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Genome analysis
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Abstract
Motivation: In viral molecular epidemiology, reconstruction of consensus genomes from sequence data is critical for tracking mutations and var-
iants of concern. However, as the number of samples that are sequenced grows rapidly, compute resources needed to reconstruct consensus
genomes can become prohibitively large.

Results: ViralConsensus is a fast and memory-efficient tool for calling viral consensus genome sequences directly from read alignment data.
ViralConsensus is orders of magnitude faster and more memory-efficient than existing methods. Further, unlike existing methods, ViralConsensus can pipe
data directly from a readmapper via standard input and performs viral consensus calling on-the-fly, making it an ideal tool for viral sequencing pipelines.

Availability and implementation: ViralConsensus is freely available at https://github.com/niemasd/ViralConsensus as an open-source software
project.

1 Introduction

Viral molecular surveillance, a technique in which viral
genomes are reconstructed from sequence data generated
from samples collected from patients as well as the environ-
ment (e.g. wastewater) and are monitored in real-time or near
real-time, has been critical throughout the Coronavirus
Disease 2019 (COVID-19) pandemic (Oude Munnink et al.
2021; Karthikeyan et al. 2022). The reconstruction of consen-
sus genome sequences from raw sequence data requires the
use of various bioinformatics pipelines such as CoVpipe
(https://gitlab.com/RKIBioinformaticsPipelines/ncov_minipipe),
CoVpipe2 (https://github.com/rki-mf1/CoVpipe2), HAVoC
(Truong Nguyen et al. 2021), V-pipe (Posada-Céspedes et al.
2021), ViReflow (Moshiri et al. 2022), and many others, which
can be slow and can require non-trivial computational expertise.

The current best-practice pipeline for reconstructing a con-
sensus genome sequence from raw viral amplicon sequence
data is the iVar pipeline (Grubaugh et al. 2019). First, reads
are mapped to the reference genome using a read mapper
such as Minimap2 (Li 2018) or BWA (Li and Durbin 2009)
and position-sorted using Samtools (Li et al. 2009). Next,
reads are primer- and quality-trimmed using iVar and again
position-sorted using Samtools. A pile-up is then computed
from the sorted trimmed reads using Samtools, and a consen-
sus genome sequence is called from the pile-up file using iVar.
This position-sorted pile-up-based approach, which is either
explicitly or implicitly utilized by all aforementioned consen-
sus pipelines, is ideal for long genomes (e.g. human) in which

the memory needed to store base counters for every position
of the genome simultaneously would become prohibitively
large, but due to their small length, viral consensus genome
sequences can be computed much faster.

Here, we introduce ViralConsensus, a fast and memory-
efficient tool for calling viral consensus genome sequences di-
rectly from read alignment data. ViralConsensus is orders of
magnitude faster and more memory-efficient than existing
methods. Further, unlike existing methods, ViralConsensus
can pipe data directly from a read mapper via standard input
and performs viral consensus calling on-the-fly, making it an
ideal tool for viral sequencing pipelines.

2 Results and discussion

ViralConsensus is a command-line tool written in Cþþ and
depends on htslib (Bonfield et al. 2021). ViralConsensus takes
the following as required input: (i) a SAM/BAM/CRAM file
containing the mapped reads (or “-” to read from standard in-
put), (ii) a FASTA file containing the reference genome, and
(iii) an output FASTA file to write the consensus genome (or
“-” to write to standard output). Optionally, the user can also
provide the following: (i) an output file in which to write base
counts at each position (or “-” to write to standard output),
(ii) an output file in which to write the insertion counts
(or “-” to write to standard output), (iii) a minimum quality
threshold to count a base in a read (default: 20), (iv) a mini-
mum depth threshold to call a position in the consensus
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(default: 10), (v) a minimum frequency threshold to call a
base/insertion in the consensus (default: 0.5), (vi) a symbol to
use for ambiguous positions that fail to meet the minimum
depth or frequency thresholds (default: “N”), (vii) a BED file
containing primer positions to trim (default: no primer trim-
ming), and (viii) a number of positions beyond the end of a
primer to also trim (default: 0).

First, the reference genome is loaded from file, and base/in-
sertion counters for each position of the genome are preallo-
cated. Then, if the user wishes to optionally primer-trim the
reads (e.g. to avoid amplicon sequencing primers from biasing
the consensus sequence toward the reference genome if the
reads have not already been primer-trimmed prior to running
ViralConsensus), the amplicon primer start and end positions
are loaded from file, and for each position of the reference ge-
nome, the end position of the primer that spans that position
(if any) is precomputed. Next, read alignments are streamed
on-the-fly (without any need for sorting) and, for each column
of a given alignment, if the user-provided base quality thresh-
old is met, the base/insertion count at the corresponding posi-
tion of the reference genome is incremented (with any
positions covered by an amplicon sequencing primer skipped
entirely). After all read alignments have been processed, a
consensus sequence is constructed by iterating over the posi-
tions of the reference genome and outputting the most fre-
quent base or insertion at any given position (or the user-
provided ambiguous symbol if the user-provided minimum
depth or base frequency thresholds are not met).

ViralConsensus is able to trim reads on-the-fly using the
user-provided minimum base quality threshold (for quality-
trimming) and primer file (for primer-trimming), but users
can trim reads prior to executing ViralConsensus if desired.
Because it performs all computations on-the-fly and does not
require intermediary files, ViralConsensus can be easily inte-
grated into existing pipelines by piping directly from the read
mapper, significantly reducing disk I/O. Further, because of
its approach, ViralConsensus has constant memory consump-
tion and linear runtime with respect to sequencing depth, and
it has linear memory consumption with respect to genome
length.

In order to benchmark ViralConsensus with respect to
sequencing depth, we obtained a Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) amplicon
sequencing dataset in which 2607 samples were sequenced
PE150 across four lanes of an S4 flow cell to an average read
count of 4.58 M read pairs per sample using the SWIFT v2
protocol on an Illumina NovaSeq 6000 (Moshiri et al. 2022).
Samples were mapped to the NC_045512.2 reference genome
using Minimap2. We selected the single highest-depth sample
and randomly subsampled it to n¼ 100, 1K, 10K, 100K, and
1M successfully mapped reads, with 10 replicates for each n.
We then ran ViralConsensus v0.0.1 as well as the iVar pipe-
line (Samtools v1.16.1 and iVar v1.3.1) to compute consensus
sequences from each subsampled replicate.

As can be seen in Fig. 1, ViralConsensus is orders of magni-
tude faster and more memory efficient than the iVar pipeline,
and it is able to call a consensus sequence from an amplicon
sequencing dataset with 1 million reads in <2 s with a peak
memory usage of <12 MB. Importantly, while both methods’
runtimes scale linearly with sequencing depth, the iVar pipe-
line’s peak memory usage grows substantially as sequencing
depth increases, whereas the peak memory of ViralConsensus
remains constant.

In order to assess the accuracy of the consensus sequences
produced by ViralConsensus, we selected representative com-
plete genome sequences from multiple SARS-CoV-2 lineages
of interest (one sequence per lineage) from the NCBI
Virus database, listed as Lineage (GenBankID) pairs: B
(NC_045512.2), B.1.1.7 (LC650844), BA.1 (OQ523614.1),
BA.2 (OQ194009.1), and XBB.1 (OQ346068.1). These spe-
cific lineages were selected to provide a range of representa-
tive substitutions, insertions, and deletions with respect to the
NC_045512.2 reference genome that occur in real-world
SARS-CoV-2 genome sequences, and these specific sequences
were selected by filtering NCBI Virus for complete genomes
with 0 ambiguous characters obtained from a human host
with an isolation source of oronasopharynx. We then used
ART version MountRainier-2016-06-05 to simulate Illumina
HiSeq 2000 single-end short reads (Huang et al. 2012) and
NanoSim-H v1.1.0.4 to simulate Oxford Nanopore
Technologies (ONT) long reads (Yang et al. 2017; B�rinda and
Yang 2021) from each lineage genome, both using their de-
fault settings. We simulated datasets at 30�, 40�, and 50�
coverage, and we simulated 10 technical replicates per lineage
per sequencing technology per coverage. We then mapped the
simulated reads to the NC_045512.2 reference genome using
Minimap2’s short read (“sr”) and ONT (“map-ont”) presets,
and we lastly reconstructed consensus sequences using the de-
fault settings of ViralConsensus v0.0.1 and iVar v1.3.1. To
assess accuracy, each reconstructed consensus sequence was
pairwise-aligned against its respective true sequence using
MAFFT v7.505 (Katoh et al. 2002), and Hamming distances
(total number of mismatches, insertions, deletions, and am-
biguous symbols, normalized by alignment length) were com-
puted from each pairwise alignment as a measure of
consensus sequence error.

As can be seen in Fig. 2, ViralConsensus produces consen-
sus sequences that are as accurate as the iVar pipeline, and
this observation was consistent across sequencing technolo-
gies, SARS-CoV-2 lineages, and sequencing coverage.

Figure 1. Performance benchmark. Total runtime (top) and peak memory

(bottom) for SARS-CoV-2 sequence datasets with n¼ 100, 1K, 10K, 100K,

and 1M mapped reads. All runs were executed sequentially on a 2.8GHz

Intel i7-1165G7 CPU with 16 GB of memory.
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Further, as expected, consensus sequence reconstruction error
decreases as sequencing coverage increases. Interestingly
(though unsurprisingly), reconstruction from ONT reads had
higher error rates than reconstruction from Illumina reads at
the same coverage. Unexpectedly, while consensus sequence
reconstruction error was at similarly low levels across SARS-
CoV-2 lineages, reconstruction of the BA.1 genome sequence
from Illumina reads resulted in noticeably higher error rates
than reconstruction of other lineages from Illumina reads. It is
unclear if this increase in reconstruction error is attributed to
features of the BA.1 lineage as a whole versus issues with the
specific sequence that was chosen in this accuracy experiment,
though thorough exploration of this phenomenon, as well as
an exploration of the impact of different read mappers and
mapping settings, is outside of the scope of this work and
would be an interesting future research direction.

In its current form, ViralConsensus only takes into account
base quality scores, not mapping quality scores. Further, in its
current form, ViralConsensus only outputs a general ambigu-
ous symbol (“N” by default) rather than more specific non-N
ambiguous International Union of Pure and Applied
Chemistry (IUPAC) symbols (e.g. “R” ¼ “G or A”).
However, support for these additional nuances can be imple-
mented in future versions of ViralConsensus if requested by
users. Further, while ViralConsensus was designed with short
linear viral genome sequences in mind, it can be applied to
consensus sequence reconstruction of other short linear non-
viral genome sequences (e.g. mitochondrial DNA).

In sum, we introduce ViralConsensus, a fast and memory-
efficient tool for calling viral consensus genome sequences di-
rectly from read alignment data. ViralConsensus is orders of
magnitude faster and more memory-efficient than existing

methods, yet it achieves similar accuracy. We hope
ViralConsensus will aid viral molecular epidemiologists in
their efforts to analyze viral sequence data at massive scale.
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