.

Intracortical multichannel neural recordings. We used MEAs from Blackrock
Microsystems with an iridium oxide electrode tip coating that provided a mean
electrode impedance of around 50 kOhm. Iridium oxide was chosen with future
intracortical microstimulation in mind. The MEA electrode length was 1.5 and
0.4 mm pitch for high-density grid recording. Intracortical signals were streamed
wirelessly at 30 kS/s per channel (12-bit precision, DC) using a CerePlex W wireless
recording device27,28. Primary data acquisition was performed with a Digital Hub
and Neural Signal Processor (NSP) (Blackrock Microsystems, Salt Lake City, UT).
Audio was recorded at 30 kS/s synchronously with the neural data using a
microphone connected to an NSP auxiliary analog input. The NSP broadcasted the
data to a desktop computer over a local area network for long-term data storage
using the Blackrock Central Software Suite. Importantly, the synchronous
recording of neural and audio data by a single machine aligned the neural and
audio data for offline neural decoding analysis.

Neural processing toolkit and cloud infrastructure. We developed a neural
processing toolkit25 (NPT) for performing large-scale distributed neural processing
experiments in the cloud. The NPT is fully compatible with the dockex compu-
tational experiment infrastructure48 (Connexon Systems, Providence, RI). This
enabled us to integrate software modules coded in different programming lan-
guages to implement processing pipelines. In total, the presented neural decoding

Fig. 7 The anatomical structure of the cortex guided posistions of MEA on parabelt. a A 3D model of the skull, brain, and anchoring metal footplates
(constructed by merging MRI and CT imaging). Also, a titanium mesh on a 3D-printed skull model. b Photo of the exposed area of the auditory cortex with
labels added for relevant cortical structures (CS, central sulcus; LS, lateral sulcus; STG, superior temporal gyrus; STS, superior temporal sulcus; RPB, rostral
parabelt; CPB, caudal parabelt).
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analysis was composed of 26 NPT software modules coded in the Python,
MATLAB, and C++ programming languages.

Dockex was used to launch, manage, and monitor experiments run on Google
Cloud Platform (GCP) Compute Engine virtual machines (VMs). For this work,
experiments were dispatched to a cluster of 10 VMs providing a total of 960 virtual
CPU cores and over 6.5 terabytes of memory. In this work, GPUs were not used
during the training or reconstruction since multiprocessing on GPUs was not yet
supported by dockex; however, future experiments will leverage GPUs for
accelerating deep learning. Machine learning experiment configuration files
implemented the described grid-search by instantiating NPT modules with
different combinations of parameters and defining dependencies between modules
for synchronized execution and data passing. Dockex automatically extracted
concurrency from these experiment configurations thereby scaling NPT execution
across all available cluster resources. The presented neural processing experiments
evaluated 12,779 unique neural decoding models.

Neural preprocessing. We used multiunit spike counts (see Fig. 8) as neural
features for the neural decoders. We leveraged the Combinato49 library to perform
spike extraction via a threshold crossing technique. Raw neural data was first scaled
to units of microvolts and filtered using a 2nd-order bandpass elliptic filter with
grid-searched cutoff frequencies. A noise level (i.e., standard deviation) of each
channel was estimated over the training set using the median absolute deviation to
minimize the interference of spikes34. We set thresholds for each individual
channel by multiplying the noise levels by a threshold factor. We detected negative
threshold crossings on the full-broadband 30 kS/s data and then binned them into
counts.

Audio preprocessing. We manually labeled raw audio to designate the begin and
end time indices for single sound trials. The audio data contained five different
English words as well as a single macaque call. We subselected sounds to create
target audio data sets for the neural decoders with varying complexity. The librosa
audio analysis library50 was used to calculate the short-time Fourier transform
spectrogram with an FFT window of 2048. This spectrogram was then compressed
to its mel-scaled spectrogram to reduce its dimensionality to the number of mel-
bands. These mel-bands served as the target data for the evaluated neural decoders.
Audio files were recovered from the mel-bands by inverting the mel-spectrogram
and using the Griffin-Lim algorithm36 to recover phase information. All targets
were standardized to zero-mean using scikit-learn51 transformers fit on the
training data.

Decoding algorithms. We evaluated seven different neural decoding algorithms
based on the KordingLab Neural_Decoding library52 including a Kalman filter,
Wiener filter, Wiener cascade, dense neural network, simple recurrent RNN, GRU

RNN, and LSTM RNN. Each neural network consisted of a single hidden layer and
an output layer. Hidden units in the dense neural network and simple RNN used
rectified linear unit activations53. The GRU RNN and LSTM RNN used tanh
activations for hidden units. All output layers used linear activations, and no
dropout54 was used. We used the adam optimization algorithm55 to train the dense
neural network and RMSprop56 for all recurrent neural neural networks. We
sequentially split the data set (�40 trials per sound per array sampled in 40 ms
bins) into training, validation, and testing sets composed of 80%, 10%, and 10% of
the data, respectively. We trained all neural networks using early stopping57 with a
maximum of 2048 training epochs and a patience of 5 epochs. Mean-squared error
was used as the monitored loss metric.

Decoding model comparison metrics. We utilized six different performance
metrics for assessing and comparing the performance of neural decoding models.
We selected metrics to investigate the reconstruction of different audio aspects and
to quantify reconstruction speech intelligibility.

For each mel-spectrogram frequency band, Pearson’s correlation coefficient was
calculated between the target and predicted values. Fisher’s z-transform was
applied to impose additivity on the correlation coefficients before taking the mean
of the transformed correlations across frequency bands. The inverse z-transform
was applied to the resulting mean value to calculate the reported correlation values.
This process followed previous auditory cortex decoding work15 and provided a
spectral accuracy metric domain for audio reconstructions.

The temporal envelope of human speech includes information in the 2–50 Hz
range and provides segmental cues to manner of articulation, voicing, vowel
identification as well as prosodic cues58. We found the temporal envelope of the
target and reconstructed audio by calculating the magnitude of the Hilbert
transform and low-pass filtering the results at 50 Hz59. We then calculated
envelope correlation by finding the Pearson correlation between the target and
reconstructed envelopes.

Gross pitch error (GPE) represents the proportion of frames where the relative
pitch error is higher than 20%60. Pitch of the target (F0) and reconstructed audio
(F̂0) was found with the Normalized Correlation Function method61 through the
MATLAB pitch function62. This resulted in an estimation of the momentary
fundamental frequency for the target and reconstructed audio. GPE was then
calculated using the following formula:

GPE ¼ Nerror

N
� 100% ð1Þ

where N is the total number of frames, and Nerror is the number of frames for
which F0� F̂0

�� ��>F0 � p with p ¼ 0:2.
Momentary loudness for the target and reconstructed audio was calculated in

accordance with the EBU R 128 and ITU-R BS.1770-4 standards using the

Fig. 8 Neural data from the RPB array. aMel-spectrograms (128 bands) of 5 English word sounds and one macaque call. b Histogram for multiunit spiking
activity on a given recording channel. In all plots, the spectrogram hop size is 40ms and the window size for firing rates is 10ms. Note the different scales
of the horizontal axes due to different sound lengths.
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MATLAB loudnessMeter object63. This resulted in loudness values with units of
loudness units relative to full scale (LUFS) where 1 LUFS= 1 dB. For the purpose
of comparing overall loudness reconstruction accuracy across decoding algorithms,
we calculated the absolute value of the momentary decibel difference between the
target loudness (l) and reconstructed loudness (̂l). By utilizing the absolute value of
differences between the target and reconstructed loudness, this process equally
penalized reconstructions that were too soft or too loud (analogous to Mean
Absolute Percent Error). We then calculated a momentary loudness factor (LF)
assuming a +10 dB change in loudness corresponds to a doubling of perceived
loudness64 using the following equation:

LF ¼ 2
l�l̂j j
10 ð2Þ

We reported the mean of the momentary loudness factor over time as the
overall loudness accuracy metric where values closer to 1 represent better loudness
reconstruction.

The ESTOI algorithm estimates the average intelligibility of noisy audio samples
across a group of normal-hearing listeners32. ESTOI calculates intermediate
intelligibility scores over 384 ms time windows before averaging the intermediate
scores over time to calculate a final intelligibility score. Intermediate intelligibility
scores are found by passing the target (i.e., clean) and reconstructed (i.e., noisy)
audio signals through a one third octave filter bank to model signal transduction in
the cochlear inner hair cells. The subband temporal envelopes for both signals are
then calculated before performing normalization across the rows and columns of
the spectrogram matrices. The intermediate intelligibility is defined as the signed
length of the orthogonal projection of the noisy normalized vector onto the clean
normalized vector.

STMI is a speech intelligibility metric which quantifies the joint degradation of
spectral and temporal modulations resulting from noise33. STMI utilizes a model of
the mammalian auditory system by first generating a neural representation of the
audio (auditory spectrogram) and then processing that neural representation with a
bank of modulation selective filters to estimate the spectral and temporal
modulation content. Here, we utilized the STMI specific to speech samples
(STMIT) which averages the spectro-temporal modulation content across time and
calculates the index using the following formula:

STMIT ¼ 1� T� Nk k2
Tk k2 ð3Þ

where T is the true audio (i.e., target) and N is the noisy audio (i.e., reconstructed).
This approach captures the joint effect of spectral and temporal noise which other
intelligibilty metrics (e.g. Speech Transmission Index) fail to capture.

Statistics and reproducibility. For testing the significance of differences in mel-
spectrogram mean Pearson correlation, we followed a procedure described by Paul
(1988)31. We first applied Fisher’s z-transform to the correlation values to nor-
malize the underlying distributions of the correlation coefficients and to stabilize
the variances of these distributions. We then tested a multisample null hypothesis
using an unbiased one-tailed test by calculating a chi-square value using the fol-
lowing equation:

χ2P ¼
Xk

i¼1

ni � ðri � rwÞ2
ð1� rirwÞ2

ð4Þ

with k� 1 degrees of freedom where ni is the population sample size, ri is the
population correlation coefficient, and rw is the common correlation coefficient.
The resulting values rejected the null hypothesis, and we then applied a post-hoc
Tukey-type test to perform multiple comparisons across decoding algorithms and
hyperparameters.

For all other performance metrics, we first split the reconstructed validation
audio into non-overlapping blocks of 2 s in length. A given performance metric was
then calculated for each block, and a Friedman test was performed to test the
multisample null hypothesis. For all evaluated metrics, this process rejected the null
hypothesis, and we then applied Conover post-hoc multiple comparisons tests to
calculate the significance of differences between decoding algorithms. We utilized
the STAC65 Python Library to perform the Friedman tests and the scikit-
posthocs66 Python library to perform the Conover tests.

Data was collected from 2 NHPs using a total of three different arrays. For each
array, we utilized �40 trials of each sound (i.e., English words and macaque call)
for analysis. These trials were collected over multiple sessions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
Neural processing code used in this study is available online25.

Data availability
The data that supports the findings of this study are available upon request from the
corresponding authors [C.H., J.L., and A.N.].

Received: 7 June 2019; Accepted: 15 November 2019;

References
1. Hackett, T., Stepniewska, I. & Kaas, J. Subdivisions of auditory cortex and

ipsilateral cortical connections of the parabelt auditory cortex in macaque
monkeys. J. Comp. Neurol. 394, 475–495 (1998).

2. Kaas, J. H. & Hackett, T. A. ’What’ and ’where’ processing in auditory cortex.
Nat. Neurosci. 2, 1045–1047 (1999).

3. Rauschecker, J. P., Tian, B. & Hauser, M. Processing of complex sounds in the
macaque nonprimary auditory cortex. Science 268, 111–114 (1995).

4. Tian, B., Reser, D., Durham, A., Kustov, A. & Rauschecker, J. P. Functional
specialization in rhesus monkey auditory cortex. Science 292, 290–293 (2001).

5. Tian, B. & Rauschecker, J. P. Processing of frequency-modulated sounds in the
lateral auditory belt cortex of the rhesus monkey. J. Neurophysiol. 92,
2993–3013 (2004).

6. Romanski, L. M. & Averbeck, B. B. The primate cortical auditory system and
neural representation of conspecific vocalizations. Annu. Rev. Neurosci. 32,
315–346 (2009).

7. Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex:
nonhuman primates illuminate human speech processing. Nat. Neurosci. 12,
718–724 (2009).

8. Petkov, C. I., Kayser, C., Augath, M. & Logothetis, N. K. Optimizing the
imaging of the monkey auditory cortex: sparse vs. continuous fmri. Magn.
Reson. Imaging 27, 1065–1073 (2009).

9. Poremba, A. et al. Functional mapping of the primate auditory system. Science
299, 568–572 (2003).

10. David, S. V. & Shamma, S. A. Integration over multiple timescales in primary
auditory cortex. J. Neurosci. 33, 19154–19166 (2013).

11. Thorson, I. L., Lienard, J. & David, S. V. The essential complexity of auditory
receptive fields. PLoS Comput. Biol. 11, e1004628 (2015).

12. Tani, T. et al. Sound frequency representation in the auditory cortex of the
common marmoset visualized using optical intrinsic signal imaging. eNeuro 5,
pii: ENEURO.0078-18.2018 (2018).

13. Eliades, S. J. & Tsunada, J. Auditory cortical activity drives feedback-
dependent vocal control in marmosets. Nat. Commun. 9, 2540 (2018).

14. Chang, E. F. et al. Categorical speech representation in human superior
temporal gyrus. Nat. Neurosci. 13, 1428–1432 (2010).

15. Pasley, B. N. et al. Reconstructing speech from human auditory cortex. PLoS
Biol. 10, e1001251 (2012).

16. Dykstra, A. et al. Widespread brain areas engaged during a classical auditory
streaming task revealed by intracranial eeg. Front. Hum. Neurosci. 5, 74
(2011).

17. Mesgarani, N., Cheung, C., Johnson, K. & Chang, E. F. Phonetic feature
encoding in human superior temporal gyrus. Science 343, 1006–1010 (2014).

18. Holdgraf, C. R. et al. Rapid tuning shifts in human auditory cortex enhance
speech intelligibility. Nat. Commun. 7, 13654 (2016).

19. Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis from
neural decoding of spoken sentences. Nature 568, 493 (2019).

20. Moses, D. A., Leonard, M. K. & Chang, E. F. Real-time classification of
auditory sentences using evoked cortical activity in humans. J. Neural Eng. 15,
036005 (2018).

21. Angrick, M. et al. Speech synthesis from ecog using densely connected 3d
convolutional neural networks. J. Neural Eng. 16, 036019 (2019).

22. Herff, C. et al. Brain-to-text: decoding spoken phrases from phone
representations in the brain. Front. Neurosci. 9, 217 (2015).

23. Akbari, H., Khalighinejad, B., Herrero, J. L., Mehta, A. D. & Mesgarani, N.
Towards reconstructing intelligible speech from the human auditory cortex.
Sci. Rep. 9, 874 (2019).

24. Chan, A. M. et al. Speech-specific tuning of neurons in human superior
temporal gyrus. Cereb. Cortex 24, 2679–2693 (2013).

25. ChrisHeelan. NurmikkoLab-Brown/mikko: Initial release. https://doi.org/
10.5281/zenodo.3525273 (2019).

26. Heelan, C. et al. Summary movie: decoding speech from spike-based neural
population recordings in secondary auditory cortex of non-human primates.
https://figshare.com/articles/Decoding_Complex_Sounds_Summary_video_
04182019_00_mp4/8014640 (2019).

27. Yin, M., Borton, D. A., Aceros, J., Patterson, W. R. & Nurmikko, A. V. A 100-
channel hermetically sealed implantable device for chronic wireless
neurosensing applications. IEEE Trans. Biomed. Circuits Syst. 7, 115–128
(2013).

28. Yin, M. et al. Wireless neurosensor for full-spectrum electrophysiology
recordings during free behavior. Neuron 84, 1170–1182 (2014).

29. Heelan, C. et al. Correlation movie: decoding speech from spike-based neural
population recordings in secondary auditory cortex of non-human primates.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0707-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:466 | https://doi.org/10.1038/s42003-019-0707-9 | www.nature.com/commsbio 11

https://doi.org/10.5281/zenodo.3525273
https://doi.org/10.5281/zenodo.3525273
https://figshare.com/articles/Decoding_Complex_Sounds_Summary_video_04182019_00_mp4/8014640
https://figshare.com/articles/Decoding_Complex_Sounds_Summary_video_04182019_00_mp4/8014640
www.nature.com/commsbio
www.nature.com/commsbio


https://figshare.com/articles/Decoding_Complex_Sounds_Correlation_video_
04182019_00_mp4/8014577 (2019).

30. Stevens, S. S., Volkmann, J. & Newman, E. B. A scale for the measurement of
the psychological magnitude pitch. J. Acoustical Soc. Am. 8, 185–190 (1937).

31. Zar, J. H. Biostatistical analysis. (Prentince-Hall, Englewood Cliffs, NJ, 1999).
32. Jensen, J. & Taal, C. H. An algorithm for predicting the intelligibility of speech

masked by modulated noise maskers. IEEE/ACM Trans. Audio, Speech, Lang.
Process. 24, 2009–2022 (2016).

33. Elhilali, M., Chi, T. & Shamma, S. A. A spectro-temporal modulation index
(stmi) for assessment of speech intelligibility. Speech Commun. 41, 331–348
(2003).

34. Quiroga, R. Q., Nadasdy, Z. & Ben-Shaul, Y. Unsupervised spike detection and
sorting with wavelets and superparamagnetic clustering. Neural Comput. 16,
1661–1687 (2004).

35. Tampuu, A., Matiisen, T., Ólafsdóttir, H. F., Barry, C. & Vicente, R. Efficient
neural decoding of self-location with a deep recurrent network. PLoS Comput.
Biol. 15, e1006822 (2019).

36. Griffin, D. & Lim, J. Signal estimation from modified short-time fourier
transform. IEEE Trans. Acoust., Speech, Signal Process. 32, 236–243 (1984).

37. Vargas-Irwin, C. E. et al. Decoding complete reach and grasp actions from
local primary motor cortex populations. J. Neurosci. 30, 9659–9669 (2010).

38. Smith, E., Kellis, S., House, P. & Greger, B. Decoding stimulus identity from
multi-unit activity and local field potentials along the ventral auditory stream
in the awake primate: implications for cortical neural prostheses. J. Neural
Eng. 10, 016010 (2013).

39. Hosman, T. et al. BCI decoder performance comparison of an LSTM recurrent
neural network and a Kalman filter in retrospective simulation. In 9th
International IEEE/EMBS Conference on Neural Engineering (NER), San
Francisco, CA, USA, 1066–1071 (2019).

40. Heelan, C., Nurmikko, A. V. & Truccolo, W. FPGA implementation of deep-
learning recurrent neural networks with sub-millisecond real-time latency for
BCI-decoding of large-scale neural sensors (104 nodes). Conf. Proc. IEEE Eng.
Med Biol. Soc. 2018, 1070–1073 (2018).

41. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated
recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on
Deep Learning. Preprint at https://arxiv.org/abs/1412.3555 (2014).

42. Gao, P. et al. A theory of multineuronal dimensionality, dynamics and
measurement. Preprint at https://www.biorxiv.org/content/10.1101/214262v2
(2017).

43. Otto, K. J., Rousche, P. J. & Kipke, D. R. Cortical microstimulation in auditory
cortex of rat elicits best-frequency dependent behaviors. J. Neural Eng. 2,
42–51 (2005).

44. Penfield, W. et al. Some mechanisms of consciousness discovered during
electrical stimulation of the brain. Proc. Natl Acad. Sci. USA 44, 51–66 (1958).

45. Kajikawa, Y. et al. Auditory properties in the parabelt regions of the superior
temporal gyrus in the awake macaque monkey: an initial survey. J. Neurosci.
35, 4140–4150 (2015).

46. Bendor, D. & Wang, X. The neuronal representation of pitch in primate
auditory cortex. Nature 436, 1161–1165 (2005).

47. Barrese, J. C. et al. Failure mode analysis of silicon-based intracortical
microelectrode arrays in non-human primates. J. Neural Eng. 10, 066014 (2013).

48. ChrisHeelan. ConnexonSystems/dockex: Initial release. https://doi.org/
10.5281/zenodo.3527651 (2019).

49. Niediek, J., Bostrom, J., Elger, C. E. & Mormann, F. Reliable analysis of single-
unit recordings from the human brain under noisy conditions: tracking
neurons over hours. PLoS ONE 11, e0166598 (2016).

50. McFee, B. et al. librosa/librosa: 0.6.3 (2019).
51. Grisel, O. et al. scikit-learn/scikit-learn: Scikit-learn 0.20.3 (2019).
52. Glaser, J.I., Chowdhury, R.H., Perich, M.G., Miller, L.E. & Kording, K.P.

Machine learning for neural decoding. Preprint at https://arxiv.org/abs/
1708.00909 (2017).

53. Glorot, X., Bordes, A. & Bengio, Y. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence
and statistics, 315–323 (2011).

54. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15, 1929–1958 (2014).

55. Kingma, D. P., & Ba, J. Adam: A Method for Stochastic Optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7–9, (2015).

56. Tieleman, T. & Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. Tech. Rep. (2012).

57. Yao, Y., Rosasco, L. & Caponnetto, A. On early stopping in gradient descent
learning. Constr. Approx. 26, 289–315 (2007).

58. Rosen, S. Temporal information in speech: acoustic, auditory and linguistic
aspects. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 336, 367–373 (1992).

59. Nourski, K. V. et al. Temporal envelope of time-compressed speech
represented in the human auditory cortex. J. Neurosci. 29, 15564–15574
(2009).

60. Strömbergsson, S. Today’s most frequently used f0 estimation methods, and
their accuracy in estimating male and female pitch in clean speech.
Interspeech, 525–529 (2016).

61. Atal, B. S. Automatic speaker recognition based on pitch contours. J. Acoustical
Soc. Am. 52, 1687–1697 (1972).

62. Mathworks Documentation pitch. https://www.mathworks.com/help/audio/
ref/pitch.html. Accessed: 2019-09-01.

63. Mathworks Documentation loudnessmeter. https://www.mathworks.com/
help/audio/ref/loudnessmeter-system-object.html. Accessed: 2019-09-01.

64. Stevens, S. S. The measurement of loudness. J. Acoustical Soc. Am. 27, 815–829
(1955).

65. Rodríguez-Fdez, I., Canosa, A., Mucientes, M. & Bugarín, A. STAC: a web
platform for the comparison of algorithms using statistical tests. In
Proceedings of the 2015 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE) (2015).

66. Terpilowski, M. scikit-posthocs: Pairwise multiple comparison tests in python.
J. Open Source Softw. 4, 1169 (2019).

Acknowledgements
The authors express their gratitude to Laurie Lynch for her expertise and leadership
with our macaques. We also thank Huy Cu, Carlos Vargas-Irwin, Kevin Huang, and
the Animal Care facility at Brown University for their most important contributions.
We are most appreciative to Josef Rauschecker for generously sharing his deep
insights into the role and function of the primate auditory cortex. W.T. acknowledges
the endowed Pablo J. Salame ′88 Goldman Sachs Associate Professorship of Com-
putational Neuroscience at Brown University. This research was initially supported by
Defense Advanced Research Projects Agency N66001-17-C-4013, with subsequent
support from private gifts.

Author contributions
A.N. and J.L. conceived the project. J.L. and A.N. designed the neural experimental
concept. J.L. designed the NHP experiments. J.L. and L.L. executed the NHP experi-
ments. C.H. designed and executed the neural decoding machine learning experiments.
C.H. and R.O. developed the neural processing toolkit. C.H. performed the results
analysis. W.T. provided the neurocomputational expertise and D.B. the surgical leader-
ship. C.H., A.N, and J.L. wrote the paper. All authors commented on the paper. C.H.
composed the Supplementary movies.

Competing interests
The authors declare no competing non-financial interests but the following competing
financial interests: C.H. is the founder and chief executive officer of Connexon Systems.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42003-
019-0707-9.

Correspondence and requests for materials should be addressed to C.H., J.L. or A.V.N.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0707-9

12 COMMUNICATIONS BIOLOGY |           (2019) 2:466 | https://doi.org/10.1038/s42003-019-0707-9 | www.nature.com/commsbio

https://figshare.com/articles/Decoding_Complex_Sounds_Correlation_video_04182019_00_mp4/8014577
https://figshare.com/articles/Decoding_Complex_Sounds_Correlation_video_04182019_00_mp4/8014577
https://arxiv.org/abs/1412.3555
https://www.biorxiv.org/content/10.1101/214262v2
https://doi.org/10.5281/zenodo.3527651
https://doi.org/10.5281/zenodo.3527651
https://arxiv.org/abs/1708.00909
https://arxiv.org/abs/1708.00909
https://www.mathworks.com/help/audio/ref/pitch.html
https://www.mathworks.com/help/audio/ref/pitch.html
https://www.mathworks.com/help/audio/ref/loudnessmeter-system-object.html
https://www.mathworks.com/help/audio/ref/loudnessmeter-system-object.html
https://doi.org/10.1038/s42003-019-0707-9
https://doi.org/10.1038/s42003-019-0707-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Decoding speech from spike-based neural population recordings in secondary auditory cortex of non-human primates
	Results
	Supplementary movies
	Neural decoding algorithms
	Other decoding algorithm performance metrics
	Neural feature extraction
	Audio representation
	Array location
	Macaque call reconstruction
	Top performing neural decoder
	Decoding larger audio sets and single trial audio

	Discussion
	Methods
	Research Subjects
	Brain maps and surgery
	NHP training and sound stimulus
	Intracortical multichannel neural recordings
	Neural processing toolkit and cloud infrastructure
	Neural preprocessing
	Audio preprocessing
	Decoding algorithms
	Decoding model comparison metrics
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




