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Investigating Mountain Watershed Headwater‐To‐
Groundwater Connections, Water Sources, and Storage
Selection Behavior With Dynamic‐Flux Particle Tracking
P. James Dennedy‐Frank1,2 , Ate Visser3 , Fadji Z. Maina1,4 , and Erica R. Siirila‐Woodburn1

1Lawrence Berkeley National Laboratory, Earth and Environmental Sciences Area, Oakland, CA, USA, 2Now at
Department of Marine & Environmental Science, Northeastern University, Boston, MA, USA, 3Lawrence Livermore
National Laboratory, Livermore, CA, USA, 4Now at NASA Goddard Spaceflight Center, Greenbelt, MD, USA

Abstract Climate change will impact mountain watershed streamflow both directly—with changing
precipitation amounts and variability—and indirectly—through temperature shifts altering snowpack, melt, and
evapotranspiration. To understand how these complex processes will affect ecosystem functioning and water
resources, we need tools to distinguish connections between water sources (rain/snowmelt), groundwater
storage, and exit fluxes (streamflow/evapotranspiration), and to determine how these connections change
seasonally and as climate shifts. Here, we develop novel watershed‐scale approaches to understand water
source, storage, and exit flux connections using a dynamic‐flux particle tracking model (EcoSLIM) applied in
California's Cosumnes Watershed, which connects the Sierra Nevada and Central Valley. This work develops
new visualizations and applications to provide mechanistic understanding that underpins the interpretation of
isotopic field data at watershed scales to distinguish sources, flow paths, residence times, and storage selection.
In our simulations, streamflow comes primarily from snow‐derived water while evapotranspiration generally
comes from rain. Most streamflow starts above 1,000 m while evapotranspiration is sourced relatively evenly
across the watershed and is generally younger than streamflow. Modeled streamflow consists primarily of water
sourced from precipitation in the previous 5 years but before the current water year, while ET consists primarily
of water from precipitation in the current water year. ET, and to a lesser extent streamflow, are both younger
than water in groundwater storage. However, snowmelt‐derived streamflow preferentially discharges older
water from snow‐derived storage. Dynamic‐flux particle tracking and new approaches presented here enable
novel model‐tracer comparisons in large‐scale watersheds to better understand watershed behavior in a
changing climate.

Plain Language Summary Climate change will alter the hydrologic cycle: storms will be more
intense and higher temperatures will result in less snow, earlier melt, and more early‐season water use by plants.
To understand the combined effect of these changes, we need models to simulate water flows and precisely
study the effects of rain, snowmelt, subsurface storage, streamflow, and plant water uptake. These models can
show us how water flows between different components of the landscape, and how this flow changes seasonally
and in response to climate change. This study develops new modeling tools that simulate the Cosumnes River in
the Sierra Nevada (California, USA) and will help interpret field data at watershed scales. The majority of
simulated streamflow originates from snow while plants rely on rainfall for evapotranspiration (ET). Most
streamflow starts as precipitation above 1,000 m while ET comes from water that falls evenly across the
watershed. Water used for ET is generally younger than streamflow: most streamflow is 1–5 years old, while
most ET is less than 1 year old. Both ET and streamflow are younger than water stored in the subsurface. These
new modeling tools, called dynamic‐flux particle tracking, will help us predict how watersheds will behave as
climate changes.

1. Introduction
Water resource systems are experiencing changes in climate and associated shifts in vegetation and human water
use; to develop resilient systems in a continuously changing world, we need to understand how water flows
through watersheds over space and time (Barnett et al., 2005; Milly & Dunne, 2020; Siirila‐Woodburn
et al., 2021). Changes in precipitation amounts and variability, as well as temperature averages, extremes, and
timing, will directly alter water fluxes and indirectly change ecosystems and human water management and thus
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water fluxes. Traditional empirical relationships for predicting watershed response may not hold (Milly
et al., 2008). We need to better understand the physical links between water sources (rain/snowmelt), fluxes and
exit pathways (streamflow/evapotranspiration), and groundwater storage to determine how they will shift with the
climate. Approaches that characterize these links will build understanding of fundamental watershed function and
help us better manage water resources. We need to understand and depict characteristics including: how pre-
cipitation is partitioned depending on its phase (Barnett et al., 2005; Carroll et al., 2020; Kirchner & Allen, 2020;
Sprenger et al., 2022); how upstream and downstream components of the watershed are linked (Meixner
et al., 2016); and how subsurface water is distributed to streamflow or evapotranspiration (ET) depending on the
hydrologic condition and water age (Harman, 2019; Kirchner & Allen, 2020; Van der Velde et al., 2012).

Integrated hydrologic models consolidate our understanding of key watershed processes and have been widely,
and often successfully, used to build our understanding of watershed processes and inform watershed man-
agement (Freeze & Harlan, 1969; Heppner & Loague, 2008; Maxwell & Kollet, 2008; Sulis et al., 2011).
However, these hydrologic models are often tested primarily on integrated response variables such as stream-
flow. Integrated watershed models may reasonably reproduce the volumetric flux of water out of the watershed
without correctly representing specific flow paths given substantial challenges with parameter non‐uniqueness,
raising questions about their value for prediction and projection (Beven & Freer, 2001). Conversely, conceptual
“bucket” models have often used isotope measurements to determine which compartments contribute to
streamflow, but they reflect only lumped watershed behavior and not spatially‐discrete processes and so provide
less detailed management information (Crouzet et al., 1970; Kirchner & Allen, 2020; Klaus &
McDonnell, 2013).

Newly‐developed dynamic‐flux particle tracking models (Maxwell et al., 2019) provide novel information
regarding the specific flowpaths packets of water take through a simulated watershed, accounting for temporally
and spatially variable water fluxes. With advancements in high‐performance computing, particle tracking tools
are no longer limited to steady state models or models of limited scale and complexity (e.g., lysimter to research
catchment scale, steady‐state, or groundwater‐only models; Danesh‐Yazdi et al., 2018; Jones et al., 2006; Kim &
Harman, 2022; Kollet & Maxwell, 2008; Pangle et al., 2017; Pollock, 2012; Wilusz et al., 2020). Dynamic‐flux
particle tracking in watershed‐scale hydrologic models elucidates information about watershed behavior,
including links between the source of both ground‐ and surface‐water, watershed storage dynamics, and multi‐
scale watershed dynamics. This new capability also raises new challenges in visualizing these dynamics.

1.1. Hydrologic Connections and Sources: Key Tools for Planning

Water's flow into, through, and out of a watershed depends on the timing and intensity of rain and snowmelt,
connections between mountain headwaters and valley groundwater, and groundwater mixing that drives distinct
patterns of water release in time and space. Outstanding questions include: (a) Where and from what precipi-
tation phase are streamflow and ET generated throughout the year?; (b) How old is water that exits the watershed
as streamflow and ET?; and (c) Which characteristics determine how water from storage exits the watershed as
streamflow or ET?

Previous work suggests snow is more efficient at producing streamflow than rain (Berghuijs et al., 2014;
Davenport et al., 2020; Earman et al., 2006). Most recently, Carroll et al. (2020) and Sprenger et al. (2022) show
that rain preferentially exits a headwater watershed as ET while snow contributes more to streamflow. However,
many hydrologic analyses assume snow and rain behave similarly except for snow's storage capacity despite
distinct conditions during precipitation and for different water fluxes and exit pathways.

Further, we need to investigate how watersheds are connected, how headwaters recharge valley groundwater and
source streamflow and ET, and how these connections vary across space and time (Meixner et al., 2016;
Schreiner‐McGraw & Ajami, 2020, 2022). These connections may shift with changes in precipitation's spatial
distribution, phase, and elevation. The elevation of infiltration may reveal important relationships between where
precipitation falls and where it exits. We define elevation of infiltration simply as the elevation at which water,
leaving as streamflow or evapotranspiration, infiltrated into the subsurface. These processes need to be
appropriately represented in simulations to provide robust projections of watersheds' response to a shifting
climate.
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Exiting water's age and relationship to subsurface water storage in both the saturated and unsatured zones
(hereafter storage) may also contain critical information on how the watershed will respond to a shifting climate.
For example, old groundwater may have historically buffered streamflow and ET response to perturbations, but
that buffering capacity could disappear as old reserves are drained. Whether storage will continue to provide
resilience for both people and vegetation may depend on how and when water from specific sources exits storage.
The response of a watershed to shifting precipitation might differ if the oldest water exits storage rather than if
younger water exits storage. The former might suggest piston‐type flow or fracture flow from old groundwater,
both of which might support a resilient system in the short‐term but result in a later state change that would
provide a strong shock; the latter might suggest shallow interflow or fracture flow that would not occur as
regularly but to which the system can adapt. Streamflow and ET may also draw from storage with distinct
characteristics, in which case the resilience of human and natural systems may differ while still being strongly
connected. Water age can also indicate large‐scale watershed connections and groundwater replenishment rates
that may shift with the climate. Conceptual storage‐runoff modeling (Section 1.2.1) seeks to address these
questions, but does not integrate complex catchment characteristics, geology, or flow feedbacks that may alter
critical hydrologic connections (Danesh‐Yazdi et al., 2018). We can account for these factors by specifically
representing water's flow paths in a complex watershed to investigate how flow paths respond to a shifting
climate.

Here, we use dynamic‐flux particle tracking to investigate three critical questions and demonstrate this ap-
proaches' capabilities in analyzing details of hydrologic processes at the watershed scale for the first time. We
further present a novel visualization approach, which we call water source wedges, to represent these complex
processes across the watershed. First, we explore and illustrate the links between water's precipitation source
phase and exit path to understand how snow and rain behave differently. We use the term “precipitation source
phase” to distinguish between rain and snowmelt and the term “exit path” to distinguish between streamflow and
ET. By inspecting these links we can both: (a) investigate whether and when snow and rain function differently
in the watershed; and (b) test whether our simulations reliably represent this critical watershed function. Second,
we examine the distributions of water source elevation separated by both precipitation source phase and exit path
at two times to demonstrate how rain and snow connect to the exit paths depending on their source elevation and
the time of year. Finally, we explore and depict the age of both exiting and storage water to understand: (a) the
age of water exiting the system; and (b) the links between water age, storage characteristics, and exit processes.
Such analyses will help us better represent watershed processes in simulations and predict the spatiotemporal
variability of streamflow, ET, and storage as snowfall shifts to rain in a warmer climate. These analyses could be
compared with isotopic and chemical measures sensitive to precipitation source phase, initial elevation of
precipitation or infiltration, or water age to constrain watershed simulations and ensure they accurately represent
water's flow paths and provide robust projections.

1.2. Previous Advances in Watershed Modeling

Watershed modeling encompasses a broad variety of approaches, including conceptual storage‐runoff models
that lack spatially‐explicit connections and distributed (spatially‐discretized) flow models that lack specific
techniques to track flow paths among them. Our work seeks to bridge this gap by incorporating the awareness of
sources and residence times of conceptual models with spatially‐explicit connections in distributed flow models,
following previous attempts with different approaches (Glaser et al., 2021; Jing et al., 2021; Weill et al., 2019).

1.2.1. Isotopes and Conceptual Storage‐Runoff Modeling

Several techniques use isotope measurements to assess the residence times, sources and storage of water in
watersheds. Isotope‐based hydrograph separations (IHS) used tritium measurements in rain, groundwater, and
streamflow (Crouzet et al., 1970; for a recent review, see Klaus & McDonnell, 2013) to show that stored, pre‐
event water dominated the storm hydrograph in most natural, humid systems (Sklash et al., 1976). This contrasts
with previous hypotheses that event flow was generated largely by overland flow (Dunne & Black, 1970). Newer
approaches link specific water sources with water outputs and explicitly track the time that water spends in a
watershed using stable and radioactive isotopes as well as man‐made environmental or introduced tracers
(Benettin et al., 2022).
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STorage Outflow Probability (STOP) functions (Van der Velde et al., 2012) or StorAge Selection (SAS) func-
tions (Harman, 2019) extend the interpretation of isotope hydrographs beyond pre‐defined age distributions.
STOP/SAS functions describe water movement from storage to streamflow (or ET) relative to the residence times
of water in storage and emphasize the continuum of flow paths in a natural watershed. This framework in-
corporates the dynamic behavior of watersheds into storage‐discharge relationships. While STOP/SAS describes
the fate of storage water, isotope‐based endmember splitting (Kirchner & Allen, 2020) describes the fate of
precipitation. This distinction is particularly important in snow‐dominated watersheds that are sensitive to climate
change where precipitation phase determines flux rates (rain vs. snowmelt) and watershed response.

These techniques lump watershed behavior and lack specific information on spatial connections that may be
critical for managing water resources in larger, heterogeneous watersheds. In addition, these models derive
predictive ability solely from historic isotope observations; therefore, their ability to predict watershed behavior
in a changing climate is uncertain. However, these approaches are computationally tractable while watershed‐
scale modeling of flows and transport of (isotope) tracers has historically been limited by the computational
demands of a model with sufficient spatial and temporal resolution to realistically simulate heterogeneous and
time‐variable behavior. Further, distributed physics‐based models struggle with the challenge of equifinality
(Beven & Freer, 2001).

1.2.2. Integrated Watershed Modeling and Particle Tracking

Integrated watershed models provide an alternate approach to assess watershed flow processes. These models
explicity represent the volumetric flux of water over space and time, and therefore include appropriate
spatiotemporal connections for realistic simulation (Brunner & Simmons, 2012; Freeze & Harlan, 1969; Kollet
& Maxwell, 2006). Such simulations have been widely used to understand hydrology from hillslopes to nations
(Condon & Maxwell, 2019; Maxwell & Kollet, 2008) and for management of water resources (Heppner &
Loague, 2008; Maxwell & Condon, 2016; Maxwell & Kollet, 2008; Sulis et al., 2011) and potential contami-
nants (Loague et al., 2005; Siirila‐Woodburn et al., 2018; Sudicky et al., 2008; Visser et al., 2012).

However, integrated watershed models do not directly investigate spatial connections because they represent
only the volumetric flux of water in an Eulerian framework that cannot distinguish individual flow paths across
model cells. Lagrangian particle‐tracking techniques use velocity fields from physics‐based groundwater or
integrated watershed models to track specific hydrologic connections at much higher resolution (e.g., Engdahl &
Maxwell, 2015; Kollet & Maxwell, 2008; Pollock, 2012; Visser et al., 2009) and have been widely used to
determine flow paths for contaminant analyses (Siirila‐Woodburn, Fernàndez‐Garcia, & Sanchez‐Vila, 2015;
Siirila‐Woodburn, Sanchez‐Vila, & Fernàndez‐Garcia, 2015; Zhang et al., 2013). However, classic particle‐
tracking techniques use relatively simple particle insertion schemes and/or follow water parcels that do not
interact with surface water and other land‐surface processes. These approaches cannot properly represent the
fluxes of water through the system because they do not dynamically link particles with water entering the
watershed as precipitation and exiting as streamflow or ET. Therefore, they do not illuminate important spatio‐
temporal dynamics of watershed connectivity or separate precipitation input phase, a critical consideration as
outlined above. Recent work has sought to more dynamically represent the spatio‐temporal dynamics of water
sources and travel times based on tracking of fluxes or hydraulic mixing cells, sometimes in combination with
explicit particle representations for deeper subsurface flow (Glaser et al., 2021; Jing et al., 2021; Li et al., 2017).
Another recent approach uses a depth‐integrated hydrologic simulator to investigate transit and residence time
distributions (Weill et al., 2019). These approaches can provide valuable information about water's flow paths,
but require assumptions about mixing or distributions with depth.

The dynamic‐flux particle tracking approach shown here provides age‐ and source‐dependent fluxes that can be
compared with tracer measurements to better parameterize model behavior based on detailed flow simulations. It
represents explicit flow of water through the subsurface, including variability with depth and makes no specific
mixing assumptions, though at increased computational cost relative to other approaches. If integrated watershed
models and particle tracking techniques are well‐parameterized, then changing climate forcings in such simu-
lations could provide valuable insight on watershed behavior change in the future and, along with other ap-
proaches, inform more sustainable water resource management.
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2. Methods
We present a novel watershed‐scale analysis using EcoSLIM, a new particle tracking tool that simulates the full
spatio‐temporal dynamics of water particles (Maxwell et al., 2019), to demonstrate this class of codes' utility for
hydrologic analysis. The spatially explicit flow field, interpolated from velocity vectors from the integrated
hydrologic model ParFlow, enables spatial characterization, while appropriate temporal dynamics are provided
by dynamically adding and removing particles. Further, by tagging particles based on their precipitation source
phase, exit pathway, input and exit location, age, and other factors (e.g., flow path length, time in saturated zone)
we can investigate key dynamics across space and time. With EcoSLIM, we simulated the detailed flow paths of
water from Sierra Nevada snowpack to the Central Valley in the Cosumnes watershed (Section 2.1) to better
understand hydrologic connections from headwaters to groundwater. We developed several tools to run Eco-
SLIM at this large scale (∼104 km2) and to analyze large numbers of particles (∼108) across space and time to
advance our hydrologic understanding via novel analyses described in Sections 2.3 and 2.4. We further
developed a novel approach to visualize the EcoSLIM outputs to explore the source location, precipitation phase,
and age of both streamflow and ET across the watershed (Section 2.4.1).

2.1. Cosumnes River Watershed

The Cosumnes River Watershed (Figure 1) covers 3,300 km2 from the lower Sierra Nevada (∼2,350 m
elevation), where 1,500 mm of precipitation falls as snow annually, to the Central Valley (near 0 m elevation),
where groundwater is pumped for irrigation and annual precipitation is only 600 mm. The precipitation has
strong seasonal variability, virtually all occurring in the winter, and an inter‐annual coefficient of variation
around 0.35 (Dettinger et al., 2011). The watershed's geology ranges from upland plutonic rocks and volcanic
flows to unconsolidated sandstone and Central Valley alluvium; these are separated by cross‐cutting shales and
sandstones. The land cover varies strongly with elevation, from fir, pine, and incense cedar conifers in the upper

Figure 1. Watershed, climatic characteristics, and community‐led sampling locations of the CosumnesWatershed, the model domain for which is shown in the inset map
of California in dark gray. Average annual precipitation (a) totals range from 430mm in the near‐sea‐level lowlands and up to 1,560 mm at elevations above 2,350 m (b).
Watershed‐average cumulative precipitation from water year 2019 (c) used in the simulation is mostly rain, shown in dark blue, but with ∼20% starting as snow shown
in light blue. The land cover (d) is largely forest in the upper watershed and savannah in the lower watershed, with substantial urban and cropland areas in the lower
watershed as well. The watershed is underlain by alluvial packages in the lower part, by low‐permeability cross‐cutting consolidated marine sediments in the middle of
the watershed, and volcanic and plutonic packages in the upper part of the watershed (e). The American River Conservancy has a sampling program in the watershed (f),
and spatially‐limited analyses here are shown at those points, though comparisons with those measurements are not yet complete.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003976
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watershed to oak savannah lower in the watershed. Pastures and cultivated crops dominate in the Central Valley.
The Cosumnes Watershed is the focus of integrated headwaters‐to‐groundwater research seeking to understand
the impacts of climate change on California water resources (Maina et al., 2020; Maina & Siirila‐
Woodburn, 2019).

2.2. Dynamic‐Flux Particle Tracking in a Fully‐Integrated Surface‐Water/Groundwater Model

2.2.1. ParFlow‐CLM

ParFlow‐CLM is a fully‐integrated surface‐water/groundwater model that is coupled with the Community Land
Model (CLM) for surface and ecologic processes (Kollet & Maxwell, 2006; Maxwell, 2013; Maxwell &
Miller, 2005) (Figure 2). It solves the Richards' equation for unsaturated and saturated flow throughout a
subsurface domain and simultaneously solves shallow water flow equations on the surface. Vertical water and
energy fluxes at the land surface and exchanges with the lower atmosphere are handled by a version of the
Community Land Model similar to version 3.5 (Dai et al., 2003; Maxwell & Miller, 2005). ParFlow‐CLM was
developed to run on computational platforms ranging from laptops to supercomputers, and scales well up to tens
of thousands of processors (Kollet et al., 2010).

We use a previously developed ParFlow‐CLM simulation of the Cosumnes Watershed (Maina et al., 2020)
shown to reasonably represent watershed behavior based on both in‐situ and remotely sensed hydrologic
measures (Maina et al., 2020). That simulation shows a mean absolute error (MAE) in river stage of ∼0.6 m at
three river gauges, an MAE of ∼1.7 m and mean absolute percent error (MAPE) of ∼2.5% for four groundwater
wells over the 3 years of simulation. Further, the simulation has an MAE of only ∼3 mm and watershed‐average
temporal correlation of ∼0.97 with the SNODAS data set (National Operational Hydrologic Remote Sensing
Center, 2004), and watershed‐average temporal correlations of 0.94 with the SMAP soil moisture estimates
(Reichle et al., 2017) and 0.6 with METRIC ET estimates (Allen et al., 2007). More details are available in
Maina et al. (2020). We analyze water year 2019 (1 October 2018–30 September 2019, hereafter WY2019), the
final year of that simulation, which represents an average‐to‐wet water year. The model is forced hourly by the
NLDAS‐2 product for meteorological variables: precipitation, temperature, short‐ and long‐wave radiation, two‐
dimensional wind speed, atmospheric pressure, and relative humidity. The model is spatially discretized by cells
that are 200 m in each horizontal direction, and 8 vertical layers that range from 10 cm deep in the soil to 30 m
deep in the subsurface, creating an 80 m thick model on a terrain‐following grid. In the model, 1.3 million active
cells compose the approximately 7,000 km2 model area, which includes the Cosumnes Watershed and sur-
rounding areas to set boundary conditions based on observed river stages. The model requires approximately 48

Figure 2. Conceptual diagram for the Parflow‐CLM and EcoSLIM coupling, showing both ParFlow's integrated watershed
model of subsurface flow and surface processes and the dynamic fluxing of particles through the system using EcoSLIM.
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wall hours of compute time on 320 Intel Haswell processors for a single year of simulation. Simulations were
performed on the National Energy Research Scientific Computer Center (NERSC) supercomputer Cori.

Watershed topography was derived from the USGS 3D Elevation Program, geology from California geological
maps (Geologic Map of California, 2015; Jennings et al., 1977), and land cover from the 2011 NLCD land cover
data set (Homer et al., 2015). Watershed and geological characteristics were translated to model parameters based
on literature values. Boundary conditions include a no‐flow boundary condition along the bottom of the watershed
and both no‐flow and temporally varying constant head values for the upper watershed and surrounding rivers,
respectively (Maina et al., 2020).

2.2.2. EcoSLIM

EcoSLIM is a dynamic‐flux particle tracking tool fully compatible with ParFlow‐CLM or other integrated
hydrologic models with similar output (Maxwell et al., 2019) (Figure 2) and was adapted from the SLIM and
SLIM‐fast particle tracking tools (Kollet & Maxwell, 2008; Maxwell & Kastenberg, 1999; Maxwell et al., 2007).
Recent work has been developing EcoSLIM to allow applications on GPUs at very large scale (Yang et al., 2021,
2022, 2023). We describe EcoSLIM as having a “dynamic‐flux” because particles enter and exit the system
dynamically, unlike in traditional particle‐tracking approaches. Particles are added to the subsurface simulation
based on infiltration from the surface after snowmelt or rainfall, and removed from the subsurface simulation
through both streamflow and evapotranspiration (ET). Thus, the model faithfully represents watershed dy-
namics, in which water dynamically fluxes through. Particles advect according to an interpolated velocity field
from the ParFlow simulation, which is computed before EcoSLIM is applied. The EcoSLIM simulation requires
time‐varying three‐dimensional flow, saturation, and surface‐subsurface fluxes for each model cell, a time‐
varying CLM indicator for rain or snow for each of 160,000 surface cells, and a static porosity characteristic.
Hard drive requirements for 1 year of simulation are approximately 1 TB of ParFlow simulation data and
approximately 500 GB for EcoSLIM simulation data.

New particles are added each 1‐hr simulation timestep if there is a net flux of water into the subsurface domain
representing precipitation, snowmelt, or surface water infiltration. Particles are tagged with important charac-
teristics as they enter the subsurface, including: mass, time and location of entry, and precipitation source phase
(snow, rain, or initial groundwater). Each particles' age and flow path length characteristic starts at 0 and is
updated as it flows through the system. As particles exit the model, additional characteristics are recorded,
including exit pathway (streamflow or ET), and location and time of exit; the age and flow path length are also
finalized. Particle mass depends on the infiltration mass and so varies across particles. Particles are tagged as
snow or rain depending on whether there is snow‐water equivalent in the CLM cell—thus both rain and irri-
gation are tagged as rain since there is generally no snow‐water equivalent in irrigated cells. Particles are
removed by ET depending on the particle mass and the water mass evapotranspired through CLM.

The EcoSLIM simulation was spun up and run using the WY2019 ParFlow simulation. Initially, one particle was
placed in each active model cell to represent the water initially present in the domain. These particles are
considered initial groundwater, but are not included in water source and age distributions because—after a
35 years spinup period—they represent a minimal fraction of the water existing in the watershed (<1%). A single
particle was added in each cell for each hour in which infiltration occurred into that cell, with particle mass equal
to the infiltration mass. The model ran as discussed above for 35 sequential years, repeatedly driven by the
velocities and infiltration masses from the WY2019 ParFlow simulation, with particles exiting by both
streamflow and ET. We considered the spinup complete when the average particle age over the domain changed
less than 0.2 years between simulation years (∼0.5% of the simulation time), as shown in Figure S1 in Sup-
porting Information S1. We accepted this rough convergence after 35 simulation years due to the large size of the
model—simulations required ∼48 hr on 32 Haswell cores for each year of spinup with ∼700 million particles,
nearing the memory limits of available resources. While future work could achieve better convergence, this level
of convergence demonstrates the capabilities and techniques of EcoSLIM.

2.2.3. Adapting for Watershed‐Scale Application

To our knowledge, our work represents the largest applications of advanced dynamic‐flux particle tracking in a
single watershed to date, with ∼700 million active particles and billions of particles overall. We adapted Eco-
SLIM in two ways to enable application at this scale: turning off diffusion to avoid generating trillions of random
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numbers per simulation year, and modifying the output code to reduce computation time. These approaches each
provided ∼2x speedup resulting in a model speedup of ∼4x. More details can be found in Text S1 in Supporting
Information S1. The modified code is available on GitHub: https://github.com/pjdf/EcoSLIM.

2.3. Particle Analysis

We developed several new techniques to analyze EcoSLIM outputs in a large watershed model and address
questions regarding the precipitation source phase and elevation of streamflow and ET, the spatiotemporal vari-
ability of water age in streamflow and ET, and the storage selection behavior. These analyses focus on important
hydrologic processes represented by particle movement and enable future comparison with observations of tracers
reflecting the source, precipitation phase, and ages of water in the watershed.

2.3.1. Selecting Exit Particles Based on Precipitation Source Phase and Exit Path, Localized in Space and
Time

We characterize the spatiotemporal variation of both streamflow and ET in terms of water age and precipitation
source phase. We select the particles exiting each of 17 (nested) subwatersheds for each simulation hour. These
watersheds represent stream monitoring locations regularly sampled for hydrologic and geochemical charac-
teristics by a local non‐profit, the American River Conservancy, to enable future model‐data comparisons beyond
this study's scope. We summarize these fluxes by the volume of water represented by particles leaving the system
during each timestep through each exit path from each subwatershed; we aggregate these both by precipitation
source phase and by age. These steps are detailed in Text S2 in Supporting Information S1. After this processing,
we can investigate detailed hydrologic function and flow paths in ParFlow and analyze how these processes
depend on local characteristics and conditions.

2.3.2. Selecting Particles in Storage Across Space and Time

We investigate the age of both streamflow and ET relative to that of the water in storage using age‐ranked storage‐
selection (SAS) functions (Rinaldo et al., 2015). These functions compare the distributions of the age of water
exiting the system with that of the water in storage to determine whether the water exiting the watershed is
effectively randomly sampled from storage (as in a well‐mixed system) or has age characteristics that are
distinctly different from storage. This helps us understand the fundamental watershed behavior and the dynamics
of the aggregated effects of all flow paths water takes through the subsurface. For these analyses, we select
particles from storage across space and time following the first three steps in Text S2 in Supporting Informa-
tion S1. Note that this selects all particles in a vertical column below the subbasin surface shape, and therefore
does not discriminate if particles are part of a local flow system or not. Such an analysis is possible but beyond this
study's scope.

We then compare particle age distributions of exit fluxes (Section 2.3.1) and storage at two times during the year
to explore the variation in storage‐selection behavior during distinct hydrologic conditions and distinguish
different precipitation source phases and exit paths. Similar analyses could be done for water input elevation or
other characteristics.

2.4. Hydrologic Analysis

We focus on three key characteristics of watershed processes: precipitation source phase, source elevation, and
water age. Particle tracking results were analyzed in three distinct ways: novel subwatershed‐scale cumulative
time‐series, simultaneously illustrating the temporal evolution of the precipitation phases contributing to ET and
streamflow, as well as their age distribution (Section 2.4.1), cumulative distribution functions of water source
elevation and age (Section 2.4.2) and storage selection behavior (Section 2.4.3).

2.4.1. Analyses of the Spatiotemporal Variation of Water Flux Sources and Ages

We develop a novel graphical approach to investigate when, where, and from what source both streamflow and
ET are generated which we call “water partitioning wedges.” As shown in the Figure 3 inset, these wedges show
cumulative time‐series of both streamflow (blue colors, downward) and ET (red colors, upward) for snow in light
shades and rain in dark shades. We plot these in map form at subbasin outlets as a comprehensive approach to
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visually interpret spatio‐temporal water partitioning across the watershed. We inspect the cascade of these distinct
water source, age, and exit characteristics downstream across the stream network as more and different head-
waters are integrated into the system. Figure 3 shows curves for the 17 aforementioned subwatersheds, spanning
from headwaters to valley, but any set of subbasins could be selected.

Similarly, we investigate the age of both streamflow and ET across the watershed (Figure 5). In this case, the
cumulative time‐series of streamflow and ET illustrate the proportions of water in four age bins: (a) younger than
5 days; (b) within the water year; (c) less than 5 years old; and (d) more than 5 years old. Bin boundaries can be
adapted to the watershed under consideration.

2.4.2. Analyses of Water Source Elevations and Ages With Cumulative Distribution Functions

We investigate how source elevation varies across time depending on the precipitation source phase and exit path
by analyzing cumulative distribution functions (CDFs) of infiltration elevation. We plot the CDF of the infil-
tration elevation for particles that exited the watershed during May 2019 and September 2019 (Figure 4). These
months provide a strong contrast in flow conditions to elucidate the distinct behavior of the watershed across time.
May is a relatively high‐flow period, after peak snowmelt but before the summer dry season, while September is a
low‐flow period after many faster flow paths have emptied and so represents the system's longer flow paths. CDFs

Figure 3. Simulated cumulative streamflow and evapotranspiration for water year 2019 in the Cosumnes watershed distinguished by precipitation phase. Cumulative
curves are located at each of 17 locations sampled by volunteers in the American River Conservancy. Cumulative streamflow in blue goes down from the 0 line and
evapotranspiration in red goes up from the 0 line, with the water that originated as snow in the light blue and light red and the water that originated as rain in dark blue
and dark red. Across the watershed snow preferentially leads to streamflow, while rain leads to evapotranspiration at the larger scale but is more evenly split between
streamflow and evapotranspiration in the headwaters. The higher elevation of the watershed is dominated by snow input and by streamflow output, while the lower
elevation part of the watershed is dominated by rain input and evapotranspiration output. There is also a distinct temporal difference in the upper and lower watershed,
with faster rises in evapotranspiration and especially streamflow because of the snowmelt period. The South Fork of the Cosumnes (in aqua) shows distinct behavior
from other headwaters because its lower elevation means it is rain dominated—here, most of the snow still leads to streamflow but a majority of the streamflow and
evapotranspiration both come from rain. A high‐resolution version of this figure is available for closer inspection as Figure S3.
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are built separately for the water that exits as streamflow and that which exits as ET, as well as for water that falls
as rain and that which falls as snow. These are plotted side‐by‐side to easily compare across the two time periods,
exit paths, and precipitation source phases. In addition, we plot the CDF of land surface elevation (brown dotted
lines labeled “Topo”). This demonstrates the distribution from a spatially homogeneous precipitation in which
water exited at the same elevation at which it enters.

We perform a similar analysis for water age, plotting the cumulative age distributions of all water exiting the
watershed in both May and September 2019 (Figure 6). We further plot the age distributions for each precipitation
source phase as well as for each exit path.

2.4.3. Analyses of the Selection of Streamflow and Evapotranspiration Water From Storage

We investigate the simulated storage‐selection dynamics by building age‐ranked storage‐selection curves. To do
so, we calculate the cumulative age distributions of all particles in storage in the middle of both May 2019 and
September 2019 with the same age bins used to calculate the cumulative age distributions for exiting particles in
Section 2.4.2. Note that this determines distinct age distributions of the particles in storage across seasons, distinct
from Wilusz et al. (2020). We then plot the CDF of storage particle ages on the x‐axis against the CDF of exiting
particle ages for that month on the y‐axis. That is, we show the relationship between water in storage and exiting
storage for a set of water age ranges to determine the system dynamics and any preferential behavior of specific
water ages. If data plots along the 1:1 line, then the water exiting the system has the same age distribution as the
water in storage. If the slope of the plotted data is steeper than 45° (the 1:1 line), then water in that age range is

Figure 4. Cumulative distribution curves of the source elevation of simulated streamflow (a, b) in blue, evapotranspiration (c, d) in red, and the total water lost
(streamflow and evapotranspiration; e, f) in gray for May 2019 (a, c, e) and September 2019 (b, d, f) for the watershed defined by the river at Mahon Ranch, shown in tan
on the shaded relief map at the right. Darker colors indicate water that originated as rain, the lightest color indicates water that originated as snow, and the middle color
indicates the sum of the two. The dashed brown line shows the cumulative distribution function of elevation in the same watershed. Average precipitation amounts and
their origin phase are shown in the bar graph (g) for 500 m elevation bands with water starting as rain in dark blue and as snow in light blue, showing the dominance of
snow in the upper watershed and rain in the lower watershed. Note that the total area above 1,500 m is relatively small, as seen in the cumulative distribution of elevation.
The explainer curve (h) shows how to read the plot and that if the line shifts left it means more water starts at lower elevation, and if it shifts right more water starts at
higher elevation.
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more likely to exit the system compared with other storage water. Conversely, if the line is less steep than 45°,
water in that age range preferentially remains in storage compared to other storage water.

Storage selection functions are built separately for each water exit path and for all water which exits. In addition,
storage selection curves are built separately for water from each precipitation source phase as well as for the total
infiltration. Our figures represent the fractional age‐ranked storage selection functions (fSAS) that are scaled to
total streamflow and total storage volume at each time (Van der Velde et al., 2012). Fractional age‐ranked storage
selection functions illustrate watershed behavior with respect to the youngest and oldest water in storage, so their
shape is less sensitive to the relationship between storage volume and water exit rate and more easily comparable
across different times. In contrast, ranked storage selection functions (rSAS; Harman, 2019) require arbitrary
scaling of both axes depending on streamflow and storage conditions; we present fSAS functions to directly
compare watershed behavior at different times.

3. Results
3.1. Spatiotemporal Variability in the Contributions of Rain and Snow to Streamflow and
Evapotranspiration

The simulated precipitation source phase of streamflow and evapotranspiration varies across thewatershed in space
and time as seen in the water partitioning wedges for each sampling point in 2019 (Figure 3). Each cumulative
hydrograph illustrates the precipitation phase (rain in darker colors, snow in lighter colors), the partitioning

Figure 5. Simulated cumulative streamflow and evapotranspiration for water year 2019 in the Cosumnes watershed distinguished by water age. Cumulative curves are
located at each of 17 locations sampled by volunteers in the American River Conservancy. Cumulative streamflow in blue goes down from the 0 line and
evapotranspiration in red goes up from the 0 line, with the colors representing water age as shown in the key in the upper left. Streamflow is dominated by water that fell
before the current water year but within the last five years, though there is also a substantial portion that entered the system very recently (less than 5 days old) in the
upper watershed. Evapotranspiration, in contrast, is dominated by water that fell within the water year, with a significant fraction that fell within five days in the lower
watershed and a larger fraction that fell before the current water year but within five years in the upper watershed. A high‐resolution version of this figure is available for
closer inspection as Figure S4.
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between streamflow (bottom, blue) and evapotranspiration (top, red), and the timing of each of the fluxes. Higher
elevations see most of their water come in as snow and, in the highest elevations, most of that water leaves as
streamflow (light blue). The lower watershed is dominated by rain input and evapotranspiration output (dark red).
In this watershed simulation, snow preferentially exits as streamflow while rain preferentially exits as evapo-
transpiration at the watershed scale. However, rain partitions more evenly between streamflow and evapotrans-
piration (ET) in the headwaters.

In the upper headwaters of Camp Creek, the North Fork, and Middle Fork, nearly all water that exits the model
system starts as snow. In the more northerly Camp Creek and North Fork, the snow splits nearly equally between
streamflow and ET, while in the more southerly Middle Fork more snow goes to ET. The small quantities of rain
in these headwaters also split relatively evenly between streamflow and ET.

The headwaters also show distinct seasonal streamflow trends in the model: a gentle slope indicates small
streamflow from the water year's start to snowmelt, then a steep increase during snowmelt indicates a short period
of high streamflow, and finally a low slope after snowmelt indicates the near‐cessation of streamflow. In contrast,
simulated ET increases imperceptibly early in the water year. After snowmelt, ET increases steeply as water and
energy become available, before gradually slowing over the course of the summer, contrasting with streamflow's
relatively sudden stop.

The South Fork of the Cosumnes shows behavior distinct from other headwaters in the simulation because it is at
lower elevation and thus rain‐dominated. Here, most snow leads to streamflow but the majority of both streamflow
and ET comes from rain. Streamflow here is dominated by pulses from individual storms rather than distinct
seasonal trends. ET increases gradually early in the year, indicating low energy fluxes. This headwater zone is
water‐limited late in the year, minimizing ET and turning the streams ephemeral as seen in both field observations
and the simulation.

Figure 6. Cumulative distribution curves of the age of simulated streamflow (a, b) in blue, evapotranspiration (c, d) in red,
and the total water lost (streamflow and evapotranspiration; e, f) in gray for May 2019 (a, c, e) and September 2019 (b, d, f)
for the watershed defined by the river at Mahon Ranch, shown in tan on the shaded relief map at the right. Darker colors
indicate water that originated as rain, the lightest color indicates water that originated as snow, and the middle color indicates
the sum of the two. The September streamflow is slightly older than the May streamflow, and shows more differentiation
between the snow and rain sources, with somewhat more water from the 1–3 years age range coming out and then slightly
less in the 3–10 years age range. Evapotranspiration shows a more significant shift to older water in September and shows a
clearer separation between rain and snow, though with the same basic pattern. The same pattern is observed in the total exited
water as well, matching the rain more closely because the system is rain‐dominated.
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In contrast with the headwaters, more water leaves the whole watershed simulation as ET than streamflow. This is
seen in the water partitioning wedges at Mahon Ranch, the lowest sampling point in Figure 3. Mahon Ranch's
simulated streamflow consists nearly evenly of rain and snow despite ∼80% of watershed‐wide precipitation
falling as rain, while ET mostly fell as rain. About 15% (160 mm) of this “rain” may come from Central Valley
irrigation, which is added for simulation fidelity and tagged as rain since snow‐water equivalent during irrigation
is 0. However, ET's increased influence can also be seen above the irrigation zone at sampling points near the
confluence of the North, Middle, and South Forks. For example, at the North Fork above Sand Ridge Bridge (site
9 in Figure S2 in Supporting Information S1), 57% of total input is rain and 76% of exiting water is ET, while at
Mahon Ranch, 72% of precipitation comes in as rain and 83% leaves as ET. The whole watershed also behaves
differently from the upper headwaters, with gentler rises in streamflow and ET than even the South Fork
headwaters because the watershed behaves as a low‐pass filter smoothing out effects from many subwatersheds.

We can follow the cascading influence of the different water input and exit phases through the watershed in the
model. Rain from the North and Middle Forks must preferentially contribute to ET as moving down the network
streamflow remains snow‐dominated, but the percentage of ET coming from rain slowly increases. This
cascading behavior can alternately be seen by investigating water exit and precipitation phases across elevation at
different times of year (Figure 4). Modeled streamflow originates mostly from high elevations. Nearly 85% of
streamflow at Mahon Ranch in May originates above 1,000 m elevation, only a third of that subwatershed's area.
In September the streamflow source moves slightly higher, with 88% originating above 1,000 m elevation. The
latter occurs both because the average infiltration elevation of streamflow from snowmoves from 1,625 m inMay
down to 1,520 m in September, and because the average infiltration elevation of streamflow from rain moves from
1,125 m in May to up to 1,150 m in September. In both periods more than 95% of the streamflow that fell as snow
has an infiltration elevation above 1,000 m.

In contrast, May ET seems to be sourced from water that infiltrated evenly across the watershed in the model. The
ET total consists of both rain‐sourced ET that infiltrated at lower elevations and snow‐sourced ET that infiltrated at
higher elevations; themass‐normalized combination of the two signals lays nearly on top of thewatershed elevation
curve. ET in September is sourced from slightly higher elevations, with lateral flow contributing extra water to
lower elevations and possible water limitation in the lowest elevations. The rain and overall ET curves are similar,
showing that rain is the dominant source of ET, particularly in September. The entire watershed simulation's
hydrology is dominated byET as seen by the strong similarity of the overall water source curves to those of ET, both
inMay and September. This is consistent with the much larger ET volumes in theMahon Ranch water partitioning
wedges.

3.2. Spatiotemporal Variability in Streamflow and Evapotranspiration Water Age

In the Cosumnes simulation, ET is generally younger than streamflow, though the oldest water leaving the
watershed (25 years old) leaves as ET (Figure 5). ET is dominated by water that fell within the current water year
(90%) whereas most streamflow fell before the current water year but within the last five years (65%). The ages of
streamflow and ET differmost in the headwaters. In CampCreek and theNorth Fork,more than 70% of streamflow
fell before the current water year whilemore than 70% of ET fell within the current water year. In these headwaters,
a substantial fraction of ET fell before the current water year but less than 5 years ago, while watershed‐wide only
about 10% of ET fell before the current water year. In contrast, streamflow includes similar fractions of water in
each age bin between the headwaters and the whole watershed, suggesting that the lower watershed contributes
only a small amount to streamflow.

The age distributions of simulated streamflow and ET change differently going from headwaters to downstream,
similar to downstream changes in the precipitation source phase (Section 3.1). Watershed‐wide, streamflow is
contributed by the upper watershed, as noted above and seen in reduced area‐normalized streamflow volumes.
Thus, streamflow has similar age fractions throughout the watershed. In contrast, the fraction of older ET is much
larger in the highest elevations than at watershed scale. Steeper topographic convergence in the upper watershed
may lead to old, near‐surface groundwater that is taken up by vegetation for transpiration or lost through evapo-
ration. Lower in the watershed, the relatively flat topography and deeper groundwater tables mean older
groundwater is not available for ET; instead, precipitation and irrigation (see Section 3.1) are evapotranspired
before they infiltrate down to deeper groundwater.
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Baseflow and snowmelt dynamics demonstrate key seasonal changes in the age distributions of both streamflow
and ET in the model, particularly in the Camp Creek, North Fork, and Middle Fork headwaters. Early in the water
year, nearly all streamflow is from previous water years. During snowmelt (a period of about 6 weeks),
streamflow increases steeply mostly with water from the current water year, though there is also a small increase
in older water. After snowmelt, streamflow is again dominated by water that fell before the current water year as
seen by the current year's flat cumulative streamflow curves. In contrast, early year ET is split nearly evenly
between current water year and older water. During snowmelt, ET increases primarily with current‐water‐year
water, including a sizable fraction of water that infiltrated during the last five days. After snowmelt, ET
comes primarily from water that fell within the water year.

The seasonal changes in water ages for simulated streamflow and ET are further illustrated by the cumulative age
distributions of water that exits the watershed (Figure 6). In May 2019, streamflow is substantially older than ET;
ET consists almost solely of water from the current water year while streamflow has substantial sources from the
last 5 years. Streamflow has a similar, though slightly older, distribution in September compared to May. In
contrast, the ET age distribution shifts substantially from May to September, with the September ET including
much more water from previous water years. September ET also sees a substantial divergence in the age distri-
bution of water that fell as rain versus snow, withmost very young ET and a long tail of older ET both having fallen
as rain. Streamflow sees only a small difference inwater's age distribution across precipitation phases betweenMay
and September.

Figure 7. Storage selection curves of simulated streamflow (a, b) in blue, evapotranspiration (c, d) in red, and the total water
lost (streamflow and evapotranspiration; e, f) in gray for May 2019 (a, c, e) and September 2019 (b, d, f) for the watershed
defined by the river at Mahon Ranch, shown in tan on the shaded relief map at the right. Darker colors indicate water that
originated as rain, the lightest color indicates water that originated as snow, and the middle color indicates the sum of the two.
The 1:1 line is shown as a light gray dashed line. As shown in (g), storage selection curves represent the relative age of water
in storage versus that lost to streamflow or evapotranspiration. Line sections that are steeper than the 1:1 line represent more
water exiting storage in that age band than is being kept in storage; lines that are less steep than the 1:1 line represent less
water exiting storage in that age band than is being kept in storage. Here we see that streamflow preferentially takes slightly
older water from the “young water” component, but younger water from the “old water” component, both in May and
September, though more significantly in May, while streamflow that originates as rain is generally much younger than the
water in storage, weighting all streamflow to be younger than storage. Evapotranspiration is generally much younger than
storage, particularly in May. The evapotranspiration from snow line goes above the rain line at older storage ages,
suggesting that old water that began as snow is less likely to exit than old water that began as rain. The total water lost looks
more like rain because much of the watershed's precipitation falls as rain.
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3.3. Selection of Water Storage

Simulated streamflow and ET are generally younger than the modeled water in storage in the Cosumnes, both
during peak flow (May 2019) and the dry season (September 2019), though somewhat older water is selected
from storage both in September and for snow‐derived streamflow (Figure 7). Figure 7's fractional age‐ranked
storage selection (fSAS) functions plot the CDF of the age of water exiting the system (as streamflow, ET,
or total) vertically against the CDF of the age of water in storage horizontally, as discussed in Section 2.4.3.
These curves provide information about the age of streamflow and ET relative to the storage water, rather than
the absolute age discussed in Section 3.2. The ET and streamflow volumes are also split by precipitation source
phase (rain/snow) and compared to water in storage with the same source phase. Note that less water leaves the
system in September than in May, and thus is represented by many fewer particles and the curves are much less
smooth.

Simulated streamflow is younger than water in storage in both May and September. As discussed before, in both
months only a very small fraction of streamflow is older than 5 years (Figure 6), while about 65% of storage is older
than 5 years. The SAS curves for rain‐derived streamflow are very similar to the overall SAS curve. In contrast, the
snow‐derived streamflow SAS function is well below the 1:1 uniform selection diagonal, showing that snow‐
derived streamflow contains a smaller proportion of the youngest water in snow storage (less than 6 months in
May or 1 year in September). This difference between streamflowSAS functions implies that the age distribution of
snow‐derived storage is different from that of rain‐derived storage since the age distributions of rain‐ and snow‐
derived streamflow are nearly identical (Figure 6). In particular, snow‐derived storage appears to be younger
than rain‐derived storage and appears to occupy a smaller volume than rain‐derived storage. Simulated streamflow
is selecting older water from snow‐derived storage, perhaps through a piston flow mechanism at higher watershed
elevations. In contrast, rain‐derived streamflow is young relative to rain‐derived storage across all age ranges and
does not show the same preference for slightly older water. The phase‐differentiated SAS curves clearly illustrate
the distinct differences in behavior between steep, high‐elevation, snow‐dominated headwaters and lower slope,
low‐elevation, rain‐dominated parts of the watershed.

ET is younger than water in storage in both May and September in the model, and ET selects even younger water
from storage than streamflow. The preference of ET to remove the youngest water in storage is stronger for rain‐
derived storage than for snow‐derived storage. In May, ET removes only the youngest water from storage as
seen by the near‐vertical line to >0.9 of the age rank of ET. Snow‐derived May ET is also younger than the
snow‐derived storage, as seen by the line that is steeper than the 1:1 up to 6 months in age or ∼0.2 of age rank of
storage. The slope breakpoint in the snow‐derived ET SAS function at about 6 months suggests ET may
effectively draw from two pools of snow‐derived storage: snow‐derived storage younger than 6 months is
preferentially selected as ET but snow‐derived storage older than 6 months is removed more evenly up to the
oldest water in storage. In September, most ET is derived from rain and again largely selects the youngest water
in storage. In this month, about 15% of ET is contributed by a broad spectrum of older storage water. The SAS
function of snow‐derived September ET shows three segments. Snow‐derived ET appears to be uniformly
selected from the snow‐derived storage for the younger than 6 months old as seen by it falling on the 1:1 line. ET
then preferentially selects water older than 6 months but younger than ∼5 years from snow storage. Finally, there
is a small contribution of the oldest snow in storage to September ET. Comparing the shape of the SAS ET
functions, the May curve appears similar to the September curve, but with a very large additional component of
the youngest water in storage.

4. Discussion
4.1. Understanding Watershed Behavior From Age and Phase Perspectives

“Accurate prediction of the headwater hydrograph implies adequate modeling of sources, flowpaths and residence
time of water and solutes.” (Hewlett & Troendle, 1975).

Observations that mean travel times in watersheds often exceed the hydrological response time by orders of
magnitude (Martinec, 1975) has spurredmany studies into the double paradox of rapidmobilization but apparently
old water in streams, based on variable chemistry (Kirchner, 2003). Hillslope‐scale flow and transport simulations
(Jones et al., 2006) have demonstrated the role of hydrodynamic mixing in mobilizing pre‐event water while
storage selection approaches (Rinaldo et al., 2015) have provided deeper insights into watershed‐scale processes
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generating streamflow. SAS models have been supported by numerous isotopic and chemical tracer studies at the
experimental (Kim et al., 2016; Pangle et al., 2017), hillslope (Kim&Harman, 2022), andwatershed scale (Rinaldo
et al., 2015; Van der Velde et al., 2012; van der Velde et al., 2015; Visser et al., 2019). Recently, observations of
isotopically distinct sources ofwater in soil, streamflow, and xylemhave driven study into howprecipitation source
phase affects watershed function (e.g., Brooks et al., 2010; Sprenger et al., 2016, 2022). Until now, computational
infrastructure limited the numerical examination of storage selection and precipitation source phase behavior to
experimental (Pangle et al., 2017), hillslope (Kim & Harman, 2022), and research catchment scales (Wilusz
et al., 2020) with a few exceptions that have other limitations (Glaser et al., 2021; Jing et al., 2021; Weill
et al., 2019).

Our work is the first to demonstrate how watershed‐scale particle‐tracking simulation enables analysis of water
ages, storage selection behavior, and source partitioning in unparalleled detail. This approach can examine long‐
term average behavior of the whole watershed, or focus on specific locations (e.g., sample locations) or key
moments (e.g., peak snow melt or late summer base flow). In our simulations, both streamflow and evapo-
transpiration prefer to select the youngest water from storage, consistent with previous work suggesting that
much streamflow around the globe consists of young water (Jasechko et al., 2016). This effect is stronger than
observed in periodic‐steady‐state simulations of a 1 m3 lysimeter with periodic tracer applications (Kim
et al., 2016; Pangle et al., 2017) where young water supplied larger fractions of streamflow when the water table
rose near the surface. The snow‐derived storage selection curves in our model show a preference for somewhat
older water from storage, consistent with a tracer‐based analysis of a Southern Sierra Nevada headwater
catchment (Visser et al., 2019). That catchment exhibited a preference for older water discharge during low‐flow
conditions and only a slight preference for younger water during high flow conditions. We attribute the strong
preference to discharge the youngest rain‐derived water from storage in our model to (a) the larger volume of
rain‐derived water in storage at lower watershed elevations, and (b) the absence of local dispersion and diffusion
in our simulations (Jones et al., 2006) which could decrease the contribution of event water. We hypothesize that
explicitly accounting for dispersion along simulated flow paths to reflect real‐world dispersion will reduce the
preference for the youngest water in storage. This effect is expected to be stronger in regions with high contrasts
in permeability and high anisotropy (Siirila & Maxwell, 2012). Importantly, we expect that accurately repro-
ducing watershed‐scale storage selection behavior will build a deeper understanding of subsurface structure,
since the latter controls steady‐state hillslope behavior (Kim et al., 2022).

Snow preferentially exits as streamflow and rain preferentially exits as evapotranspiration (ET) in our simu-
lations. We propose three reasons this split might occur: (a) lower energy availability in snow‐dominated
conditions results in a larger streamflow generation while higher energy availability in rain conditions pro-
duces more soil evaporation and transpiration; (b) persistent snowmelt into high‐antecedent moisture soils en-
hances flow and connections to streams and groundwater; and (c) snow preferentially falls in headwaters with a
lower‐hydraulic conductivity subsurface, driving more runoff. Our work is consistent with an emerging view
that snow disproportionally contributes to streamflow, while water from rain remains relatively stationary and
contributes primarily to ET (Carroll et al., 2020; Hammond et al., 2019; Li et al., 2017; Siirila‐Woodburn
et al., 2023; Sprenger et al., 2022). Ongoing work is comparing dynamic‐flux particle tracking results to
these isotope measurements in a mountain watershed where the precipitation source phase partitioning appears
linked to tree density and aspect (Sprenger et al., 2022). In a warmer low‐to‐no‐snow future, vegetation may
have access to a larger fraction of the water budget, leaving a smaller fraction for streamflow (Maina
et al., 2022).

4.2. Management Application

To manage water resources in a changing climate, we need to understand the ecohydrologic processes that
provide water for both people and nature. Dynamic‐flux particle tracking enables a better understanding of
hydrologic fluxes at the watershed scale via novel in‐depth analyses of the modeled streamflow and ET path-
ways, differentiated by source phase and age with spatially‐variable groundwater contributions. Our simulations
demonstrate two features of watershed behavior with potentially critical implications for water resource
management.

First, we find that snow preferentially exits as streamflow and rain preferentially exits as ET in the simulation. If
streamflow is substantially reduced in a low‐to‐no‐snow future (Siirila‐Woodburn et al., 2021), it may limit the
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ability of current plans to store larger amounts of streamflow in dams and the subsurface to provide resilience
against the loss of snowpack (Dahlke et al., 2018; Perrone & Rohde, 2016). At the same time, we expect that rain
and snow partitioning may shift as more intense precipitation events increase the portion of rain rapidly entering
streamflow. Dynamic‐flux particle tracking simulations of future climate scenarios can assess the magnitude of
these changes to determine appropriate management adaptations.

Second, the oldest water in storage seems to be removed primarily by ET in September. This may indicate that
ET accesses long flow paths in convergent zones, which could make vegetation along streams and in meadows
resilient to drought as the flow paths integrate a large distribution of water ages. Alternately, that old water might
indicate slow flow paths due to low permeability/porosity of the subsurface, which would be less resilient
because the shorter slow flow paths will store and provide less water. Understanding such details will be a
critical part of managing water in a future where increasing temperature will alter both water source phase and
the energy available for ET.

Dynamic‐flux particle tracking also provides new opportunities to communicate scientific results to stakeholders
and watershed communities. The movement of distinct packets of water is a more intuitive representation than
classic watershed budget metrics, and the water source wedges we present here provide one intuitive way to
demonstrate the flow of this water with high information density. When properly integrated in a decision‐making
framework with stakeholders, dynamic‐flux particle tracking may help efficiently inform management options
related to reservoir operations, headwaters‐to‐groundwater water storage planning including managed‐aquifer
recharge, achieving environmental resilience, and landscape management.

4.3. Future Research

Here, we demonstrate how dynamic‐flux particle tracking simulations can interrogate watershed function at a
level of detail that is not feasible by field measurements and observations. Dynamic‐flux particle tracking can
also constrain simulations by providing information on the distinct simulated flow paths of water that are more
sensitive to detailed watershed processes and conditions than integrated measures such as streamflow. Because
dynamic‐flux particles represent specific packets of water that flow through the subsurface, dynamic‐flux
particle tracking results are ideally suited to compare to hydrologic tracer measurements that reflect the inte-
grated effects of watershed‐scale flow processes and transit time. For example, analyses could compare
dynamic‐flux model outputs with stable isotope measurements of streamflow and groundwater to test whether
the simulation correctly links the precipitation source phase or input elevations with water's exit phase. Simu-
lated subsurface residence time and its intra‐annual variation could be compared to measurements of naturally
occurring radioactive isotopes that are sensitive to different periods of water's residence time to understand how
watersheds select water from storage for streamflow. Comparing dynamic flux particle tracking with measured
isotopic or other chemical or biological tracer concentrations could also aid in identifying whether the numerical
models are sufficiently accurate representations of the real watershed. In addition, we could better understand the
uncertainty in our simulations and interpretations of watershed function by investigating the range of ages and
water sources estimated from dynamic‐flux particle tracking using different model parameterizations of both
subsurface structure and land surface processes.

4.4. Model Limitations

While this work demonstrates valuable new approaches to investigate watershed function, this application has
important limitations that should be considered when interpreting the results. First, previous work developed the
watershed simulation of the Cosumnes Watershed that we used to drive the dynamic‐flux particle tracking. The
comparison of the simulation outputs to observations and satellite data products suggests that the simulation
reasonably represents watershed processes. However, complex watershed simulators like ParFlow‐CLM remain
too computationally costly to formally calibrate to observations. At the moment, we lack observational data that
could constrain the particle tracking results. Therefore, we present the results here as model outputs illustrating
watershed behavior rather than precise metrics about how the Cosumnes Watershed functions. We note that
these simulation outputs are consistent with observations in other Western US mountain watersheds, but
acknowledge the lack of formal constraints on this particular watershed.

We further acknowledge several limitations in the models themselves. EcoSLIM tracks water particles only
through subsurface flow, and the version used here did not yet include the addition of particles through
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lateral boundaries. Therefore, the model does not account for water that never enters the subsurface nor that
enters or exits through the lateral boundary conditions. Because the transit time of water through the stream
network is much faster than through the subsurface, it is unlikely to substantially change our results. The
lateral boundaries are unlikely to substantially affect results because the simulated domain is substantially
larger than the topographic watershed boundary. Further, the ages presented here reflect the time since
infiltration. Therefore, the snow age is that since melt, rather than since snowfall. Including a model that
accurately tracks the age of snowmelt could add important information regarding the distinct behavior of
different snowfall regimes. In recent work we applied an age correction to snowfall that assumes a perfect
mixing of snow through the melt process (Siirila‐Woodburn et al., 2023), but more sophisticated mixing
models might be appropriate given complex snow melt processes. Finally, while ParFlow‐CLM has been
used to understand key surface/subsurface interactions (Condon & Maxwell, 2019; Maxwell & Kollet, 2008;
Schreiner‐McGraw & Ajami, 2020), the representation of evapotranspiration, and the partitioning between
evaporation and transpiration, remain limited. Recent work to couple ParFlow with more advanced vege-
tation representations (Fang et al., 2022) can improve on these representations, and future work could
investigate the role of these representations in affecting water's simulated flow paths. We discuss these
potential shortcomings in more detail in Supplement S.2.

5. Conclusions
We demonstrate the novel capabilities of dynamic‐flux particle tracking to elucidate details of watershed
function that are difficult to interrogate with traditional methods in integrated watershed models, and illustrate
these capabilities with a novel visualization we call water source wedges. We further discuss how insight gained
from this new approach can help understand watershed dynamics. We detail these methods by applying them to a
representative California watershed (Maina et al., 2020). To our knowledge this is the first application of this
approach at large watershed scale, likely because the 700M particle simulation over more than 1M simulation
cells requires substantial computational effort. The final watershed and dynamic‐flux particle simulation which
was analyzed here required more than 18,000 core hr and about 1.5 TB of storage, after an extensive spinup
simulation that required 2x more resources. This work demonstrates how dynamic‐flux particle tracking can help
us understand how integrated watershed simulators function and, with proper constraints, how watersheds
function. Such techniques will help drive future knowledge about watershed behavior and how it will shift in a
changing climate.

In our simulations, streamflow is primarily derived from water that fell as snow while evapotranspiration (ET) is
generally derived from water that fell as rain (Figure 3). This difference in precipitation source phase reflects a
strong elevational gradient in the watershed, in which the upper watershed receives much more precipitation as
snow while the lower watershed receives less water with precipitation in the form of rain. In addition, the lower
watershed has substantially higher temperatures, and hence more energy demand for ET. This can be seen in the
distinct source elevations of streamflow, which mostly starts above 1,000 m, and ET, which is sourced relatively
evenly across the watershed (Figure 4).

The simulation also shows distinct differences in the age distributions of streamflow and ET; ET is generally
younger than streamflow but also accounts for most of the oldest water leaving the watershed (Figure 5).
Streamflow consists primarily of water that fell before the current water year though within the last 5 years,
while ET water primarily fell within the current water year. The age of exiting water also shows the effect of the
elevation gradient. Streamflow age distributions do not show elevational trends and are consistent across the
watershed, in part because little of the precipitation that falls in the lower watershed leaves as streamflow. In
contrast, ET has a much larger fraction of old water in the headwaters than at lower elevations, likely because
either (a) the steep topography leads to flow paths that converge along streams where vegetation can access the
water, and/or because (b) low‐permeability and porosity bedrock in the headwaters slows the high‐elevation
groundwater which is thus older.

Finally, our simulation also shows that the water exiting as both ET and streamflow is generally younger than
water in storage (Figure 7). ET is particularly young relative to storage, though it also includes a small
component of relatively old water, likely in the topographic convergent zones discussed above. In contrast,
streamflow derived from snow preferentially selects water between 1 and 5 years old during the dry season,
suggesting intermediate system memory and multi‐year buffering capacity. Further work should consider the
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time periods of these system dynamics, especially as multi‐year droughts and transitions in climate force more
persistent perturbations.
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