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ABSTRACT OF THE DISSERTATION

Webs for Flamingo Specht Modules

by

Jesse Kim

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Brendon Rhoades, Chair

A web basis of a representation of Sn is a basis of the representation for which the

action of Sn can be understood through combinatorial rules called skein relations. In this

thesis, we study web bases for two families of irreducible Sn representations, indexed by the

partitions (d2,1n−2d) and (d3,1n−3d). The first was introduced by Rhoades and is indexed

by noncrossing set partitions of n. We use it to give a model for the top degree component

of the fermionic diagonal coinvariant ring, and introduce another similar basis to model the

entire fermionic diagonal coinvariant ring. We also give an embedding of the noncrossing set

partition representation into an induction product of the Temperley-Lieb representation with a

sign representation, thereby providing alternate proofs that the skein relations which define the

xi



noncrossing set partition representation are in fact well defined. The second web basis is new,

and simultaneously generalizes the SL3 web basis of Kuperberg and the noncrossing set partition

web basis. To define it and show it gives a basis, we draw on the combinatorics of Plabic graphs,

jellyfish invariants, and weblike subgraphs.
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Introduction

Representation theory of the symmetric group is one of the fields of mathematics which

best showcases the power of thinking combinatorially. Rich algebraic structures are represented

by simple diagrams, and algebraically defined operations on that structure are encoded via

rules for manipulating the diagrams. These rules allow translation of algebraic reasoning into

algorithmic reasoning about the manipulation of diagrams. The prototypical example of this

paradigm is the classification of irreducible representations. Irreducible representations of Sn

are in bijection with integer partitions of n, which can be in turn viewed as young diagrams:

left justified rows of boxes which decrease in length. Combinatorial rules on young diagrams

express deeper algebraic structure. The Pieri rule, for example, states that the decomposition of a

certain induction product into irreducible representations is given by all ways to add a number of

boxes to a young diagram such that no column receives more than one new box. The structures

of the irreducible representations themselves can be understood in a number of ways, each with

their own benefits and insights. The standard construction is via young tableaux: fillings of the

young diagrams with a natural number in each box. We will be interested in constructions which

only exist for a select few irreducible representations called web bases.

The systematic study of web bases began with Kuperberg in 1996 [25], although some

bases now considered web bases predate him. Kuperberg was interested in understanding the

subspace of invariants of the action of a Lie algebra on an n− f old tensor product of its defining

representation and dual defining representation. When we take only the defining representation,

there is a natural action of Sn on this space, and Schur-Weyl duality guarantees it is irreducible.

There are natural ways to move between these invariant subspaces for different n, namely tensor

1



product and contraction. It can be shown that these two operations can be used to build all

elements of these invariant subspaces from a finite list of starting invariants. Webs depict these

two operations combinatorially. A web is a bipartite graph embedded in a disk with n boundary

vertices. Interior vertices represent the starting invariants, edges between vertices represent

tensor contraction, and concatenation of webs represents tensor product.

One benefit of the combinatorial interpretation webs provide is a simpler understanding

of the relations between the operations of tensor product and contraction. These relations can

be understood combinatorially through skein relations, which are ways of locally modifying

webs to produce a linear combination of webs representing the same invariant. Perhaps the most

important skein relation is the uncrossing skein relation, which gives a way to transform a web in

which two edges cross each other into a sum of webs which no longer have this crossing. Thus,

to understand the invariant subspace, one need only consider planar webs, webs in which no

edges cross. An important problem in the study of webs is the question of how to prune down

the set of webs further to a basis. Kuperberg addressed this for rank-two Lie algebras, including

sl3. For sl3, planar webs in which no face has degree 4, called nonelliptic webs form a basis for

the invariant space. A rotation-invariant answer to this question for sl4 was recently announced

in[13], and only non-canonical answers, in the sense they require choices to be made, are known

for sln [5].

Webs also serve to illuminate the structure of this invariant space considered as an Sn-

module. The action of a permutation σ ∈Sn on a web is given by simply permuting the boundary

vertices according to σ , then if a web basis is known, expanding into that basis using skein

relations. It is for this reason that a rotation and reflection invariant basis of webs is desired. If a

web basis is rotation and reflection invariant, then the action of any permutation in the dihedral

group D2n considered a subgroup of Sn will again produce a basis web, and no expansion is

necessary.

There are three web bases in particular we will focus on. The first, the Temperley-Lieb

web basis, or sl2 web basis, actually predates Kuperberg’s development of the subject. Various

2



aspects of it were studied by various authors, including the eponymous Temperley and Lieb [54].

The Temperley-Lieb basis is fairly simple combinatorially. It is indexed by noncrossing perfect

matchings of {1, . . . ,n}, that is, ways to pair up n points around a circle with arcs, such that no

two arcs cross. There is a single skein relation, given by replacing a crossing pair of arcs with

both ways to uncross them. The Temperley-Lieb basis gives a basis for (V⊗n)SL2 , the space of

SL2-invariants of V⊗n, where V is the 2-dimensional defining representation of SL2. Each arc

represents a volume form on the two tensor factors indexed by those vertices which it connects.

As an Sn module, this invariant space is isomorphic to the Specht-module of shape (d,d) if

n = 2d and is 0 if n is odd.

The second web basis we will focus on is a generalization of the Temperley-Lieb web

basis introduced by Rhoades [39]. Rhoades’ web basis is indexed by singleton-free noncrossing

set partitions rather than noncrossing matchings. This is a generalization of Temperley-Lieb since

a noncrossing set partition in which every block is size 2 can be considered a noncrossing perfect

matching. The single skein relation of the Temperley-Lieb action splits into three skein relations

based on the sizes of the crossing set partitions. In Chapter 2, we connect Rhoades’ basis to the

theory of diagonal coinvariants by giving an explicit Sn-module isomorphism between the Sn

module spanned by noncrossing set partitions and the top degree piece of the fermionic diagonal

coinvariant ring, FDRn. To do so, we construct a set of operators on FDRn which satisfy the skein

relations of Rhoades’ action, then show that these operators applied to a certain element create a

basis of FDRn. In doing so, we give better understanding of both the Sn module structure of

FDRn and the resolution of crossings in Rhoades’ set partition action. Chapter 3 gives a different

but similar combinatorial basis for all of FDRn rather than only the top graded piece, but at

the cost of some of the nicer properties of the noncrossing set partition basis. In Chapter 4, we

embed Rhoades’ basis within the induction product of the Temperley-Lieb representation with a

sign representation and use it to give alternate proofs of some of Rhoades’ results.

The third web basis we will focus on is Kuperberg’s sl3 web basis, a modification of

the Temperley-Lieb basis in a different direction. It is a basis for (V⊗n)SL3 , the SL3 invariant

3



subspace of V⊗n, where V is now the three-dimensional defining representation of SL3. It is

indexed by bipartite 3-regular planar graphs embedded in a disk with n boundary vertices and no

interior faces of degree 4. There are now two main skein relations, an uncrossing skein relation

similar to the one appearing in Temperley-Lieb, and a new skein relation which removes square

faces.

The culmination of this thesis is the construction of a new web basis which combines the

above two generalizations of Temperley-Lieb. Chapter 5 introduces augmented webs, which are

similar to SL3 webs, except one part of the bipartition of vertices may have degree three or more,

rather than exactly three. Using them, we give a rotation invariant basis of the Specht module

of shape S(d
3,1n−3d). Towards this end it is helpful to reinterpret these three web bases within a

consistent framework using the theory of plabic graphs introduced by Postnikov [34] to study

the totally nonnegative Grassmanian. Plabic graphs are planar graphs embedded in a disk, where

vertices are bicolored, either black or white. We will be particularly interested in normal plabic

graphs, plabic graphs in which the vertex coloring is proper, meaning adjacent vertices have

different colors, and every white vertex has degree exactly three. Noncrossing matchings are

naturally in bijection with normal plabic graphs where all vertices are degree exactly 2 (and thus

there are no white vertices). Noncrossing set partitions are naturally in bijection with normal

plabic graphs in which black vertices are degree at least two, and white vertices are degree

exactly two (again, this implies there are no white vertices, we phrase it this way to match the

description of SL3 webs). Nonelliptic SL3 webs are normal plabic graphs in which every vertex

is degree exactly 3., and there exist no faces of degree 4. Somewhat surprisingly, the naive way

to combine the objects indexing these two generalizations works out: Augmented SL3 webs are

normal plabic graphs with no faces of degree 4, all white vertices are degree exactly 3, and all

black vertices are degree at least 3. Expanding on work of Fraser, Patrias, Pechenik, and Striker

[11], we show how to associate SL3 invariants to these objects to build our rotationally invariant

basis. As an application, we use this basis to give a new cyclic sieving result for a q-analog of

the hook-length formula for the partition (d3,1n−3d)

4



One future goal of this project is in developing an alternative route towards solving the

open problem of finding rotation invariant SLr web bases for r > 4. Many of the ideas introduced

to prove augmented webs form a basis generalize to n > 4, and finding a web basis for S(d
r,1n−rd)

would include a web basis for S(d
r). Although this seems like a more complicated problem, our

approach is not strictly harder, as augmented webs consist of linear combinations of SL3 webs,

and the search for a rotationally invariant SLr web basis has been mostly restricted to looking for

subsets of SLr webs.
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Chapter 1

Background

1.1 Representation theory of the symmetric group

Given a finite group G, a (complex) representation of G is a C-vector space V and

a group homomorphism ρ : G → End(V ). A subrepresentation of (V,ρ) is a subspace of V

which is closed under ρ(g) for all g ∈ G. A representation is irreducible if it contains no

proper subrepresentation. Two representations (V1,ρ1) and (V2,ρ2) are isomorphic if there exists

an invertible linear map φ : V1 → V2 such that φ−1 ◦ ρ2(g) ◦ φ = ρ1(g) for all g ∈ G. Up to

isomorphism, irreducible representations of G are in bijection with conjugacy classes of G. All

representations are ismomorphic to a direct sum of irreducible representations.

When G is the symmetric group, conjugacy classes, and thus irreducible representations,

are indexed by integer partitions of n. The irreducible indexed by a partition λ ⊢ n is denoted

Sλ and is called the Specht module of shape λ . One way to construct the Specht modules is as

follows. Let λ ⊢ n, and let λ ′ be its transpose. Consider a matrix of nλ ′
1 variables,

M =



x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

... . . . ...

xλ ′
1,1

xλ ′
1,2

· · · xλ ′
1,n


The symmetric group Sn acts on this matrix, and thus on C[M], by permuting columns of M.
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Let π = {π1,π2, . . . ,πλ1} denote a set partition of n with shape λ ′, i.e. the sizes of each part of

the partition are given by the rows of λ ′. For each such set partition π , let pπ be the polynomial

pπ =
λ1

∏
i=1

Mπi
[λ ′

i ]

where Mπi
[λ ′

i ]
denotes the matrix minor of M whose rows are indexed by [λ ′

i ] and columns are

indexed by πi. Then the Specht module Sλ is the span of these polynomials as π ranges over all

set partitions of shape λ .

Representations of the symmetric group are deeply connected with symmetric functions.

The ring of symmetric functions consists of all formal power series in infinitely many variables

x1,x2, . . . which are invariant under a permutation of the variables. For i ∈ Z+, the power

sum symmetric function pi pi = xi
1 + xi

2 + · · · . Given an integer partition λ = (λ1,λ2, . . . ,λk),

pλ = pλ1 pλ2 · · · pλk
. The Frobenius image of a representation, Frob(V ), is the symmetric function

given by

∑
λ⊢n

z−1
λ

tr(ρ(σλ ))pλ

where σλ is any permutation whose cycle sizes match λ , and zλ denotes the size of the centralizer

of σλ . The resulting symmetric function does not depend on the choices of σλ .

The importance of the Frobenius image lies in the fact that the Frobenius images of

the irreducible reprentations, called Schur functions sλ = Frob(Sλ ) are a basis for the ring of

symmetric functions. Furthermore, if V1 ∼=V2 ⊕V3, then

Frob(V1) = Frob(V2)+Frob(V3)

Thus, determining the Frobenius image of a representation determines its decomposition into

irreducible representations.

Multiplication in the ring of symmetric functions corresponds to induction product

of representations. Given two representations V and W of Sm1 and Sm2 respectively, with
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m1 +m2 = n, the induction product V ◦W is given by

V ◦W = IndSn
Sm1×Sm2

V ⊗W

where Sm1 ×Sm2 is identified with the parabolic subgroup of Sn which permutes the first m1

elements, {1, . . . ,m1}, and last m2 elements, {m1 +1, . . . ,n}, separately. Then

Frob(V ◦W ) = Frob(V )Frob(W )

When V is an irreducible representation Sµ for some partition µ of m1 and W is a sign

representation of Sm2 , the dual Pieri rule describes how to express V ◦W in terms of irreducibles,

Sµ ◦ signSm2
∼= ∑

λ

Sλ (1.1.1)

where the sum is over all partitions λ whose young diagram can be obtained from that of µ by

adding m2 boxes, no two in the same row.

Another tool for determining the decomposition of a representation into irreducibles can

be obtained by considering the action of the group algebra of the symmetric group. Given a

partition λ = (λ1,λ2, . . . ,λk) ⊢ n, let Sλ ⊆Sn denote the Young subgroup Sλ :=S{1,...,λ1}×

S{λ1+1,...,λ1+λ2}×·· ·×S{n−λk,...,n}. To any subgroup X ⊆Sn we associate two group algebra

elements [X ]+ and [X ]− defined by [X ]+ = ∑w∈X w and [X ]+ = ∑w∈X sign(w)w. Then the

following is true.

Lemma 1.1.1. Let λ ,µ ⊢ n. Then [Sλ ]+ kills Sµ unless λ ⪯ µ and [Sλ ′]− kills Sµ unless µ ⪯ λ .

For an in depth discussion of this material, see [47].
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1.1.1 Exterior algebras

We use ∧{Θn,Ξn} to denote the exterior algebra over C generated by the 2n symbols

θ1, . . . ,θn,ξ1, . . . ,ξn. Given subsets S,T ⊆ [n] with S = {s1 < · · ·< sa},T = {t1 < · · ·< tb}, we

let θS ·ξT ∈ ∧{Θn,Ξn} denote the exterior monomial

θS ·ξT := θs1 · · ·θsa ·ξt1 · · ·ξtb. (1.1.2)

The set {θS ·ξT : S,T ⊆ [n]} is a basis of ∧{Θn,Ξn}. By declaring this basis to be orthogonal,

we obtain an inner product ⟨−,−⟩ on the space ∧{Θn,Ξn}.

We will use a notion of exterior differentiation (or contraction). If Ωm = (ω1,ω2, . . . ,ωm)

is an alphabet of fermionic variables, consider the rank m exterior algebra ∧{Ωm}. We define a

∧{Ωm}-module structure ⊙ on ∧{Ωm} on by the rule

ωi ⊙ (ω j1 · · ·ω jr) :=


(−1)s−1ω j1 · · · ω̂ js · · ·ω jr if js = i

0 if i ̸= j1, . . . , jr

(1.1.3)

whenever 1 ≤ j1, . . . , jr ≤ m are distinct indices. The rule ( f1 f2)⊙g = f1 ⊙ ( f2 ⊙g) together

with bilinearity yield f ⊙ g ∈ ∧{Ωm} for any f ,g ∈ ∧{Ωm}. We also define the conjugate

f̄ ∈ ∧{Ωm} of an element f ∈ ∧{Ωm} by the rule

∑
1≤i1<···<ik≤m

αi1,...,ik ·ωi1 · · ·ωik = ∑
1≤i1<···<ik≤m

αi1,...,ik ·ωik · · ·ωi1 (1.1.4)

where the α’s are complex numbers and the bar on the right-hand side denotes complex conjuga-

tion.

We apply the ⊙-action over the size 2n alphabet (θ1, . . . ,θn,ξ1, . . . ,ξn) of variables in

∧{Θn,Ξn}. We leave the following simple proposition to the reader; its second part characterizes

the ⊙-action.
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Proposition 1.1.2. 1. For any w ∈Sn and f ,g ∈ ∧{Θn,Ξn} we have

⟨ f ,g⟩= ⟨w · f ,w ·g⟩.

2. For any f ,g,h ∈ ∧{Θn,Ξn} we have

⟨ f ·g,h⟩= ⟨g, f̄ ⊙h⟩.

3. Assume that f ,g ∈ ∧{Θn,Ξn} where f has homogeneous total degree d. For any 1 ≤ i ≤ n

we have

θi⊙ ( f g) = (θi⊙ f )g+(−1)d f (θi⊙g) and ξi⊙ ( f g) = (ξi⊙ f )g+(−1)d f (ξi⊙g).

Proposition 1.1.2 (3) is a sign-twisted version of the Leibniz rule.

1.2 Noncrossing Matchings and Temperley-Lieb

The special linear group SL2 is the set of all 2× 2 matrices with determinant 1. The

special linear group SL2 acts on a two-dimensional vector space V with basis {e1,e2} by left

multiplication, and acts on the n-fold tensor product V⊗n diagonally. This section will be

concerned with the SL2 invariant subspace of V⊗n, (V⊗n)SL2 , which Sn acts on via permuting

tensor factors. When n = 2, the SL2 invariant subspace of V ⊗V is one-dimensional, generated by

the element e1⊗e2−e2⊗e1. Also, if v1 ∈ (V⊗n1)SL2 and v2 ∈ (V⊗n2)SL2 , then the tensor product

is also SL2 invariant, v1 ⊗ v2 ∈ (V⊗n1+n2)SL2 . In fact, tensor product and linear combinations

are enough to make all SL2 invariants out of e1 ⊗ e2 − e2 ⊗ e1. The Temperley-Lieb web basis

represents this combinatorially through noncrossing perfect matchings.

A matching of [n] is a collection of disjoint size-two subsets of [n]. A matching is

perfect if every element of [n] appears in the matching, i.e. it is a set partition of [n] into size
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two parts. We will often represent matchings via arc diagrams: drawings with the numbers

1 through n placed equally spaced around a circle, and arcs connecting matched elements. A

matching is noncrossing if it does not contain two subsets {a,c} and {b,d} with a < b < c < d,

or alternatively, if arcs do not cross in its arc diagram. Let M(n) denote the set of all matchings

of [n], let PM(n) denote the set of perfect matchings, and let NCM(n) denote the set of all

noncrossing matchings of [n]. To each perfect matching of [n], we can associate an element of

(V⊗n)SL2 recursively: The unique matching when n = 2 corresponds to e1 ⊗ e2 − e2 ⊗ e2. If m1

is a matching of n1 corresponding to v1 ∈ (V⊗n1)SL2 and m2 is a matching of n2 corresponding

to v1 ∈ (V⊗n2)SL2 , then the matching obtained taking the union of m1 with m2 incremented by n1

corresponds to v1 ⊗ v2. If m is a matching corresponding to v and si is an adjacent transposition

between two elements not matched to each other in m, then the matching obtained by swapping i

and i+1 corrseponds to −si · v.

We can then pullback the action of the symmetric group Sn on (V⊗n)SL2 to an action on

PM(n) as follows. If σ ∈Sn and m = {{a1,b1}, . . . ,{an,bn}} is a perfect matching, then

σ ◦m = sign(σ){{σ(a1),σ(b1)}, . . . ,{σ(an),σ(bn)}}. (1.2.1)

The invariants corresponding to perfect matchings do not form a basis for (V⊗n)SL2 . If m has

a crossing, then its corrseponding invariant is equal to the sum of those corresponding to both

ways to remove that crossing, shown below. This is called the skein relation or Ptolemy relation.

7→ +

Let C[M(n)] denote the C-vector space with basis given by perfect matchings. The quotient of

this vector space by the skein relations is isomorphic to (V⊗n)SL2 , with basis given by perfect

matchings. As an Sn module, it is irreducible and isomorphic to S(
n
2 ,

n
2 ).

We can extend this to all noncrossing matchings, rather than only perfect matchings. For
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any noncrossing matching m and adjacent transposition si = (i, i+1), define

si ·m =


si ◦m si ◦m is noncrossing

m+m′ otherwise.
(1.2.2)

Here ◦ denotes the action on all matchings and m′ is the matching where the subsets of m

containing i and i+ 1, call them {i,a} and {i+ 1,b} have been replaced with {i, i+ 1} and

{a,b} and all other subsets remain the same. In other words, si ◦m, m, and m′ form a trio of

matchings that differ only in a Ptolemy relation. It can be shown that this definition satisfies the

braid relations and thus gives an action of the symmetric group on C[NCM(n)]. There exists an

Sn-equivariant linear projection pM : C[M(n)]→ C[NCM(n)] given for any matching m by

m 7→ w−1 · (w◦m), (1.2.3)

where w is any permutation for which w◦m is noncrossing. This projection can be thought of

as a way to“resolve” crossings in a matching and obtain a sum of noncrossing matchings. The

following proposition is not new, but we were unable to find a suitable reference and thus include

a proof for completeness.

Proposition 1.2.1. The kernel of the projection pM : C[M(n)] → C[NCM(n)] is spanned by

elements of the form

{{a1,a2},{a3,a4},{a5,a6}, . . . ,{a2k−1,a2k}}

+{{a1,a3},{a2,a4},{a5,a6}, . . . ,{a2k−1,a2k}}

+{{a1,a4},{a2,a3},{a5,a6}, . . . ,{a2k−1,a2k}} (1.2.4)

for any a1, . . . ,a2k ∈ [n], i.e. sums of three matchings which differ by a Ptolemy relation.

Proof. Let β denote the set of all elements of the form given in (1.2.4). To see that the span of β
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is contained in the kernel of pM, note that by the Sn-equivariance of pM it suffices to check that

applying pM gives 0 in the case where ai = i for all i. In this case, we have

pM({1,2},{3,4}, . . . ,{2k−1,2k}}+{{1,3},{2,4} . . . ,{2k−1,2k}}

+{{1,4},{2,3} . . . ,{2k−1,2k}})

= {{1,2},{3,4}, . . . ,{2k−1,2k}}+(2,3) · (−{{1,2},{3,4}, . . . ,{2k−1,2k}})

+{{1,4},{2,3}, . . . ,{2k−1,2k}}= 0 (1.2.5)

To see that the kernel is contained in the span, note that since pM is a projection, the kernel

is spanned by m− pM(m) for any matching m. Let t denote the minimum number of transpositions

si1 , . . . ,sit for which (si1 · · ·sit )◦m is noncrossing, and let w= si1 · · ·sit . We will show by induction

on t that m− pM(m)∈ span(β ). When t = 0, then m− pM(m)= 0, so the claim is true. Otherwise,

assume the claim holds for t −1. We have m− pM(m) = si1 ◦ (si1 ◦m)− si1 · pM(si1 ◦m). By our

inductive hypothesis, si1 ◦m− pM(si1 ◦m) lies in the span of β , so it suffices to verify for any

b ∈ β , that if we apply si1 ◦ (−) to every crossing term of b and apply either si1 · (−) or si1 ◦ (−)

to every noncrossing term of b, we remain in the span of β . This is true because β is closed

under the ◦ action, and for every noncrossing matching m1, either

si1 ◦m = si1 ·m

or

si1 ·m1 = si1 ◦m1 − (si1 ◦m1 +m1 +m′
1)

where m′
1 is obtained by replacing the sets {i,a} and {i+1,b} with the sets {i, i+1} and {a,b}.

In the second case, si1 ◦m1 +m1 +m′
1 is in β .
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1.3 Noncrossing set partitions and the skein action

A set partition of [n] is a collection of disjoint subsets of [n] whose union is [n]. A

set partition is noncrossing if there do not exist distinct blocks A and B and elements a,c ∈ A,

b,d ∈ B with a < b < c < d. Let Π(n) denote the set of all set partitions of n, and let NCP(n)

denote the set of all noncrossing set partitions of [n]. We can define an action of Sn on C[Π(n)]

analogous to the action on C[M(n)]. Rhoades defined an action of Sn on C[NCP(n)] as follows

[39]. For any noncrossing set partition π and adjacent transposition si,

si ·π =


−π i and i+1 are in the same block of π

−π ′ at least one of i and i+1 is in a singleton block of π

σ(π ′) i and i+1 are in different size 2 or larger blocks of π

where π ′ is the set partition obtained by swapping which blocks i and i+1 are in, and σ is defined

for any almost-noncrossing (i.e. the crossing can be removed by a single adjacent transposition)

partition π by σ(π) = π +π2 −π3 −π4 where, if the crossing blocks in σ are {i,a1, . . . ,ak} and

{i+1,b1, . . . ,bl}, then π2,π3 and π4 are obtained from π by replacing these blocks with

• {i, i+1} and {a1, . . . ,ak,b1, . . . ,bl} for π2

• {i, i+1,a1, . . . ,ak} and {b1, . . . ,bl} for π3

• {i, i+1,b1, . . . ,bl} and {a1, . . . ,bk} for π3

when k, l ≥ 2. If k = 1 then π4 = 0 instead and if l = 1 then π3 = 0 instead. The sum of partitions

given by σ(π) is best described with a picture, see Figure 4.1 in the introduction. The three
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possibilities (depending on whether k, l ≥ 2) are the three skein relations mentioned in the

introduction.

We again have an Sn-equivariant linear projection pΠ : C[Π(n)]→ C[NCP(n)] given for

any set partition π by

π 7→ w−1 · (w◦π), (1.3.1)

where w is any permutation for which w◦π (here ◦ denotes the action of Sn on all set partitions)

is noncrossing. We have the following proposition, analogous to Proposition 1.2.1, and with an

analagous proof.

Proposition 1.3.1. The kernel of the projection pΠ : C[Π(n)] → C[NCP(n)] is spanned by

elements of the form

w◦ (si ◦π +σ(π))

for any permutation w and singleton-free almost noncrossing set partition π , i.e. sums of set

partitions which differ by a skein relation.

1.4 Jellyfish invariants

Jellyfish invariants were introduced in [29] and further developed in [11] in order to study

the Specht module S(d
r,1n−rd). An (n,d,r)-jellyfish invariant is a certain element of S(d

r,1n−rd)

attached to each ordered set partition of [n] with d blocks and all blocks at least size r. We include

the basic definitions from [11] below, see their chapter for examples and further exposition.

An ordered set partition of n is a set partition with a total order on its blocks. Two

blocks A,B of an ordered set partition cross if there exist a1,a2 ∈ A and b1,b2 ∈ B such that

a1 < b1 < a2 < b2 or b1 < a1 < b2 < a2. An ordered set partition is noncrossing if no two of its

blocks cross. Let OP(n,d,r) denote the set of all ordered set partitions with exactly d blocks

and blocks of size at least r, and let N C OP(n,d,r) denote the set of all such partitions which

are also noncrossing.
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Definition 1.4.1. Let π = {π1, . . . ,πd} ∈ OP(n,d,r) be an ordered set partition. Define the

set of r-jellyfish tableaux, Jr(π) to be the set of generalized tableau T with d columns and

n− (d −1)r rows with the following constriants:

1. Ti j ∈ [n] or Ti j is nonempty

2. If i ∈ [r],Ti j is nonempty.

3. If i > r, there exists exactly one j such that Ti j is nonempty

4. The nonempty entries in column j are exactly the elements of π j in increasing order.

For each T ∈ Jr(π), define a polynomial

J(T ) =
d

∏
i=1

Mπi
Ri(T )

where Ri(T ) is the set of rows containing an entry in πi.

For each π ∈ OP(n,d,r), the r-jellyfish invariant, denoted [π]r is

[π]r = ∑
T∈Jr(π)

sign(T )J(T )

where sign(T ) denotes the sign of the reading word of T .

Fraser, Patrias, Pechenik, and Striker prove the following about r-jellyfish invariants:

Theorem 1.4.2 ([11, Theorem 4.24]). For each ordered set partition π ∈ OP(n,d,r), the

invariant [π]r lies in the flamingo Specht module S(d
r,1n−rd).

Theorem 1.4.3 ([11, Proposition 5.11]). For any ordered set partition π ∈ OP(n,d,r) and any

permutation w ∈Sn, we have

w · [π]r = sign(w)[w ·π]r
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Note that this implies the span of jellyfish invariants is closed under the action of Sn, and

must therefore be equal to S(d
r,1n−rd).

Theorem 1.4.4 ([11, Theorem 5.13]). For each noncrossing set partition γ ∈ N C (n,d,r),

order the blocks in any way to create a corresponding ordered set partition πγ . Then the set

{[πγ ]r : γ ∈ N C (n,d,r)} is linearly independent.

Fraser, Patrias, Pechenik, and Striker thus give a spanning set of S(d
r,1n−rd) indexed by all

set partitions, and a linearly independent subset indexed by noncrossing set partitions. Thus, it

is possible to choose a subset S of set partitions such that S indexes a basis and S contains all

noncrossing set partitions. We will show how to do so in Section 3.

1.5 Noncrossing Tableaux

Noncrossing tableaux were introduced by P. Pylyavskyy in [35] to give a non-crossing

counterpart to standard Young tableaux. Formally, noncrossing tableaux are set partitions;

Pylyavskyy chose the name noncrossing tableaux to distinguish them from the more standard

definition of noncrossing set partitions given in the previous subsection. As we will be using

noncrossing tableaux in the context of set partitions, we will instead refer to these as weakly

noncrossing set partitions. We will use a modification of this weaker condition to interpolate

between strongly noncrossing set partitions and all set partitions.

Definition 1.5.1. Let A = {a1 < a2 < · · ·< a|A|} and B = {b1 < b2 < · · ·< b|B|} be two disjoint

subsets of [n] with |A| ≤ |B|. We say A and B are weakly noncrossing if for all 1 ≤ i ≤ |A|−1

we do not have

ai < bi < ai+1 < bi+1

or

bi < ai < bi+1 < ai+1
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and additionally, if |A|< |B|, we do not have

b|A| < a|A| < b|B|

A set partition π is weakly noncrossing if blocks of π are pairwise weakly noncrossing.

Pylyavskyy showed that weakly noncrossing set partitions of shape λ ⊢ n are in bijection

with standard Young tableaux of shape λ .

1.6 Plabic graphs

Plabic graphs were introduced by Postnikov in order to study the totally nonnegative

Grassmanian. A textbook treatment can be found in [8]. We will only need combinatorial results

about plabic graphs, which we list here.

A plabic graph G is a planar graph embedded in a disk, possibly with loops and multiple

edges between vertices, with interior vertices colored black and white and boundary vertices

labelled clockwise 1 through n. A normal plabic graph is a plabic graph for which white vertices

are degree three, boundary vertices only connect to black vertices, and same colored vertices do

not share an edge. For this chapter, we consider only normal plabic graphs and state results only

as they apply to normal plabic graphs, rather than including the full generality.

Given a normal plabic graph G , the trip at i is the walk in G starting at boundary vertex i

which turns right at every black vertex and left at every white vertex until it reaches the boundary

at a vertex we denote trip(i). The function defined by i 7→ trip(i) is a permutation of [n] and is

called the trip permutation of G. The exceedances of G are the exceedances of this permutation,

i.e. those trips for which trip(i)> i.

Two normal plabic graphs are normal move equivalent if one can be obtained from the

other via a seuquence of normal urban renewal moves and normal flip moves, which we now

define. The normal urban renewal move is the move shown below, where filled in arcs represent

any number of edges leading elsewhere in the graph
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↔

The normal flip move is

↔

A normal plabic graph is reduced if it is not normal move equivalent to any plabic graph

which contains a forbidden configuration, i.e. a face of degree two or a leaf vertex not adjacent

to the boundary.

A bad feature of a normal plabic graph G is one of the following:

• A roundtrip: A cycle in G which turns left at every white vertex and right at every black

vertex.

• An essential self-intersection: A trip in G which passes through the same edge twice.

• A bad double-crossing: Two trips in G which both pass through edge e1 then edge e2 in

that order.

Theorem 1.6.1 ([8, Theorem 7.8.6]). A normal plabic graph is reduced if and only if it does not

contain any bad features.

The more common use of this theorem is to test whether a plabic graph is reduced or not.

The plabic graphs we are interested in, however, will be clearly reduced as their normal move

equivalence class will have size 1. We will instead apply it to understand the structure of the

trips of our plabic graphs.
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1.7 SL3 Webs

SL3 webs, or A2 webs, were introduced by Kuperberg to study SL3 invariant tensors and

the representation theory of the quantum group Uq(sl3) [25]. A sign string of length n is a string

containing n letters, all each + or −, e.g. (++−−++−). Given a sign string s = s1s2 · · ·sn,

an SL3 web of type s is a bipartite plabic graph with n boundary vertices in which every interior

vertex has degree 3 and boundary vertex i is adjacent to a black vertex if si = + and a white

vertex if si =−. This is a slightly anachronistic version of the definition, as plabic graphs were

defined after SL3 webs, but the comparison will be useful for us later.

SL3 webs have representation theoretic meaning. Let V be the three-dimensional defining

representation of SL3, with basis {e1,e2,e3}, and let V ∗ denote its dual with dual basis {e∗1,e
∗
2,e

∗
3}.

An SL3 web with sign string (+++−−++) e.g. represents an element of the space

(V ⊗V ⊗V ⊗V ∗⊗V ∗⊗V ⊗V )SL3

of SL3 invariant elements of (V ⊗V ⊗V ⊗V ∗⊗V ∗⊗V ⊗V ) where V is the three-dimensional

defining representation of SL3, + correspond to copies of V and − correspond to cpoies of V ∗.

The unique SL3 web of sign string (+++)

12

3

represents the tensor ∑σ∈S3 sign(σ)eσ(1)⊗ eσ(2)⊗ eσ(3) and the unique SL3 web of sign string

(−−−)

12

3
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represents the tensor ∑σ∈S3 sign(σ)e∗
σ(1)⊗ e∗

σ(2)⊗ e∗
σ(3). Concatenation of webs repre-

sents tensor product, and an edge between vertices represents tensor contraction.

We can also give a purely combinatorial desciption of the invariant each web represents

in terms of proper edge colorings. A proper edge coloring ℓ of an SL3 web W is a labelling of

the edges by the numbers 1,2,3 such that no label appears more than once around each vertex.

For each labelling, we get a simple basis tensor Tℓ by taking the basis vector or dual basis vector

e j or e∗j (depending on th sign string) at boundary vertex i whose incident edge has label j, and a

sign sign(ℓ) given by (−1)cc(ℓ), where cc(ℓ) denotes the number of interior vertices for which

1,2,3 appear in counterclockwise order in the labelling ℓ . The SL3 invariant associated to W ,

which we denote [W ]SL3 is

[W ]SL3 = ∑
proper labellings ℓ

sign(ℓ)Tℓ

A web is called nonelliptic if it contains no faces of degree 4 or less. The invariants for

the set of all noneeliptic webs form a basis for the space of SL3 invariant tensors.

1.8 Cyclic sieving

The cyclic sieving phenomenon was introduced by V. Reiner, D. Stanton, and D. White

in order to unify a number of enumerative results in combinatorics [37].

Definition 1.8.1. Let X be a finite set equipped with an action of the finite cyclic group C ∼=Z/nZ

with generator c, let X(q) be a polynomial, and let ζ be an nth root of unity. The triple (X ,C,X(q)

is said to exhibit the cyclic sieving phenomenon if |Xcd |= X(ζ d) for any integer d > 0, where

Xcd
denotes the set of all elements of X fixed by cd .

One way of obtaining cyclic sieving results is via the following, which can be found in

Sagan’s survey [48] and follows from a result of Springer [49].
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Theorem 1.8.2 ([48, Theorem 8.2], [49]). Let W be a finite complex reflection group and let

C ≤W be cyclically generated by a regular element g. Let V be a W-module with a basis B such

that gB = B. Then the triple

(B,C,FV (q))

exhibits the cyclic sieving phenomenon, where FV (q) denotes the fake degree polynomial for V .

See [48] for a complete definition of the fake degree polynomial, we will only need the

following.

Proposition 1.8.3. Let λ be a partition of n and let Sλ be the corresponding Specht module. The

fake degree polynomial FSλ

(q) is given by

FSλ

(q) = qb(λ ) [n]!q

∏(i, j)∈λ [hi j]q

where b(λ ) = 0λ1 +λ2 + 2λ3 + · · · and hi j denotes the hook length of box (i, j) in the Young

diagram of λ .
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Chapter 2

Fermions, set partitions, skein relations

2.1 Introduction

This chapter concerns two modules over the symmetric group Sn. The first is combinato-

rial, involving skein relations which resolve crossings in set partitions of [n] := {1, . . . ,n}. The

second is algebraic, arising from the ring of fermionic diagonal coinvariants. We describe the

combinatorial module first.

A set partition π of [n] is noncrossing if whenever 1 ≤ a < b < c < d ≤ n are four indices

such that a ∼ c and b ∼ d in π , we have a ∼ b ∼ c ∼ d in π . Drawing the indices 1,2, . . . ,n

around a circle, this means that the convex hulls of the blocks of π do not intersect. A noncrossing

and ‘crossing’ partition when n = 6 are shown below.

1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6

We write NC(n) for the family of noncrossing partitions of [n] and NC(n,k) for the

subfamily of noncrossing partitions of [n] with k blocks. These sets are counted by the Catalan

and Narayana numbers

|NC(n)|= Cat(n) =
1

n+1

(
2n
n

)
|NC(n,k)|= Nar(n,k) =

1
n

(
n
k

)(
n

k−1

)
(2.1.1)

The family Π(n) of all set partitions of [n] (noncrossing or otherwise) carries a natural
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action of the symmetric group Sn. Given w ∈ Sn and π ∈ Π(n), let w(π) ∈ Π(n) be the set

partition whose blocks are w(B) = {w(i) : i ∈ B} where B is a block of π . Although the subset

Π(n,k)⊆ Π(n) of k-block set partitions of [n] is stable under this action of Sn for any k ≤ n, this

action of Sn does not preserve the noncrossing property: the sets NC(n) and NC(n,k) are not

closed under this action. Despite this, Rhoades introduced [39] an action of Sn on the linearized

versions C[NC(n)] and C[NC(n,k)] of these sets1. We use a modified version of this action

sketched as follows (for a precise formulation see Definition 2.3.2).

For 1 ≤ i ≤ n−1, let si := (i, i+1) ∈Sn be the corresponding adjacent transposition. If

π ∈ NC(n) is a noncrossing partition, the partition si(π) ∈ Π(n) may or may not be noncrossing.

If si(π) is noncrossing, we set si ·π :=−si(π). If si(π) is not noncrossing, we resolve the local

crossing at i, i+1 using the skein relations shown in Figure 2.1. These relations come in three

flavors, depending on whether the blocks of π being crossed at i and i+1 have exactly two or

more than two elements. The top skein relation is the famous transformation

7→ +

which appears in invariant theory, knot theory, and elsewhere. The lower two skein relations are

less classical; to the knowledge of the authors they were not studied prior to [39]. The 2-term

and 3-term skein relations are ‘degenerations’ of the 4-term skein relation in which one omits

terms involving singleton blocks. We will make this more precise by means of certain ‘block

operators’; see the proof of Theorem 2.3.3.

The action si ·π described above extends to an action of Sn on the vector space C[NC(n)].

Since the skein relations in Figure 2.1 preserve the total number of blocks in a set partition, the

subspace C[NC(n,k)] is a submodule for this action. We have further submodules C[NC(n,k,m)],

where NC(n,k,m) is the family of k-block noncrossing set partitions of [n] with m single-

tons. We refer to these modules collectively as skein actions of Sn, and their canonical bases

NC(n),NC(n,k), and NC(n,k,m) as skein bases.

1We work over C for convenience, but all of the results in this chapter hold over Q.
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7→ +

7→ + −

7→ + − −

7→ +

7→ + −

7→ + − −

Figure 2.1. The three skein relations defining the action of Sn on C[NC(n)]. The red vertices
are adjacent indices i, i+1 and the shaded blocks have at least three elements. The symmetric
3-term relation obtained by reflecting the middle relation across the y-axis is not shown.

The skein action was introduced to give representation theoretic proofs of cyclic sieving

results of Reiner-Stanton-White [37] and Pechenik [32] involving the rotational action of Zn

on various sets of noncrossing partitions of [n]. Skein bases generalize the Kazhdan-Lusztig

cellular and sl2-web bases (see [24, 33, 40, 45]) of symmetric group irreducibles labeled by

2-row rectangles.

The skein action has nice combinatorial properties. Permutations w ∈Sn have represent-

ing matrices in the skein basis with entries in Z. ‘Local symmetries’ of noncrossing partitions

are preserved: if w ∈ Sn and π ∈ NC(n) are such that the set partition w(π) is noncrossing,

then w ·π =±w(π) (Corollary 2.5.8). If we endow C[Π(n)] with a sign-twisted version of the

permutation action of Sn, there is a Sn-equivariant projection

p : C[Π(n)]↠ C[NC(n)] (2.1.2)

in which p(π) is a Z-linear combination of noncrossing partitions for any set partition π (Defini-

tion 2.5.1, Theorem 2.5.5). We regard p(π) as a ‘resolution of crossings’ in the set partition π;

25



this generalizes the classical resolution of crossings in perfect matchings/chord diagrams. Before

proceeding further, we issue a

Warning. The skein action used in this chapter differs from that in [39]. The
fundamental relations in Figure 2.1 are unchanged, but the sign convention for
applying si to a noncrossing set partition π for which si(π) is also noncrossing dif-
fers. Our conventions yield sharper results, cleaner proofs, and give connections
to the fermionic diagonal coinvariant ring described below.

The skein action as presented in [39] had some drawbacks. The definition of this action

was purely combinatorial and somewhat ad hoc; there was little algebraic reason ‘why’ these

skein relations ought to hold. Checking that the action of the generators si extended to a

well-defined action of Sn involved extensive casework and a number of ‘miraculous’ 16-term

identities2. The complicated nature of this action led to difficulty in computing the sign in the

local symmetry formulas w ·π =±w(π) described above. Finally, it was unclear how to extend

the skein action from Sn to a wider class of reflection groups W . In this chapter we address these

issues by relating the skein action to fermionic diagonal coinvariants.

We turn to the algebraic module of study: the fermionic diagonal coinvariant ring. Let

Θn = (θ1, . . . ,θn) and Ξn = (ξ1, . . . ,ξn) be two lists of n anticommuting variables and let

∧{Θn,Ξn} := ∧{θ1, . . . ,θn,ξ1, . . . ,ξn} (2.1.3)

be the exterior algebra generated by these symbols over C. The ring ∧{Θn,Ξn} has a bigrading

∧{Θn,Ξn}i, j := ∧i{θ1, . . . ,θn}⊗∧ j{ξ1, . . . ,ξn}. (2.1.4)

Adopting the language of physics, we refer to the variables θi,ξi as fermionic and general

elements f ∈ ∧{Θn,Ξn} as fermions3.

2In fact, the intricacy of these identities led to a couple cases which were missed in [39]. A. Iraci [18] filled
these gaps in his Master’s Thesis at the University of Pisa.

3In physics, the equation θ 2
i = 0 is the Pauli Exclusion Principle: two identical fermions cannot occupy State i

at the same time.
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The ring ∧{Θn,Ξn} carries a bigraded diagonal action of Sn via

w ·θi := θw(i) w ·ξi := ξw(i) (w ∈Sn, 1 ≤ i ≤ n). (2.1.5)

If we let ∧{Θn,Ξn}Sn
+ be the subsapce of Sn-invariants with vanishing constant term, the second

author and Jongwon Kim introduced [23] the fermionic diagonal coinvariant ring

FDRn := ∧{Θn,Ξn}/⟨∧{Θn,Ξn}Sn
+ ⟩. (2.1.6)

The quotient FDRn is a bigraded Sn-module.

The ring FDRn is an anticommutative version of the Garsia-Haiman diagonal coinvariant

ring DRn which has an analogous definition [14] involving lists Xn = (x1, . . . ,xn) and Yn =

(y1, . . . ,yn) of commuting variables. Various authors [2, 4, 6, 23, 28, 30, 41, 42, 52, 53, 60, 61]

have considered versions of DRn involving mixtures of commuting and anticommuting variables.

Kim and Rhoades describe [23] the bigraded Sn-isomorphism type of FDRn in terms of

Kronecker products. In particular, the bigraded piece (FDRn)i, j vanishes whenever i+ j ≥ n. If

i+ j < n we have the Frobenius image

Frob(FDRn)i, j = s(n−i,1i) ∗ s(n− j,1 j)− s(n−i−1,1i+1) ∗ s(n− j−1,1 j+1) (2.1.7)

where ∗ denotes Kronecker product of Schur functions and we interpret s(−1,1n) = 0. Kim

and Rhoades give a basis of FDRn indexed by a certain collection of lattice paths, but the

combinatorics of FDRn was largely unexplored in [23].

Equation (2.1.7) implies that whenever i+ j < n we have

dim(FDRn)i, j =

(
n−1

i

)(
n−1

j

)
−
(

n−1
i+1

)(
n−1
j+1

)
(2.1.8)
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so that for any 1 ≤ k ≤ n

dim(FDRn)n−k,k−1 = Nar(n,k) so that
n

∑
k=1

dim(FDRn)n−k,k−1 = Cat(n) (2.1.9)

and FDRn contains a natural Catalan-into-Narayana dimensional submodule by considering its

extreme bidegrees. We isolate this submodule as follows.

Definition 2.1.1. For n ≥ 0, let FDRn be the Sn-submodule of FDRn given by

FDRn :=
n⊕

k=1

(FDRn)n−k,k−1. (2.1.10)

The module FDRn has dimension Cat(n) and its constituent piece (FDRn)n−k,k−1 has dimension

Nar(n,k).

In this chapter we establish isomorphisms (Corollary 2.6.3) of Sn-modules

C[NC(n)]∼= FDRn and C[NC(n,k)]∼= (FDRn)n−k,k−1 (2.1.11)

thus giving an algebraic model for the skein action in terms of fermionic diagonal coinvariants.

To do this, we attach (Definition 2.2.2) a fermion fπ ∈ ∧{Θn,Ξn} to any set partition π ∈ Π(n)

and prove (Theorem 2.3.4) that the noncrossing fermions { fπ : π ∈ NC(n,k)} satisfy the skein

relations and descend to a basis of (FDRn)n−k,k−1. This gives a basis (Theorem 2.6.2) of FDRn

tied to the combinatorics of set partitions. Furthermore, the algebraic model of fermions sharpens

a number of results on the skein action in [39], as well as simplifying and clarifying their proofs.

Finally, the methods in [23] extend naturally from Sn to irreducible complex reflection groups

W , thus giving an avenue for extending the skein action to other types.

The rest of the chapter is organized as follows. In Section 2.2 we define two fermions Fπ

and fπ attached to any set partition π of [n] (noncrossing or otherwise); the fermions Fπ and fπ are

related by a kind of differentiation. We also introduce the block operators ρB; these derivations
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of ∧{Θn,Ξn} will be useful in our proofs. In Section 2.3 we define the skein action and prove

that the Fπ and fπ satisfy the skein relations of Figure 2.1. Section 2.4 studies submodules of

the exterior algebra ∧{Θn,Ξn}. We prove that the combinatorial skein action is isomorphic to

the space spanned by the Fπ (as well as the space spanned by the fπ ). Section 2.5 applies the

theory of fermions to resolve crossings in set partitions; this has a number of corollaries on the

combinatorics of the skein action. Section 2.6 studies submodules of the quotient space FDRn

and proves the isomorphisms (2.1.11). We close in Section 2.7 with some open problems.

2.2 Fermions for set partitions

In this section we attach two fermions Fπ and fπ to set partitions π ∈ Π(n). These

fermions are obtained by applying certain operators ρB1, . . . ,ρBk indexed by the blocks B1, . . . ,Bk

of π to the product θ1 · · ·θn.

2.2.1 Block operators ρ and ψ , fermions F and f

Our key tool in defining Fπ and fπ is a family of derivations of the ring ∧{Θn,Ξn}. For

B ⊆ [n] nonempty, define the block operator ρB : ∧{Θn,Ξn}→ ∧{Θn,Ξn} by

ρB( f ) := ∑
i, j∈B
i̸= j

ξi · (θ j ⊙ f ) (2.2.1)

whenever |B|> 1 and

ρB( f ) := ξi · (θi ⊙ f ) (2.2.2)

if B = {i} is a singleton. For any permutation w ∈Sn we have

w · (ρB( f )) = ρw(B)(w · f ) (2.2.3)
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which follows from the readily checked relation

w · (g⊙ f ) = (w ·g)⊙ (w · f ) (w ∈Sn, g, f ∈ ∧{Θn,Ξn}). (2.2.4)

A crucial property enjoyed by the block operators is as follows.

Lemma 2.2.1. Let A,B ⊆ [n] be two nonempty subsets. The operators ρA and ρB commute.

Proof. The lemma reduces to the assertion that, for any fermion f , we have

ξa · (θa′ ⊙ [ξb · (θb′ ⊙ f )]) = ξb · (θb′ ⊙ [ξa · (θa′ ⊙ f )]). (2.2.5)

Using sign-twisted Leibniz Rule of Proposition 1.1.2 (3) we compute

ξa · (θa′ ⊙ [ξb · (θb′ ⊙ f )]) =−(θa′θb′)⊙ (ξaξb f ) (2.2.6)

=−(θb′θa′)⊙ (ξbξa f ) (2.2.7)

= ξb · (θb′ ⊙ [ξa · (θa′ ⊙ f )]) (2.2.8)

as required.

By Lemma 2.2.1, for any set partition π = {B1 /B2 / · · · /Bk} ∈ Π(n), we have a well-

defined linear operator ρπ : ∧{Θn,Ξn}→ ∧{Θn,Ξn} given by

ρπ := ρB1 ◦ρB2 ◦ · · · ◦ρBk (2.2.9)

where the order of composition is immaterial. This facilitates the following definition.

Definition 2.2.2. Let π = {B1 /B2 / · · · /Bn} ∈ Π(n) be a set partition. We define fermions

Fπ , fπ ∈ ∧{Θn,Ξn} by

Fπ := ρπ(θ1θ2 · · ·θn) = (ρB1 ◦ρB2 ◦ · · · ◦ρBk)(θ1θ2 · · ·θn)
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and

fπ := (ξ1 +ξ2 + · · ·+ξn)⊙Fπ .

As an example of these objects, for π = {1, 3/2} we have

F{1,3/2} = ρ{1,3} ◦ρ{2}(θ1θ2θ3) = ρ{1,3}(−ξ2 ·θ1θ3) = ξ3ξ2θ3 −ξ1ξ2θ1,

f{1,3/2} = (ξ1 +ξ2 +ξ3)⊙ (ξ3ξ2θ3 −ξ1ξ2θ1) = ξ2θ3 −ξ3θ3 −ξ2θ1 +ξ1θ1.

The notation Fπ and fπ is from calculus: the f ’s are the derivatives of the F’s If π ∈ Π(n,k) has

k blocks, the fermion Fπ has bidegree (n− k,k) whereas fπ has bidegree (n− k,k−1). These

fermions have similar algebraic properties. We focus mainly on the cleaner Fπ , but the fπ will be

useful in the study of FDRn.

Most of our results on these fermions will hold at the level of the block operators ρB. For

example, the following result describes how Sn acts on the Fπ .

Proposition 2.2.3. Let π ∈ Π(n) and w ∈Sn. We have

w ·Fπ = sign(w) ·Fw(π) and w · fπ = sign(w) · fw(π).

Proof. Equation (2.2.3) gives the equality of operators

w · (ρπ(−)) = ρw(π)(w · (−)). (2.2.10)

Applying both sides of Equation (2.2.10) to θ1θ2 · · ·θn yields the statement about the F’s. A

further application of (ξ1 +ξ2 + · · ·+ξn)⊙ (−) implies the statement about the f ’s.

The skein action treats singleton blocks differently from larger blocks, and we will avoid

casework with the following variant of the ρ-operators. Given B ⊆ [n], define ψB : ∧{Θn,Ξn}→
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∧{Θn,Ξn} by

ψB =


ρB |B|> 1,

0 |B| ≤ 1.
(2.2.11)

Lemma 2.2.1 implies

ψA ◦ψB = ψB ◦ψA for all A,B ⊆ [n] (2.2.12)

so for any set partition π = {B1 /B2 / · · · /Bk} ∈ Π(n) we have a well-defined linear operator

ψπ : ∧{Θn,Ξn}→ ∧{Θn,Ξn} given by

ψπ := ψB1 ◦ψB2 ◦ · · · ◦ψBk (2.2.13)

which does not depend on the order of composition factors. We have

ψπ(θ1θ2 · · ·θn) =


Fπ if π has no singleton blocks,

0 if π has at least one singleton block.
(2.2.14)

It will be convenient to have a version ψA,B of the ψ-operators which depend on two

subsets A,B ⊆ [n]. These are defined by

ψA,B( f ) := ∑
a∈A
b∈B

ξa · (θb ⊙ f )+ ∑
a∈A
b∈B

ξb · (θa ⊙ f ) (2.2.15)

for any f ∈ ∧{Θn,Ξn}, so that ψA,B = ψB,A. When A∩B =∅, we have the useful identity

ψA⊔B = ψA +ψA,B +ψB. (2.2.16)

Like the ρ-operators, the ψ-operators commute.

Lemma 2.2.4. Let A,B,C,D ⊆ [n] be four subsets. We have the following identities of linear
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operators on ∧{Θn,Ξn}

ψA ◦ψB = ψB ◦ψA, ψA,B ◦ψC = ψC ◦ψA,B, ψA,B ◦ψC,D = ψC,D ◦ψA,B.

The proof of Lemma 2.2.4 is the same as that of Lemma 2.2.1 and is left to the reader.

Remark 2.2.5. If Xn = (x1, . . . ,xn) and Yn = (y1, . . . ,yn) are two lists of commuting variables,

the polarization operator on the polynomial ring C[Xn,Yn] acts by

f 7→
n

∑
i=1

yi ·
∂ f
∂xi

(2.2.17)

for any polynomial f ∈ C[Xn,Yn]. This operator lowers x-degree by 1 while raising y-degree

by 1. Similarly, the operators ρB,ψB,ψA,B lower θ -degree by 1 while raising ξ -degree by 1.

Polarization operators on commuting variables are Sn-equivariant; Equation (2.2.3) describes

how the action of Sn intertwines with block operators. Polarization on commuting variables

has played a major role [1, 2, 14, 41] in the theory of diagonal symmetric group actions. Our

work suggests that block operators might be useful objects when dealing with anticommuting

variables.

2.2.2 Antisymmetrization and the fermions F and f

Most of our results on the Fπ and fπ will be provable at the level of the ρ and ψ operators.

However, it will sometimes be useful to have a more explicit formula for these fermions. For a

composition α , let |α|odd := α1 +α3 + · · · be the sum of the odd parts of α .

Definition 2.2.6. Let (w,α) be a segmented permutation of size n where α = (α1, . . . ,αk) |= n

has length k. We define Gw,α ∈ ∧{Θn,Ξn} by the formula

Gw,α := sign(w) · (−1)|α|odd · (θw[1]1θw[1]2 · · ·θw[1]α1−1) · · ·(θw[k]1θw[k]2 · · ·θw[k]αk−1)×

ξw[1] · · ·ξw[k]. (2.2.18)
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where

ξw[i] :=


ξw[i]1 + · · ·+ξw[i]αi−1 αi > 1,

ξw[i]1 αi = 1.
(2.2.19)

We define gw,α ∈ ∧{Θn,Ξn} by

gw,α := (−1)n−k(ξ1 + · · ·+ξn)⊙Gw,α . (2.2.20)

The sign sign(w) · (−1)|α|odd in Definition 2.2.6 are necessary to pass from segmented

permutations to set partitions. The (−1)n−k in the definition of gw,α occurs ‘because’ the deriva-

tive (ξ1 + · · ·+ξn)⊙ (−) must commute past n− k fermionic θ -variables; see Proposition 1.1.2

(3).

As an example of Definition 2.2.6, let (w,α) = 536 ·7 ·21 ·84. We have

sign(w) = sign(53672184) = +1 and |α|odd = α1 +α3 = 3+2 = 5

so that

Gw,α = (+1) · (−1)5 · (θ5θ3) ·1 · (θ2) · (θ8) · (ξ5 +ξ3) · (ξ7) · (ξ2) · (ξ8)

=−(θ5θ3) ·1 · (θ2) · (θ8) · (ξ5 +ξ3) · (ξ7) · (ξ2) · (ξ8).

Applying (−1)8−4(ξ1 + · · ·+ξ8)⊙ (−) to both sides of this equation yields

gw,α =−(θ5θ3) ·1 · (θ2) · (θ8)× [2 ·ξ7ξ2ξ8 − (ξ5 +ξ3)ξ2ξ8 +(ξ5 +ξ3)ξ7ξ8 − (ξ5 +ξ3)ξ7ξ2] .

By antisymmetrizing the gw,α and Gw,α , we obtain our new formulation for the F and f

fermions.

Definition 2.2.7. Let (w,α) be a segmented permutation where α = (α1, . . . ,αk) |= n. We define
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elements F̃w,α , f̃w,α ∈ ∧{Θn,Ξn} by

F̃w,α :=
[Sw,α ]

− ·Gw,α

(α1 −1)! · · ·(αk −1)!
∈ ∧{Θn,Ξn} (2.2.21)

and

f̃w,α :=
[Sw,α ]

− ·gw,α

(α1 −1)! · · ·(αk −1)!
∈ ∧{Θn,Ξn}. (2.2.22)

In our example (w,α) = 536 ·7 ·21 ·84 we have

Sw,α =S{5,3,6}×S{7}×S{2,1}×S{8,4}

so that

F̃w,α =
[S{5,3,6}]

− · [S{7}]
− · [S{2,1}]

− · [S{8,4}]
− ·Gw,α

2! ·0! ·1! ·1!

and

f̃w,α =
[S{5,3,6}]

− · [S{7}]
− · [S{2,1}]

− · [S{8,4}]
− ·gw,α

2! ·0! ·1! ·1!
.

Proposition 2.2.8. Let (w,α) be a segmented permutation where α = (α1, . . . ,αk) |= n and let

π = Π(w,α) ∈ Π(n,k) be the corresponding set partition. We have

F̃w,α =


Fπ k ≡ 0,3 mod 4,

−Fπ k ≡ 1,2 mod 4.
(2.2.23)

Proof. For v ∈Sn, it follows from the definitions that v ·Gw,α = sign(v) ·Gvw,α . Using this and

the identity [Svw,α ]
− = v[Sw,α ]

−v−1, we calculate

v[Sw,α ]
− ·Gw,α = [Svw,α ]

−v ·Gw,α = sign(v)[Svw,α ]
−Gvw,α . (2.2.24)
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Dividing both sides by (α1 −1)!(α2 −1)! · · ·(αk −1)! implies

v · F̃w,α = sign(v) · F̃vw,α (2.2.25)

which agrees with the Sn action on the F’s in Proposition 2.2.3.

By Equation (2.2.25) and Proposition 2.2.3, it is enough to verify Equation (2.2.23) when

the segmented permutation (w,α) has the form

(w,α) = 1, 2, . . . , α1 · α1 +1, α1 +2, . . . , α1 +α2 · · · · · n−αk +1, . . . , n−1, n. (2.2.26)

If we set

Bi := {α1 + · · ·+αi−1 +1, α1 + · · ·+αi−1 +2, . . . , α1 + · · ·+αi−1 +αi}, (2.2.27)

then

Fπ = (ρBk ◦ · · · ◦ρB2 ◦ρB1)(θ1 · · ·θn) (2.2.28)

= ε · [Sw,α ]
− · (ξn · · ·ξα1+α2ξα1 ·θ1θ2 · · ·θα1−1θα1+1θα1+2 · · ·θα1+α2−1θα1+α2+1 · · ·θn−1)

(2.2.29)

where the sign ε is given by

ε = (−1)(k−1)·α1+(k−2)·α2+···+1·αk−1+0·αk =


(−1)|α|odd k even,

(−1)|α|odd+n k odd,
(2.2.30)

which simplifies to

ε = (−1)|α|odd+k·n. (2.2.31)

Reversing the order of the k factors ξn · · ·ξα1+α2ξα1 introduces a sign change by (−1)(
k
2) and mov-
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ing these k factors past the n− k factors θ1θ2 · · ·θα1−1θα1+1θα1+2 · · ·θα1+α2−1θα1+α2+1 · · ·θn−1

changes sign by (−1)k·(n−k). We conclude that

Fπ = (−1)(
k
2)+k·(n−k)+k·n · F̃w,α = (−1)(

k
2)−k2

· F̃w,α (2.2.32)

which is equivalent to the statement of the proposition.

Proposition 2.2.8 implies that the F̃w,α and f̃w,α depend only on the set partition Π(w,α)

rather than the segmented permutation (w,α) itself. This facilitates the definitions

F̃π := F̃w,α and f̃π := f̃w,α (2.2.33)

where (w,α) is any segmented permutation such that Π(w,α) = π . In this language, Proposi-

tion 2.2.8 informally reads

Fπ =±F̃π fπ =± f̃π . (2.2.34)

We will typically deal with set partitions having a fixed number of blocks, so the precise signs

appearing in Equation (2.2.34) will usually not play a significant role in our work.

2.2.3 Restriction properties

Given any set partition π of [n], we can form a set partition π of [n− 1] by removing

n (and its block, if {n} is a singleton). The effect of this operation on set partition fermions

depends on the size of the block of π containing n. The answer is more attractive for the F̃’s;

applying (ξ1 + · · ·+ξn)⊙ (−) we can obtain a corresponding result for the f̃ ’s.

Proposition 2.2.9. Let π ∈ Π(n,k) be a set partition of [n] with k blocks. Let π be the set

partition of [n− 1] obtained by removing n from π (and the block containing n, if {n} is a
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singleton). Let B be the block of π containing n. The fermions Fπ and Fπ are related by

F̃π =


(−1)nθn ⊙ (F̃π |ξn=0) |B| ≥ 3,

(−1)n−1θi ⊙ F̃π |B|= 2 and B = {i,n},

(−1)k−1ξn ⊙ F̃π |B|= 1,

(2.2.35)

where F̃π |ξn=0 evaluates F̃π ∈ ∧{Θn,Ξn} at ξn → 0.

Proof. Consider a segmented permutation (w,α) such that Π(w,α) = π which has the form

(na1 · · ·a j) · (b1 · · ·bm) · . . . · (c1 · · ·cp) (2.2.36)

where the parentheses around segments are for readability. The fermion Fπ is given by

F̃π = (−1)|α|oddsign(na1 . . .a jb1 . . .bm · · ·c1 . . .cp)×

[Sw,α ]
− · (θnθa1 · · ·θa j−1) · · ·(θc1 · · ·θcp−1)(ξn +ξa1 + · · ·+ξa j−1) · · ·(ξc1 + · · ·+ξcp−1).

(2.2.37)

If |B| ≥ 2, then j ≥ 1, a segmented permutation representing π is

(w,α) := (a1 · · ·a j) · (b1 · · ·bm) · · · · · (c1 · · ·cp) (2.2.38)

and since |α|odd = |α|odd −1 and sign(w) = (−1)n−1sign(w) we have

F̃π = (−1)|α|odd−1(−1)n−1sign(na1 . . .a jb1 . . .bm · · ·c1 . . .cp)×

[Sw,α ]
− · (θa1 · · ·θa j−1) · · ·(θc1 · · ·θcp−1)(ξa1 + · · ·+ξa j−1) · · ·(ξc1 + · · ·+ξcp−1) (2.2.39)

and comparing these formulas gives the result (In the case |B| = 2 and j = 1 the product

θa1 · · ·θa j−1 appearing in Fπ is empty, while a permutation in Sw,α of negative sign is required to
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send ξn +ξa1 + · · ·+ξa j−1 = ξn to ξi in Fπ .)

If |B|= 1 and j = 0, a segmented permutation representing π is

(w,α) := (b1 · · ·bm) · . . . · (c1 · · ·cp) (2.2.40)

and the relations |α|odd = n−|α|odd and sign(w) = (−1)n−1sign(w) give

F̃π = (−1)n−|α|odd(−1)n−1sign(nb1 . . .bm · · ·c1 . . .cp)×

[Sw,α ]
− · (θb1 · · ·θbm−1) · · ·(θc1 · · ·θcp−1)(ξb1 + · · ·+ξbm−1) · · ·(ξc1 + · · ·+ξcp−1) (2.2.41)

whereas

F̃π = (−1)|α|oddsign(nb1 . . .bm · · ·c1 . . .cp)×

[Sw,α ]
− · (θb1 · · ·θbm−1) · · ·(θc1 · · ·θcp−1)(ξn)(ξb1 + · · ·ξbm−1) · · ·(ξc1 + · · ·+ξcp−1). (2.2.42)

Applying ξn ⊙ (−) to remove the ξn from Fπ involves k sign changes (the number of blocks of

π , or the number of θ -variables). The top lines of Equations (2.2.41) and (2.2.42) differ in an

additional factor of (−1)2n−1 =−1.

2.3 Fermions and skein relations

2.3.1 Almost noncrossing partitions and the skein action

We present a modified version of the skein action of Sn on C[NC(n)] defined in [39, Sec.

3]. The heart of this construction is a resolution of crossings in set partitions which are almost,

but not quite, noncrossing.

A set partition π ∈ Π(n) is almost noncrossing if π is not noncrossing but there exists

an index 1 ≤ i ≤ n− 1 such that si(π) is noncrossing. The index i is not always uniquely
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determined by π: if π = {1 ,3, 5/2, 4} ∈ Π(5) then both s1(π) and s3(π) are noncrossing, so

that π ∈ ANC(5).

Let ANC(n) be the family of almost noncrossing set partitions of [n]. We define a set

map

σ : ANC(n)−→ C[NC(n)] (2.3.1)

as follows; see Figure 2.1.

Definition 2.3.1. Let π ∈ ANC(n) be such that si(π) ∈ NC(n). Then i and i+1 are in different

blocks of π; let Bi be the block of π containing i and Bi+1 be the block of π containing i+1. The

blocks Bi and Bi+1 both have size at least 2. We set

σ(π) :=



π1 +π2 if |Bi|= |Bi+1|= 2,

π1 +π2 −π3 if |Bi|> 2 and |Bi+1|= 2,

π1 +π2 −π4 if |Bi|= 2 and |Bi+1|> 2,

π1 +π2 −π3 −π4 if |Bi|, |Bi+1|> 2,

(2.3.2)

where the set partitions π1, . . . ,π4 ∈ NC(n) are obtained from π by replacing Bi and Bi+1 with

the new pair of blocks

• (Bi −{i})∪{i+1} and (Bi+1 −{i+1})∪{i} for π1,

• (Bi ∪Bi+1)−{i, i+1} and {i, i+1} for π2,

• Bi −{i} and Bi+1 ∪{i} for π3, and

• Bi+1 −{i+1} and Bi ∪{i+1} for π4.

It is proven in [39, Lem. 3.3] that if si(π) is noncrossing for more than one value of i, the

above procedure yields the same element σ(π) ∈ C[NC(n)]. In other words, the set map σ is

well-defined.
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Definition 2.3.2. For 1 ≤ i ≤ n−1, the skein action of the adjacent transposition si on C[NC(n)]

is given by

si ·π :=


−si(π) if si(π) is noncrossing,

σ(si(π)) otherwise.
(2.3.3)

The sign conventions in Definition 2.3.2 are slightly different from those in [39, Eqn.

(4.1)]. The action of si on π ∈ NC(n) in [39] did not introduce a sign when at least one of i, i+1

formed a singleton block of π . The calculation-intensive arguments of [39, Lem. 4.1, Lem. 4.2,

Lem. 4.3] go through to show that the action of Definition 2.3.2 satisfies the Coxeter relations

and we have an induced action of Sn on C[NC(n)]. Fermions will give a more conceptual proof

(Theorem 2.3.4, Theorem 2.4.6) that this action is well-defined.

2.3.2 Block operators and skein relations

In this subsection we prove our first major result: a link between fermions and skein

relations. We first state our result at the level of the block operators ρπ .

For notational convenience, if π ∈ ANC(n) is an almost noncrossing partition such that

si(π) is noncrossing, we define a linear operator

ρσ(π) : ∧{Θn,Ξn} −→∧{Θn,Ξn} (2.3.4)

by the formula

ρσ(π) :=



ρπ1 +ρπ2 if |Bi|= |Bi+1|= 2,

ρπ1 +ρπ2 −ρπ3 if |Bi|> 2 and |Bi+1|= 2,

ρπ1 +ρπ2 −ρπ4 if |Bi|= 2 and |Bi+1|> 2,

ρπ1 +ρπ2 −ρπ3 −ρπ4 if |Bi|, |Bi+1|> 2,

(2.3.5)

where Bi is the block of π containing i, Bi+1 is the block of π containing i+1, and π1, . . . ,π4 ∈
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NC(n) are as in Definition 2.3.1. The following result states that the block operators satisfy the

skein relations.

Theorem 2.3.3. Suppose π ∈ ANC(n) is an almost noncrossing partition such that si(π) is

noncrossing. We have

ρπ +ρσ(π) = 0 (2.3.6)

as operators on ∧{Θn,Ξn}.

Proof. Suppose A⊔{i+1} and B⊔{i} are blocks of π . By the definition of ρπ and ρσ(π) and

the commutativity statement in the last paragraph, it suffices to show the operator identity

ψA⊔{i+1} ◦ψB⊔{i}+ψA⊔{i} ◦ψB⊔{i+1}+ψA⊔B ◦ψ{i,i+1}−ψA ◦ψB⊔{i,i+1}−ψA⊔{i,i+1} ◦ψB = 0

(2.3.7)

where the ψ-operators avoid the branching in the definition of ρσ(π). We prove Equation (2.3.7)

by a sign-reversing involution.

In terms of the ψS,T -operators, the desired Equation (2.3.7) reads

(ψA +ψA,{i+1})◦ (ψB +ψB,{i})+(ψA +ψA.{i})◦ (ψB +ψB,{i+1})

+(ψA +ψA,B +ψB)◦ψ{i,i+1}−ψA ◦ (ψB +ψB,{i}s +ψB,{i+1}+ψ{i.i+1})

−ψB ◦ (ψA +ψA,{i}+ψA,{i+1}+ψ{i.i+1}) = 0. (2.3.8)

Expanding the LHS of Equation (2.3.8), applying Lemma 2.2.4, and simplifying gives

ψA,{i+1} ◦ψB,{i}+ψA,{i} ◦ψB,{i+1}+ψA,B ◦ψ{i,i+1} (2.3.9)

so that given f ∈ ∧{Θn,Ξn} the action of the LHS of Equation (2.3.8) on f is

1
2 ∑
(t1,t2,t3,t4)

ξt1 · (θt2 ⊙ (ξt3 · (θt4 ⊙ f ))) (2.3.10)
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where the sum is over all quadruples 1 ≤ t1, . . . , t4 ≤ n such that precisely one t j lies in each of

the four sets A,B,{i},{i+1}. The factor of 1
2 in the (2.3.10) arises from the double counting

(t1, t2)↔ (t3, t4) involved in applying the ψ-expression (2.3.9) to f . Equation (2.3.8) and the

theorem will be proved if we can show that the expression (2.3.10) vanishes. Anticommutativity

yields

ξt1 · (θt2 ⊙ (ξt3 · (θt4 ⊙ f ))) =−ξt3 · (θt2 ⊙ (ξt1 · (θt4 ⊙ f ))) (2.3.11)

which sets up a sign-reversing involution on the terms in (2.3.10).

The sign-reversing involution in the proof Theorem 2.3.3 relied on anticommutativity in

a crucial way. We regard this as evidence that fermions are a good setting for studying resolution

of set partition crossings.

The fact that the Fπ and fπ satisfy the skein relations is easily deduced from Theo-

rem 2.3.3. In analogy with the case of block operators, if π ∈ ANC(n) is almost noncrossing

and si(π) is noncrossing, we define Fσ(π) ∈ ∧{Θn,Ξn} by

Fσ(π) :=



Fπ1 +Fπ2 if |Bi|= |Bi+1|= 2,

Fπ1 +Fπ2 −Fπ3 if |Bi|> 2 and |Bi+1|= 2,

Fπ1 +Fπ2 −Fπ4 if |Bi|= 2 and |Bi+1|> 2,

Fπ1 +Fπ2 −Fπ3 −Fπ4 if |Bi|, |Bi+1|> 2,

(2.3.12)

where Bi is the block of π containing i, Bi+1 is the block of π containing i+1, and π1, . . . ,π4 ∈
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NC(n) are as in Definition 2.3.1. Similarly, we define fσ(π) ∈ ∧{Θn,Ξn} by

fσ(π) :=



fπ1 + fπ2 if |Bi|= |Bi+1|= 2,

fπ1 + fπ2 − fπ3 if |Bi|> 2 and |Bi+1|= 2,

fπ1 + fπ2 − fπ4 if |Bi|= 2 and |Bi+1|> 2,

fπ1 + fπ2 − fπ3 − fπ4 if |Bi|, |Bi+1|> 2.

(2.3.13)

Theorem 2.3.4. Let π ∈ NC(n) and 1 ≤ i ≤ n−1. Then

si ·Fπ :=


−Fsi(π) if si(π) is noncrossing,

Fσ(si(π)) otherwise.
(2.3.14)

and

si · fπ :=


− fsi(π) if si(π) is noncrossing,

fσ(si(π)) otherwise.
(2.3.15)

Proof. Proposition 2.2.3 implies

si ·Fπ = sign(si)Fsi(π) =−Fsi(π) (2.3.16)

so we are done if si(π) ∈ NC(n) is noncrossing. We therefore assume si(π) ∈ ANC(n) is almost

noncrossing. The desired formula follows from applying both sides of the operator identity of

Theorem 2.3.3 to θ1 · · ·θn.

Thanks to fermions and block operators, the proofs in this section were much faster and

cleaner than the corresponding proofs in [39, Sec. 3]. The proofs in [39, Sec. 3] were brute

force and involved extensive casework depending on block sizes; the ψ-operators in the proof of

Theorem 2.3.3 unify this casework.

Theorem 2.3.3 yields other families of fermions labeled by set partitions which satisfy

44



the skein relations. Suppose h ∈ ∧{Θn,Ξn} is alternating, and let T := {ρπ(h) : π ∈ Π(n)}.

Theorem 2.3.3 shows that spanT is Sn-stable, and that the polynomials appearing in T satisfy

the skein relations under the action of si. This construction also makes sense in the presence of

more than two sets Θn,Ξn, . . . ,Ωn of fermionic variables; this might help in the multidiagonal

context of Problem 2.7.3 below.

2.4 Noncrossing bases in ∧{Θn,Ξn}

2.4.1 The modules V and W

Given n,k,m ≥ 0, we define six subspaces of ∧{Θn,Ξn} as follows.


W (n) := span{Fπ : π ∈ Π(n)},

W (n,k) := span{Fπ : π ∈ Π(n,k)},

W (n,k,m) := span{Fπ : π ∈ Π(n,k,m),}


V (n) := span{ fπ : π ∈ Π(n)},

V (n,k) := span{ fπ : π ∈ Π(n,k)},

V (n,k,m) := span{ fπ : π ∈ Π(n,k,m)}.
(2.4.1)

Degree considerations imply that the sums

W (n) =
n⊕

k=0

W (n,k) and V (n) =
n⊕

k=0

V (n,k) (2.4.2)

of subspaces are direct. We shall see (Theorem 2.4.5) that the sums

W (n,k) =
k

∑
m=0

W (n,k,m) and V (n,k) =
k

∑
m=0

V (n,k,m) (2.4.3)

are also direct. We record some additional structural properties of these spaces.

Proposition 2.4.1. The six spaces W (n),W (n,k),W (n,k,m),V (n),V (n,k), and V (n,k,m) are

closed under the action of Sn on ∧{Θn,Ξn}. Furthermore, these spaces are spanned by
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noncrossing fermions. That is, we have


W (n) = span{Fπ : π ∈ NC(n)},

W (n,k) = span{Fπ : π ∈ NC(n,k)},

W (n,k,m) = span{Fπ : π ∈ NC(n,k,m)},


V (n) = span{ fπ : π ∈ NC(n)},

V (n,k) = span{ fπ : π ∈ NC(n,k)},

V (n,k,m) = span{ fπ : π ∈ NC(n,k,m)}.

Proof. The Sn-closure follows from Proposition 2.2.3. To see that the noncrossing fermions

span W (n), we argue as follows. Let π ∈ Π(n) be an arbitrary set partition. There exists w ∈Sn

such that w(π) ∈ NC(n) is noncrossing. We have

Fπ = sign(w) ·w−1 ·Fw(π) (2.4.4)

by Proposition 2.2.3. Writing w−1 as a product of adjacent transpositions si and applying them

to Fw(π) in succession, Theorem 2.3.4 guarantees the we obtain a Z-linear combination of Fµ ’s

for µ ∈ NC(n) noncrossing. For the case of W (n,k) and W (n,k,m), observe that the skein

relations in Figure 2.1 preserve the total number of blocks and the number of singleton blocks.

The corresponding statements for the V -spaces follow from an application of (ξ1 + · · ·+ξn)⊙

(−).

We will see that the six spanning sets in Proposition 2.4.1 are in fact bases. The linear

independence of these sets could in principle be established by examining expansions in the

monomial basis θS ·ξT of ∧{Θn,Ξn}, but the coefficients involved obstruct this approach. We

employ a more conceptual method hinging on a careful analysis of the singleton-free cases

W (n,k,0) and V (n,k,0) of these Sn-modules.

2.4.2 Singleton-free partitions and flag-shaped irreducibles

A partition λ ⊢ n is flag-shaped if it is of the form λ = (k,k,1n−2k) for some 1 ≤ k ≤ n/2.

The goal of this subsection is to show that the Sn-modules W (n,k,0) and V (n,k,0) spanned by
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singleton-free k-block fermions are flag-shaped irreducibles. We begin with a general criterion

for when a Young symmetrizer or antisymmetrizer annihilates an Sn-irreducible. Here we

compare partitions in dominance order.

Lemma 2.4.2. Let λ ,µ ⊢ n be partitions. We have [Sµ ]
+ ·Sλ ̸= 0 if and only if µ ≤ λ .

Lemma 2.4.2 is equivalent to the fact that the Kostka number Kλ ,µ counting semistandard

tableaux of shape λ and content µ is nonzero if and only if µ ≤ λ in dominance order.

Proposition 2.4.3. For k ≤ n/2, both of the Sn-modules W (n,k,0) and V (n,k,0) are isomorphic

to the flag-shaped irreducible Sλ where λ = (k,k,1n−2k).

Proof. It follows from the hook-length formula and independent observations of O’Hara and

Zeilberger that dim Sλ = |NC(n,k,0)|; see [32] for details. We verify that [Sλ ]
+ does not

annihilate W (n,k,0), but that [Sµ ]
+ does annihilate W (n,k,0) whenever λ < µ .

To prove [Sλ ]
+ ·W (n,k,0) ̸= 0, by Proposition 2.2.8 it suffices to find a single π0 ∈

Π(n,k,0) with [Sλ ]
+ · F̃π0 ̸= 0. We let

π0 := {1, 2k, 2k+1, · · · , n−1, n/2, 2k−1/3, 2k−2/ · · · /k, k+1} (2.4.5)

so that

F̃π0 =C(θ2ξ2 −θ2k−1ξ2k−1)(θ3ξ3 −θ2k−2ξ2k−2) · · ·(θkξk −θk+1ξk+1)×

[S{1,2k,2k+1,...,n−1,n}]
− · (θ1θ2kθ2k+1 · · ·θn−1)(ξ1 +ξ2k +ξ2k+1 + · · ·+ξn−1) (2.4.6)

where C is a nonzero constant. Equation (2.4.6) may be rewritten as

F̃π0 =C′(θ2ξ2 −θ2k−1ξ2k−1)(θ3ξ3 −θ2k−2ξ2k−2) · · ·(θkξk −θk+1ξk+1)×(
e− ∑

i∈{1,2k,2k+1,...,n−1}
(i,n)

)
· (θ1θ2kθ2k+1 · · ·θn−1)(ξ1 +ξ2k +ξ2k+1 + · · ·+ξn−1) (2.4.7)
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where C′ = (n−2k+1)! ·C is also nonzero. We claim that the coefficient of

θ1ξ1θ2ξ2 · · ·θkξk ·θ2kθ2k+1 · · ·θn−1 (2.4.8)

in [Sλ ]
+ · F̃π0 is nonzero. A permutation w ∈Sλ =Sk ×Sk can only contribute to the desired

coefficient when w(2k) = 2k, and the permutation involved in the action on the second line of

(2.4.7) is the identity e (rather than one of the transpositions (i,n)). We claim that all permutations

w in this (nonempty) set contribute to the desired coefficient with the same sign. Indeed, for

any such w, in order to contribute to the desired coefficient we must select the first term (with

positive sign) in each of the k−1 factors on the top line of Equation (2.4.7), and then choose the

first term in the ξ -sum on the bottom line of Equation (2.4.7). A uniform sign of (−1)n−2k is

involved in moving the variables θw(1) and ξw(1) next to each other in the second line. Once this

is done, the factors θiξi for 1 ≤ i ≤ k commute signlessly.

Now let µ ⊢ n be a partition with λ ≤ µ such that [Sµ ]
+ ·W (n,k,0) ̸= 0. By Propo-

sition 2.4.1 there exists π ∈ NC(n,k,0) such that [Sµ ]
+ ·Fπ ̸= 0. If i ∼ i+ 1 in π , we have

(1+ si) ·π = π −π = 0 by Theorem 2.3.4. We argue that µ = λ as follows.

Since λ ≤ µ we have µ1 ≥ k. Because [Sµ ]
+ ·Fπ ̸= 0 and π has k blocks, this forces

µ1 = k and implies that 1,2, . . . ,k are in distinct blocks of π . Since λ ≤ µ we must also have

µ2 = k and furthermore k+1,k+2, . . . ,2k are in distinct blocks of π . Since π is noncrossing

and has k blocks, this forces π = π0. We have µ = (k,k,µ3, . . .), and if µ3 > 1 then s2k ∈Sµ

and so that [Sµ ]
+ ·Fπ = 0, a contradiction. We conclude that λ = µ . Lemma 2.4.2 applies

to prove the Sn-isomorphism W (n,k,0) ∼= Sλ . To obtain the corresponding statement about

the V (n,k,0), observe that the map F 7→ (ξ1 + · · ·+ ξn)⊙F is an Sn-equivariant surjection

W (n,k,0)↠V (n,k,0). By irreducibility, we have V (n,k,0)∼= Sλ , as well.

Remark 2.4.4. There is a faster proof of Proposition 2.4.3 relying on results in [39, Sec. 5].

Theorem 2.3.4 shows that W (n,k,0) and V (n,k,0) are nonzero quotients of C[NC(n,k,0)]. By

[39, Prop. 5.2], we have C[NC(n,k,0)]∼= Sλ where λ = (k,k,1n−2k), and irreducibility forces

48



W (n,k,0)∼=V (n,k,0)∼= Sλ . We presented the argument above to illustrate how fermions give

an easier proof than that of [39, Prop. 5.2].

2.4.3 Linear independence

By Proposition 2.4.1, noncrossing fermions form a spanning set for the W - and V -

modules. The next result states that they form a basis.

Theorem 2.4.5. Given n,k,m ≥ 0, the sets

{Fπ : π ∈ NC(n)}, {Fπ : π ∈ NC(n,k)}, and {Fπ : π ∈ NC(n,k,m)} (2.4.9)

are bases of the Sn-modules W (n),W (n,k), and W (n,k,m), respectively. Similarly, the sets

{ fπ : π ∈ NC(n)}, { fπ : π ∈ NC(n,k)}, and { fπ : π ∈ NC(n,k,m)} (2.4.10)

are bases of V (n),V (n,k), and V (n,k,m), respectively.

Proof. By Proposition 2.4.1 it suffices to verify the linear independence of these six sets. We

start with the case of W (n,k).

Suppose that we have cπ ∈ C such that

∑
π∈NC(n,k)

cπ ·Fπ = 0. (2.4.11)

For 1 ≤ i ≤ n, let Ui be the subspace of ∧{Θn,Ξn} spanned by monomials θS ·ξT for which i /∈ S

but i ∈ T . There is a linear projection

τi : ∧{Θn,Ξn}↠Ui (2.4.12)

which fixes any monomial θS ·ξT ∈Ui and sends any monomial θS ·ξT /∈Ui to zero.
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For π ∈ NC(n,k), what does τi(Fπ) look like? If {i} is not a singleton in π , it follows

from the definition of Fπ that θi appears in any monomial of Fπ whenever ξi does, so that

τi(Fπ) = 0 in this case. If {i} is a singleton in π , it is not hard to check that

τi(Fπ) =±ξi ·Fπ(i) (2.4.13)

where π(i) is the set partition of {1, . . . , î, . . . ,n} obtained by removing the singleton {i} from π

and F is defined in the same way as F but over the variable set obtained by removing θi and ξi,

(θ1, . . . , θ̂i, . . . ,θn,ξ1, . . . , ξ̂i, . . . ,ξn). Applying τi to both sides of Equation (2.4.11) gives

∑
π∈NC(n,k)

{i} is a block of π

±cπ ·ξi ·Fπ(i) = 0. (2.4.14)

By induction on n and Equation (2.4.14), we have cπ = 0 whenever π has singleton

blocks, so that Equation (2.4.11) reads

∑
π∈NC(n,k,0)

cπ ·Fπ = 0. (2.4.15)

Proposition 2.4.3 implies dim W (n,k,0) = |NC(n,k,0)| so that the spanning set {Fπ : π ∈

NC(n,k,0)} of W (n,k,0) must also be linearly independent. The coefficients cπ appearing in

Equation (2.4.15) are therefore also zero and the set {Fπ : π ∈ NC(n,k)} is linearly independent.

Its subsets {Fπ : π ∈NC(n,k,m)} must also be linearly independent for any m, and the directness

of the sums in (2.4.2) implies that {Fπ : π ∈ NC(n)} is also linearly independent.

The proof for the f ’s and V ’s is almost identical to the proof for the F’s and W ’s. One

need only verify the identity

τi( fπ) =


±ξi · f

π(i) {i} is a singleton block of π,

0 otherwise.
(2.4.16)
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where f
π(i) is defined over the variable set (θ1, . . . , θ̂i, . . . ,θn,ξ1, . . . , ξ̂i, . . . ,ξn) and apply the

same argument.

2.4.4 Module structure

The fermion modules V and W coincide with the skein modules.

Theorem 2.4.6. For any n,k,m ≥ 0 we have isomorphisms of Sn modules


C[NC(n)]∼=V (n)∼=W (n),

C[NC(n,k)]∼=V (n,k)∼=W (n,k),

C[NC(n,k,m)]∼=V (n,k,m)∼=W (n,k,m),

(2.4.17)

where C[NC(n)],C[NC(n,k)], and C[NC(n,k,m)] are endowed with the skein action. These

isomorphisms are given by π ↔ fπ ↔ Fπ for π a noncrossing partition in each case.

Proof. Apply Theorem 2.3.4 and Theorem 2.4.5.

We record the Frobenius images of the modules involved in Theorem 2.4.6.

Corollary 2.4.7. For any n,k,m ≥ 0 the Frobenius images of C[NC(n,k,m)], V (n,k,m), and

W (n,k,m) are given by the common symmetric function

s(k−m,k−m,1n−2k+m) · s(1m) (2.4.18)

These modules admit Sn-decompositions

C[NC(n)] =
n⊕

k=0

C[NC(n,k)] and C[NC(n,k)] =
k⊕

m=0

C[NC(n,k,m)], (2.4.19)

V (n) =
n⊕

k=0

V (n,k) and V (n,k) =
k⊕

m=0

V (n,k,m), (2.4.20)
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W (n) =
n⊕

k=0

W (n,k) and W (n,k) =
k⊕

m=0

W (n,k,m). (2.4.21)

Proof. Proposition 2.4.3 shows C[NC(n,k,0)]∼= S(k,k,1
n−2k). The definition of the skein action

makes it clear that we have an induction product

C[NC(n,k,m)]∼= C[NC(n−m,k−m,0)]◦ signSm
(2.4.22)

so that

FrobC[NC(n,k,m)] = s(k−m,k−m,1n−2k+m) · s(1m). (2.4.23)

Theorem 2.4.6 proves the first statement. The direct sum decompositions are clear for the skein

modules; Theorem 2.4.6 implies their truth for the V -modules and W -modules as well.

The Frobenius images in Corollary 2.4.7 may be easily calculated using the (dual) Pieri

rule. As an example, we have

FrobV (9,5,1) = s44 · s1 = s54 + s441,

FrobV (9,5,2) = s331 · s11 = s441 + s432 + s4311 + s3321 + s3313 ,

FrobV (9,5,3) = s2211 · s13 = s3321 + s3313 + s323 + s32211 + s3214 + s241 + s2313 + s2215 ,

FrobV (9,5,4) = s15 · s14 = s241 + s2313 + s2215 + s217 + s19.

We have FrobV (9,5,0) = FrobV (9,5,5) = 0 since any 5-block set partition of [9] has at least

one and at most four singleton blocks. Summing these expressions gives the decomposition

FrobV (9,5) = s54 +2s441 + s432 + s4311 +2s3321 +2s3313 + s323

+ s32211 + s3214 +2s241 +2s2313 +2s2215 + s217 + s19

of the Narayana-dimensional module V (9,5). The reader may notice that the coefficients in

52



FrobV (9,5) are all in the set {0,1,2}. This holds for any FrobV (n,k), as may be verified with

the dual Pieri rule. Similarly, if sλ appears in FrobV (n,k) we must have λ2 ≥ λ1 −1 and λ3 < 3.

2.5 Resolution of crossings in set partitions

A chord diagram of size n (or a perfect matching) is a set partition of [2n] consisting

of n blocks, each of size two. In many mathematical contexts, one resolves crossings in chord

diagrams by repeated applications of

7→ +

Our skein action extends this technique to resolve crossings in arbitrary set partitions. Some of

the definitions and results in this subsection are more precise and cleaner versions of the results

in [39, Sec. 6, Sec. 7]4.

2.5.1 The crossing resolution p

Our resolution of a set partition as a linear combination of noncrossing set partitions is

packaged as a projection map.

Definition 2.5.1. We define a C-linear map p : C[Π(n)]→ C[NC(n)] by setting

p(π) := ∑
µ∈NC(n)

cπ,µ ·µ

where π ∈ Π(n) is a set partition and

Fπ = ∑
π∈NC(n)

cπ,µ ·Fµ .

4The reader following along in [39] should note that the action of Sn on C[Π(n)] denoted ⋆ there is different
from – and more complicated than – our ⋆-action (which is simply the sign-twisted permutation action).
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Given π ∈ Π(n), we view p(π) = ∑µ∈NC(n) cπ,µ ·µ , or its notationally abusive alias

“ π = ∑
µ∈NC(n)

cπ,µ ·µ ” (2.5.1)

as resolving the crossings in the set partition π . Theorem 2.4.5 guarantees that the linear map p

is well-defined and that p(π) = π whenever π is noncrossing.

Definition 2.5.1 can be cumbersome to apply since it involves basis expansions in

∧{Θn,Ξn}. However, there is a purely combinatorial algorithm for computing p(π); this is

presented after Corollary 2.5.10 and Observation 2.5.11 below. There is also an algebraic

characterization of the linear map p : C[Π(n)]→ C[NC(n)]. This is given after Theorem 2.5.5.

For arbitrary set partitions π , the coefficients cπ,µ appearing in Definition 2.5.1 are all

integers. Indeed, if w ∈Sn is chosen such that w(π) ∈ Π(n) is noncrossing, Proposition 2.2.3

yields

Fπ = Fw−1(w(π)) = sign(w) ·w−1 ·Fw(π). (2.5.2)

Since w−1 ·w(π) is a Z-linear combination of noncrossing partitions under the skein action and

π 7→ Fπ affords an isomorphism C[NC(n)] ∼−→W (n), we have cπ,µ ∈ Z always.

By Theorem 2.4.6, for any π ∈ Π(n) we have

Fπ = ∑
π∈NC(n)

cπ,µ ·Fµ ⇔ fπ = ∑
π∈NC(n)

cπ,µ · fµ (2.5.3)

so that Definition 2.5.1 could have been stated using the f ’s rather than the F’s. The F’s are

more convenient to use when computing p(π). For our first example of crossing resolution, we

revisit the classical setting of chord diagrams.

Example 2.5.2. (Chord diagrams) Consider the crossing chord diagram π = {1, 3/2, 4}. The

equation

F{1,3/2,4} =−F{1,2/3,4}−F{1,4/2,3}
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gives rise to the crossing resolution
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where the RHS is the image p(π). The reader may be disturbed by the global minus sign

appearing in p(π). This is accounted for by Proposition 2.2.3 which yields

s2 ·F{1,2/3,4} = sign(s2) ·Fπ =−Fπ .

Since the expression s2 ·F{1,2/3,4} is positive in the F-basis, the resolution p(π) must be negative

in the skein basis.

For a general chord diagram π ∈ Π(2n), the resolution p(π) agrees with the ‘classical’

chord diagram crossing resolution up to a global sign. To show that coefficients other than

±1 can occur in this expansion, let π = {1, 5/2, 6/3, 7/4, 8} be the ‘asterisk of order 4’.
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Our next example resolves crossings in set partitions π which are not chord diagrams.

The relevant F-polynomials and basis expansion were calculated by computer.

Example 2.5.3. (Beyond Chord Diagrams) If π ∈ Π(n) is a set partition which is not a chord

diagram, the resolution p(π) can involve both positive and negative signs. For example, consider

π = {1, 2, 6/3, 4, 8/5, 7} ∈ Π(8).
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Figure 2.2. The crossing resolution for example 2.5.3

2.5.2 Two-block crossing resolution

Finding a combinatorial or algebraic interpretation of the coefficients cµ in p(π) =

∑µ∈NC(n) cµ ·µ for general set partitions π ∈ Π(n) is an open problem. However, we can give

such an interpretation when the set partition π = {A/B} consists of just two blocks. This

‘quadratic relation’ may be useful in finding algebraic interpretations of the skein modules; see

Problem 2.7.1 and the discussion thereafter.

To state our resolution for two-block set partitions, we need some notation. If 1 ≤ i, j ≤ r,

we let [i, j]n denote the (closed) cyclic interval from i to j in the cycle (1,2, . . . ,n). Explicitly,

we have

[i, j]n =


{i, i+1, . . . , j−1, j} i ≤ j,

{i, i+1, . . . ,n,1,2, . . . , j−1, j} i > j.
(2.5.4)

If π = {A/B} is a two-block set partition of [n], there exist unique maximal nonempty cyclic

intervals A1,A2, . . . ,Am and B1,B2, . . . ,Bm in (1,2, . . . ,n) such that

A = A1 ⊔A2 ⊔·· ·⊔Am and B = B1 ⊔B2 ⊔·· ·⊔Bm (2.5.5)

and (A1,B1,A2,B2, . . . ,Am,Bm) is cyclically sequential. The set partition π = {A/B} is non-

crossing if and only if m < 2.
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As an example of these concepts, let π = {A/B} ∈ Π(16) where

A = {1, 2, 4, 8, 9, 10, 12, 13, 14, 15, 16} and B = {3, 5, 6, 7, 11}.

We have the disjoint union decompositions

A = A1 ⊔A2 ⊔A3 and B = B1 ⊔B2 ⊔B3

where the sets

A1 = {1, 2, 12, 13, 14, 15, 16}, A2 = {4}, A3 = {8, 9, 10}

and

B1 = {3}, B2 = {5, 6, 7}, B3 = {11}

are all cyclic intervals and the sets (A1,B1,A2,B2,A3,B3) are cyclically sequential.

Proposition 2.5.4. Let π = {A/B} ∈ Π(n) and the decompositions A = A1 ⊔A2 ⊔·· ·⊔Am and

B = B1 ⊔B2 ⊔·· ·⊔Bm be as above. We have

p(π) = ∑
(S,T )

ε(S,T ) · {S/T} (2.5.6)

where the sum is over all two-block noncrossing set partitions {S/T} ∈NC(n) and the coefficient
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ε(S,T ) ∈ {+1,0,−1} is

ε(S,T ) =



0 if |S|< 2 or |T |< 2,

+1
if |S|, |T | ≥ 2 and S,T are both unions of an odd number

of sets in (A1,B1,A2,B2, . . . ,Am,Bm),

−1
if |S|, |T | ≥ 2 and S,T are both unions of an even number

of sets in (A1,B1,A2,B2, . . . ,Am,Bm).

(2.5.7)

We give an example of Proposition 2.5.4 before proving it. Suppose π = {A/B} is as

before the statement of the proposition so that m = 3. The sets S,T involved in the expansion

of p(π) are complementary cyclic intervals in (A1,B1,A2,B2,A3,B3). Collapsing the cyclic

intervals Ai,Bi to points, this resolution p(π) is shown in Figure 2.3. The partitions {B1 /[n]−

B1},{A2 / [n]− A2}, and {B3 / [n]− B3} do not appear because the sets B1,A2, and B3 are

singletons so that ε = 0 for these terms. We now prove Proposition 2.5.4.

Proof. This is a more complicated version of the proof of Theorem 2.3.3. When m < 2, the set

partition π is noncrossing, we have p(π) = π and the proposition follows, so we assume m ≥ 2.

In particular, neither of the blocks of π are singletons.

Define four disjoint nonempty subsets I,J,S,T ⊆ [n] by

I := A1, J := B1, S := A2 ⊔A3 ⊔·· ·⊔Am, T := B2 ⊔B3 ⊔·· ·⊔Bm. (2.5.8)

We claim the following identity of linear endomorphisms of ∧{Θn,Ξn}:

ψI⊔S ◦ψJ⊔T +ψI⊔J ◦ψS⊔T +ψI⊔T ◦ψJ⊔S

−ψI ◦ψJ⊔S⊔T −ψJ ◦ψI⊔S⊔T −ψS ◦ψI⊔J⊔T −ψT ◦ψI⊔J⊔S = 0. (2.5.9)
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Expressed in terms of the ψS,T operators, the LHS of Equation (2.5.9) is

(ψI +ψI,S +ψS)◦ (ψJ +ψJ,T +ψT )+(ψI +ψI,J +ψJ)◦ (ψS +ψS,T +ψT )

+(ψI +ψI,T +ψT )◦ (ψJ +ψJ,S +ψS)

−ψI ◦ (ψJ +ψS +ψT +ψJ,S +ψJ,T +ψS,T )−ψJ ◦ (ψI +ψS +ψT +ψI,S +ψI,T +ψS,T )

−ψS ◦ (ψI +ψJ +ψT +ψI,J +ψI,T +ψJ,T )−ψT ◦ (ψI +ψJ +ψS +ψI,J +ψI,S +ψJ,S)

(2.5.10)

which simplifies (by Lemma 2.2.4) to

ψI,S ◦ψJ,T +ψI,J ◦ψS,T +ψI,T ◦ψJ,S (2.5.11)

and the claimed Equation (2.5.9) will be proved if we can show that (2.5.11) vanishes as an

operator on ∧{Θn,Ξn}. To show this, let f ∈ ∧{Θn,Ξn}. The image of f under the operator

(2.5.11) is
1
2 ∑
(a,b,c,d)

ξa · (θb ⊙ (ξc · (θd ⊙ f ))) (2.5.12)

where (a,b,c,d) range over all quadruples which have precisely one element in each of I,J,S,T .

As in the proof of Proposition 2.2.8, the terms in (2.5.12) corresponding to (a,b,c,d) and

(c,b,a,d) cancel so that (2.5.12) vanishes and Equation (2.5.9) is proven.

Equation (2.5.9) and Theorem 2.3.3 prove the proposition immediately when m = 2; we

may rearrange its terms as

ψI⊔S ◦ψJ⊔T =−ψI⊔J ◦ψS⊔T −ψI⊔T ◦ψJ⊔S

+ψI ◦ψJ⊔S⊔T +ψJ ◦ψI⊔S⊔T +ψS ◦ψI⊔J⊔T +ψT ◦ψI⊔J⊔S (2.5.13)

and apply both sides of Equation (2.5.13) to θ1θ2 · · ·θn. When m > 2, we may still apply both

sides of Equation (2.5.13) to θ1θ2 · · ·θn. The LHS evaluation is Fπ while the RHS evaluation is a
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Figure 2.3. The noncrossing resolution of a two-block set partition π = {A/B} where A =
A1 ⊔A2 ⊔A3, B = B1 ⊔B2 ⊔B3, the sets B1,A2,B3 are singletons, and the sets A1,B2,A3 have
more than one element.

linear combination of Fµ ’s for singleton-free (recall that ψS = 0 when S is a singleton) two-block

set partitions µ ∈ Π(n) with strictly shorter sizes m of their cyclic interval decompositions. The

proposition follows from induction on m.

2.5.3 Equivariance and symmetries

The resolution projection p intertwines the skein action on C[NC(n)] with the sign-

twisted permutation action of Sn on C[Π(n)].

Theorem 2.5.5. Endow C[Π(n)] with the Sn-action

w⋆π := sign(w) ·w(π) (2.5.14)

and C[NC(n)] with the skein action. The projection p : C[Π(n)]↠ C[NC(n)] is Sn-equivariant.

Proof. By Proposition 2.2.3, the surjection C[Π(n)]↠W (n) given by π 7→ Fπ is Sn-equivariant,
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so the theorem is a direct consequence of Definition 2.5.1.

Theorem 2.5.5 characterizes p as follows. Suppose f : C[Π(n)]→ C[NC(n)] is a linear

map such that

• we have f (si ⋆π) = si · f (π) for all 1 ≤ i ≤ n−1 and π ∈ Π(n) and

• for any partition λ ⊢ n we have f (πλ ) = πλ where

πλ := {1, 2, · · · , λ1 /λ1 +1, λ1 +2, · · · , λ1 +λ2 / · · ·}.

Since any π ∈ Π(n) is Sn-conjugate to a set partition of the form πλ , we have f = p. This

characterization may be helpful in finding other applications of the map p; see Problem 2.7.1.

The set NC(n) of noncrossing partitions has a dihedral group of ‘global’ symmetries.

That is, if w0 ∈Sn is the long element satisfying w0(i) = n− i+ 1 and c = (1,2, . . . ,n) ∈Sn

is the long cycle, then NC(n) is closed under the action of w0 and c. The following result is a

generalization of [39, Prop. 6.1, Thm. 6.4]; thanks to fermions its proof is much shorter.

Corollary 2.5.6. For any π ∈ NC(n), with respect to the skein action w0,c ∈Sn act on π by

w0 ·π = (−1)(
n
2) ·w0(π) and c ·π = (−1)n−1 · c(π). (2.5.15)

Proof. Apply Theorem 2.5.5 and the identities sign(w0) = (−1)(
n
2) and sign(c) = (−1)n−1.

We give an example to illustrate Corollary 2.5.6 and the power of the equivariance

Theorem 2.5.5.

Example 2.5.7. (Global symmetries) Let n = 6 and π = {1, 5, 6/2, 4/3}. In order to compute

c · π under the skein action, we write c = s1s2s3s4s5 and apply each adjacent transposition

successively using the skein relations.
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Figure 2.4. The computation of c ·π in example 2.5.7

As predicted by Corollary 2.5.6, the set partition c(π) = {1, 2, 6/3, 5/4} ∈ NC(6) is the only

surviving term with sign (−1)6−1 =−1. We leave it for the reader to verify

w0 ·π = (−1)(
6
2)w0(π) =−w0(π) =−{1, 2, 6/3, 5/4}

directly from the skein action.

Corollary 2.5.6 may be used in conjunction with Corollary 2.4.7 to obtain fixed-point

counts for the action of the dihedral group ⟨w0,c⟩ on the set NC(n). This gives rise to cyclic

sieving phenomena for the rotational action of ⟨c⟩, as explained in [39]. Another immediate

corollary of Theorem 2.5.5 is that the skein action respects ‘local symmetries’ of Sn on NC(n).

The following result is a sharpening of [39, Cor. 7.3].

Corollary 2.5.8. Let w ∈Sn and π ∈ NC(n) be such that w(π) ∈ NC(n). We have the skein

action

w ·π = sign(w) ·w(π). (2.5.16)

Example 2.5.9. (Local symmetries) Suppose π = {1, 5, 6/2, 4/3} ∈ NC(6) as above. Letting

w =

1 2 3 4 5 6

3 5 2 4 1 6

∈S6, the set partition w(π) = {3, 1, 6/5, 4/2} ∈ Π(6) is noncross-

ing. Also we have sign(w) =−1. Using the decomposition w = s2s1s4s3s2s3s4 we calculate
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as predicted by Corollary 2.5.8.

2.5.4 Combinatorial crossing resolution

Proposition 2.5.4 gives a combinatorial way to calculate the resolution p(π) for π ∈ Π(n)

which does not use F-fermions. The idea is to resolve a fixed pair of crossing blocks A,B ∈ π ,

resulting in a linear combination of partitions which are ‘less crossing’ than π . To describe this

procedure, we need notation.

Let S be a finite set with a disjoint union decomposition S = I ⊔ J. If πI is a set partition

of I and πJ is a set partition of J, the (disjoint) union πI ⊔πJ is a set partition of S. Conversely, if

π is a set partition of S and I,J are unions of blocks of π we have the restrictions π |I and π |J of

π to I and J.

If a finite set S has a total order noncrossing partitions and cyclic intervals of S are

defined in the natural way. If π is a set partition of S, two blocks A,B ∈ π are said to cross if

π |A⊔B is not noncrossing. Roughly speaking, the next result states that we can locally resolve

the crossing of A,B as in Proposition 2.5.4 while leaving the other blocks of π unchanged.

Corollary 2.5.10. Let π ∈ Π(n) and let A,B be blocks of π which cross. Write A = A1 ⊔A2 ⊔

·· ·⊔Am and B = B1⊔B2⊔·· ·⊔Bm where the Ai and Bi are maximal nonempty cyclic intervals in

the ordered set A⊔B such that the sequence (A1,B1,A2,B2, . . . ,Am,Bm) is cyclically sequential.
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Write C := [n]− (A⊔B) for the union of the other blocks of π . We have

p(π) = ∑
(S,T )

ε(S,T ) · p({S/T}⊔π |C) (2.5.17)

where the sum is over all two-block noncrossing partitions {S/T} of A⊔B and the coefficient

ε(S,T ) is defined as in Proposition 2.5.4.

Proof. When [n] = A⊔B this is precisely Proposition 2.5.4. For C = {C1 /C2 / · · · /Cr}, the

desired equation will follow from the operator identity

ρA ◦ρB ◦ρC1 ◦ρC2 ◦ · · · ◦ρCr = ∑
(S,T )

ε(S,T ) ·ρS ◦ρT ◦ρC1 ◦ρC2 ◦ · · · ◦ρCr (2.5.18)

where the conditions on (S,T ) are the same as in the statement. As all sets A,B,S,T appearing

in Equation (2.5.18) have size > 1, we have ρA = ψA,ρB = ψB,ρS = ψS, and ρT = ψT so that

Equation (2.5.18) is implied by

ψA ◦ψB = ∑
(S,T )

ε(S,T ) ·ψS ◦ψT . (2.5.19)

Equation (2.5.19) is proven in the same way as Proposition 2.5.4.

By Corollary 2.5.10, if π ∈ Π(n) and A,B are blocks of π which cross, we may write

p(π) as a sum of elements of the form ±p(π ′) where π is obtained from π by replacing A,B with

a new pair S,T of noncrossing, nonsingleton blocks. If all of the resulting partitions π ′ ∈ Π(n)

were noncrossing, this would give the resolution p(π) ∈ C[NC(n)], but this need not be the case

in general. However, the π ′ involved are ‘less crossing’ than π . We define the tangle tan(π) of a

set partition π = {B1 /B2 / · · · /Bk} by

tan(π) := |{1 ≤ i < j ≤ k : the blocks Bi and B j cross}| (2.5.20)
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so that π is noncrossing if and only if tan(π) = 0. Certainly any index pair of blocks S,T in

the RHS of Equation (2.5.17) do not cross, whereas the blocks A,B on the LHS do. For the

remaining blocks, we have the following

Observation 2.5.11. Let π ∈ Π(n) be a set partition, let A,B ∈ π be blocks which cross, and let

S,T index a term on the RHS of Equation (2.5.17). If D is a block of π other than A,B, then

• if D crosses just one of A,B, then D crosses at most one of S,T , and

• if D crosses neither A nor B, then D crosses neither S nor T .

Given π ∈ Π(n), Corollary 2.5.10 yields a ‘greedy algorithm’ to calculate p(π) ∈

C[NC(n)].

1. If π is noncrossing, then p(π) = π . Otherwise, arbitrarily select two blocks A,B of π

which cross.

2. Write p(π) = ∑(S,T ) ε(S,T ) · p({S/T}⊔π |C) as in Equation (2.5.17). Go back to Step 1

for each {S/T}⊔π |C appearing on the RHS.

By Observation 2.5.11, any set partition π ′ = {S/T} ⊔ π |C involved in the RHS of Equa-

tion (2.5.17) satisfies tan(π ′)< tan(π) so this algorithm terminates.

2.5.5 Quadratic ideals I and J

In this subsection we recast our work in the setting of commutative rings, ideals, and

quotients. To any nonempty subset B ⊆ [n] we associate a commuting variable yB and let

R := C [yB : ∅ ̸= B ⊆ [n] ] be the rank 2n −1 polynomial ring in these variables.

We introduce two quadratic ideals I,J ⊂ R as follows. For any pair (A,B) of nonempty

disjoint subsets of [n] which cross, the ideal I has a generator

yAyB − ∑
(S,T )

ε(S,T ) · ySyT (2.5.21)

65



where the pairs (S,T ) and ε(S,T ) are as in Proposition 2.5.4.

The ideal I has formal similarities with the Plücker ideals of Schubert calculus. These

are quadratic ideals in polynomial rings with variables ∆B indexed by nonempty subsets B ⊆ [n].

The variable ∆B corresponds to the top-justified minor in an n×n matrix X = (xi, j) of variables

with column set B. The analog of the generator (2.5.21) is another signed quadratic expression

given by a determinantal identity due to Sylvester in 1851. See [12, Sec. 8.1] for a definition of

the Plücker relations.

Although the relations (2.5.21) look somewhat like Plücker relations, there are two

important differences. The sizes {|A|, |B|} and {|S|, |T |} of subsets involved in any Plücker

relation are the same, but this homogeneity does not usually hold for the expressions (2.5.21).

Furthermore, the sets pairs (A,B) of a given product ∆A∆B appearing in a Plücker relation can

overlap, but all set pairs (A,B) and (S,T ) appearing in (2.5.21) are disjoint.

The quotient R/I has infinite vector space dimension. To get Artinian quotients, we

introduce the ideal J ⊂ R given by

J = ⟨yAyB : A∩B ̸=∅⟩. (2.5.22)

Since the sets B indexing the variables yB are nonempty, we have y2
B ∈ J always. The quotient

R/J has a basis consisting of monomials yB1 · · ·yBk for which the sets B1, . . . ,Bk are pairwise

disjoint. Quotienting R by the larger ideal I + J yields a more interesting basis of noncrossing

disjoint subsets.

Proposition 2.5.12. The quotient ring R/(I+J) has a basis B consisting of monomials yB1 · · ·yBk

for which the sets B1, . . . ,Bk ⊆ [n] are pairwise disjoint and noncrossing.

Proof. Let V ⊂ R be the vector subspace spanned by all monomials yB1 · · ·yBk for which

B1, . . . ,Bk are pairwise disjoint. The monomials in B and the generators of I lie in V . Since

R =V ⊕ J as vector spaces it suffices to show that B descends to a basis of V/(I ∩V ). To do

this, we introduce direct sum decompositions as follows.
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For any subset U ⊆ [n], let VU ⊆ V be the subspace with basis given by monomials

yB1 · · ·yBk with B1 ⊔·· ·⊔Bk =U . We have vector space direct sums

V =
⊕

U⊆[n]

VU and I ∩V =
⊕

U⊆[n]

I ∩VU (2.5.23)

where the second direct sum is justified as I is spanned by elements of the form

(
yAyB − ∑

(S,T )
ε(S,T ) · ySyT

)
· yC1 · · ·yCr (2.5.24)

where the union A∪B∪C1 ∪·· ·∪Cr and the unions S∪T ∪C1 ∪·· ·∪Cr all equal the same set

U ⊆ [n]. This gives rise to an identification

V/(I ∩V ) =
⊕

U⊆[n]

VU/(I ∩VU). (2.5.25)

If we set BU := B∩VU we have the disjoint union

B =
⊔

U⊆[n]

BU . (2.5.26)

It suffices to prove the following

Claim: BU descends to a basis of VU/(I ∩VU) for any U ⊆ [n].

Fix a subset U ⊆ [n] and consider the exterior algebra ∧{ΘU ,ΞU} over the set {θu,ξu :

u ∈U} of variables indexed by U . Lemma 2.2.1 states that the block operators satisfy ρA ◦ρB =

ρB ◦ρA for all subsets A,B ⊆ [n]. This endows ∧{ΘU ,ΞU} with an R-module structure via

yB · f :=


ρB( f ) B ⊆U,

0 otherwise.
(2.5.27)
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Restricting from R to VU gives a bilinear map

VU ×∧{ΘU ,ΞU} −→∧{ΘU ,ΞU}. (2.5.28)

Equation (2.5.18), applied over the variables indexed by U , implies that I ∩VU acts trivially on

∧{ΘU ,ΞU}, so we have an induced bilinear map

VU/(VU ∩ I)×∧{ΘU ,ΞU} −→∧{ΘU ,ΞU}. (2.5.29)

Theorem 2.4.5, again applied over ∧{ΘU ,ΞU}, implies that

{(yB1 · · ·yBk) · (θ1 · · ·θn) : yB1 · · ·yBk ∈ BU} (2.5.30)

is linearly independent in ∧{ΘU ,ΞU}, so BU is linearly independent in VU/(VU ∩ I). The

fact that BU spans VU/(VU ∩ I) follows from the relations (2.5.18) and the greedy algorithm

following Observation 2.5.11.

Placing the generator yB corresponding to a subset B ⊆ [n] in bidegree (|B|,1) gives R the

structure of a bigraded ring R =
⊕

i, j≥0 Ri, j. The ideals I,J ⊆ R are both bihomogeneous, as are

the quotients R/J and R/(I + J). We close this section by recording their bigraded Hilbert series

Hilb(R/J;q, t) = ∑
m,k≥0

(
n
m

)
Stir(m,k) ·qmtk (2.5.31)

Hilb(R/(I + J);q, t) = ∑
m,k≥0

(
n
m

)
Nar(m,k) ·qmtk (2.5.32)

where Stir(m,k) := |Π(m,k)| is the Stirling number of the second kind.
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2.6 Fermionic diagonal coinvariants

Up until this point, we have studied the fermions Fπ and fπ as members of the exterior

algebra ∧{Θn,Ξn}. In this section we study their images in FDRn = ∧{Θn,Ξn}/⟨∧{Θn,Ξn}Sn
+ ⟩.

Three members of the defining ideal of FDRn are

θ := θ1 + · · ·+θn ξ := ξ1 + · · ·+ξn δ := θ1ξ1 + · · ·+θnξn (2.6.1)

where the dependence on n of θ ,ξ ,δ ∈ ∧{Θn,Ξn} is suppressed and will be clear from context.

In particular, we have

fπ =±ξ ⊙Fπ (2.6.2)

for any set partition π ∈ Π(n). Recall that V (n,k) ⊆ ∧{Θn,Ξn}n−k,k−1 is the span of the set

{ fπ : π ∈ NC(n,k)}. The following lemma states that multiplication by θ is an injective

operation on V (n,k).

Lemma 2.6.1. For 1 ≤ k ≤ n, the map θ · (−) : V (n,k)→ θ ·V (n,k) given by multiplication by

θ is injective.

Proof. Theorem 2.4.5 states that { fπ : π ∈ NC(n,k)} is a basis for V (n,k) It suffices to show

that {θ · fπ : π ∈ NC(n,k)} is a linearly independent subset of ∧{Θn,Ξn}. To this end, suppose

∑
π∈NC(n,k)

cπ ·θ · fπ = 0 (2.6.3)

for some coefficients cπ ∈ C.

Let Ui and τi : ∧{Θn,Ξn}↠Ui be as in the proof of Theorem 2.4.5. If {i} is a singleton

of π ∈ NC(n,k), a direct computation shows

τi(θ · fπ) =±ξi ·θ (i) · f
π(i) (2.6.4)
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where f
π(i) is as in the proof of Theorem 2.4.5 and θ (i) := θ1+ · · ·+ θ̂i+ · · ·+θn. Furthermore, if

{i} is not a singleton of π , we compute τi(θ · fπ)= 0. Applying τi to both sides of Equation (2.6.3)

gives

∑
π∈NC(n,k)

{i} a block of π

±cπ ·ξi ·θ (i) · f
π(i) = 0 (2.6.5)

which forces (since θ (i) · f
π(i) do not involve ξi) the relation

∑
π∈NC(n,k)

{i} a block of π

±cπ ·θ (i) · f
π(i) = 0. (2.6.6)

By induction on n, we conclude that cπ = 0 whenever π has a singleton block, so that Equa-

tion (2.6.3) has the form

∑
π∈NC(n,k,0)

cπ ·θ · fπ = 0. (2.6.7)

Since the set { fπ : π ∈ NC(n,k,0)} is a basis for a flag-shaped Sn-irreducible and the map

θ · (−) is a nonzero Sn-homomorphism, the set {θ · fπ : π ∈ NC(n,k,0)} must be a basis for the

same flag-shaped irreducible. Thus, the coefficients cπ appearing in Equation (2.6.7) all vanish

and the lemma is proven.

Orellana-Zabrocki [28] and Kim-Rhoades [23] independently proved

⟨∧{Θn,Ξn}Sn
+ ⟩= ⟨θ ,ξ ,δ ⟩ (2.6.8)

as ideals in ∧{Θn,Ξn}, so the defining ideal of FDRn is generated by three elements. We exploit

this fact in the proof of the following theorem. Recall that FDRn =
⊕n−1

k=1(FDRn)n−k,k−1 is the

space of extreme bidegrees in FDRn.

Theorem 2.6.2. The set { fπ : π ∈ NC(n,k)} descends to a basis of (FDRn)n−k,k−1. Conse-

quently, the set { fπ : π ∈ NC(n)} descends to a basis of FDRn.
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Proof. We define a subspace U(n,k)⊆ ∧{Θn,Ξn} by

U(n,k) := ⟨∧{Θn,Ξn}Sn
+ ⟩∩∧{Θn,Ξn}n−k,k−1 (2.6.9)

= θ ·∧{Θn,Ξn}n−k−1,k−1 +ξ ·∧{Θn,Ξn}n−k,k−2 +δ ·∧{Θn,Ξn}n−k−1,k−2 (2.6.10)

where the second line is justified by (2.6.8).

Claim: We have V (n,k)∩U(n,k) = 0 as subspaces of ∧{Θn,Ξn}n−k,k−1.

By Lemma 2.6.1, it suffices to show

(θ ·V (n,k))∩ (θ ·U(n,k)) = 0. (2.6.11)

Recall that ⟨−,−⟩ is the inner product on ∧{Θn,Ξn} for which the monomial basis θS · ξT is

orthogonal. We show that (θ ·V (n,k))⊥ (θ ·U(n,k)) with respect to this inner product.

Fix a set partition π ∈ Π(n,k). We need only show that

⟨θ · fπ ,θ ·ξ ·θS ·ξT ⟩= 0 and ⟨θ · fπ ,θ ·δ ·θS ·ξT ⟩= 0

for any monomial θS ·ξT . The inner product on the left is easier to verify: by the adjointness

property in Proposition 1.1.2 (2) and the fact that θ̄ = θ we have

⟨θ · fπ ,θ ·ξ ·θS ·ξT ⟩=±⟨θ · (ξ ⊙Fπ),θ ·ξ ·θS ·ξT ⟩ (2.6.12)

=∓⟨ξ ⊙ (θ ·Fπ),θ ·ξ ·θS ·ξT ⟩ (2.6.13)

=∓⟨θ ·Fπ ,ξ ·θ ·ξ ·θS ·ξT ⟩ (2.6.14)

= 0 (2.6.15)

where the last line used ξ 2 = 0.

We turn to the argument that ⟨θ · fπ ,θ ·δ ·θS ·ξT ⟩= 0 for any S,T ⊆ [n]. Using Proposi-
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tion 1.1.2 (2) together with ξ̄ = ξ and θ̄ = θ we calculate

⟨θ · fπ ,θ ·δ ·θS ·ξT ⟩=±⟨θ · (ξ ⊙Fπ),θ ·δ ·θS ·ξT ⟩ (2.6.16)

=∓⟨ξ ⊙ (θ ·Fπ),θ ·δ ·θS ·ξT ⟩ (2.6.17)

=∓⟨θ ·Fπ ,ξ ·θ ·δ ·θS ·ξT ⟩ (2.6.18)

=∓⟨Fπ ,ξ · (θ ⊙δ ) ·θ ·θS ·ξT ⟩±⟨Fπ ,ξ ·δ ·θ ⊙ (θ ·θS ·ξT )⟩ (2.6.19)

=±⟨Fπ ,ξ ·δ ·θ ⊙ (θ ·θS ·ξT )⟩ (2.6.20)

where the last line used θ ⊙δ = ξ and ξ 2 = 0. The Claim is therefore reduced to showing

⟨Fπ ,ξ ·δ ·θ ⊙ (θ ·θS ·ξT )⟩= 0 (2.6.21)

for any S,T ⊆ [n]. We prove (2.6.21) by verifying the stronger claim that

⟨Fπ ,ξ ·δ ·θS ·ξT ⟩= 0 (2.6.22)

for any S,T ⊆ [n].

To see why Equation (2.6.22) holds, suppose that Fπ and ξ ·δ ·θS ·ξT have any monomials

in common. From the definition of Fπ , the sets S,T must satisfy the following three conditions.

1. For exactly one block B1 of π , we have B1 ∩T =∅ and |B1 −S|= 2.

2. For exactly one block B2 of π , we have B2 ∩T =∅ and |B2 −S|= 1.

3. For every other block B of π , we have |B∩T |= 1, |B−S|= 1, and B∩T ⊂ B∩S whenever

B is not a singleton.

If S,T satisfy (1) - (3), the monomials shared between Fπ and ξ · δ · θS · ξT have the form

ξiθ jξ j ·m where i ∈ B2 ∩S (or i ∈ B2 if B2 is a singleton) and j ∈ B1 −S and m is a monomial.
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If B1−S = { j1, j2}, then ξiθ j1ξ j1m and ξiθ j2ξ j2m appear in Fπ with opposite sign. We conclude

that ⟨Fπ ,ξ ·δ ·θS ·ξT ⟩= 0, completing the proof of the Claim.

We use the Claim to prove the result. By Equation (2.1.9) and Theorem 2.4.5, we have

dim V (n,k) = Nar(n,k) = dim(FDRn)n−k,k−1 (2.6.23)

and by the definition of U(n,k) we have

dim ∧{Θn,Ξn}n−k,k−1 = dim(FDRn)n−k,k−1 +dimU(n,k). (2.6.24)

These dimension equalities combine with the Claim to give a direct sum decomposition

∧{Θn,Ξn}n−k,k−1 =V (n,k)⊕U(n,k) (2.6.25)

so that the composite

V (n,k) ↪→∧{Θn,Ξn}n−k,k−1 ↠ (FDRn)n−k,k−1 (2.6.26)

is a linear isomorphism. Theorem 2.4.5 finishes the proof.

As a corollary, we obtain our promised identification between the skein action and the

extreme bidegree components of the fermionic diagonal coinvariants.

Corollary 2.6.3. We have an isomorphism of Sn-modules C[NC(n,k)]∼= (FDRn)n−k,k−1 for all

1 ≤ k ≤ n.

Proof. Apply the isomorphism (2.6.26) and Theorem 2.4.6.
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Equation (2.1.7), Theorem 2.4.6, Corollary 2.4.7, and Corollary 2.6.3 imply

k

∑
m=0

s(k−m,k−m,1n−2k+m) · s(1m) = FrobC[NC(n,k)] (2.6.27)

= Frob(FDRn)n−k,k−1 (2.6.28)

= s(k,1n−k) ∗ s(n−k−1,1k−1)− s(k−1,1n−k+1) ∗ s(n−k−2,1k+2). (2.6.29)

The symmetric function identity

k

∑
m=0

s(k−m,k−m,1n−2k+m) · s(1m) = s(k,1n−k) ∗ s(n−k−1,1k−1)− s(k−1,1n−k+1) ∗ s(n−k−2,1k+2) (2.6.30)

on the extreme ends of this chain of equalities relates an application of the dual Pieri rule to a

difference of Kronecker products of hook Schur functions. It is possible (but tedious) to verify

Equation (2.6.30) directly using rules for the Schur expansion of sλ ∗ sµ where λ ,µ ⊢ n are hook

shapes. One such rule, due to Rosas [43], implies that whenever a Sn-irreducible Sλ appears

in C[NC(n,k)], we must have λ3 < 3. Rosas’s rule also implies that the multiplicities of any

irreducible Sλ in C[NC(n,k)] lies in the set {0,1,2}.

2.7 Conclusion

In Section 2.5 we constructed a linear projection p : C[Π(n)]↠C[NC(n)] which resolves

crossings in set partitions by means of the rank 2n exterior algebra ∧{Θn,Ξn}. It is natural to

ask whether this crossing resolution is applicable more broadly. We will make the following

vague problem more precise after its statement.

Problem 2.7.1. Find instances of the crossing resolution p, or the skein relations in Figure 2.1,

in other mathematical contexts.

A classical application of the two-term skein relation is as follows. Let X be a 2× n

matrix of variables and C[X ] is the polynomial ring in these variables. The special linear group
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SL2 acts on the rows of X , and hence on the ring C[X ], by linear substitutions. The invariant

subring C[X ]SL2 is generated by the minors {∆ab : 1 ≤ a < b ≤ n} and the syzygy ideal of

relations among these generators is generated by the Plücker relations

∆ac∆bd = ∆ab∆cd +∆ad∆bc 1 ≤ a < b < c < d ≤ n. (2.7.1)

The standard mnemonic for Equation (2.7.1) is the basic skein relation

a

bc

d a

bc

d a

bc

d a

bc

d a

bc

d a

bc

d
= +

Kung and Rota [24] gave a detailed combinatorial study of this invariant ring which has seen

representation-theoretic application (e.g. [40, 45]).

Patrias, Pechenik, and Striker [29] gave an analogous invariant-theoretic interpretation of

the three-term and four-term skein relations as follows. Let X be an m×n matrix of variables

when m = ℓ+2 and let C[X ] be the polynomial ring in these variables. Let P ⊆ GLm(C) be the

parabolic subgroup of matrices of block form

A 0

B C


where A is 2×2 and C is ℓ×ℓ and consider the invariant subring C[X ]P. This is the homogeneous

coordinate ring of the two-step flag variety Fl(2, ℓ) in Cn. The authors of [33] use matrix minors

to define elements of C[X ]P indexed by set partitions which satisfy the three-term and four-term

skein relations. It may be useful to consider more general flag varieties in the context of skein

theory.

In this chapter we gave a combinatorial interpretation of the bidegree components

(FDRn)i, j of FDRn where i+ j = n−1 is maximal. It is natural to ask about bidegrees (FDRn)i, j.

Future work of the first author will give such an interpretation related to noncrossing (1,2)-
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configurations (see [55]). Another possible extension is as follows.

Problem 2.7.2. Extend the skein action from type A to a wider class of reflection groups.

As mentioned in the introduction, fermionic quotients suggest an avenue for Prob-

lem 2.7.2. More precisely, let W be an irreducible complex reflection group of rank n acting on

its reflection representation V ∼= Cn. The action of W on V induces actions of W on

• the n-dimensional dual space V ∗,

• the 2n-dimensional direct sum V ⊕V ∗, and

• the 22n-dimensional exterior algebra ∧(V ⊕V ∗).

Kim and Rhoades defined [23] the W-fermionic diagonal coinvariant ring to be the quotient

FDRW := ∧(V ⊕V ∗)/I (2.7.2)

where I is the (two-sided) ideal in ∧(V ⊕V ∗) generated by the W -invariants with vanishing

constant term. By placing V in bidegree (1,0) and V ∗ in bidegree (0,1), the quotient FDRW

attains the structure of a bigraded W -module.

If θ1, . . . ,θn is a basis of V and ξ1, . . . ,ξn is the dual basis of V ∗, Kim and Rhoades

proved [23] that FDRW may be modeled as

FDRW ∼= ∧{Θn,Ξn}/⟨δ ⟩ (2.7.3)

where δ = θ1ξ1 + · · ·+ θnξn. The bidegree component (FDRW )i, j is nonzero if and only if

i + j ≤ n, and for i + j ≤ n we have dim(FDRW )i, j =
(n

i

)(n
j

)
−
( n

i−1

)( n
j−1

)
so that for any

0 ≤ k ≤ n we have

dim(FDRW )n−k,k = Nar(n+1,k+1) (2.7.4)
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and a plausible solution to Problem 2.7.2 could involve the quotient ring (2.7.3) and noncrossing

partitions of [n+1]. One thing to note about such a solution is that it would involve an action of

W on a space spanned by classical (type A) noncrossing partitions rather than the W -noncrossing

partitions studied in Coxeter-Catalan theory, giving an action of type W on type A.

The presentation (2.7.3) holds somewhat beyond the realm of finite complex reflection

groups. Indeed, the identification (2.7.3) holds whenever W is a subgroup of GL(V ) such that

the nonzero exterior powers ∧0V,∧1V, . . . ,∧nV of V are pairwise nonisomorphic W -irreducibles

[23]. One such subgroup W is GL(V ) itself. It may be interesting to use (2.7.3) to analyze

Problem 2.7.2 in this broader context.

Returning to the symmetric group, various authors [2, 6, 28, 30] have considered a

‘multidiagonal’ version of the fermionic coinvariants defined as follows. Consider an k×n matrix

Θ of fermionic variables θi, j where 1 ≤ i ≤ k and 1 ≤ j ≤ n. Let ∧{Θ} be the exterior algebra

over these variables, a C-vector space of dimension 2nk. The column permuting action of Sn on

the matrix Θ induces an action of Sn on ∧{Θ}. The fermionic multidiagonal coinvariant ring is

the quotient

FDR(n;k) := ∧{Θ}/I (2.7.5)

where I ⊂ ∧{Θ} is the ideal generated by Sn-invariants with vanishing constant term. We have

FDR(n;2) = FDRn. In general FDR(n;k) is a k-fold graded Sn-module. Orellana and Zabrocki

[28] found generators for the ideal I, as well as a combinatorial formula for the multigraded

Frobenius image of the numerator ∧{Θ}.

Problem 2.7.3. Give a combinatorial interpretation for the multigraded pieces of FDR(n;k).

This chapter (and future work of the first author) address Problem 2.7.3 when k = 2. For

k > 2, one complicating feature in Problem 2.7.3 is that the supporting multidegrees of FDR(n;k)

are unknown. Specifically, if i = (i1, . . . , ik) ∈ Zk
≥0 it is conjectured [6] that FDR(n,k)i ̸=

0 whenever i1 + · · ·+ ik < n, but when k > 2 there exist tuples i with i1 + · · ·+ ik ≥ n and

FDR(n,k)i ̸= 0.
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One clue that Problem 2.7.3 should have an interesting solution is a conjecture of

F. Bergeron [2]. The column action of Sn on Θ commutes with the row action of GLk, so

G (n;k) := Sn ×GLk acts on ∧{Θ} and has an induced action on FDR(n;k). The G (n;k)-

character of this module is

chG (n;k)FDR(n;k) := ∑
i

FrobFDR(n;k)i ⊗ (qi1
1 · · ·qik

k ) (2.7.6)

where the sum ranges over all i = (i1, . . . , ik) ∈ Zk
≥0 and q1, . . . ,qk are variables. This character

lies in Λ(x)⊗C[q1, . . . ,qk]
Sk .

Bergeron proved [2] that the limit as k → ∞ of the character (2.7.6)

Fn := lim
k→∞

chG (n;k)FDR(n;k) (2.7.7)

is a well-defined element of Λ(x)⊗Λ(q) where q = (q1,q2, . . .). Bergeron defined [1] another

element En ∈ Λ(x)⊗Λ(q) in the same way as Fn, but using matrices of commuting variables

and conjectured [2] that

En = ωq Fn (2.7.8)

where the ω-involution acts on q-variables alone. That is, fermionic multidiagonal coinvariants

are expected to “contain all the information of” the commuting multidiagonal coinvariants.

Chapter 2 is a reprint of the material as it appears in International Math Research

Notices, 2022, authored by the dissertation author and Brendon Rhoades.
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Chapter 3

A combinatorial model for the fermionic
diagonal coinvariant ring

3.1 Introduction

This chapter involves an algebraically defined Sn-module, and is concerned with mod-

elling the Sn action on this module via combinatorially defined objects. In particular, we will

give a basis indexed by a certain type of noncrossing set partition for which the Sn action has a

nice combinatorial interpretation.

The module in question was introduced by Jongwon Kim and Rhoades [23], and is

defined as follows. Let Θn = (θ1, . . . ,θn) and Ξn = (ξ1, . . . ,ξn) be two sets of n anticommuting

variables, and let

∧{Θn,Ξn} := ∧{θ1, . . . ,θn,ξ1, . . . ,ξn} (3.1.1)

be the exterior algebra generated by these symbols over C. The symmetric group Sn acts on this

exterior algebra via a diagonal action given by

w ·θi := θw(i) w ·ξ ′
i := ξ

′
w(i). (3.1.2)

for any permutation w∈Sn and 1≤ i≤ n. Let ∧{Θn,Ξn}Sn
+ denote the subspace of Sn-invariants
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with vanishing constant term. Then the fermionic diagonal coinvariant ring is defined as

FDRn := ∧{Θn,Ξn}/⟨∧{Θn,Ξn}Sn
+ ⟩. (3.1.3)

The ring FDRn is a variant of the Garsia-Haiman diagonal coinvariant ring [14], which is

defined analogously but with the anticommuting variables replaced with commuting ones. Several

other variants involving more sets of variables or mixtures of anticommuting and commuting

variables have been studied by other authors [2, 4, 6, 23, 28, 30, 41, 42, 52, 53, 60, 61].

The ring ∧{Θn,Ξn} has a bigrading given by

(∧{Θn,Ξn})i, j := ∧i{θ1, . . . ,θn}⊗∧ j{ξ1, . . . ,ξn}. (3.1.4)

The invariant ideal ⟨∧{Θn,Ξn}Sn
+ ⟩ is homogeneous, so FDRn inherits the bigrading. In [23],

Kim and Rhoades calculated the frobenius image of FDRn to be given by

Frob(FDRn)i, j = s(n−i,1i) ∗ s(n− j,1 j)− s(n−i−1,1i+1) ∗ s(n− j−1,1 j+1) (3.1.5)

where ∗ denotes the Kronecker product of Schur functions. They remark that in the case when

i+ j = n−1, the above shows that the dimension of (FDRn)n−k,k−1 is given by the Narayana

number Nar(n,k). Narayana numbers count noncrossing set partitions of [n] into k blocks, and

in joint work with Rhoades [21] we gave a combinatorial basis of (FDRn)n−k,k−1 indexed by set

partitions for which the Sn-action was given by a skein action on noncrossing partitions first

described by Rhoades in [39].

In this chapter we will give a similar result for all bidegrees, although our results will not

give a combinatorial description for the full Sn-action. Instead, we will focus on the subgroup

of Sn consisting of permutations which leave n fixed (which we will abusively refer to as Sn−1).

We will define a basis of (FDRn)i, j indexed by a certain class of noncrossing set partitions defined

in Section 3 for which the action of Sn−1 can be described via combinatorial manipulations of
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the indexing partitions and use this basis to give an expression for the Frobenius image

Frob(ResSn
Sn−1

(FDRn)i, j). (3.1.6)

The rest of the chapter is organized as follows. Section 2 will describe an action of Sn−1

on certain set partitions and map this action into FDRn. Section 3 will show that a restriction of

this map is an isomorphism and use it to obtain a combinatorial basis of FDRn. Section 4 will

use the basis developed to calculate the bigraded Sn-structure of FDRn. Section 5 will connect

this basis to a cyclic sieving result of Thiel and address some avenues of further inquiry.

3.2 Set partitions and the action of Sn−1

The indexing set for our combinatorial basis will be a certain partially labelled subset

Φ(n) of noncrossing set partitions of [n].

Definition 3.2.1. Let n,k,x, t be nonnegative integers. We define the following sets of set

partitions:

• Let Ψ(n) denote the set of all set partitions of n for which all blocks not containing n

are size 1 or size 2, and blocks of size 1 not containing n are labelled with either a θ or a ξ ′.

• Let Ψ(n,k) be the set of partitions in Ψ(n) in which the block containing n is size k.

• Let Ψ(n,k, t,x) denote the set of partitions in Ψ(n,k) which have exactly t singletons

labelled θ and exactly x singletons labelled ξ ′.

• Let Φ(n), Φ(n,k), and Φ(n,k, t,x) be the subsets of Ψ(n), Ψ(n,k), or Ψ(n,k, t,x) respec-

tively which consist only of the those set partitions which are noncrossing.
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For the rest of this chapter, when we refer to the singleton blocks of a partition π ∈ Ψ(n),

we only refer to those blocks of size 1 that do not contain n, even if the block containing n

happens to be size 1. Similarly when we refer to the blocks of size two we refer to only the

blocks of size two that do not contain n.

There is a natural action of Sn−1 on Ψ(n), given by simply permuting elements between

blocks and preserving labels of blocks. The sets Ψ(n,k) and Ψ(n,k,x, t) are closed under this

action, but Φ(n) is not, as permuting the elements of a noncrossing permutation may introduce

crossings. However, we can define an action of Sn−1 on the linearization CΦ(n) by mapping

CΨ(n) into ∧{Θn−1,Ξ
′
n−1} in such a way that CΦ(n) is Sn−1-invariant and pulling back the

Sn−1-action.

Towards this goal, to each element π ∈ Ψ(n) we will associate an element Gπ of

∧{Θn−1,Ξ
′
n−1}. To define Gπ we will make use of a tool we will call block operators. Let B be

a block of a set partition π ∈ Ψ(n), i.e. B is a nonempty subset of [n] that either contains n or is

size at most two. Define the block operator τB : ∧{Θn−1,Ξ
′
n−1}→ ∧{Θn−1,Ξ

′
n−1} by

τB( f ) =



(∏i∈B\{n}θi)⊙ f n ∈ B

ξ ′
i · (θ j ⊙ f )+ξ ′

j · (θi ⊙ f ) n ̸∈ B,B = {i, j}

f B = {iθ}

ξ ′
i · (θi ⊙ f ) B = {i′

ξ
}

(3.2.1)

It will be important for what follows to note that block operators corresponding to blocks not

containing n commute

Lemma 3.2.2. Let A and B be two nonempty subsets of [n−1] of size at most two. Then τA and

τB commute.

Proof. The lemma reduces to the fact that the operators {ξ ′
1·, . . . ,ξ ′

n−1·,θ1⊙, . . . ,θn−1⊙} all

anticommute, and that each block operator is a degree two polynomial in these.
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Block operators also interact nicely with the action of Sn−1.

Lemma 3.2.3. Let A be a subset of [n−1] and let σ ∈Sn−1. Then for any f ∈ ∧{Θ,n−1 ,Ξ
′
n−1}

σ · τA( f ) = τσ ·A(σ ◦ f )

where the action of Sn on subsets is given by σ · {a1, . . . ,ak}= {σ(a1), . . . ,σ(ak)}.

We can now define Gπ .

Definition 3.2.4. Let π ∈ Ψ(n) with blocks B1, . . . ,Bk and n ∈ Bk. Then

Gπ := τB1 · · ·τBk(θ1θ2 · · ·θn−1). (3.2.2)

We can also give a description of the Gπ not involving block operators as follows.

Proposition 3.2.5. Let π ∈ Ψ(n). Take the product of θiξ
′
i −θ jξ

′
j for every size two block {i, j}

of π with i < j. For each singleton block {i} of π , multiply by θi or ξ ′
i according to its label in

increasing order. Then Gπ is equal to the result multiplied by (−1)inv(π ′) where π ′ is the word

formed by listing all size two blocks not containing n increasing within each block and by order

of increasing minimal element, then listing all size one blocks not containing n in increasing

order.

For example, if π = 1θ/2,5/3,4/5,6,8/7′
ξ

, then

Gπ = (−1)inv(253417)(θ2ξ
′
2 −θ5ξ

′
5)(θ3ξ

′
3 −θ4ξ

′
4)θ1ξ

′
7 (3.2.3)

Proof. By Lemma 3.2.2 we can assume that all of the block operators corresponding to size

two blocks appear before block operators according to singletons. Applying τBk and any block

operators corresponding to singletons to (θ1θ2 · · ·θn−1) removes all θi indexed by elements of

Bk and replaces θi indexed by ξ ′-labelled singletons with ξ ′
i . Note that τ{i, j}θiθ j = θiξ

′
i −θ jξ

′
j,

and the proof follows.

83



The Sn−1 action on these Gπ matches the natural Sn−1 action on Ψ(n), up to sign.

Proposition 3.2.6. Let σ ∈Sn−1 and π ∈ Ψ(n). Then σ ◦Gπ = sign(σ)Gσ◦π .

Proof. Using the block operator definition of Gπ and Lemma 3.2.3 we have,

σ ◦Gπ = σ ◦ (τB1 · · ·τBk(θ1θ2 · · ·θn−1)) (3.2.4)

= τσ(B1) · · ·τσ(Bk)(σ ◦ (θ1θ2 · · ·θn−1)) (3.2.5)

= τσ(B1) · · ·τσ(Bk)(sign(σ)θ1θ2 · · ·θn−1) (3.2.6)

= sign(σ)Gσ◦π (3.2.7)

The goal of the remainder of this section is to show that span({Gπ | π ∈ Φ(n)}) is Sn−1

invariant. For this end we will need the following two relations of block operators.

Lemma 3.2.7. Let a,b,c,d ∈ [n−1]. Then

τ{a,b}τ{c,d}+ τ{a,c}τ{b,d}+ τ{a,d}τ{b,c} = 0 (3.2.8)

as operators on the ring ∧{Θn−1,Ξ
′
n−1}

Proof. This is a straightforward calculation from the definition of τ .

Lemma 3.2.8. Let A = {a1 < a2} ⊂ [n− 1] and B ⊂ [n] be two disjoint sets with n ∈ B. Let

b1 < b2 < · · · < bm be the elements of B that lie between a1 and a2, and suppose at least one

such element exists. Then

τAτB + τ{a1,b1}τB+a2−b1 +
m−1

∑
i=1

τ{bi,bi+1}τB+a1+a2−bi−bi+1 + τ{bm,a2}τB+a1−bm = 0 (3.2.9)

as operators on the ring ∧{Θn−1,Ξ
′
n−1}
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Proof. For any two cyclically consecutive elements c1,c2 of a1,b2, . . . ,bm,a2, and any third

element c3 ∈ B∪ {a1,a2}, the terms ξ ′
c1
· θc2 ⊙ θc3⊙ and ξ ′

c1
· θc3 ⊙ θc2⊙ will appear in the

expansion of left hand side both exactly once or both exactly twice, depending on whether c3 is

also cyclically consecutive with c1. In either case, anticommutativity results in the sum being

0.

Together these lemmas allow us to demonstrate the Sn−1 invariance via a combinatorial

algorithm.

Corollary 3.2.9. Let σ ∈ Sn−1 and let π ∈ Φ(n). Then σ ·Gπ can be expressed as a linear

combination of {Gπ | π ∈ Φ(n)} via the following algorithm:

1. Apply σ to π , resulting in a set partition π ′ not necessarily in Φ(n).

2. If π ′ is contains any crossing two element blocks {a,c}, {b,d}, neither of which contain n,

replace π ′ with minus the sum of the partitions obtained by replacing {a,c},{b,d} with

{a,b},{c,d} and {a,d},{b,c}. Repeat on each new term of the sum until all terms of the

sum do not contain crossing two element blocks.

3. For each term of the sum obtained in step 2, replace any two element set that crosses the

block containing n as described by Lemma 3.2.8.

4. Replace each partition π ′′ in the sum obtained from step 3 with its corresponding Gπ ′′ to

express σ ·Gπ as a linear combination.

Example 3.2.10. Let n = 8 and let σ ∈ Sn−1 be the cycle (3576). Let π ∈ Φ(n) be the set

partition {23/45/7θ/186}. An example of applying Corollary 3.2.9 to this situation is given in

Figure 1.
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Figure 3.1. Applying Corollary 3.2.9

3.3 A combinatorial basis

We have shown that there is a mapping of Sn−1-modules CΨ(n)→∧{Θn−1,Ξ
′
n−1}. In

this section we will show that the restriction of this mapping to CΦ(n) is injective and becomes an

isomorphism when composed with the quotient map ∧{Θn−1,Ξ
′
n−1}→ FDRn, thereby proving

the following.

Theorem 3.3.1. The set {[Gπ ] | π ∈ Ψ(n)} forms a basis for FDRn, where [ f ] denotes the

equivalence class in FDRn of f ∈ ∧{Θn−1,Ξ
′
n−1}.

Proof. We begin with a dimension count; Kim and Rhoades [23] gave a basis of FDRn indexed

by a set Π(n)>0 of Motzkin-like lattice paths defined as follows.

Definition 3.3.2. Let Π(n)>0 be the set of all lattice paths which start at (0,0), take steps

(1,0),(1,1) or (1,−1), only touch the x-axis at (0,0) and have all (1,0) steps labelled by θ or

ξ ′.

The two indexing sets are in bijection.

Lemma 3.3.3. There is a bijection between Π(n)>0 and Φ(n).
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Proof. Given a Motzkin path in Π(n)>0, draw a horizontal line extending to the right of each up

step until it first intersects the path again. Label each step after the first 1 to n−1. Construct a set

partition by placing every up step in a block with the down step it is connected to if such a down

step exists, or in the block containing n otherwise. Place every horizontal step in a singleton

block with the same label. The process can be reversed, and is therefore a bijection.

The bijection is best described with a picture example as in Figure 2.

1
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7
8θ

1
2

θ

3 4

5

6 7

Figure 3.2. An example of Lemma 3.3.3

Therefore it suffices to show that {[Gπ ] | π ∈ Ψ(n)} spans. By Corollary 3.2.9 and since

FDRn is defined as a quotient, it suffices to show that together, the sets

β := {Gπ | π ∈ Ψ(n)}

and

β
′ := {m(θ1ξ

′
1 + · · ·+θn−1ξ

′
n−1) | m a monomial in ∧{Θn−1,Ξ

′
n−1}}

span

∧{Θn−1,Ξ
′
n−1}.

To show that β ∪β ′ spans, we will break ∧{Θn−1,Ξ
′
n−1} into many subspaces and show that

each subspace is spanned.
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Let S be a subset of [n−1] of size 2k for some integer k. Let m denote a fixed monomial

of ∧{Θn−1,Ξ
′
n−1} such that the following conditions hold for all i ∈ [n−1]:

1. If i ∈ S, then neither ξ ′
i nor θi appears in m.

2. If ξ ′
i appears in m, then θi does not appear in m.

Let VS,m denote the subspace of ∧{Θn−1,Ξ
′
n−1} which is spanned by monomials of the form

θs1ξ ′
s1
· · ·θskξ ′

sk
m, where s1, . . . ,sk ∈ S. There are

(2k
k

)
such monomials, so

dim(VS,m) =

(
2k
k

)
. (3.3.1)

Consider the set of β ∩VS,m. These will consist of all π ∈ Ψ(n)′ such that the size 1 parts of π

and their labels correspond exactly with the monomial m, and the size two parts partition S. This

set is therefore in bijection with noncrossing perfect matchings of S, so we have

|β ∩VS,m|= Cat(k) (3.3.2)

where Cat(k) is the kth Catalan number. Consider as well the set β ′∩VS,m. If m′ is a degree

n−3 monomial such that (θ1ξ ′
1 + · · ·+θn−1ξ ′

n−1)m
′ ∈VS,m, then it must be the case that m′ =

θs1ξ ′
s1
· · ·θsk−1ξ ′

sk−1
m for some choice of s1, . . . ,sk−1 ∈ S. So we have

|β ′∩VS,m|=
(

2k
k−1

)
. (3.3.3)

Putting the above equations together we have

|(β ∪β
′)∩VS,m|= Cat(k)+

(
2k

k−1

)
=

(
2k
k

)
= dim(VS,m) (3.3.4)

and so it suffices to show that (β ∪β ′)∩VS,m is a linearly independent set.

Let d be the degree of m, and let M be the set of monomials of degree d + 2k in
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∧{Θn−1,Ξ
′
n−1} whose variables are in increasing numerical order with θ1 < ξ1 < · · ·< θn < ξn.

Define an inner product ⟨−,−⟩ on the degree d +2k part of ∧{Θn−1,Ξ
′
n−1} such that M is an

orthonormal set. With respect to this inner product,

β ∩VS,m ⊆ (β ′∩VS,m)
⊥ (3.3.5)

To see this, suppose that fπ ∈ VS,m and (θ1ξ ′
1 + · · ·+ θn−1ξ ′

n−1)m
′ ∈ VS,m have monomials in

common. Then m′ must be equal to θs1ξ ′
s1
· · ·θsk−1ξ ′

sk−1
m′ where each si is in a distinct size 2

part of π . If this is the case, then θs1ξ ′
s1
· · ·θsk−1ξ ′

sk−1
m′ and fπ share exactly two monomials,

corresponding to the two elements in the last size 2 part of π . These monomials will have

coefficients of opposite sign in fπ and the same sign in θs1ξ ′
s1
· · ·θsk−1ξ ′

sk−1
m′, so the inner

product will be 0. Therefore it suffices to show that β ∩VS,m and β ′∩VS,m are both individually

linearly independent sets.

To see that β ∩VS,m is linearly independent, consider the lexicographic term order on

monomials with respect to the variable order θ1,ξ
′
1,θ2,ξ

′
2, . . . . With respect to this order, the

leading term of fπ is θs1ξ ′
s1
· · ·θskξ ′

sk
m, where s1, . . . ,sk are the numerically smaller elements of

each size two block of π . Since π is noncrossing and m and S determine the singletons and block

containing n, specifying the set of elements that are the smaller of their part uniquely determines

π . Therefore the fπ contained in VS,m all have unique leading terms and are therefore linearly

independent.

Kim and Rhoades proved [23] that in FDRn, multiplication by θ1ξ ′
1 + · · ·+θn−1ξ ′

n−1 is

an injection, so β ′∩VS,m is also a linearly independent set and VS,m is spanned by (β ∪β ′)∩VS,m.

Since every monomial is contained in some VS,m, we therefore have that ∧{Θn−1,Ξ
′
n−1} is

spanned by β ∪β ′ and therefore {[Gπ ] | π ∈ Ψ(n)} is a basis for FDRn as desired.
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3.4 Sn−1 module structure

In this section we will describe the Frobenius image of each bigraded piece of FDRn as

an Sn−1 module. Consider the family of subspaces:

V (n,k,x,y) := span{[Gπ ] | π ∈ Φ(n,k,x,y)} ⊆ FDRn (3.4.1)

These subspaces are in fact submodules of ResSn
Sn−1

(FDRn), since they are closed under the

action of Sn−1. To see this, note that no step of the algorithm described in Corollary 3.2.9

replaces a set partition with one with a different number of size two blocks, ξ ′-labelled elements,

or θ -labelled elements. Since Φ(n) =⊕k,x,yΦ(n,k,x,y) the subspaces V (n,k,x,y) make up all

of FDRn:

Proposition 3.4.1. The i, j-graded piece of DRn is a direct sum of V (n,k,x,y):

(FDRn)i, j =
⊕
k,x,y

k+x=i
k+y= j

V (n,k,x,y)

Proof. From the definition of Gπ it is clear that if π ∈ Φ(n,k,x,y) then Gπ has bidgree (k+x,k+

y). The result follows.

To determine the structure of these modules we begin with V (n,k,0,0). We first need a

lemma

Lemma 3.4.2. There exists a bijection from Φ(n,k,0,0) to SY T (n−k−1,k), the set of standard

Young tableau of shape λ = (n− k−1,k).

Proof. Define a function g : Φ(n,k,0,0)→
([n−1]

[k]

)
by

g(π) = {i ∈ [n−1] | i is in a block of size 2, and is the larger element in its block.} (3.4.2)
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For example, g(14/23/78/569) = {3,4,8}. Then g is injective, it is possible to recover the

preimage of a set S under g by starting with the smallest i element of S, if g(π) = S, then for

π to satisfy the noncrossing condition, {i−1, i} must be a block of π . Then the next smallest

element of S must be paired with the largest element smaller than it that is not already paired,

and so on. This algorithm will produce a unique preimage iff S satisfies the condition that for

any k ∈ [n−1], |S∩ [k]| ≤ k/2. Define another function h : SY T (n− k−1,k)→
([n−1]

k

)
by

h(T ) = {i ∈ [n−1] | i is in the second row of T} (3.4.3)

Then h is also injective, and S ∈ h(SY T (n− k−1,k)) iff S satisfies the condition that for any

k ∈ [n−1], |S∩ [k]| ≤ k/2. So the image of h and g are the same and the result follows.

Proposition 3.4.3. We have that V (n,k,0,0)∼=Sn−1 S(n−k−1,k).

Proof. Let λ = (n− k − 1,k). By Theorem 5.2.9 and Lemma 3.4.2, the dimensions of the

modules agree, so by Lemma 1.1.1 it suffices to show that [Sλ ]+ does not kill V (k,0,0), but

[Sµ ]+ does kill V (n,k,0,0) for all partitions µ ≻ λ .

We begin by showing that [Sλ ]+ does not kill V (k,0,0). Let π0 ∈ Φ(n,k,0,0) be the

parition whose blocks are

{n−1,n−2k},{n−2,n−2k+1}, . . . ,{n− k,n− k−1},{1,2,3, . . . ,n−2k−1,n}

Then using the block operator definition of Fπ0 we have

[Sλ ]+Fπ0 = ∑
σ∈Sλ

σ · τ{n−1,n−2k} · · ·τ{n−k,n−k−1}τ{1,2,3,...,n−2k−1,n}θ1 · · ·θn−1 (3.4.4)

Consider the coefficient of θn−1 · · ·θn−kξ ′
n−1 · · ·ξ ′

n−k in the above expression. For a term to con-

tribute to this coefficient, it must be the case that σ · {1,2,3, . . . ,n−2k−1,n}= {1,2,3, . . . ,n−
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2k−1,n}. If this is the case, then the summand corresponding to σ can be written as

τ{n−1,σ ′(n−2k)} · · ·τ{n−k,σ ′(n−k−1)}θn−2k · · ·θn−1 (3.4.5)

for some permutation σ ′ of {n− k−1,n−2k}. The coefficient of θn−1 · · ·θn−kξ ′
n−1 · · ·ξ ′

n−k in

equation 3.4.5 above does not depend on σ ′, so all terms of the sum in equation 3.4.4 which

contribute to the coefficient of θn−1 · · ·θn−kξ ′
n−1 · · ·ξ ′

n−k contribute the same sign, and thus the

coefficient of θn−1 · · ·θn−kξ ′
n−1 · · ·ξ ′

n−k in [Sλ ]+Fπ0 is nonzero. Thus V (k,0,0) is not killed by

[Sλ ]+.

Now let µ be any partition of n− 1 such that λ ≻ µ , i.e. µ = (n−m,m− 1) for any

m ≤ k. Let π ∈ Φ(n,k,0,0). Since m−1 < k, there must be at least two elements of i and j of

[n−m] in the same block in π . Then the transposition (i, j) acts on Gπ via multiplication by −1,

so (1+(i, j))Gπ = 0. But [Sλ ]+ = A(1+(i, j) for some symmteric group algebra element A, so

indeed [Sλ ]+Gπ = 0, and the result follows.

We can use V (n,k,0,0) to determine the structure of V (n,k,x,y) for any x,y.

Proposition 3.4.4. We have that

V (n,k,x,y)∼=Sn−1 IndSn−1
Sn−x−y−1⊗Sx⊗Sy

S(n−x−y−k−1,k)⊗ signSx
⊗ signSy

.

Proof. We can represent an element π of Φ(n,k,x,y) by the triple (X ,Y,π ′), where X is the set

of singletons labelled by ξ ′, Y is the set of singletons labelled by θ , and π ′ is the set partition

obtained by removing all singletons from π and decrementing indices. Let F(X ,Y,π ′) denote Gπ
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for the corresponding π . The action of a transposition (i, j) on F(X ,Y,π ′) is then given by

(i, j)◦F(X ,Y,π ′) =


−F(X ,Y,π ′) {i, j} ⊂ X or {i, j} ⊂ Y

F(X ,Y,(i, j)◦π ′) {i, j} ⊂ (X ∪Y )c

F(i, j)◦X ,(i, j)◦Y,π ′ otherwise

(3.4.6)

The proposition follows from the definition of induced representation.

Corollary 3.4.5. The Frobenius image of V (n,k,x,y) is given by s(n−x−y−k−1,k)s(1x)s(1y). The

Frobenius image of (FDRn)i, j is

∑
k,x,y

k+x=i
k+y= j

s(n−x−y−k−1,k)s(1x)s(1y)

Proof. This follows directly from Proposition 3.4.4 and Proposition 3.4.1.

Corollary 3.4.6. The bigraded Frobenius image of ResSn
Sn−1

(FDRn) is given by

grFrob(ResSn
Sn−1

(FDRn);q, t) = (1−qt)
∞

∏
i=1

(1+ xiqz)(1+ xitz)
(1− xiz)(1− xiqtz)

∣∣∣∣
zn−1

where the operator (· · ·) |zn−1 extracts the coefficient of zn−1.

By Proposition 3.4.5 we have

grFrob(ResSn
Sn−1

(FDRn);q, t) = ∑
i

∑
j

∑
k,x,y

k+x=i
k+y= j

s(n−x−y−k−1,k)s(1x)s(1y)q
it j. (3.4.7)
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Applying Jacobi-Trudi [47] to the s(n−x−y−k−1,k) terms on the right gives

∑
i

∑
j

∑
k,x,y

k+x=i
k+y= j

s(n−x−y−k−1,k)s(1x)s(1y)q
it j = ∑

i
∑

j
∑

k,x,y
k+x=i
k+y= j

(hn−x−y−k−1hk −hn−x−y−khk−1)exeyqit j

(3.4.8)

and reindexing sums gives

∑
i

∑
j

∑
k,x,y

k+x=i
k+y= j

hn−x−y−k−1hkexeyqit j = ∑
k

hkqktkzk
∑
x

exqxzx
∑
y

eyqyzy
∑
m

hmzm
∣∣∣∣
zn−1

(3.4.9)

and

∑
i

∑
j

∑
k,x,y

k+x=i
k+y= j

hn−x−y−khk−1exeyqit j = ∑
k

hkqk+1tk+1zk
∑
x

exqxzx
∑
y

eyqyzy
∑
m

hmzm
∣∣∣∣
zn−1

(3.4.10)

from which the result follows.

3.5 Maximal bidegrees, cyclic sieving and further directions

Let Xn denote the subset of Φ(n) corresponding to bidegrees (i, j) where i+ j = n−1,

in other words,

Xn =
⋃

2k+x+y=n−1

Φ(n,k,x,y). (3.5.1)

This set consists of noncrossing set partitions set partitions of [n] in which n is in a block by itself,

all other blocks are size 1 or 2, and singleton blocks other than n are labelled by θ or ξ ′. The

set {Gπ | π ∈ Xn} is invariant (up to sign changes) under the action of the cycle (1,2, . . . ,n−1),

since n is in a block by itself and rotating all elements except n cannot introduce any new

crossings. We therefore have the setup for a cyclic sieving result using Springer’s theorem of

regular elements (Theorem 3.5.1).
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Theorem 3.5.1. The triple (Xn,Cn−1,q(
n
2)fd(FDRn)i+ j=n−1) exhibits the cyclic sieving phe-

nomenon where Cn−1 is the cyclic group generated by (1,2, . . . ,n−1).

Proof. This follows directly from Theorem 3.5.1.

Thiel [55] studied a version of this cyclic action in which rotation does not introduce a

sign change, while in our setup it introduces a sign when n is odd. Thiel proved the following

cyclic sieving.

Theorem 3.5.2 (Thiel, 2016). The triple (Xn,Cn−1,Cn(q)) exhibits the cyclic sieving phenomenon,

where Cn−1 is the cyclic group generated by (1,2, . . . ,n− 1) and Cn(q) is the Mac-Mahon q-

Catalan number, defined by

Cn(q) :=
1

[n+1]q

2n

q


q

.

Thiel proved his result via direct computation of Cn(q) and enumeration of fixed points

instead of using representation theory, so one might wonder if our basis could give an altenate

algebraic proof of his result. The expression for Frobenius image given in Corollary 3.4.5 allows

for the computation of the fake degree as

fd((FDRn)i+ j=n−1) = ∑
k,x,y

2k+x+y=n−1

 n−1

2k,x,y


q

Ck(q)qk+(x
2)+(

y
2) (3.5.2)

Combining the two cyclic sieving results it must follow that q(
n
2)fd((FDRn)i+ j=n−1) is equivalent

to Cn(q) modulo qn−1 − 1. We have had difficulty in determining this equivalence directly,

however, so we propose the following problem:

Problem 3.5.3. Is there a direct computational proof that q(
n
2)fd((FDRn)i+ j=n−1) and Cn(q)

are equivalent modulo qn −1?

Such a proof would complete an alternative representation theoretic proof of Thiel’s

result.
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In joint work with Rhoades [21] we developed a similar combinatorial model for the

maximal bidegree components of FDRn, with a basis indexed by all noncrossing set partitions.

The action of Sn on that basis could be understood in terms of skein-like relations described

by Rhoades [39]. Patrias, Pechenik, and Striker [29] independently discovered an alternate

algebraic/geometric model for the irreducible submodule of this action generated by singleton-

free noncrossing set partitions sitting in the coordinate ring of a certain algebraic variety. They

associated to each partition a polynomial in this coordinate ring defined in terms of matrix

minors, and showed that these polynomials satisfied the skein relations described in [39]. This

suggests the following problem:

Problem 3.5.4. Can our basis for S(n−k−1,k) be realized as a set of polynomials, similarly to the

methods of Patrias, Pechenik, and Striker [29]?

One reason for thinking an analogous model might exist is that the relation of block

operators described in Lemma 3.2.7 also appears in the maximal bidegree model and corresponds

to a certain identity of two-by-two matrix minors in the work of Patrias, Pechenik and Striker.

Their construction therefore extends to give a model for the submodule generated by partitions

in Φ(n) for which the block containing n is at most size two, but we have as yet been unable to

discover a treatment of larger blocks satisfying our other relations.

Chapter 3 is a reprint of the material as it appears in Combinatorial Theory, 2023. The

dissertation author was the sole author.
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Chapter 4

A skein action embedding

4.1 Introduction

This chapter concerns two actions of Sn. The first, due to Rhoades [39], is on the vector

space with basis given by the set of noncrossing set partitions of [n] := {1,2, . . . ,n}. We will

refer to this action as the skein action on noncrossing set partitions as it is defined in terms of

three skein relations, the simplest of which is the Ptolemy relation shown below.

7→ +

The second is a well-known action on noncrossing matchings first studied by Rumer, Teller,

and Weyl, then further developed by Temperley and Lieb, Kauffman, Kuperberg, and others

[19, 25, 54, 58]. If V is the defining representation of SL2, then the SL2 invariants of V⊗n have

a basis, called the SL2 web basis or Temperley-Lieb basis, indexed by noncrossing matchings.

The Sn action on V⊗n which permutes tensor factors thus induces a Sn-action on the linear

span of noncrossing matchings. Combinatorially, this action can be understood via the Ptolemy

relation. A permutation in Sn acts on a matching by swapping elements, then, if crossings were

introduced, resolving those crossings via the Ptolemy relation.

The skein action on noncrossing set partitions was originally defined to provide a repre-

sentation theoretic proof of a cyclic sieving result on noncrossing set partitions. Noncrossing set

partitions of [n] are counted by the Catalan numbers, and noncrossing set partitions of [n] with
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exactly n− k blocks are counted by the Narayana numbers:

N(n,k) :=
1
n

(
n
k

)(
n

k+1

)
.

Reiner, Stanton and White [37] showed that a q-analogue of the Narayana numbers:

N(n,k,q) :=
1
[n]q

n

k


q

 n

k+1


q

qk(k+1)

exhibits the cyclic sieving phenomenon for the natural cyclic action on noncrossing set partitions

with n− k blocks. Their proof proceeded via direct calculation of N(n,k,q) and sizes of fixed

point sets; the skein action allowed for an alternate proof utilizing Springer’s theorem on regular

elements [39, 49]. The skein action has since been found within coinvariant rings and coordinate

rings of certain partial flag varieties [21, 29], strengthening the claim that it is an action worth

studying in its own right.

The skein action on noncrossing set partitions is defined combinatorially in an analogous

way to the action on noncrossing perfect matchings. In fact, since noncrossing perfect matchings

are a subset of noncrossing set partitions, it can be considered a generalization of the matching

action to all noncrossing set partitions. To act by a transposition (i, i+ 1) on a noncrossing

matching, swap i and i+1, then if a crossing was introduced, use one of the following skein

relations to resolve it, depending on the sizes of the blocks that cross:

Rhoades was able to determine the Sn-irreducible structure of the skein action on

mathbbC[NCP(n)], the span of noncrossing set partitions [39]. In particular, C[NCP(n)0], the

span of all singleton-free noncrossing set partitions with exactly k blocks is an Sn-irreducible of

shape (k,k,1n−2k), and the span of all noncrossing set partitions with exactly s singletons and

exactly k non-singleton blocks is isomorphic to an induction product of S(k,k,1
n−2k−s) with the sign

representation of Ss. The structure of the noncrossing matching action is similar; the submodule

98



7→ +

7→ + −

7→ + − −

7→ +

7→ + −

7→ + − −

Figure 4.1. The three skein relations defining the action of Sn on C[NCP(n)]. The red vertices
are adjacent indices i, i+1 and the shaded blocks have at least three elements. The symmetric
4-term relation obtained by reflecting the middle relation across the y-axis is not shown.

spanned by noncrossing matchings with exactly k pairs is isomorphic to the induction product

of S(k,k) and a sign representation of Sn−2k. By the Pieri rule, this induction product is a direct

sum of three irreducible submodules, one of which is isomorphic to S(k,k,1
n−2k), so there exists a

unique embedding of C[NCP(n)0], the span of all singleton-free noncrossing set partitions in

C[NCP(n)], into C[NCM(n)]. The first main result of this chapter (appearing as Theorem 4.2.11

in section 3) explicitly describes the embedding as follows:

Theorem 4.1.1. The linear map fn : C[NCP(n)0]→ C[NCM(n)] defined by

fn(π) = ∑
m∈Mπ (n)

m

is an Sn-equivariant embedding of vector spaces. Here Mπ(n) is defined to be the set of all

matchings m in M(n) for which each block of π contains exactly one pair in m.

For an example of this map, let π = {{1,2,3},{4,5}} then

fn(π) = {{1,2},{4,5}}+{{1,3},{4,5}}+{{2,3},{4,5}}
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is a sum of 3 matchings in C[NCM(n)]. The proof of Theorem 4.1.1 also gives an alternate proof

that the skein action on noncrossing set partitions is well-defined, see Remark4.2.12. The skein

action being well-defined was originally shown through a laborious verification of the braid

relations [39].

The second main result of this chapter (appearing as Theorem 4.3.4 in section 4) is to

then describe the image of this map within C[NCM(n)]. For this purpose, as well as the purpose

of simplifying the proof of Theorem 4.1.1, it is helpful to introduce a multiplicative structure to

C[NCM(n)], where multiplication corresponds to union when matchings are disjoint, and gives

0 otherwise. With this added structure, the image of fn is a principal ideal:

Theorem 4.1.2. Let Hn be the ideal of C[NCM(n)] generated by fn([n]). Then

im( fn) = Hn.

The SL2 web basis has generalizations to other Lie groups. The first generalizations, to

Lie groups of rank two and their quantum deformations was given by Kuperberg, with indexing

sets given by certain planar diagrams embedded in a disk [25]. We propose a set of combinatorial

objects which might serve as an analog of noncrossing set partitions for the SL3 web basis, as

their enumeration conjecturally matches the dimension of the Specht module S(k
3,n−3k).

The rest of the chapter is organized as follows. Section 2 will provide necessary back-

ground information. Section 3 will prove our first main result, the embedding from C[NCP(n)0]

to C[NCM(n)]. Section 4 will determine the image of this embedding within C[NCM(n)].

Section 5 will describe the conjectural analog for the SL3 web basis.

4.2 The embedding

In order to prove that our map is an embedding, it will be helpful to introduce a multi-

plicative structure to work with. To do so we will introduce three commutative graded C-algebras
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Rn, An, and Mn, all with Sn-actions. If we forget the multiplicative structure, the underlying Sn-

modules of Rn, An, and Mn will contain a copy C[Π(n)], C[M(n)], and C[NCM(n)] respectively.

In the case of Mn, this copy will be all of Mn. The structure of this proof is best explained via a

commutative diagram, see Figure 4.2. We will define a map hn ◦ ιΠ : C[Π(n)0]→ Mn, and show

that its kernel is equal to the kernel of pΠ. The desired embedding fn then follows from the first

isomorphism theorem.

Rn An Mn

C[M(n)] C[NCM(n)]

C[Π(n)0] C[NCP(n)0]

gn

hn

q

∼=
pM

ιM

ιΠ

pΠ

fn

Figure 4.2. A commutative diagram of the maps used in the following proofs. All maps shown
are Sn-equivariant linear maps. Maps between Rn, An, and Mn are also morphisms of C-algebras.
The desired embedding is shown as a dashed arrow.

We begin with the definition of Rn.

Definition 4.2.1. Let n ∈ N. Define Rn to be the unital commutative C-algebra generated by

nonempty subsets of [n]. Define a degree-preserving action of Sn on Rn by

π · {a1, . . . ,ak}= sign(π){π(a1), . . . ,π(ak)}

for any permutation π ∈Sn and generator {a1, . . . ,ak} ∈ Rn.

The ring Rn can be thought of as the ring of multiset collections of subsets of [n] with

multiplication given by union of collections and addition purely formal. It is in this sense that

it contains a copy of C[Π(n)], as set partitions of n are particular collections of subsets of [n].

To be precise, there exists an Sn-module embedding ιΠ : C[Π(n)0] ↪→ Rn, given by sending any
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singleton-free set partition π to the product of its blocks. For the proofs in this section, the main

benefit of working with Rn instead of C[Π(n)] is that it allows us to work with only those two

parts of a set partition which vary between terms in the skein relations, rather than carrying

around excess notation for the unchanging parts.

The ring An is a subring of Rn designed to model matchings in much the same way which

Rn models set partitions. It is defined as follows.

Definition 4.2.2. Let n ∈ N and define An to be the Sn-invariant subalgebra of Rn generated

by the size two subsets of [n]. The subring An is invariant under the Sn-action of Rn, and thus

inherits a graded Sn-action from Rn.

Like Rn, the ring An can be thought of as the ring of multiset collections of size-two

subsets of [n]. As matchings are particular collections of size-two subsets of [n], we again have

an Sn-module embedding ιM : C[M(n)] ↪→ An, given by

{{a1,b1}, . . . ,{ak,bk}} 7−→ {a1,b1}· · ·{ak,bk}

for any matching {{a1,b1}, . . . ,{ak,bk}}).

Our final ring, Mn, is defined as a quotient of An in the following way.

Definition 4.2.3. Define In to be the ideal of An generated by elements of the following forms

• {a,b} · {a,b}

• {a,b} · {a,c}

• {a,b} · {c,d}+{a,c} · {b,d}+{a,d} · {b,c}

for any distinct a,b,c,d ∈ [n]. Then In is a Sn-invariant ideal of An, so define Mn to be the

Sn-module Mn := An/In. Let q : An → Mn be the quotient map.
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The first two types of elements listed in the definition of In serve the purpose of removing

collections of size-two subsets which are not actually matchings. The third is the Ptolemy

relation used to define the action of Sn on C[NCM(n)], so quotienting by this ideal gives an

Sn-module isomorphic to C[NCM(n)], as per the following argument.

Proposition 4.2.4. There is an Sn-module isomorphism from C[NCM(n)] to Mn, given by

{{a1,b1}, . . . ,{ak,bk}} 7−→ {a1,b1}· · ·{ak,bk}

for any noncrossing matching {{a1,b1}, . . . ,{ak,bk}}.

Proof. Let q : An → Mn be the quotient map. Consider the map q ◦ ιM : C[M(n)]→ Mn. The

kernel of q◦ ιM is the preimage ι
−1
M (In). The image of ιM is the span of all monomials consisting

of nonintersecting generators, so In ∩ ιM is the linear span of elements of the form

({a,b} · {c,d}+{a,c} · {b,d}+{a,d} · {b,c})m

where a,b,c,d ∈ [n] are distinct and m is a monomial not containing a,b,c,d. The kernel of q◦ ιM

is therefore spanned by the preimage of these elements. This is equivalent to the description

of ker(pM) given in Proposition 1.2.1, so the kernel of q◦ ιM is equal to the kernel of pM. The

image of q◦ ιM is all of Mn. To see this, note that products of generators of An form a vector

space basis for An, and every such basis element is either in the image of ιM or in In. We therefore

have

C[NCM(n)]∼= C[M(n)]/ker(pM) = C[M(n)]/ker(q◦ ιM)∼= im(q◦ ιM) = Mn (4.2.1)

where the isomorphism on the left is induced by the map pM and the isomorphism on the right is

induced by the map q◦ ιM. Composing these isomorphisms gives the stated map.

The following definition is the key idea behind our main theorem.
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Definition 4.2.5. Let n ∈ N. Define the C-algebra map gn : Rn → An by

gn(A) = ∑
{a,b}⊆A

{a,b}

for generators A ∈ Rn. Singleton sets are sent to 0 by gn. Define hn := q ◦ gn where q is the

quotient map An → Mn.

We give the definition in terms of Rn, An, and Mn for simplicity and ease of proofs later,

but the map we really care about is hn ◦ ιΠ : C[Π(n)]→ Mn. Under this map, a set partition π

is sent to the product of its blocks, then each block is sent to the sum of all size-two subsets it

contains. After distributing, we get a sum of all ways to pick a size two subset from each block.

Composing with the isomorphism between Mn and C[NCM(n)] we get the sum of all matchings

such that each block of π contains exactly one pair of the matching, as in Theorem 4.2.11.

We will now show that hn ◦ ιΠ factors through the projection map pΠ to produce an

injective map. To do so, we will show that the kernels of these two maps agree. To show that

the kernel of hn ◦ ιΠ contains the kernel of pΠ, we introduce an element of Rn modelling the five

term skein relation depicted in Figure 4.1.

Definition 4.2.6. Let i, j ≥ 2 and let p1, p2, . . . , pi and q1,q2, . . . ,q j be distinct in [n]. Define

κn ∈ Rn by

κn := {p1, . . . , pi} · {q1, . . . ,q j}−{p1, . . . , pi−1} · {q1, . . . ,q j, pi}

−{p1, . . . , pi,q j} · {q1, . . . ,q j−1}+{p1, . . . , pi−1,q j} · {q1, . . . ,q j−1, pi}

+{p1, · · · , pi−1,q1, · · · ,q j−1} · {pi,q j} (4.2.2)

Note that κn is implicitly depending on a choice of p1, . . . , pi, and q1, . . . ,q j, we omit these from

the notation to avoid clutter.

When i, j > 2, the element κn corresponds to the five-term skein relation depicted in
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Figure 4.1. If i equals 2, then {p1, · · · pi−1}= {p1} is a one element set and therefore sent to 0

by hn, removing the term containing {p1} corresponds to the four-term skein relation depicted in

Figure 4.1. Similarly, if j equals 2 or i and j both equal two, removing the terms in κn which are

individually sent to 0 corresponds to the four or three-term skein relation depicted in Figure 4.1.

We have the following calculation.

Proposition 4.2.7. The element κn ∈ Rn lies in the kernel of hn.

Proof. Applying hn to κn gives

hn(κn) = ∑
{a,b}⊆{p1,...,pi}
{c,d}⊆{q1,...,q j}

{a,b} · {c,d}

− ∑
{a,b}⊆{p1,...,pi−1}
{c,d}⊆{q1,...,q j,pi}

{a,b} · {c,d}

− ∑
{a,b}⊆{p1,...,pi,q j}
{c,d}⊆{q1,...,q j−1}

{a,b} · {c,d}

+ ∑
{a,b}⊆{p1,...,pi−1,q j}
{c,d}⊆{q1,...,q j−1,pi}

{a,b} · {c,d}

+ ∑
{a,b}⊆{p1,...,pi−1,q1,··· ,q j−1}

{c,d}⊆{pi,q j}

{a,b} · {c,d} (4.2.3)

Note that the pairs of sets defining the first and second summations in the above expression differ

only in the location of pi, and similarly for the third and fourth. Since these summations come

with opposite signs, the {a,b},{c,d} terms in the above expression will cancel unless one of

a,b,c,d is equal to pi. Similarly, comparing the first and third sums and the second and fourth

sums we find cancellation unless at least one of a,b,c,d is equal to q j. If the remaining two
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elements of a,b,c,d are both p’s or both q’s, then {a,b} · {c,d} also cancels. Therefore we have

hn(κn) = ∑
a∈{p1,...,pi−1}
b∈{q1,...,q j−1}

{a, pi} · {b,q j}+{a,q j} · {b, pi}+{a,b} · {pi,q j} (4.2.4)

which is manifestly a sum of the definining relations of Mn.

To show that the kernel of hn ◦ ιΠ is no larger than the kernel of pπ , we will show that the

images of singleton-free noncrossing set partitions under hn ◦ ιΠ are linearly independent. To do

so, we introduce a term order on Mn.

Definition 4.2.8. Define a total order on the generators of Mn as follows by

• If a < b, c < d, and a < c, then {a,b}< {c,d}

• If a < b, c < d, a = c and b > d, then {a,b}< {c,d}

Let ≤ denote lexicographic order on monomials of Mn with respect to this order on the generators.

Note that b > d in the second condition is not a typo, earlier generators have small smallest

element and large largest element, e.g. {1,n} is the first in this total order.

With this monomial order we have the following.

Proposition 4.2.9. The set {hn ◦ ιΠ(π) | π ∈ NCP(n)0} is linearly independent.

Proof. By Proposition 4.2.4, Mn has a basis consisting of monomials corresponding to noncross-

ing matchings. We claim that the leading term of hn ◦ ιΠ(π) when expanded in this basis is

unique. By the definition of the term order, the leading term of hn ◦ ιΠ(π) is the noncrossing

matching obtained by matching the smallest element of each block of π to the largest element of

the same block. We can recover π be placing every unmatched element j in a block with the

matched pair {i,k} for which i < j < k and k− i is minimal, and the result follows.
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Corollary 4.2.10. The kernel of hn ◦ ιΠ is spanned by the set of all elements of the form

w◦ (si ◦π +σ(π)) (the skein relations) for any permutation w, adjacent transposition si, and

singleton-free almost noncrossing set partition π .

Proof. By Proposition 4.2.7, all such elements lie in the kernel. By Proposition 4.2.9 and a

dimension count it is no larger.

We can now prove our main result.

Theorem 4.2.11. The linear map fn : C[NCP(n)0]→ C[NCM(n)] defined by

fn(π) = ∑
m∈Mπ (n)

m

is a Sn-equivariant embedding of vector spaces. Here Mπ(n) is defined to be the set of all

matchings m in M(n) for which each block of π contains exactly one pair in m.

Proof. By Corollary 4.2.10 and Proposition 1.3.1, the kernel of h◦ ιΠ is equal to the kernel of

pΠ. So we have

C[NCP(n)0]∼= C[Π0(n)]/ker(pΠ)∼= im(h◦ ιΠ)⊂ Mn ∼= C[NCM(n)] (4.2.5)

where the isomorphism on the left is induced by pΠ and the isomorphism on the right is induced

by h◦ ιΠ. Chasing these isomorphisms and inclusions results in the map fn.

Remark 4.2.12. Theorem 4.2.11 gives an alternate proof that the skein action is well defined.

Instead of defining the skein action via the skein relations and checking that it satisfies the braid

relations, we can instead define it as the pullback of the action on Mn through fn. Corollary 4.2.10

shows that this pullback can then be interpreted via the skein relations.
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4.3 The image

We have an embedding fn : C[NCP(n)0] ↪→C[NCM(n)], so it is a natural question to ask

for a description of the image of fn within C[NCM(n)]. Via the commutative diagram in Figure

2,we have an isomorphism of images

im(hn)∼= im( fn). (4.3.1)

So it is equivalent to describe the image of hn, and the multiplicative structure of Mn will make

describing the image of hn easier. This section will show that the image of hn has a simple

description as a principal ideal, the proof of which will require the following lemmas.

Lemma 4.3.1. Let A ⊆ [n]. Then hn(A)2 = 0.

Proof. Applying the definition of hn gives

hn(A)2 = ∑
a,b∈[n]

a̸=b

∑
c,d∈[n]

c̸=d

{a,b} · {c,d} (4.3.2)

Using the defining relation of Mn that

{a,b} · {a,c}= 0

we have

∑
a,b∈[n]

a ̸=b

∑
c,d∈[n]

c̸=d

{a,b}·{c,d}= 1
3 ∑

a,b,c,d∈[n]
a,b,c,d distinct

{a,b}·{c,d}+{a,c}·{b,d}+{a,d}·{b,c}. (4.3.3)

The right hand side of the above equation equals 0 because

{a,b} · {c,d}+{a,c} · {b,d}+{a,d} · {b,c}= 0
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for any distinct a,b,c,d ∈ [n].

Lemma 4.3.2. Let A,B be disjoint subsets of [n]. Then

hn(A) ·

∑
a∈A
b∈B

{a,b}

= 0.

Proof. Applying hn gives

hn(A) ·

∑
a∈A
b∈B

{a,b}

=
1
3 ∑

a1,a2,a3∈A
b∈B

{a1,a2} · {a3,b}+{a1,a3} · {a2,b}+{a2,a3} · {a1,b}= 0

Lemma 4.3.3. Let B1, . . . ,Bk be the blocks of a singleton free set partition of [n]. Then

hn

(
k

∏
i=1

Bi

)
= hn

(
[n] ·

k−1

∏
i=1

Bi

)

Proof. We have the following calculation:

hn

(
[n] ·

k−1

∏
i=1

Bi

)
=

 ∑
a,b∈[n]

a<b

{a,b}

 ·hn

(
k−1

∏
i=1

Bi

)

=


(

k

∑
i=1

hn(Bi)

)
+

 ∑
1≤i< j≤k

∑
a∈Bi
b∈B j

{a,b}


 ·hn

(
·

k−1

∏
i=1

Bi

)

= hn(Bk) ·

(
·

k−1

∏
i=1

hn(Bi)

)
.

The last line follows by the preceeding two lemmas. Lemma 4.3.2 shows that every term in the
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outer sum of

∑
1≤i< j≤k

∑
a∈Bi
b∈B j

{a,b}

is annihilated by some term in the product

k−1

∏
i=1

hn(Bk).

Similarly, Lemma 4.3.1 shows that every term except the i = k term in the sum

k

∑
i=1

hn(Bi)

is annihilated by some term in the product

k−1

∏
i=1

hn(Bk).

We can now describe the image of hn.

Theorem 4.3.4. Let Hn be the ideal of Mn generated by hn([n]). Then

im(hn) = Hn.

Proof. It is immediate from Lemma 4.3.3 that the image of hn is contained in Hn, so it suffices

to show that Hn is no larger. We will do so by showing the dimension of Hn is no larger than the

dimension of the image of hn, i.e.

dim(Hn)≤ dim(im(hn)) = dim(im( fn)) = #NCP(n)0 (4.3.4)
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We begin by finding a spanning set for Hn: note that for any fixed a ∈ [n],

hn([n]) ·

 ∑
b∈[n]
b̸=a

{a,b}

=
1
3 ∑

b∈[n]
b ̸=a

∑
c∈[n]
c̸=a

∑
d∈[n]
d ̸=a

({a,b} · {c,d}+{a,c} · {b,d}+{a,d} · {b,c}) = 0

so

hn([n]) · {1,a}=−hn([n]) ·

 ∑
b∈[n]
b̸=a,1

{a,b}

 .

Let M(2)
n denote the subspace of Mn spanned by noncrossing matchings of {2, . . . ,n}. By the

above computation, Hn is spanned by elements of the form

hn([n]) ·m

for m ∈ M(2)
n .

The dimension of Hn is thus the rank of the map M(2)
n → Mn given by multiplication by

hn([n]). To give an upper bound for the rank, we give a lower bound on the nullity.

Let π̃ be a set partition of {2, . . . ,n}. Consider the element f̃n(π̃) of M(2)
n given by

f̃n(π̃) := ∏
B∈π̃

hn(B)

for any singleton free noncrossing set partition π̃ of {2, . . . ,n}. The notation is meant to highlight

that this is an analogous definition to the definition of f . We will show that f̃n(π̃) is in the kernel

of the multiplication by hn([n]) map. Indeed, let B1 be the block of π̃ containing 2, and let π be
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the set partition of [n] obtained by adding 1 to block B1. We have

hn([n]) · f̃n(π̃) = hn([n]) · ∏
B∈π̃

hn(B)

= hn(B1) ·hn

[n] · ∏
B∈π

B̸=B1∪{1}

B


= hn(B1) ·hn

(
∏
B∈π

B

)

= hn(B1)hn(B1 ∪{1})hn

 ∏
B∈π

B ̸=B1∪{1}

B


= 0

The third equality follows from Lemma 4.3.3 and the final equality follows from the fact that

hn(B1)hn(B1 ∪{1}) = hn(B1)
2 +hn(B1)

(
∑

b∈B1

{1,b}

)
= 0

which follows from Lemma 4.3.2 and Lemma 4.3.1. The collection of f̃n(π̃) for singleton-free

noncrossing set partitions π of {2, . . . ,n} is linearly independent. To see this, note that any

linear relation among the f̃n(π̃) would also be a linear relation among fn−1(π) where π is the

set partition of [n− 1] obtained by decrementing the indices in π̃ . But fn−1 is an embedding

and singleton-free noncrossing set partitions are linearly independent in C[NCP(n−1)0]. Thus,

the dimension of the kernel of multiplication by hn([n]) is at least the number of singleton-free

noncrossing set partitions of {2, . . . ,n}.

The dimension of Hn is therefore bounded by

dim(Hn)≤ #{noncrossing matchings of {2, . . . ,n}}

−#{singleton-free noncrossing set partitions of {2, . . . ,n}}. (4.3.5)
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Noncrossing matchings of {2, . . . ,n} are in bijection with noncrossing set partitions of [n] in

which only the block containing 1 may be a singleton (though it may be larger). Given a

noncrossing set partition, take the matching that matches the largest and smallest element of each

block not containing 1. Singleton-free noncrossing set partitions of {2, . . . ,n} are in bijection

with set partitions of [n] in which {1} is the unique singleton block. We therefore have

#{singleton-free noncrossing set partitions of [n]}=

#{noncrossing matchings of {2, . . . ,n}}

−#{singleton-free noncrossing set partitions of {2, . . . ,n}} (4.3.6)

and

dim(Hn)≤ #{singleton-free noncrossing set partitions of [n]}

as desired.

4.4 Future directions

One of the goals motivating this chapter is to find new combinatorially nice bases for

Sn-irreducibles which arise from existing bases in an analogous way to the skein action. More

specifically, suppose we have a basis for Sλ which is indexed by certain structures on the set [k],

where k = |λ | (e.g. noncrossing perfect matchings, in the case of this chapter). We can create a

basis for the induction product of Sλ with a sign representation of Sn−k indexed by all ways to

put a certain structure on a k-element subset of [n]. The Pieri rule tells us which Sn irreducibles

this decomposes into. In particular, there will be one copy of (λ ,1n−k). How do we isolate that

irreducible?

It is perhaps optimistic to think that there will be a method that works in any sort of

generality, but analogs may be found in some cases. For example, an analog might exist for

the SL(3)-web basis for S(k,k,k) introduced by Kuperberg [25]. The web basis consists of planar
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bipartite graphs embedded in a disk with n boundary vertices all of degree 1, interior vertices are

degree 3, all boundary vertices are in the same part of the bipartition, and no cycles of length

less than 6 exist. One potential candidate for a basis for S(k,k,k,1
n−3k) is as follows.

Conjecture 4.4.1. Let A be the set of all planar bipartite graphs embedded in a disk for which

the following conditions hold

• There are n vertices on the boundary of the disk, and there exists a bipartition in which all

of these vertices are in the same part.

• Every interior vertex in the same part of the bipartition as the boundary vertices is degree

3. These are called negative interior vertices.

• Every interior vertex not in the same part of the bipartition as the boundary vertices is

degree at least 3. These are called positive interior vertices.

• The number of positive interior vertices minus the number of negative interior vertices is

exactly k.

• No cycles of length less than 6 exist.

Then |A| is equal to the dimension of S(k,k,k,1
n−3k).

The set A can be thought of as consisting of webs for which the condition of interior

vertices being degree 3 has been partially relaxed. The conjecture can be shown to hold for k = 2

and any n, as well as n = 10,k = 3 via direct enumeration. If the above conjecture is true, it

suggests the following question.

Question 4.4.2. Does there exist a combinatorially nice action of Sn on C[A] which creates

a Sn module isomorphic to S(k,k,k,1
n−3k)? If so, what does the unique embedding into S(k,k,k)

induced with a sign representation of Sn−3k look like?
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A positive answer to this question might help elucidate how to apply similar methods

more generally.

Chapter 4 is a reprint of the material as it appears in the Electronic Journal of Combina-

torics, 2024. The dissertation author was the sole author.
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Chapter 5

Augmented webs

5.1 Introduction

This chapter introduces a new web basis for a family of Sn modules indexed by partitions

(d,d,d,1n−3d). The systematic study of web bases began with work of G. Kuperberg [25] in

order to study the space of invariant tensors for simple Lie algebras and their quantum groups,

though examples which are now considered web bases predate the term. What exactly constitutes

a web basis differs somewhat between authors, we will use a list of properties laid out by C.

Fraser, R. Patrias, O. Pechenik, and J. Striker in [11]. The properties they give are:

(1) Each basis element is indexed by a planar diagram with n boundary vertices, embedded in

a disk.

(2) There is a topological criterion allowing identification of basis diagrams.

(3) The action of the long cycle c = (12 . . .n) on the basis is by rotation of diagrams.

(4) The action of the long element w0 ∈ n(n−1) . . .1 on the basis is by reflection of diagrams.

(5) There is a finite list of ‘skein relations’ describing the action of a simple transposition si

on a basis diagram.

The simplest web basis is the Temperley-Lieb basis for two-row rectangle shapes (d,d),

indexed by noncrossing perfect matchings of 2d vertices and studied by a variety of authors
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[54, 58, 25, 38]. One useful property of the Temperley-Lieb basis is that it makes computation of

the action of Sn easy: to act by a permutation on a basis element, simply permute the matching,

potentially introducing crossings, then resolve each crossing by replacing it with an uncrossing

in both possible ways. This crossing resolution is called a skein relation, shown below.

→ +

Kuperberg introduced similar bases for invariant spaces for rank-two Lie algebras. In

this chapter we will primarily be interested in the type A2; the Temperley-Lieb basis is type

A1. In type A2, Kuperber’s basis is indexed by bipartite trivalent planar graphs with no faces of

degree less than 6, called nonelliptic SL3 webs. For each nonelliptic SL3 web, the corresponding

element of V⊗n, where V is the three-dimensional defining representation of SL3, is defined

either recursively, in terms of tensor product and contraction, or combinatorially, in terms of a

weighted sum over all proper edge coloring of the web with 3 colors. These form a basis for

the space of SL3 invariants of V⊗n, where SL3 acts diagonally on V⊗n. The symmetric group

Sn acts on this invariant space by permuting tensor factors. As an Sn module, the SL3 invariant

space of V⊗n is irreducible and isomorphic to the Specht module of shape (d,d,d) where n = 3d,

and is 0 if n is not a multiple of 3. Various ways to generalize this construction to SLn have been

studied [9, 5], though a rotation invariant version is known only for n up to 4 [13].

Rhoades generalized the Temperley-Lieb basis in a different direction, giving a web

basis for shapes (d,d,1n−2d) indexed by noncrossing set partitions with parts of size at least

two [39]. In Rhoades’ action, crossing resolution involved four skein relations based on the

sizes of the crossing blocks. In previous work with Rhoades [22], we showed that this action

of noncrossing set partitions could be found within the top degree component of the fermionic

diagonal coinvariant ring. One main goal of this chapter is to generalize Kuperberg’s SL3 webs

in an analogous way to Rhoades’ generalization of the Temperley-Lieb basis.

To do so, we build upon work of R. Patrias, O. Pechenik, and J. Striker. In [29], they

introduce jellyfish invariants, giving an alternate construction of Rhoades’ basis within the
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homogeneous coordinate ring of a 2-step partial flag variety. Along with C. Fraser, they further

develop these jellyfish invariants, reinterpreting them within the homogeneous coordinate ring of

a Grassmanian [11]. They also extend their definitions to give jellyfish invariants living within

a Specht modules indexed by a partition of shape (dr,1n−rd). They dub these flamingo Specht

modules as the partitions indexing them appear to stand on one leg. In the case r > 2, they do not

give a basis for this module. Instead, they give a linearly independent set indexed by noncrossing

set partitions and a spanning set indexed by all set partitions.

Our first result is to extend their linearly independent set to a basis of S(d
r,1n−rd) in the

case r > 2. We do so by replacing the noncrossing condition with a weaker one based on ideas

introduced by P. Pylyavskyy in [35], which we call r-weakly noncrossing. This basis fails to have

the rotation and reflection invariance desired of a web basis, however. Our second result is to

remedy the lack of rotation invariance in the case r = 3 by introducing a second basis indexed by

a certain rotationally invariant set AW (n,d) of normal plabic graphs we call augmented SL3 webs,

as they closely resemble Kuperberg’s SL3 webs with extra edges. This resolves a conjecture made

in [21]. Plabic graphs were first introduced by A. Postnikov [34] in order to study the totally

nonnegative Grassmanian; we use the combinatorial machinery developed for them to show

that our indexing set has the correct enumeration. To define our basis, we use a modification of

proper edge colorings for SL3 webs which we call consistent labellings. Consistent labellings

are closely related to the weblike subgraphs introduced by T. Lam in order to define SL3 web

immanants and later used by C. Fraser, T. Lam, and I. Le to introduce a higher rank version of

Postnikov’s boundary measurement map [26, 10], and we make this connection explicit.

Through consideration of the combinatorics of conistent labellings, we obtain skein

relations for augmented SL3 webs. These skein relations give a combinatorial description of the

action of an adjacent transposition on an augmented web. The first skein relation, the crossing

reduction rule shown below, shows how to expand the application of an adjacent transposition to

an augmented web in the augmented web basis. The gray region represents an unknown number

of edges connecting to other vertices of the web not depicted.
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i i+1

=si·

i i+1

−

i i+1

−1
2

i i+1

−1
2

i i+1

Note that not all terms on the right hand side of this relation are necessarily augmented webs, as

black vertices of degree less than 3 or faces of degree 4 may be created. The remaining skein

relations, which can be found in Section 6, show how to expand such terms when they arise.

One application of our rotationally invariant basis in the case r = 3 is that it gives us

a cyclic sieving result on the indexing set. Let Xn,d(q) denote the q-analog of the hook length

formula for λ = (d3,1n−3d),

Xn,d(q) := q3(d−1)+(n−3(d−1)
2 ) [n]!q

∏(i, j)∈λ [hi j]q

where hi j denotes the hook length of a box (i, j) in the Young diagram for λ . We show that the

triple (AW (n,d),C,Xn,d(q)) exhibits the cyclic sieving phenomenon when n is odd, and a signed

version of cyclic sieving holds when n is even. Specializing to the case n = 3d recovers a cyclic

sieving result on SL3 webs studied by T.K. Petersen, Pylyasky, and Rhoades in [33].

The rest of the chapter is organized as follows. In Section 2, we review necessary

background information. In Section 3 we give a definition of r-weakly noncrossing set partitions

and give a basis of S(d
r,1n−rd) which extends the jellyfish invariant basis. In Section 4, we

define augmented webs as a certain subset of normal plabic graphs and give a combinatorial

bijection between them and 3-weakly noncrossing set partitions. This bijection will draw on

ideas developed by J. Tymoczko and H. Russell to give a bijection between SL3 webs and objects

called m-diagrams, a special case of our 3-weakly noncrossing set partitions [44, 56]. In Section

5, we define an SL3-invariant polynomial attached to each normal plabic graph. We show that this

definition extends jellyfish invariants and that the set of invariants attached to augmented webs

satisfy properties (3) and (4) of a web basis. In Section 6, we show that skein relations hold for
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our plabic graph invariants. We use these skein relations to show that augmented web invariants

are indeed a basis for S(d
3,1n−3d). In Section 7, we show that our augmented web invariants can

be interpreted in terms of weblike subgraphs. In Section 8, we discuss the cyclic sieving result

for augmented webs which arises from our rotationally invariant basis. In Section 9, we discuss

some possible future directions for this work.

5.2 Weakly-noncrossing set partitions

In this section, we extend the linearly independent set given in [11] to a basis by intro-

ducing a weaker version of the noncrossing condition for ordered set partitions. The weaker

version is similar to the noncrossing tableau defined by P. Pylyavskyy in [35]. Our version will

differ in that it will depend on r.

Definition 5.2.1. Let A = {a1,a2, . . . ,a|A|} and B = {b1,b2, . . . ,b|B|} be two subsets of [n] each

of size ≥ r. We say that A and B are r-weakly noncrossing if the following holds:

1. For each i = 1 . . . ,r−2, The arc (ai,ai+1) does not cross the arc (bi,bi+1).

2. For any j1, j2 ≥ r, the arc (ar−1,a j1) does not cross the arc (br−1,b j2).

An (ordered) set partition is r-weakly noncrossing if its blocks are pairwise r-weakly noncrossing.

One can think of this definition as being noncrossing in the sense of Pylyavskyy in the

first r−2 entries, and noncrossing in the strong sense in the remaining entries.

Let WNC(n,d,r) denote the set of all set partitions of [n] into d blocks each of size at

least r which are r-weakly noncrossing.

We first show that the set of r-weakly noncrossing set partitions is the correct size:

Proposition 5.2.2. There is a bijection between standard Young tableaux of shape (dr,1n−rd)

and r-weakly noncrossing set partitions in WNC(n,d,r).

Proof. We show that both sets are in bijection with a set of rectangular tableaux filled with a

subset of [n]:
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Definition 5.2.3. Let T (n,d,r) denote the set of all tableaux of shape λ = (dr) filled with with

integers in [n] such that

1. Entries increase along rows and down columns.

2. No element of [n] appears more than once.

3. For any i which does not appear in the tableaux, the number of entries j < i appearing in

row r−1 strictly exceeds the number of entries j < i appearing in row r.

Example 5.2.4. Consider the two tableaux below.

1 3 6 7

2 4 8 11

9 13 14 16

1 3 6 7

2 4 11 13

5 8 14 16

The tableau on the left is an element of T (16,4,3). The tableau on the right is not in T (16,4,3)

because 9 does not appear as a filling and there are the same number of fillings less than 9 in the

second and third rows, highlighted in gray.

The bijection between SY T (dr,1n−rd) and T (n,d,r) is as follows. Let t be a standard

Young tableaux of shape (dr,1n−rd).

1. If removing the blocks in rows larger than r (which we will refer to as the tail) produces a

tableaux in T (n,d,r), do so.

2. Otherwise, let i be the maximal element among the tail for which the number of elemenents

j < i in row r−1 equals the number of elements j < i in row r. Remove the first block of

row r and all blocks below it, shift all blocks in row r filled with j < i one space to the left,

and place a block filled with i in the newly formed opening.

The maximality of i will guarantee that the third property of T (n,d,r) is satisfied for

elements larger than i, and the shifting left will guarantee it is satisfied for elements smaller than

i. Call the resulting tableau f (t).
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To reverse this process, let t ′ be a tableaux in T (n,d,r). We obtain a standard Young

tableaux of shape (dr,1n−rd) as follows.

1. If the smallest element which does not appear in t ′ is larger than the entry in the first box

of row r, simply append all integers not already appearing in the tableau in increasing

order as the tail.

2. Otherwise, let i be the minimal filling in row r which is smaller than the filling of the box

one space up and to the right, or the largest element of row r if no such element exists.

Remove the box filled with i, shift all boxes to the left of it one space right, and insert the

remaining entries in increasing order to form the tail.

The right shift will preserve the standard Young tableau property due to the minimality

of i. Call the resulting tableau g(t ′).

To verify that these two maps are indeed inverses, let t ∈ SY T (dr,1n−rd). If removing

the tail of t produces a tableau in T (n,d,r), then it is clear that g( f (t)) = t. Otherwise, let i be

the element inserted into row r to obtain f (t). Before this insertion, there were the same number

of elements less than i in row r−1 and row r of the tableau, so the filling one space up and to

the right of i in f (t) must be larger than i. Additionally, all boxes j to the left of i were shifted

over, and since we started with a standard Young tableau, the filling one space up and to the right

of them is smaller than j. Therefore, i is the filling removed by g, and g( f (t)) = t.

A similar argument shows that f ◦ g is also the identity. Indeed, if i was the element

removed from row r by g, then there must be the same number of elements j < i in row r−1

and r of g(t ′), and no other element larger than i can have this propery as t ′ is in T (n,d,r).

Example 5.2.5. An example of this bijection is given below for n = 16,d = 4,r = 3. 12 is the

maximal filling of the tail for which the second and third rows contain the same number of lesser

fillings.
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1 2 4 7

3 5 8 13

6 9 10 16

11

12

14

15

→ 1 2 4 7

3 5 8 13

9 10 16

12

→ 1 2 4 7

3 5 8 13

9 10 16

12

→ 1 2 4 7

3 5 8 13

9 10 12 16

Figure 5.1. An example of the bijection between SY T (dr,1n−rd) and T (n,d,r).

The bijection between T (n,d,r) and WNC(n,d,r) is essentially repeated applications

of the standard Catalan bijection between two row rectangular standard Young tableaux and

noncrossing matchings. Given a tableau t ∈ T (n,d,r), for i = 1, . . . ,r, let Ri(t) denote the entries

in row i of t. Place the numbers 1 through n in a line, and for each i = 1, . . . ,r−1, draw d arcs

between elements of Ri and Ri+1 such that

1. Elements of Ri are the left endpoints of arcs, and elements of Ri+1 are the right endpoints

of arcs.

2. There do not exist two arcs (a,b) and (c,d) such that a < c < b < d.

The standard Catalan bijection argument guarantees that this is uniquely possible. Then, for each

positive integer m at most n not appearing in t, there is a unique shortest arc (a,b) created at step

r−1 such that a < m < b. The third condition of T (n,d,r) guarantees that such an arc exists, and

the noncrossing condition above guarantees it is unique. Draw the arc (a,m). Finally, create a set

partition π by placing all integers connected by arcs into the same block. Then π ∈WNC(n,d,r).

To see that the noncrossing condition is satisfied, note that for i = 1, · · · ,r−2 if ai and ai+1 are

the ith and (i+1)th smallest elements of a block of π , then they must necessarily be connected

by an arc created at step i in the above process.

The inverse of this bijection is simple, given a set partition π ∈ T (n,d,r) place the

smallest element of each block in increasing order in row 1, the second smallest in row 2, and so
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on, up to row r−1. Finally, place the largest element of each block in row r.

Example 5.2.6. Consider the tableau shown below.

1 2 4 7

3 5 8 11

9 10 12 16

We get the following arc diagram. Arcs created by matching the first two rows are shown

in red, arcs created by matching the second and third rows are shown in green, and arcs created

by connecting missing entries are shown in blue.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5.2. The arc diagram in the bijection from T (n,d,r) to WNC(n,d,r).

The resulting set partition is {{1,11,12},{2,3,13,14,15,16},{4,5,6,10},{7,8,9}}.

The second half of the proof of Proposition 5.2.2 also gives the following corollary,

which we will need later:

Corollary 5.2.7. A r-weakly noncrossing set partition γ is uniquely determined by the r−1 sets

{m | m is the ith smallest element of some block of γ}
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for i = 1, . . . ,r−1, along with the set

{m | m is the largest element of some block of γ}

.

Proof. The information in these sets determines the elements of each row of the tableau in

T (n,d,r) as defined in the proof of Proposition 5.2.2. Placing elements in increasing order

within each row recovers the tableau, and thus the set partition.

Example 5.2.8. Suppose n = 7, d = 3, r = 2, and thus λ = (2,2,2,1) . There are fourteen

standard Young tableaux of shape λ , and fourteen 2-weakly noncrossing set partitions. The

bijection between them is shown in Figure 5.3, with the intermediary tableau in T (7,3,2) and

arc diagram shown as well.

We can now define and prove our basis.

Theorem 5.2.9. Let r ≥ 2. Order each weakly noncrossing set partition γ ∈ WNC(n,d,r) to

create an ordered set partition πγ . Then the set {[πγ ]r | γ ∈ WNC(n,d,r)} is a basis for the

flamingo Specht module S(d
r,1n−rd).

Proof. By Proposition 5.2.2 and Theorem 1.4.2, it suffices to show that {[πγ ]r | γ ∈WNC(n,d,r)}

is linearly independent. To do so, we introduce a monomial order and show that under this order,

each [πγ ]r has a unique leading term.

Recall that the r-jellyfish invariant is a polynomial in the ν ×n variables:

x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

... . . . ...

xν ,1 xν ,2 · · · xν ,n
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1 2
3 4
5 6
7

→
1 2
3 4
6 7

→1 2 3 4 5 6 7→{{1,4,5,6},{2,3,7}}
1 2
3 4
5 7
6

→
1 2
3 4
5 7

→1 2 3 4 5 6 7→{{1,4,5},{2,3,6,7}}

1 2
3 5
4 6
7

→
1 2
3 5
6 7

→1 2 3 4 5 6 7→{{1,5,6},{2,3,4,7}}
1 2
3 5
4 7
6

→
1 2
3 5
4 7

→1 2 3 4 5 6 7→{{1,5,6,7},{2,3,4}}

1 2
3 6
4 7
5

→
1 2
3 6
5 7

→1 2 3 4 5 6 7→{{1,6,7},{2,3,4,5}}
1 3
2 4
5 6
7

→
1 3
2 4
6 7

→1 2 3 4 5 6 7→{{1,2,7},{3,4,5,6}}

1 3
2 4
5 7
6

→
1 3
2 4
5 7

→1 2 3 4 5 6 7→{{1,2,6,7},{3,4,5}}
1 3
2 5
4 6
7

→
1 3
2 5
6 7

→1 2 3 4 5 6 7→{{1,2,4,7},{3,5,6}}

1 3
2 5
4 7
6

→
1 3
2 5
4 7

→1 2 3 4 5 6 7→{{1,2,4},{3,5,6,7}}
1 3
2 6
4 7
5

→
1 3
2 6
5 7

→1 2 3 4 5 6 7→{{1,2,4,5},{3,6,7}}

1 4
2 5
3 6
7

→
1 4
2 5
6 7

→1 2 3 4 5 6 7→{{1,2,3,7},{4,5,6}}
1 4
2 5
3 7
6

→
1 4
2 5
3 7

→1 2 3 4 5 6 7→{{1,2,3},{4,5,6,7}}

1 4
2 6
3 7
5

→
1 4
2 6
5 7

→1 2 3 4 5 6 7→{{1,2,3,5},{4,6,7}}
1 5
2 6
3 7
4

→
1 5
2 6
4 7

→1 2 3 4 5 6 7→{{1,2,3,4},{5,6,7}}

Figure 5.3. The bijection between SY T (2,2,2,1) and WNC(7,2,3).
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We order these variables in a somewhat unusual way. Define an order on these variables by

xi1, j1 < xi2, j2 if and only if one of the following holds:

1. i1 < i2

2. i1 = i2 ̸= r and j1 < j2

3. i1 = i2 = r and j1 > j2

In other words, we order them in reading order except we read the rth row backwards. We then

take the lexicogrpahic monomial order with respect to this ordering of variables. The unusual

ordering is chosen to make use of Corollary 5.2.7. Without reversing the rth row, lexicogrpahic

leading terms are not unique.

Let the ith block of γ be

γi := {γi,1,γi,2, . . . ,γi,|γi|}

Let T be a jellyfish tableau associated to γ . Then the leading term of J(T ) is straightforward to

compute from the definition, we have

lt(J(t)) =

(
d

∏
i=1

r−1

∏
j=1

x j,γi, j

)
d

∏
i=1

xr,γi,|γi|

ν

∏
j=r+1

x j,u j

where u j is the entry appearing in row j of J(T ). In words, for i = 1, . . . ,r−1, xi, j will appear if

and only if j is the ith smallest element of some block of γ , and xr, j will appear if and only if j is

the largest element of some block of γ . The leading term of [πγ ]r will be the leading term of one

of these J(T ), and we can see that the leading term contains the information of the sets described

in Corllary 5.2.7. Thus, the leading term of [πγ ]r is unique and thus {[πγ ]r | γ ∈WNC(n,d,r)} is

linearly independent as desired.

Remark 5.2.10. The property of being r-weakly noncrossing is not preserved under rotation, for

example {1,4,5},{2,3,6} is weakly 3-noncrossing, but {{1,3,4},{2,5,6}} is not. So the basis
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given in Theorem 5.2.9 is not rotation invariant as desired of a web basis. The next section will

give a different basis which is rotation invariant in the case r = 3.

5.3 Augmented Webs

For the rest of the chapter, we specialize to the case r = 3. We will introduce a new basis

for this case which is rotation and reflection invariant. To index our basis, we introduce a subset

normal plabic graphs which we call augmented webs. We call them augmentd webs to allude

to the fact that they are similar to SL3 webs, but potentially with vertices of higher degree. We

will show that augmented webs are in bijection with 3-weakly noncrossing set partitions, and

thus have the correct enumeration to index a basis of S(d
3,1n−3d). The benefit of working with

augmented webs over 3-weakly noncrossing set paritions is that the set of augmented webs is

rotation invariant.

Definition 5.3.1. An augmented web is a normal plabic graph which contains no faces of degree

less than 6 and no black vertices of degree less than 3. The exceedance of an augmented web is

the number of black vertices minus the number of white vertices. Let AW (n,d) denote the set of

all augmented webs with n boundary vertices and exceedance d.

Remark 5.3.2. The term exceedance is chosen because the exceedance of an augmented web is

also the number of exceedances in the trip permutation.

Remark 5.3.3. When an augmented web has no white vertices, it contains exactly the same

information as a strongly noncrossing set partition, with the sets of all boundary vertices

connected to a particular interior vertex forming the blocks.

5.3.1 Combinatorial properties of augmented webs

In this subsection, we develop combinatorial results for augmented webs. Our first result

is that all augmented webs are reduced plabic graphs.
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6
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4
5

6

7

8

9
10

Figure 5.4. Examples of augmented in A(8,2) and A(10,3).

Proposition 5.3.4. Let W ∈ AW (n,d). Then W is reduced.

Proof. As no square faces or vertices of degree two are present, normal plabic graph moves are

not possible. Thus it suffices to check that W itself has no forbidden configurations and this is

clear.

Next, we show that augmented webs have an inductive structure we can exploit.

Lemma 5.3.5. Let W ∈ AW (n,d), and suppose W has at least one white vertex. Then for each

connected component of W, there exists at least two black vertices each connected to exactly one

white vertex.

Proof. Let C be a maximal cycle in W , i.e. a cycle with no edge incident to an interior face of W .

Since W is reduced by Proposition 5.3.4, it contains no round trips or essential self-intersections.

Therefore there are at least two black vertices of W exterior to C which connect to a white vertex

in C. Create a graph G with two types of vertices: a vertex for every vertex of W which is on

the exterior of every cycle in W , and a vertex for every maximal cycle. Add an edge between a

vertex v and a maximal cycle C whenever v is adjacent to a vertex in C. Then G is a forest, and

since W had at least one white vertex, G has at least one edge. So G has two leaves, and these

two leaves must be black vertices connected to exactly one white vertex.
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The use of Lemma 5.3.5 is that every augmented web with at least one white vertex can

be built out of an augmented web with one fewer white vertices in the following way. Let u and

v be the black vertex and its white neighbor identified by Lemma 5.3.5. If we remove vertices u

and v, then connect the neighbors of v to the boundary by at least one edge each in a planar way,

we get an augmented web W ′.

We will need a notion of depth of a face, which we now define.

Definition 5.3.6. Let W ∈ AW (n,d). Let f be a face of W, and let f0 be the face connected to

the section of boundary between 1 and n. The depth of f is the number of exceedances which

separate f from f0.

Let e be an edge of W. We say that e is a depth boundary edge if the depth of the faces

incident to e are not equal. Equivalently, e is a depth boundary edge if exactly one of the trips

passing through e is an exceedance. We say e is a left-to-right depth boundary edge if, when

oriented towads its black vertex endpoint, the depth of the face on the right is higher than the

depth of the face on the left. Equivalently, e is a left-to-right depth boundary if only the trip

passing through e from towards its black vertex is an exceedance. We define right-to-left deth

boundary edges similarly.

Lemma 5.3.7. Let W ∈ AW (n,d). Let v be an interior vertex of W. Then exactly two edges

incident to v are depth boundary edges.

Proof. Consider the set of all trips t1, . . . , tk passing through v, ordered cyclically. Since W is

reduced, the starts of all these trips must appear in the same cyclic order around the boundary of

W , since otherwise we would introduce a bad double corssing. Similarly, the ends of these trips

appear in the same cyclic order around W . Therefore, the set of exceedances passing through v is

a proper nonempty subset of these trips which is cyclically consecutive around v. The first and

last of these trips will contribute a depth boundary edge.

Lemma 5.3.8. Let W ∈ AW (n,d). Let u and v be two adjacent vertices of W. Let tu be any trip
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which passes through u but does not use edge (u,v), and let tv be any trip which passes through

v but does not use edge (u,v). Then trips tu and tv do not share any vertices.

Proof. This follows from Euler’s formula for planar graphs. Assume the contrary, that trips tu

and tv meet at some vertex x. Let C be the cycle formed from tu, tv and edge (u,v), and suppose

it is of length k. Consider the graph G containing all vertices and edges of W that are part of C or

in its interior. Let Vint denote the number of vertices strictly in the interior of C, and let α be the

average degree of these interior vertices. Then we have

|E(G)| ≥ 5
4

k+
α

2
Vint −1

and thus by Euler’s formula the number of faces of G not including the external face is at least

1
4k+ α−2

2 Vint. The total degree of these faces is

3
2

k−2+
α

V int

and thus their average degree is strictly less than 6, a contradiction.

5.3.2 A bijection from tableaux to augmented webs

We can now show that augmented webs are in bijection with weakly 3-noncrossing set

partitions, WNC(n,d,3). To define our bijection, we first formally define the arc diagram used

in the proof of Proposition 5.2.2. We call these m-diagrams, based on the objects of the same

name developed by J. Tymoczko in [56].

Definition 5.3.9. Let π ∈ WNC(n,d,3). To form the m-diagram for π , place the vertices 1

through n equally spaced in a line, then for each block B = {b1 < b2 < · · · < bk}, draw a

semicircular arc in the lower half plane from b1 to b2, and from b2 to all other elements of B. We

call the arc between b1 and b2 a first arc, and all other arcs second arcs. Note that the definition

of weakly 3-noncrossing guarantees that first arcs do not cross first arcs, and second arcs do
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not cross second arcs. For visual clarity, we will often color first arcs in red and second arcs in

black. The name m-diagram is due to the fact that in Tymoczko’s definition, blocks were always

size three and thus had a unique second arc, so the diagram appeared visually as a number of

intersecting m shapes.

The collection of first arcs and maximal second arcs of each block divide the lower half

plane into a number of regions. We define the depth of each region to be the number of first arcs

and maximal second arcs which the region lies above.

Example 5.3.10. Let π ∈WNC(13,3,3) be the weakly 3-noncrossing set partition with three

blocks, {{1,4,6,7,8},{2,3,9,10},{5,11,12,13}}. The m-diagram associated to π appears

below.

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5.5. The m-diagram associated to {{1,4,6,7,8},{2,3,9,10},{5,11,12,13}}.

We can now define our bijection.

Definition 5.3.11. The function ϕ : WNC(n,d,3)→ AW (n,d) is defined as follows:

Let π ∈WNC(n,d,3), and let M be its m diagram. For each block B = {b1 < b2 < · · ·<

bk}, introduce a black vertex vB slightly above b2, connected to b2 by an edge. In a small region

around b2, modify the arcs connecting to b2 to instead connect to vB. Then, for every pair of

blocks, if the first arc of one crosses some of the second arcs of the other, replace a small region

containg all intersections as shown in figure 5.6.

132



→

Figure 5.6. The replacement operation used in the definition of ϕ . The first arc is depicted in
red, and the second arcs are depicted in black.

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5.7. The web associated to {{1,4,6,7,8},{2,3,9,10},{5,11,12,13}}.

Example 5.3.12. Continuing our prior example of π = {1,4,6,7,8},{2,3,9,10},{5,11,12,13},

the resulting web is depicted below.

Proposition 5.3.13. The function ϕ is well defined, i.e. if π ∈WNC(n,d,3), then ϕ(π) is indeed

in AW (n,d)

Proof. We need to check that the resulting graph does not have a cycle of length 4, the other

properties are clear. A 4 cycle would necessarily have two edges coming from first arcs and

two edge coming from second arcs, such that no new edges are created. Orienting all edges in

the m-diagram away from vB for each block B, a 4 cycle would require that the arcs intersect

with opposite orientations at each corner. But the the two first arcs would have to have different

orientations, and this is not possible.

Lemma 5.3.14. Let π ∈WNC(n,d,3). The first arcs and maximal second arcs of the m diagram

for π divide the half plane into a number of regions. There is a depth preserving correspondence

between faces of ϕ(π) and these regions.
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Proof. Each replacement can be made so that edges coming from first arcs and maximal second

arcs stay the same except in a ε radius region around each intersection. Each face of ϕ(π) is thus

contained (except for an ε-small portion) in a unique region. The trip starting at the first arc of

each m will be an exceedance of ϕ(π), which travels left to right along first arcs, maximal second

arcs, and edges introduced by intersection replacement steps. These trips either cross at each

intersection, using the new edge introduced at that intersection twice, or turn at from eachother

at each intersection, using the new edge introduced at that intersection 0 times. Thus, the depth

boundary paths consist exactly of those edges which come from first arcs and maximal second

arcs, and thus the depth of each face matches the depth of the region it is contained in.

1 2 3 4 5 6 7 8 9 10 11 12 13

Depth 1

Depth 2

Depth 3

1 2 3 4 5 6 7 8 9 10 11 12 13

Depth 1

Depth 2

Depth 3

Figure 5.8. An example of the correspondence between m-diagram depth and augmented web
depth. Above, an m-diagram with non-maximal second arcs removed and regions shaded by
depth. Below, the corresponding augmented web with first and maximal second arcs mostly
preserved, and faces shaded by depth.

Theorem 5.3.15. The function ϕ : WNC(n,d,3)→ AW (n,d) is a bijection.
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Proof. To show that ϕ is invertible, we introduce the following definition. The idea is that we

will record extra information in the process of applying ϕ by way of coloring the edges. This

extra information will allow us to invert the ϕ map. We will then show that the extra information

was redundant, so ϕ is invertible.

Definition 5.3.16. Given an augmented web W ∈ AW (n,d), a valid coloring of W is a coloring

of the edges of W with three colors, red, blue, and black such that the following conditions are

satisfied:

1. Every interior vertex is incident to exactly one red edge, exactly one blue edge, and at least

one black edge. Additionally, at each interior vertex, the incident red edge shares a face

with the incident blue edge.

2. Right-to-left depth boundaries are colored red.

3. Left-to-right depth boundary edges incident to a boundary vertex are colored black.

4. No face has three consecutive edges colored red-blue-red.

Note that we do not require this coloring to be proper, a vertex may have multiple black edges

incident.

Given a weakly 3-noncrossing set partition π ∈ WNC(n,d,3), we can create a valid

coloring of ϕ(π) by initially coloring first arcs red, second arcs black, and for each block b, the

connection between vb and b2 blue. Then, at each replacement step, color the newly introduced

edge blue and preserve all other colors. To see that the coloring obtained is a valid coloring, first

note that initially and at each replacement step, the created vertices satisfy property 1 of a valid

coloring. Property 2 of valid colorings holds by Lemma 5.3.14. To see that the third property

of valid colorings holds, note that initially no such face exists and at no replacement step could

such a face be created.

The interior blue edges contain the information of exactly which replacement steps have

been performed, so given an augmented web ϕ(π) and the valid coloring obtained through ϕ ,
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we can recover π . Therefore, it suffices to show that every augmented web w admits exactly one

valid coloring.

To do so, we will give an algorithm for finding a valid coloring and show that each step

is forced. Let W be an augmented web.

1. Consider the set of all right-to-left depth boundaries. In order to satisfy condition 2 of a

valid coloring, we must color all such faces red. By Lemma 5.3.7, every vertex now has

exactly one red edge. Similarly, color all left-to-right depth boundary edges which are

incident to a boundary vertex black.

2. Every interior vertex is now incident to a red edge, so all remaining edges must be blue or

black. Edges which do not share a face with the red edge at each of their vertices must be

black by condition 1 of valid colorings, so color all such edges black.

3. Consider the set of yet uncolored edges adjacent to two red edges on the same face. By

condition 3 of valid colorings, these edges must be black, so color all such edges black.

4. Consider the set of yet uncolored edges. Every interior vertex is incident to at most two

of these edges, so their union consists of a set of disjoint paths and cycles. We claim that

their union is in fact a disjoint union of paths with exactly one interior endpoint and odd

length paths with two interior endpoints. Given this claim, there is exactly one way to

satisfy condition 1 of valid colorings by coloring some of these edges blue and the rest

black, that is, by coloring edges of a path alternating blue and black, starting at an interior

endpoint of the path. So, if the claim holds, we are done.

To see that the claim holds, suppose towards a contradiction there is a cycle C among the

uncolored edges after step 3. Let Dk be the maximal k depth boundary path sharing a vertex with

C. Then Dk shares exactly one edge with C, as the uncolored edges incident to v cannot be on

the same side of the depth boundary path passing through v. But this is a contradiction as that

edge would have been colored black at step 3. Now suppose there is an even length path whose
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endpoints are both interior vertices. The path must be as shown below, though possibly longer or

with the colors of vertices and trips reversed.

For the red edges to have been colored red in step 1, the trips drawn in orange must be ex-

ceedances, and the trip drawn in blue must not be. The two rightmost blue trips cannot cross

more than once as W is reduced, so the face between n and 1 must lie to the right of the second

rightmost blue trip. By Lemma 5.3.8, the leftmost orange trip and the three leftmost blue trips

cannot cross eachother, and since W is reduced, the leftmost orange trip cannot cross itself. Thus,

the leftmost orange trip cannot be an exceedance, but this is a contradiction. Lastly, suppose

there is a boundary to boundary path among the uncolored edges. Consider the two black vertices

incident to the endpoints of this path. The red edges adjacent to them must lie on the same side

of the path, so one of the edges along this path incident to the boundary must be a left-to-right

depth boundary edge, and this is a contradiction.

Thus, every augmented web has exactly one valid coloring, and ϕ is a bijection.

5.4 SL3 invariants for augmented webs

In this section we introduce an invariant associated to each perfectly orientable normal

plabic graph in such a way that the invariants associated to augmented webs form a basis of

S(d
3,1n−3d). To do so, we first need to give an orientation to each plabic graph, which will

determine the sign of our invariant.

137



5.4.1 Perfect orientations

A key idea in defining our augmented web invariants is that of a perfect orientation.

Perfect orientations were introduced by A. Postnikov in [34]. Our definition will be slightly

different in that our sink vertices will be interior vertices rather than boundary vertices, and we

also include the information of a total order on the sinks.

Definition 5.4.1. Let W be a normal plabic graph. A perfect orientation O of W is a choice of

two things. First, an orientation of each edge of W such that each boundary edge is oriented

away from the boundary, each interior white vertex has exactly one ingoing edge, each interior

black vertex has at most one outgoing edge. There will then be a set of d black vertices with no

outward edges, we refer to these as the sinks of O and denote them by SO . We also require that

for every vertex v in W there is a directed path from v to a sink vertex. A perfect orientation also

includes the information of a total order on the sinks, i.e. a bijection fO : SO →{1, . . . ,d}. For

each perfect orientation, we call the set of edges which are oriented away from black vertices the

independent set of O and denote it I(O).

If there exists at least one perfect orientation of W, we say that W is perfectly orientable.

Remark 5.4.2. The set of perfectly orientable plabic under our definition differs slightly from

the set of perfectly orientable plabic graphs under Postnikov’s definition. For example, a white

vertex connected by three edges to a single black vertex which is also connected to the boundary

is perfectly orientable under Postnikov’s definition but not ours. However, every plabic graph

with an acyclic perfect orientation per Postnikov’s definition will be perfectly orientable per

our definition, and Postnikov, Speyer, and Williams show that all reduced plabic graphs have an

acyclic perfect orientation [8, Lemma 3.2].

We use this modified definition in order to allow for perfect orientations to be obtained

from eachother via a sequence of small changes.

Definition 5.4.3. Let W be an augmented web with perfect orientation O . Let v be a white vertex
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of W. A swivel move is a change in orientation of exactly one ingoing edge and one outgoing

edge at v which connect to distinct black vertices. We have necessarily removed one sink vertex

and added one sink vertex, let the new sink be in the same position in the total order as the old

sink. We call this a swivel move due to the fact that the set I(O) is being rotated around this

white vertex.

Proposition 5.4.4. Any two perfect orientations can be transformed into each other via a

sequence of swivel moves and a reordering of the sink vertices.

Proof. Let O1 and O2 be two perfect orientations. Consider the symmetric difference of inde-

pendent sets of the two perfect orientations, I(O1)∆I(O2) it is necessarily a union of disjoint

cycles and paths between sinks of O1 and sinks of O2. We induct on the number of cycles present

in I(O1)∆I(O2). If there are no cycles, performing a swivel move at each white vertex along

the paths from sinks of O1 and O2 using the edges of this path will transform O1 into a perfect

orientation the same as O2 up to a reordering of its sinks. If there is a cycle in I(O1)∆I(O2), find

a walk in W which starts at a sink vertex of O1, travels to a white vertex of the cycle, travels

around the cycle, then returns to the starting sink via the same path such that every other edge

of this walk is in I(O1). Performing a swivel move at each white vertex of this walk using the

edges along this walk will result in a perfect orientation O3 for which I(O3)∆I(O2) has one

fewer cycles.

We first check that this is a sensible definition of sign.

Proposition 5.4.5. Let O1,O2,O3 be three perfect orientations of a web W ∈ AW (n,d). Then

we have

sign(O1,O3) = sign(O1,O2)sign(O2,O3)

Proof. By Proposition 5.4.4, it suffices to check this holds when O2 and O3 differ by a single
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swivel move. Note that

I(O1)∆I(O3) = (I(O1)∆I(O2))∆(I(O2)∆I(O3)),

and (I(O2)∆I(O3)) is size two. We split into three cases.

• Case 1: (I(O1)∆I(O2)) and (I(O2)∆I(O3)) do not intersect. Then (I(O1)∆I(O2)) and

(I(O1)∆I(O2)) are the same except one path is two edges longer, and σ(O1,O2) =

σ(O1,O3). Thus, sign(O1,O3) =−sign(O1,O2)

• Case 2: (I(O1)∆I(O2)) and (I(O2)∆I(O3)) intersect in a single edge. Then (I(O1)∆I(O2))

and (I(O1)∆I(O2)) are the same except for two paths. In this case, σ(O1,O2) and

σ(O1,O3) differ by a single transposition and sign(O1,O3) =−sign(O1,O2).

• Case 3: (I(O1)∆I(O2)) and (I(O2)∆I(O3)) interesect in two edges. Then (I(O1)∆I(O2))

and (I(O1)∆I(O2)) are the same except one path is two edges shorter, and σ(O1,O2) =

σ(O1,O3). Thus, sign(O1,O3) =−sign(O1,O2)

Proposition 5.4.5 allows for an alternative definition of relative sign, which we find more

intuitive. The relative sign between two perfect orientations is given by the parity of the number

of swivel moves and the sign of the permutation of the sinks in any sequence of swivel moves

and a permutation of the sinks which transforms one orientation into the other. Proposition 5.4.5

guarantees this is well defined. In this sense, swivel moves can be thought of as playing a similar

role to adjacent transpositions in determing the sign of a permutation.

5.4.2 Consistent Labellings

Our invariants will be defined in terms of consistent labellings, which we now define.
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Definition 5.4.6. Let W be a perfectly orientable normal plabic graph. A consistent labelling ℓ

of W is a choice of a possibly empty subset ℓ(e) of {1, . . . ,ν} for each edge e of W, such that the

following hold:

1. At each interior white vertex, incident edge labels are disjoint and their union is {1,2,3}.

2. At each black vertex, incident edge labels are disjoint and their union contains {1,2,3}.

3. The label at each boundary edge has size 1, and for each i ∈ {4, . . . ,ν}, {i} appears

exactly once among boundary labels.

The edges whose labels contain 1, 2, or 3 can be thought of as determining three dimer covers of

W.

The boundary word of ℓ is the word given by reading off the labels at boundary edges in

order, denoted

bd(ℓ) = bd(ℓ)1 · · ·bd(ℓ)n

The boundary monomial of ℓ is the monomial

xbd(ℓ) = xbd(ℓ)1,1 · · ·xbd(ℓ)n,n

The weight of a consistent labelling is

wt(ℓ) =
(
−1

2

)#edge labels of size two

To each consistent labelling we also associate a sign, made up of a number of factors.

Firstly, for each 1 ≤ i ≤ 3, let Ei denote the set of edges of W whose label contains i. Consider

the symmetric difference Ei∆O . This will be a union of disjoint cycles and disjoint paths from

sinks of O to boundary vertices whose incident edge is labelled i. For each boundary vertex b

with label i, let the origin of b be the sink vertex it connects to, denoted origin(b). An origin
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inversion o f w is a pair of boundary vertices b1 < b2 with origin(b1)> origin(b2). For each i,

we get a contribution to the sign of the labelling of

(−1)#origin inversions between vertices labelled i+#cycles of length 2 modulo 4 in Ei∆O

We also have contributions to the sign of a consistent labelling coming from the number of edges

of W with labels of size 2, the number of edges of I(O) with an even size label, and inversions in

the boundary word of ℓ. The sign of ℓ with respect to orientation O is given by

(
3

∏
i=1

(−1)#cycles of length 2 modulo 4 in Ei∆O

)
(−1)#origin inversions+inv(bd(ℓ))+#{e∈I(O)||ℓ(e)| is even}.

We can also think of the sign contribution coming from origin inversions in a different

way. Let the decorated boundary word of ℓ, b̃d(ℓ), be the boundary word of ℓ with a subscript for

the origin attached to each letter 1 ≤ i ≤ 3. We can consider the decorated boundary word to be

a permutation under the order

11 < 12 < · · ·< 1d < 21 < · · ·< 3d < 4 < · · ·< ν

Then the sign of ℓ is

(
3

∏
i=1

(−1)#cycles of length 2 modulo 4 in Ei∆O

)
sign(b̃d(ℓ))(−1)#{e∈I(O)||ℓ(e)| is even}.

times the sign of the decorated boundary word.

Remark 5.4.7. The definition of weight of a labelling is a bit mysterious to us. It is chosen to

make the Skein relations upcoming in Section 5.5 hold, and we lack any further explanation

beyond that. The definition of sign of a labelling is chosen so that a change in orientation

introduces a consistent change in sign among all possible consistent labellings.

Example 5.4.8. Consider the augmented web and consistent labelling shown below. Edges in
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I(O) are highlighted in yellow, and the three sinks are labelled with their position in the total

order on sinks.

1

2

3

4

5

6

7

8

9

10

2

1

1

/0

12

/0 12

/0

23

3

1 42

3

3

3 3

2

1

2 31

Figure 5.9. A web with a consistent labelling.

The boundary word of this labelling is 4332121312, with 28 inversions. The origins of the

boundary vertices for each label are:

boundary vertices labelled 1: 5 7 9

origins: 2 1 3

boundary vertices labelled 2: 4 6 10

origins: 3 1 2

boundary vertices labelled 3: 2 3 8

origins: 2 3 1
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The total number of origin inversions of ℓ is 5, one from label 1 and two each from labels

2 and 3. The decorated boundary word of ℓ is 4323323122111311322, with 33 inversions. Our

orientation is acyclic, so there are no cycles to consider, and two of the highlighted edges have

an even size label. The sign of this labelling is therefore

(−1)33(−1)2 =−1

There are three edges with labels of size two, so the weight of this labelling is (−1
2)

3 =−1
8 .

Proposition 5.4.9. Let W be a perfectly orientable normal plabic graph with consistent labelling

ℓ. Let O1 and O2 be two distinct perfect orientations for ℓ. Then the sign of ℓ with respect to

these orientations is related by

sign(ℓ,O1) = sign(O1,O2)sign(ℓ,O2)

Proof. It suffices to show that this holds when O1 and O2 differ by a swivel move at a white

vertex v. Let u1 and u2 be the sinks which vary between O1 and O2, and let u3 denote the third

neighbor of v. The origin of each boundary vertex is the same in O1 and O2 except for the the

boundary vertices whose origin path travels along edge (v,u3), which have swapped origins in

O1 and O2. Either we have |ℓ(v,u3)| is odd, in which case |ℓ(v,u2)| and |ℓ(v,u1)| are the same

parity, or |ℓ(v,u3)| is even, in which case |ℓ(v,u2)| and |ℓ(v,u1)| have opposite parity. In either

case, we have

sign(ℓ,O1) =−sign(ℓ,O2)

as desired.

We can now define our invariants for normal plabic graphs.

Definition 5.4.10. Let W be a perfectly orientable normal plabic graph with perfect orientation

O . Let CL(W ) denote the set of all consistent labellings of W. Define an SL3 invariant attached
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to W, denoted [W,O] by:

[W,O] = ∑
ℓ∈CL(W )

sign(ℓ,O)wt(ℓ)xbd(ℓ)

Example 5.4.11. Consider the augmented web W ∈ AW (7,2) and perfect orientation O shown

below.

1

2

34

5

6

7

1 2

There are 288 consistent labellings in total, but only 2 up to graph automorphism (not necessarily

boundary preserving) and permutation of {1,2,3}, shown below:

1

2

34

5

6

7

21 3

/0

12 3 2

13

4
1 2

1

2

34

5

6

7

21 4

3

1 2 1

32

3
1 2

The left labelling has combined sign and weight of −1
2 , and the right labelling has combined

sign and weight 1. Let Aut(W )⊂Sn denote the group of automorphisms of W identified with the

corrseponding permutation of boundary vertices, which has size 6 ·2 ·2 ·2 = 48. Then we have
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[W,O] = ∑
σ∈Aut(W )

∑
ω∈A3

sign(σ)(− 1
2

xω(3),σ(1)xω(2),σ(2)xω(1),σ(3)xω(3),σ(4)x4,σ(5)xω(1),σ(6)xω(2),σ(7)

+ x4,σ(1)xω(1),σ(2)xω(3),σ(3)xω(2),σ(4)xω(3),σ(5)xω(1),σ(6)xω(2),σ(7))

where A3 is the alternating group on {1,2,3}.

To verify that this is a sensible definition, we first check that changing the orientation

only introduces a change of sign.

Proposition 5.4.12. Let W be a perfectly orientable normal plabic graph with perfect orientations

O1 and O2. Then

[W,O1] = sign(O1,O2)[W,O2]

Proof. By Proposition 5.4.5, we have

[W,O1] = ∑
ℓ∈CL(W )

sign(ℓ,O1)wt(ℓ)xbd(ℓ)

= sign(O1,O2) ∑
ℓ∈CL(W )

sign(ℓ,O2)wt(ℓ)xbd(ℓ)

= sign(O1,O2)[W,O2]

We call these invariants because the resulting polynomials will be invariant under a

certain action of SL3. Define an action of SL3 which acts on the matrix of 3n variables


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

x3,1 x3,2 · · · x3,n


via left multiplication and leaves all other variables fixed. Then we have the following:
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Proposition 5.4.13. Let X ∈ SL3 and W ∈ AW (n,d) with perfect orientation O . Then

X · [W,O] = [W,O]

This is clear for normal plabic graphs without interior white vertices and with only

vertices of degree at least 3, i.e. jellyfish invariants. We will defer the proof for all augmented

webs until Section 6, which will show that augmented web invariants live in Sn closure of

jellyfish invariants. The action of Sn commutes with the action of SL3, so the result will follow.

We next show that this definition generalizes jellyfish invariants.

Proposition 5.4.14. Let W ∈ AW (n,d) have no white vertices, let O be a perfect orientation of

W, and let π be the corresponding ordered set partition. Then [W,O] = [π]3.

Proof. Let v1, . . . ,vd denote the interior vertices of W in order. We claim that a consistent

labelling of W corresponds to a choice of jellyfish tableau for π as well as a choice of permutation

for the elements of each block of π . Indeed, we can create a jellyfish tableau Tℓ for π in the

following manner. For each boundary vertex 1 ≤ b ≤ n, if b has label i and is connected to

interior vertex v j, fill box i, j with the entry b. Then, for each interior vertex v j, let R j(ℓ) be the

set of boundary vertices connected to v j. Let σ(v j) ∈Sn denote the permutation which reorders

the elements of R j to have increasing labels. We claim that

sign(ℓ)xbd(ℓ) = sign(J(Tℓ))
d

∏
j=1

sign(σ(v j))

(
∏
i∈R j

xbd(ℓ)i,i

)
(5.4.1)

The right side here represents one term in the monomial expansion of the product of determinants

defining J(Tℓ). From the definition of Xbd(ℓ) we see that the variables appearing on both sides

of (5.4.1) agree, so the content of this claim is that the signs match. We show this in two parts.

First, we claim that

#origin inversions of ℓ= #inversions within rows of J(Tℓ) (5.4.2)
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Suppose (b1,b2) is an origin inversion of ℓ, with label i. Then b1 appears in box (i,origin(b1))

and b2 appears in box (i,origin(b2)). So (b1,b2) is also an origin inversion of Tℓ. Next, we claim

that

(−1)inv(bd(ℓ)) = (−1)#inversions between rows of J(Tℓ)
d

∏
j=1

sign(σ(v j)) (5.4.3)

or equivalently,

(−1)inv(σ(v1)σ(v2)···σ(vd)·bd(ℓ)) = (−1)#inversions between rows of J(Tℓ). (5.4.4)

If the kth letter of (σ(v1)σ(v2) · · ·σ(vd) ·bd(ℓ)) is i, then a k appears in the ith row of J(T ), so

(5.4.4) holds. We therefore have

[W,O] = [π]3

as desired.

Augmented web invariants satisfy the rotation and reflection invariance properties laid

out in [11], as well as something slightly stronger.

Proposition 5.4.15. Let W ∈ AW (n,d) with perfect orientation O and let σ ∈Sn. Let σ ·W

be the graph obtained by permuting the boundary vertices of W according to σ , i.e. if b is a

boundary vertex and (v,b) is an edge of W, then (v,σ(b)) will be an edge of σ ·W. Suppose that

σ ·W is planar, so it is also in AW (n,d). Then, abusively letting O also be a perfect orientation

of σ ·W, we have

σ · [W,O] = sign(σ)[σ ·W,O]

Proof. For each consistent labelling ℓ of W , we get a corresponding consistent labelling σ ◦ ℓ

of σ ◦W . The decorated boundary word of σ · ℓ is obtained by applying σ to the decorated

boundary word of ℓ, so the result follows.

Corollary 5.4.16. Let c be the long cycle in Sn and let w0 be the long element. Given an

augmented web W ∈ AW (n,d) with orientation OW , let rot(W) and rot(OW ) be the web obtained
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by rotating W and OW clockwise by 2π

n . Let refl(W ) and refl(OW ) be the web and orientation

obtained by reflecting W and Ow across the perpendicular bisector between boundary vertices 1

and n. We have

c · [W,O] = (−1)n−1[rot(W ),rot(OW )]

and

w0 · [W,O] = (−1)n−1[refl(W ),refl(OW )]

Remark 5.4.17. In the definition of σ ·W, we are implicitly using the fact that if a web is planar

and the positions of its boundary vertices are fixed, it has a unique planar embedding in the disk

up to boundary-preserving homeomorphism. This is due to a classical theorem of Whitney [59].

Our main theorem regarding augmented web invariants is that they form a basis for the

flamingo Specht module. We state it now but defer its proof until the end of the next section.

Theorem 5.4.18. Choose a perfect orientation OW for each augmented web W ∈ AW (n,d). Then

the set {[W,OW ] |W ∈ AW (n,d)} is a basis for the flamingo Specht module S(d
3,1n−3d).

5.5 Skein relations for augmented webs

This section will introduce skein relations for normal plabic graph invariants, showing

that they satsify property (5) of web bases. Furthermore, these skein relations will demonstrate

that the span of augmented web invariants is an Sn invariant module containing S(d
3,n−3d). Along

with our combinatorial bijection from standard Young tableaux, Proposition 5.3.15, we will thus

obtain a proof of Theorem 5.4.18.

We first give a diagrammatic representation of these relations. In each image below,

shaded gray areas represent an unknown number of edges connecting to other vertices of the

graph, and in the perfect orientation, edges are assumed to be oriented towards black vertices

unless shown otherwise.
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= = 0
= 1
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Figure 5.10. The skein relations for augmented webs.
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Proposition 5.5.1 (Crossing reduction rule). Let W be a perfectly orientable normal plabic

graph. Suppose W has two adjacent boundary vertices i, i+1 which connect to distinct interior

vertices x and y respectively. Let WI denote the web obtained from W by removing edges (x, i)

and (y, i+1), and attaching an “I” shape, i.e. adding an interior black vertex u and an interior

white vertex v, then adding in edges (x,v),(y,v)(v,u),(u, i) and (u, i+1). We have the following

relation:

si · [W ] = [W ]− [WI]−−1
2
[Wx]−

1
2
[Wy] (5.5.1)

Proof. We divide consistent labellings for our webs into classes based on a fixed choice C of

labels among edges in these webs other than those between x,y,u,v, i, and i+1, then show that

within each class, equation 5.5.1 holds. Up to symmetry, there are five possible cases, we will

explain the first in detail and give a table for the rest.

Case 1: Among the fixed labels of edges incident to x, 2 and 3 are present. Among

the fixed labels of edges incident to y, 1,2, and 3 are present. The missing labels around the

boundary are 1 and 4. Then there is exactly one way to label the remaining edges of W , edge

(x, i) must have label 1 and edge (y, i+ 1) must have label 4. Call this labelling ℓ. There are

two ways to label WI , both with weight 1
2 : edge (x,u) must have label 1, edge (y,u) must be

unlabelled, edge (u,v) must have label {2,3}, and edges (v, i) and (v, i+1) must have labels 1

and 4 in either order. Call these labellings ℓI,1 and ℓI,2. There are two ways to label Wx. There

are no ways to label Wy. Note that origin inversions do not change between these labellings, and

the chosen orientation of each web is compatible with the specified labelling, so the relative sign

is given only by the relative change in the boundary word. Thus, there exist a fixed monomial m

such that

si · ∑
ℓ∈CL(W )
ℓ extends C

sign(O,Oℓ)sign(ℓ,Oℓ)wt(ℓ)xbd(ℓ) = (x4,ix1,i+1)m
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∑
ℓ∈CL(W )
ℓ extends C

sign(O,Oℓ)sign(ℓ,Oℓ)wt(ℓ)xbd(ℓ) = (x1,ix4,i+1)m

∑
ℓ∈CL(WI)
ℓ extends C

sign(O,Oℓ)sign(ℓ,Oℓ)wt(ℓ)xbd(ℓ) =
1
2
(x1,ix4,i+1 − x4,ix1,i+1)m

∑
ℓ∈CL(Wx)
ℓ extends C

sign(O,Oℓ)sign(ℓ,Oℓ)wt(ℓ)xbd(ℓ) = (x1,ix4,i+1 − x4,ix1,i+1)m

∑
ℓ∈CL(Wy)
ℓ extends C

sign(O,Oℓ)sign(ℓ,Oℓ)wt(ℓ)xbd(ℓ) = 0

Therefore, since

(x4,ix1,i+1) = (x1,ix4,i+1)−
1
2
(x1,ix4,i+1 − x4,ix1,i+1)−

1
2
(x1,ix4,i+1 − x4,ix1,i+1)−0,

among classes of labellings which fit into this case, equation 5.5.1 holds.

The remaining cases are as follows. To read the following table, first note that to condense

information, we have replaced the monomial xa,ixb,i+1 with the word ab. Then let C denote a

fixed way to label the edges of W , WI , Wx and Wy other than those between x,y,u,v, i, and i+1.

The fixed labels of C at x, y, and the missing labels of C around the boundary fit into one of the

cases listed in the rows of this table, up to a permutation of {1,2,3} and {x,y}. Then there is

a fixed monomial m such that for each column headed by a web, if the entry in that row and

column headed by si ·W is a, then there exists a monomial m such that

∑
ℓ∈CL(W )
ℓ extends C

sign(O,Oℓ)sign(ℓ,Oℓ)wt(ℓ)xbd(ℓ) = am

The first row is Case 1.
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Table 5.1. The table for the proof of the crossing reduction rule.

Labels at x Labels at y Boundary si ·W W WI Wx Wy

{2,3} {1,2,3} {1,4} 41 14 1
2(14−41) 14−41 0

{2,3} {2,3} {1,1} 11 11 0 0 0
{2,3} {1,3} {1,2} 21 12 12−21 0 0
{1,2,3} {1,2,3} {4,5} 54−45 45−54 45−54 45−54 45−54
{1} {1,2,3} {2,3} 0 0 1

2(21−12) 12−21 0

Proposition 5.5.2 (Square reduction rule). Let W be a perfectly orientable normal plabic graph.

Suppose W has a face of degree 4. Let v1, v2 denote the white vertices of this face, and let

u1, u2, u3, u4 denote the neighbors of v1,v2, connected by edges (v1,u1),(v1,u2),(v1,u4) and

(v2,u2),(v2,u3),(v3,u4). Let π be a noncrossing set partition of {1,2,3,4} in which no block

contains both u2 and u4. Let Wπ be the web obtained from W by first deleting u1 or u2 if they

connect to two vertices vi,v j whose indices lie in the same block of π , then identifying all vertices

among v1, . . . ,v4 whose indices are in the same block in π . We will write these set partitions

without brackets and with vertical bars between blocks, e.g. W1|23|4. Then we have the following

relation:

∑
π

(
−1

2

)4−# blocks of π

[Wπ ] = 0 (5.5.2)

Proof. The proof is similar to that of the crossing rule, but there are many more cases. Again,

we explain one case in detail and give a table for the rest.

Let C be a fixed way to label edges of the Wπ other than those incident to v1 and v2. Then

the boundary monomial of any consistent labelling extending C is fixed, so we need to check

that the coefficients satisfy equation 5.5.2. We proceed casewise, based on the fixed labels of C

present at each of the four black vertices u1, u2, u3, and u4.

Case 1: The fixed labels at v1 contain 1,2, and 3. The fixed labels at v2 contain 1 and 2

but not 3. The fixed labels at v3 contain 3 but not 1 or 2. The fixed labels at v4 do not contain 1,

2, or 3.

There are two consistent labellings of W1|2|3|4 which extend C, as shown below.
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/0

/0

3

123

12

/0

123

12/0

3

1 2

/0

3

/0

12

12

3

123

12/0

3

1 2

Figure 5.11. The two consistent labellings of W1|2|3|4.

Relative to eachother, the left labelling has weight and sign −1
2 , and the right labelling

has weight and sign −1
4 .

There is one consistent labelling of each of W1|23|4, W1|2|34, W14|2|3, and W14|23 which

extends C, and none for the remaining Wπ .

/0
/0123

123

12/0

3

1 2

/0
312

123

12/0

3

1 2
3

12
/0

123

12/0

3

1 2

123

12/0

3

1 2

Figure 5.12. The consistent labellings of W1|23|4,W1|2|34,W14|2|3, and W14|23.
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Relative to our earlier labellings, these carry weights and sign −1, −1
2 , 1

2 and 1, respec-

tively. We check that these satsify equation 5.5.2:

0 = (−1
2
− 1

4
)+(−1

2
)(−1+

1
2
− 1

2
)+(

1
4
)(1)

The remaining cases our included in the following table, case 1 appears in row 4. Cases

which can be obtained by a permutation of {1,2,3} or a symmetry of the square are not included.

Table 5.2. The table for the proof of the square reduction rule.

Labels at u1 u2 u3 u4 W1|2|3|4 W1|23|4 W1|2|34 W12|3|4 W14|2|3 W14|23 W12|34 W123|4 W134|2
{1,2,3} {1,2,3} /0 /0 −1 −1 −1 0 1 1 0 0 1
{1,2,3} {1,2} {3} /0 − 3

4 −1 − 1
2 0 1

2 1 0 0 0
{1,2,3} {1,2} /0 {3} − 1

2 − 1
2 − 1

2 0 0 0 0 0 0
{1,2,3} {1} {2,3} /0 − 3

4 −1 − 1
2 0 1

2 1 0 0 0
{1,2,3} {1} {2} {3} 0 − 1

2
1
2 0 0 0 0 0 0

{1,2} {1,2,3} {3} /0 − 1
4 0 − 1

2 0 1
2 0 0 0 1

{1,2} {1,2,3} /0 {3} − 1
2 − 1

2 − 1
2 0 1 1 0 0 1

{1,2} {1,2} {3} {3} − 1
4 − 1

2 0 0 1
2 1 0 0 0

{1,2} {1,3} {2,3} /0 0 0 −1 0 1 0 0 0 0
{1,2} {1,3} {2} {3} − 3

4 − 1
2 −1 0 1

2 1 0 0 0
{1,2} {1,3} {3} {2} 1

2 0 1 0 0 0 0 0 0
{1,2} {1} {2,3} {3} − 3

4 − 1
2 0 0 − 1

2 1 0 0 0
{1,2} {3} {1,2} {3} 0 1

2 − 1
2 − 1

2
1
2 1 -1 0 0

{1,2} {3} {1,2} {3} 0 1
2 − 1

2 − 1
2

1
2 1 -1 0 0

{1} {1,2,3} {1} {2,3} 0 1
2 − 1

2 − 1
2

1
2 1 -1 0 0

{1} {1,2,3} {2} {3} 1
4 0 1

2 0 1
2 0 0 0 1

{1} {1,2,3} /0 {2,3} 1
2

1
2

1
2 0 1 1 0 0 1

{1} {1,2} {3} {2,3} 1
4

1
2 0 0 1

2 1 0 0 0
{1} {2,3} {1} {2,3} 0 1

2 − 1
2 − 1

2
1
2 1 -1 0 0

/0 {1,2,3} /0 {1,2,3} 1 1 1 1 1 1 1 1 1

Proposition 5.5.3 (Double edge reduction rule). Let W be a perfectly orientable normal plabic

graph with a white vertex v with exactly two neighbors u1, connected by 1 edge, and u2, connected

by 2 edges. Let O be a perfect orientation such that I(O) contains (v,u1). Let W ′ and O ′ be the

plabic graph and orientation obtained by contracting v,u1, and u2. Then

[W,O] = [W ′,O ′]

Proof. Fix a labelling of edges other than those incident to v. We have 4 cases up to a permutation

155



of {1,2,3}

• Case 1: Among the fixed labels at u1, {1,2,3} appear. Then the union of the labels of the

two edges between v and u1 is {1,2,3}. There are two ways to label these edges with one

of size 3, and these come with each with relative sign and weight −1. There are 6 ways to

label the edges with one label of size 2 and the other of size 1, each with relative sign and

weight f rac12, for a total weight and sign of 1.

• Case 2: Among the fixed labels at u2, {1,2} appear. Then (v,u1) has label 3 and the edges

between v and u2 have labels 1 and 2 split between them. There are two ways to have a

label of size 2, these appear with relative sign and weight −1
2 . There are two ways to have

two labels of size 1, these appear with relative sign and weight 1, for a total weight and

sign of 1.

• Case 3: Among the fixed labels at u1, only {1} appears. Then (v,u1) has label {2,3}, and

one of the edges to u2 has label {1}. There are two ways to do this, each with relative sign

and weight 1.

• Case 4: The fixed labels at u1 are all empty. Then there is only one way to label the edges

incident to v, with weight one.

In all cases W ′ has no choices to be made, and thus has relative sign and weight 1, so the result

holds.

Proposition 5.5.4 (Leaf vertex removal). Let W be a perfectly orientable plabic graph with a

black vertex u of degree 1 connected to white vertex v. Let O be a perfect orientation wth the

edge (u,v) oriented towards u. Let W ′ be the plabic graph obtained by removing vertices u and

v and O ′ be the resulting perfect orientation. Then [W,O] = [W ′,O ′].

Proof. If we take a consistent labelling of W , and remove vertices u and v, we get a consistent

labelling of W ′ with the same sign and weight, so the result follows.
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Proposition 5.5.5 (Boundary adjacent leaf removal). Let W be a perfectly orientable normal

plabic graph with a black vertex of degree one or two only connected to the boundary. Then

[W ] = 0.

Proof. There are no consistent labellings of W , so the result follows.

Proposition 5.5.6 (Boundary adjacent bivalent vertex removal). Let W be a perfectly orientable

normal plabic graph with a degree 2 black vertex u connected to one boundary vertex and one

white vertex v Let the other neighbors of v be x and y. Let O be a perfect orientation of W

in which (u,v) is oriented towards v. Let Wx be the graph obtained by removing u and v and

connecting x to the boundary, and let Ox be the orientation obtained from Ox in the same fashion.

Let Wy and Oy be analogous. Then we have

[W,O] =
1
2
[Wx,Ox]+

1
2
[Wy,Oy]

Proof. A consistent labelling of W must have an edge label of size one on the boundary edge

incident to u, and edge label of size 2 on the edge (u,v), and an edge label of size one on exactly

one of the edges (u,x) and (u,y). Thus, consistent labellings of W are in bijection with the

disjoint union of consistent labellings of Wx and Wy, and each carries relative sign and weight 1
2 .

Thus

[W,O] =
1
2
[Wx,Ox]+

1
2
[Wy,Oy]

as desired.

Proposition 5.5.7 (Bivalent vertex reduction rule). Let W be a normal plabic graph with a black

vertex u of degree 2 connected to two white vertices v1 and v2. Let u1,u2,u3,u4 be the other

neighbors of v1 and v2. Let O be a perfect orientation such that (u1,v1) and (u,v2) are in I(O).

For 1 ≤ i ≤ 8, let Wi denote the plabic graphs with orientation Oi as shown in the bivalent vertex
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reduction rule above. We have

[W,O] =− 1
2
[W1,O1]−

1
2
[W2,O2]−

1
2
[W3,O3]+

1
2
[W4,O4]

− 1
4
[W5,O5]−

1
4
[W6,O6]−

1
4
[W7,O7]−

1
4
[W8,O8]

Proof. As per the proof of the square rule, we have four cases to consider as shown in the

following table

Table 5.3. The table for the proof of the bivalent vertex reduction rule.

Labels at u1 u2 u3 u4 W W1 W2 W3 W4 W5 W6 W7 W8

{1,2,3} {1,2,3} {1,2,3} /0 1 0 −1 −1 1 0 1 1 0
{1,2,3} {1,2,3} {1,2} {3} 1

2 0 0 −1
2

1
2 0 0 0 0

{1,2,3} {1,2} {1,3} {2,3} −1
2 0 0 0 −1 0 0 0 0

{1,2,3} {1,2} {1,2,3} {3} −1
4 0 1

2 0 −1
2 0 0 -1 0

We can now give a proof of Theorem 5.4.18, which states the set {[W,OW ] | W ∈

AW (n,d)} is a basis of S(d
31n−3d).

Proof. Let W ∈ AW (n,d). Apply the crossing reduction rule to rewrite si · [W,Ow] as a sum of

invariants for normal plabic graphs Gi with coefficients ci, i.e.

si · [W,Ow] = ∑
i

ci[Gi,OGi]

If any of the Gi are not augmented webs, i.e. they have a face of degree four or a black vertex

of degree less than 3, we can apply one of the other skein relations to rewrite [Gi,OGi]. Each

time we do so, we replace a plabic graph with k white vertices by a linear combination of plabic

graphs with strictly fewer than k white vertices, so by iterating this process we eventually rewrite
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si · [W,Ow] as a linear combination of augmented web invariants. Consequently,

span({[W,OW ] |W ∈ AW (n,d)})

is closed under the action of Sn. By Theorem 1.4.2 and Proposition 5.4.14, span({[W,OW ] |

W ∈ AW (n,d)}) has a nonzero intersection with S(d
3,1n−3d). By Theorem 5.3.15, the dimension

of span({[W,OW ] |W ∈ AW (n,d)}) is at most the dimension of S(d
3,1n−3d). Since S(d

3,1n−3d) is

irreducible, we have

span({[W,OW ] |W ∈ AW (n,d)}) = S(d
3,1n−3d)

and Theorem 5.3.15 shows that {[W,OW ] |W ∈ AW (n,d)} is indeed a basis.

5.6 Augmented web invariants via weblike subgraphs

In this section we explain how to interpret our augmented web invariants in terms of

the weblike subgraphs introduced by T. Lam in [26]. To do so, we first need to reinterpet out

augmented web invariants as tensors rather than polynomials in n×ν variables.

Let V0 ∼= Cν be a ν dimensional vector space with basis {e1, . . . ,eν}, let V be the span

of the first three basis vectors, V = span({e1,e2,e3}). Consider the space W consisting of the

direct sum of all tensor products of 3d copies of V and n−3d copies of C, e.g. when n = 4 and

d = 1, W is

(V ⊗V ⊗V ⊗C)⊕ (V ⊗V ⊗C⊗V )⊕ (V ⊗C⊗V ⊗V )⊕ (C⊗V ⊗V ⊗V )

W injects into V⊗n
0 by replacing the n−3d copies of C with

∧n−3d span({e4, . . . ,eν}), e.g. if

v1,v2,v3 ∈V ,

1⊗ v1 ⊗ v2 ⊗1⊗ v3 7→ e4 ⊗ v1 ⊗ v2 ⊗ e5 ⊗ v3 − e5 ⊗ v1 ⊗ v2 ⊗ e4 ⊗ v3
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There is also a natural injection of V⊗n
0 into the polynomial ring generated by the n×ν variables



x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

... . . . ...

xν ,1 xν ,2 · · · xν ,n


given by

ei1 ⊗ ei2 ⊗·· ·⊗ ein 7→ xi1,1xi2,2 · · ·xin,n

Recall that our augmented web invariants live in this polynomials ring, and furthermore,

they live in the span of monomials which contain exactly one variable from each column, each

with degree one. Additionally, in each augmented web invariant, the tensor factors corresponding

to basis vectors e4, . . . ,eν are alternating. Thus, augmented web invariants live in the image of

the injection ι : W ↪→ C[x1,1, . . . ,xν ,n]. Denote the preimage under this injection of [W,O] by

[̃W,O].

We can make ι into an Sn homomorphism by pulling back the action of Sn on the vector

space C[x1,1, . . . ,xν ,n] to W . Note that this pullback is not just simply permuting tensor factors.

An adjacent transposition si acts on simple basis tensors by

si · (v1 ⊗·· ·⊗ vi ⊗ vi+1 ⊗·· ·⊗ vn) =


−si · (v1 ⊗·· ·⊗ vi ⊗ vi+1 ⊗·· ·⊗ vn) v1,vi+1 ∈ C

si · (v1 ⊗·· ·⊗ vi ⊗ vi+1 ⊗·· ·⊗ vn) otherwise
,

i.e. it picks up a sign if both tensor factors come from C.

The benefit of this viewpoint is that W is more well-studied in terms of webs. Kuperberg’s

work [25] gives a basis for W in terms of SL3 webs with 0 clasps, i.e. SL3 webs with n− 3d

boundary vertices without edges. We will explain how to expand [̃W,O] into this clasped web

basis.
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As introduced by Lam, given a normal plabic graph W a 3-weblike subgraph is an

assignment of a nonnegative integer to each edge such that the sum of edges around each interior

vertex is 3. A weblike subgraph can be turned into an SL3 web with 0-clasps (i.e. unused

boundary vertices) by deleting each edge assigned 0 or 3, and contracting each path of edges

alternately assigned 1’s and 2’s to a single edge. A consistent labelling ℓ gives rise to a weblike

subgraph W ′(ℓ) via the sizes of its edge labels. We have the following

Proposition 5.6.1. Let W be a normal plabic graph with perfect orientation O . Let W ′ be a

3-weblike subgraph of W with d(W ′) edges of multiplicity 2. Then

ι
−1( ∑

ℓ∈CL(G)
W ′(ℓ)=W ′

sign(ℓ,O)wt(ℓ)xbd(ℓ)) =±(−1
2
)d(W ′)[W ′]SL3

where [W ′]SL3 denotes the usual SL3 web invariant.

Proof. Up to a reordering of labels larger than 3, consistent labellings ℓ with W ′(ℓ) =W ′ are

in bijection with proper edge labellings of W ′. So it suffices to check that the difference in the

definition of sign for consistent labellings and proper edge labellings is the same among all

such labellings. Any two proper edge labellings of W ′ can be transformed into eachother via

swapping the labels of any path alternately labelled i, j, . . . , i, j for 1 ≤ i ≤ j. Swapping such a

path will introduce a sign change both in the definition of sign for proper edge labellings and for

consistent labellings.

Corollary 5.6.2. We thus have

[̃W,O] = ∑
weblike subgraphs W ′ of W

±(
1
2
)d(W ′)[W ′]SL3

Remark 5.6.3. Note that when a normal plabic graph is an SL3 web, i.e. all vertices are degree

3, our invariants do not match the usual SL3 invariants. Instead, we get a sum over all SL3 webs

which appear as a weblike subgraph in W.
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5.7 Cyclic sieving for augmented webs

The basis {[W,OW ] |W ∈ AW (n,d)} given in Theorem 5.2.9 has all the necessary prop-

erties to obtain a cyclic sieving result via Springer’s theorem of regular elements. The only detail

left is that we need to be careful about the orientations. To address orientation, we need the

following Lemma:

Lemma 5.7.1. Let W ∈ AW (n,d) with perfect orientation O . Suppose W is fixed by rotation by

i ≥ 2, i.e. roti(W ) =W. Then i divides n and exactly one of the following holds:

• n
i | d

• n
i | d −1

• n
i = 3 and n

i | d +1

Let k = di
n ,

(d−1)i
n , (d+1)i

n depending on which of the cases above holds. Then we have

sign(O,roti(O)) = (−1)(
n
i −1)k

The relevance here is that this sign depends only on n,d, and i, not on W itself.

Proof. Note that by Lemma 5.4.5 it suffices to prove this for some orientation O . We proceed

by induction on the number of interior white vertices. If there are no interior white vertices,

then a perfect orientation is simply a total order on the black vertices. Rotation by i induces a

permutation on the black vertices with at most one cycle of size 1 and cycles of size n
i , and thus

n
i | d or n

i | d −1. Thus,

sign(O, roti(O)) = (−1)(
n
i −1)k

If there is a single white vertex v, it is necessarily fixed by rotation by i, and thus n
i = 3.

Rotation by i induces a permutation of the d +1 black vertices into cycles of size 3, and thus
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3 | d +1. The orientation OW differs from roti(W ) via a swivel move at v, a transposition of the

two sink vertices adjacent to v, and a 3-cycle applied to each other orbit of sinks. Thus,

sign(O, roti(O)) = 1 = (−1)(
n
i −1)k

If there is more than one white vertex, then by Lemma 5.3.5 and our rotation invariance

assumption, we can find three black vertices each connected to exactly one interior white vertex

such that these three white vertices are distinct. Remove these 6 vertices and connect their

neighbors to the boundary in a planar and rotationally invariant way to get a web W ′. From any

perfect orientation O ′ of W ′ we can build a perfect orientation O of W by orienting the removed

edges from white vertex to black vertex. We then have by inductive hypothesis

sign(O, roti(O)) = sign(O ′, roti(O ′)) = (−1)(
n
i −1)k.

So the result follows by induction.

We can now state our cyclic sieving result.

Theorem 5.7.2. Let C = Z/nZ be the cyclic group with generator c acting on AW (n,d) by

rotation. Let Xn,d(q) be the fake degree polynomial for S(d3,1n−3d), i.e.

Xn,d(q) = q3(d−1)+(n−3(d−1)
2 ) [n]!q

∏(i, j)∈λ [hi j]q

If n is odd, then the triple

(AW (n,d),C,Xn,d(q))

exhibits the cyclic sieving phenomenon.
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If n is even, then we have cyclic sieving up to sign, i.e.

|AW (n,d)ci
|= |Xn,d(ζ

i)|

where AW (n,d)ci
dentoes the fixed point set of AW (n,d) under the action of ci, and ζ is a

primitive nth root of unity.

Proof. If n is odd, then we can choose orientations OW for each web W ∈ AW (n,d) such that

c · [W,OW ] = [rot(W ),Orot(W )]

To do so, select a web W from each C-orbit and pick any orientation OW for it. For 1 ≤ i ≤ n,

let Oroti(W ) = roti(OW ). Lemma 5.7.1 guarantees that this is possible even if W has rotational

symmetry, as (−1)(
n
i −1)k = 1.

Thus, S(d
3,1n−3d), {[W,OW ] | W ∈ AW (n,d) and the rotation action of C satisfy the hy-

potheses of Theorem 3.5.1 and the result follows.

If n is even, choose any orientation for each web W ∈ AW (n,d). Then {[W,OW ] |W ∈

AW (n,d) is not necessarily fixed by the action of c, but c will act via a signed permutation matrix.

Lemma 5.7.1 shows that the diagonal of ci will either contain only 0’s and 1’s or only 0’s and

−1’s. In either case, |tr(ci)|= |AW (n,d)ci|, and the proof of Theorem 3.5.1 [48] shows that

|AW (n,d)ci
|= |Xn,d(ζ

i)|

holds as desired.

Example 5.7.3. When n = 10, d = 3, then X10,3(q) has a rather nice form. The hook lengths are

6 4 3
5 3 2
4 2 1
1
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and thus X10,3(q) = q12

10

4


q

. Since X10,3(q) is a single q-binomial (n = 10,d = 3 is the only

case for which this is true), we can verify the cyclic sieving result in this case by checking that

the orbits of AW (10,3) under rotation are in size-preserving bijection with the orbits of size 4

subsets of {1, . . . ,10} under cyclic permutation. There are two orbits of size 5 for each set, the

orbits containing sequences {1,2,6,7} and {1,3,6,8} and the orbits containing webs shown

below

The remaining 20 orbits are all size 10, one web from each is shown below

Figure 5.13. The rotation orbits of AW (10,3).

5.8 Future Directions

We have given a rotationally invariant basis for S(d
3,1n−3d), and a natural question to ask

is whether there is a way to generalize these results to r > 3. Many of the results in Section 5 as
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well as the crossing reduction rule in Section 6 readily generalize when r is odd (when r is even,

a different treatment of signs is needed, as a change in orientation will not give a global change

in sign). We can thus obtain spanning set for an Sn invariant submodule containing Sdr,1n−rd
and

the question remains as to how to prune it down to a basis, as the results of Section 4 do not

seem to readily generalize. There are two directions in which one might approach this problem.

The first is to begin by looking for a rotationally invariant set of the right size via WNC(n,d,r):

Problem 5.8.1. Is there a combinatorially nice injection of WNC(n,d,r) for r > 3 into the set of

normal plabic graphs, such that the image is closed under rotation?

The second approach is to determine skein relations first, and use those to reduce the set

of normal plabic graphs to a basis.

Problem 5.8.2. Extend the definitions from Section 5 to r > 3 for r odd. What are the corre-

sponding skein relations?

We expect these questions to likely be quite difficult, as answering both would encompass

constructing a rotationally invariant basis of Sdr
, a question which was only recently answered

in the case r = 4 by C. Gaetz, O Pechenik, S. Pfannerer, J. Striker, and J. Swanson [13] and

remains open for r > 4. However, most investigation into this question has been concerned with

finding a subset of SLn webs which forms a basis. Towards this end, it is perhaps a feature, rather

than a bug of our construction that it does not consist of genuine SLr webs, but rather linear

combinations of ones with the same underlying simple graph and its minors, as it gives a new

place to search.

If we do consider the difference between our augmented web invariants and SL3 web

invariants to be something to be fixed, we can do so by constructing a poset on classical SL3

webs with W ≤ V whenever W is a weblike subgraph of V , which is equivalent to the graph

minor poset restricted to SL3 webs. By Corollary 5.6.2 can thus write

[W ] = ∑
V≤W

h(V,W )[V ]SL3
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where h is an element of the incidence algebra for this poset which is defined up to sign in

Corollary 5.6.2, and the sign is defined implicitly in the preceeding exposition. Inverting h would

then recover the classical SL3 web invariants. We thus propose the following:

Problem 5.8.3. Extend the definition of h to the poset of perfectly orientable normal plabic

graphs with order given by graph minors. Is there a simple combinatorial description of the

inverse of h in the incidence algebra?

One important property of the m-diagram construction of SL3 webs is that, as shown

by Petersen, Pylyavskyy, and Rhoades, it intertwines promotion on rectangular tableaux and

rotation of webs [33], thereby giving an algebraic proof of the cyclic sieving phenomenon for

promotion on three-row rectangles. This is not the case for n > 3d, however, as promotion for

tableaux of shape (d3,1n−3d) for n > 3d is not so well-behaved and the order of promotion does

not divide n in general. It may be interesting to investigate if there is a variant of promotion

which our bijections do intertwine.

Problem 5.8.4. Give a combinatorial description similar to promotion of the cyclic action on

standard Young tableaux of shape (d3,1n−3d) given by the pullback of rotation on webs. Does

the combinatorial description have a natural extension to other shapes? If so, which shapes

have order dividing n?

A combinatorially defined cyclic action with order dividing n for another family of

partition shapes would be good evidence for the existence of a web basis for those shapes.

It is not clear that the bijection we give is necessarily the most natural, so in answering this

question one may want to consider other possible bijections between standard Young tableaux

and augmented webs.

Chapter 5 has been submitted for publication in Communications of the AMS, 2024. The

dissertation author was the sole author.
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