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Pathogen evasion of the host immune system is a key force driving extreme

polymorphism in genes of the major histocompatibility complex (MHC).

Although this gene family is well characterized in structure and function, there

is still much debate surrounding the mechanisms by which MHC diversity is

selectively maintained. Many studies have investigated relationships between

MHC variation and specific pathogens, and have found mixed support for and

against the hypotheses of heterozygote advantage, frequency-dependent or

fluctuating selection. Few, however, have focused on the selective effects of

multiple parasite types on host immunogenetic patterns. Here, we examined

relationships between variation in the equine MHC gene, ELA-DRA, and

both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga).

Specific alleles present at opposing population frequencies had antagonistic

effects, with rare alleles associated with increased GI parasitism and

common alleles with increased tick burdens. These results support a fre-

quency-dependent mechanism, but are also consistent with fluctuating

selection. Maladaptive GI parasite ‘susceptibility alleles’ were reduced in fre-

quency, suggesting that these parasites may play a greater selective role at

this locus. Heterozygote advantage, in terms of allele mutational divergence,

also predicted decreased GI parasite burden in genotypes with a common

allele. We conclude that an immunogenetic trade-off affects resistance/suscep-

tibility to parasites in this system. Because GI and ectoparasites do not directly

interact within hosts, our results uniquely show that antagonistic parasite

interactions can be indirectly modulated through the host immune system.

This study highlights the importance of investigating the role of multiple

parasites in shaping patterns of host immunogenetic variation.
1. Introduction
Pathogens and hosts engage in coevolutionary cycles that shape the genetic varia-

bility of populations [1,2]. Pathogens may evolve increased virulence and host

recognition avoidance mechanisms, challenging their hosts to respond by evol-

ving a diversity of innate and adaptive immune defences [3]. This ongoing

evolutionary ‘arms race’ may influence the molecular diversity of both pathogen

and host genomes, particularly within immunological genes [4]. There has been

increasing focus on this selective molecular interplay in wildlife populations [5]

that has come along with recognizing the importance of immune system function

not only to host–parasite coevolution and infectious disease emergence, but also

population dynamics and life-history evolution.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2014.0077&domain=pdf&date_stamp=2014-04-09
mailto:pkamath@usgs.gov
http://dx.doi.org/10.1098/rspb.2014.0077
http://dx.doi.org/10.1098/rspb.2014.0077
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20140077

2
The major histocompatibility complex (MHC), a gene family

composed of immune-related genes, has been of particular inter-

est due to its exceptional diversity and significance in mate

choice, kin recognition and host immunity in vertebrates [6].

This gene complex encodes the molecules responsible for initiat-

ing host immune response, by delivering foreign peptides

derived from pathogens to helper T cells. Given this fundamen-

tal role in immune function, observations of extreme MHC

polymorphism have been attributed to pathogen-induced

balancing selection [7–10]. For example, a global study on

humans found that populations with increased pathogen diver-

sity also exhibited elevated MHC diversity [11]. Additionally,

associations between specific MHC alleles and pathogen resist-

ance have been demonstrated in humans [12], non-human

primates [13], ungulates [14], rodents [15,16], bats [17], birds

[18,19], amphibians [20] and fish [21].

The mechanisms driving MHC diversity are the subject of

much debate (reviewed in [9,22]), with three primary hypoth-

eses being (i) heterozygote advantage [7], (ii) negative

frequency-dependent selection [8], and (iii) fluctuating selec-

tion over time and space [12,23]. The heterozygote advantage

hypothesis is based on the theory that heterozygous individ-

uals are capable of recognizing a more diverse suite of

antigenic peptides from pathogens than homozygotes [7],

and is supported by empirical evidence from experimental

co-infection [24] and natural system studies [25,26]. Negative

frequency-dependent selection suggests that the advantage of

specific host alleles varies with their frequency as the result

of pathogen evasion [8]. This mode of selection has been

particularly difficult to demonstrate given the long time

scales needed to detect such effects when in play. Finally,

under fluctuating selection, external environmental factors or

demographic stochasticity may drive oscillations in pathogen

communities over space and time, resulting in corresponding

changes in host allele/genotype fitness values [12]. Spatio-

temporally heterogeneous allele fitness generated through

fluctuating selection has been theoretically shown to be capable

of maintaining high levels of MHC polymorphism [23].

Resolving the relative importance of the aforementioned

hypotheses in any given study system is a challenging task,

particularly because these mechanisms are not mutually exclu-

sive and, even when acting in isolation, often can produce

similar effects on MHC patterns [22]. Also, heterozygote

advantage may depend on the degree of molecular divergence

at overlapping peptide-binding regions (i.e. divergent allele

advantage) [27]. Further complications arise in disentangling

the relative importance of different mechanisms due to antag-

onistic pleiotropic effects of multiple parasites on a single locus,

such that resistance to different pathogens requires different

MHC alleles or genotypes. Under pleiotropy, increased resist-

ance to one pathogen may be accompanied by a cost through

decreased resistance to another, resulting in perplexing associ-

ations between MHC alleles and increased susceptibility to

infection [17,19,21,25,28,29]. Given that diverse parasites may

act in concert or opposition to mediate selection on host

MHC genes, incorporating knowledge about multiple parasite

infections may lead to conclusions that would have otherwise

gone undetected.

Gastrointestinal (GI) parasites may have negative fitness

consequences on wild populations [14], and many studies to

date have examined relationships between MHC genes and

helminths in vertebrates [13–15]. The vertebrate immune

system is also important in responding to ectoparasite
infections. For example, host antibodies can bind proteins in

tick saliva, interfering with tick engorgement and nutrient

absorption, thereby inhibiting ovum production and viability

[30]. Also, immune-triggered inflammatory response and

increase in host skin temperature may result in tick detachment

[31]. Several studies have found associations between the MHC

and ectoparasite prevalence and intensities [17,26,32]. Others

have assessed bacterial [21,25], protist [18,28] and fungal infec-

tions [20], but few have investigated the relationships of

multiple parasite types with MHC diversity (but see [29,32]).

To our knowledge, only one study has investigated host immu-

nogenetic relationships with both endo- and ectoparasites

concurrently in a natural system [32].

The plains zebra (Equus quagga) population of Etosha

National Park (ENP), Namibia, provides an excellent natural

system in which to elucidate the mechanisms by which patho-

gens shape MHC variation. ENP is a eutrophic savannah

ecosystem [33] with low annual precipitation (rainfall less

than 650 mm yr21). This aridity probably plays a role in limit-

ing E. quagga parasite diversity relative to that found in zebra

inhabiting ecosystems with higher annual rainfall (e.g.

Kruger National Park—KNP, South Africa) [34]. Nonetheless,

ENP zebra are susceptible to GI parasites, with nearly all indi-

viduals in the population having nematode infections [35].

Additionally, hard-bodied ticks have been observed on most

individuals examined in the field, though the ecology of the

host–ectoparasite relationship has yet to be characterized in

this system. Here, we take advantage of the high prevalence

of both parasite groups (nematodes and ticks) in E. quagga
to investigate the relationships between multiple parasite

infections and MHC diversity.

In domestic equids, Strongylidae nematodes can cause sig-

nificant damage to the intestinal mucosa and arterial system,

and larvae, in some species, can migrate through host tissues,

occlude small arteries, and cause arteritis, thrombosis, embo-

lism and fatal infarction of the bowel [36]. Ticks are one of

the chief vectors for infectious disease agents, often causing ill-

ness and even death to their hosts. For example, in equids, ticks

can transmit the lethal African horse sickness virus [37] and the

protozoan pathogen babesiosis [38]. Beyond harbouring

disease agents, they may decrease host fitness through

dermatoses (inflammation, itching and swelling) and enveno-

mization (delivered through tick saliva). We recognize that

other pathogens besides the macroparasites investigated here

may also affect MHC diversity in E. quagga. For example,

zebras in ENP are the main host of anthrax, a deadly bacterial

disease caused by Bacillus anthracis [39], and the role of this

pathogen in shaping host immunogenetic diversity is a subject

that warrants further study.

The equid MHC, or equine lymphocyte antigen (ELA), has

been molecularly characterized, and earlier work provides evi-

dence for selection on class II ELA loci [40,41]. The DR alpha

chain (ELA-DRA) is of particular importance as it encodes

the antigen-binding domain responsible for recognition of

foreign peptides. This locus is considered to be much less

diverse relative to other classical MHC genes in vertebrates

[42,43]. However, recent evidence has proven equids to be an

exception, exhibiting uniquely high levels of DRA polymorph-

ism [40,41]. In E. quagga populations of southern Africa, low

DRA differentiation among populations has been reported,

typical of a locus under balancing selection [44].

In this study, we investigated the relationships between

ELA-DRA variation and parasitism in the ENP zebra
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population. We focused on the effects of DRA heterozygosity

and specific alleles in predicting both GI and ectoparasite

burdens in zebra, while accounting for ecological and demo-

graphic predictors (season, sex and age) known to influence

parasitism in ungulate hosts of this system [35]. Our goal was

to examine the effects of immunogenetic variables on parasite

intensity, while addressing the role of the following selec-

tive mechanisms: (i) ‘heterozygote advantage’ in terms of

heterozygote fitness at the population level; (ii) ‘heterozygote

advantage’ under the divergent allele advantage hypothesis,

assuming fitness increases with the number of heterozygous

bases in an individual’s genotype; (iii) frequency dependence

in terms of the non-additive (i.e. dominance) effects of alleles

of a particular frequency class; and (iv) frequency-dependent

or fluctuating selection through examination of specific allele

effects. We also considered that the pathogen-mediated selec-

tion mechanisms might not be mutually exclusive. Finally,

we examined whether these variables concurrently predict

multiple types of parasitism to elucidate possible pleiotropic

effects of the MHC in modulating parasite resistance.
2. Material and methods
(a) Study population
This study focused on the plains zebra population in ENP, a

large (22 915 km2) fenced nature reserve in northern Namibia.
In 2012, the population size was estimated to be 16 174 (95% CI:

13 310 – 19 038) individuals. Both aerial survey and genetic data

suggest that the population has recently and historically been

stable (Namibian Ministry of the Environment and Tourism

2012, unpublished data) [44]. ENP is classified as semi-arid

mopane savannah [45], with annual rainfall totals around

500 mm. Rainfall exhibits a seasonal pattern with the majority of

precipitation between the months of October and April (electronic

supplementary material, figure S1).
(b) Data collection
Data were collected from adult zebras (n ¼ 70; females ¼ 60,

males ¼ 10) during a series of captures taking place between

March 2008 and August 2010 (three rainy and dry seasons) on

the Okaukuejo and Halali plains of ENP (figure 1). During cap-

tures, zebras were anaesthetized and VHF- or GPS-collared,

which enabled a subset to be re-captured. There were 173 total

sampling observations, and each individual was sampled one to

seven times. We collected faecal samples for GI parasite quantifi-

cation (n ¼ 140) and ectoparasites were picked from the animal

(n ¼ 140). Of these, we collected both parasite types for only a por-

tion of the data (n ¼ 107). Age was estimated from dental wear

patterns of permanent incisors [46]. We also collected blood

samples for immunogenetic characterization, stored in ethylene-

diaminetetraacetic acid tubes and preserved at 2208C. Faecal

samples were stored at 48C, and ticks preserved in 70% ethanol

at room temperature.



rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20140077

4
(c) Quantification of gastrointestinal parasite burden
GI parasite burden was measured in terms of faecal egg counts

(FECs) in eggs per gram (EPG) of faeces of strongylid nematodes,

following a modification of the McMaster flotation procedure

[47,48] as described by Turner & Getz [35]. This approach pro-

vided an appropriate non-invasive means for quantifying

relative parasite burdens among individuals and has proven to

be valuable for assessing parasitism in wild ungulate hosts

[14,49]. Previous work revealed nearly 100% prevalence of

nematodes from the order Strongylida in ENP zebras [35],

which accorded with our results. Microscopic observation did

not allow us to resolve nematode taxa beyond the order level.

However, nematodes of equid hosts are generally from the Stron-

gylidae family, and necropsies identified 15 species of this family

in ENP plains zebra [50]. A comparative study of intestinal

helminth parasites in African equids found no single species

infections, with a minimum of five strongylid species in any

given individual [34]. These findings suggest that the nematodes

in our study also fall within this taxonomic group and represent

multiple strongylid species.

(d) Quantification of ectoparasite burden
We assessed tick burden during capture by collecting all visible

arthropods of all life stages and focusing on the peri-anal (base of

tail) and groin areas. Although this method does not ensure com-

plete quantification and characterization of an individual’s tick

burden, we assumed that it provides a consistent relative esti-

mate of tick abundance that is comparable among individuals.

Five hard-bodied tick species (Family: Ixodidae) were observed

from the genera Hyalomma and Rhipicelphalus: H. rufipes, H. trun-
catum, R. evertsi mimeticus, R. sulcatus and R. turanicus (I. Horak

2011, personal communication). We evaluated infection by ticks

in terms of overall abundance, not distinguishing among species

or life stages, owing to low statistical power associated with

small sample sizes at these sub-levels.

(e) Major histocompatibility complex genotyping
Genomic DNA was extracted from blood samples using

DNeasy extraction kits (Qiagen, Valencia, CA). We examined the

diversity of the ELA-DRA exon 2, which encompassed the anti-

gen-binding sites (ABS) known for their role in foreign peptide

recognition. We amplified 246 bp of DRA exon 2 in ENP plains

zebra following the protocols outlined by Kamath & Getz [41].

In E. quagga, the DRA locus exists as a single copy [41], and this

was verified here by observations of no more than two alleles in

any given individual. Individual DRA genotypes were deter-

mined through direct sequencing, and heterozygous nucleotide

positions were confirmed by sequencing in both forward and

reverse directions. Sequence chromatograms were aligned and

edited manually using GENEIOUS v. 5 [51]. Allele sequences were

inferred using the haplotype phase determination algorithm,

implemented in PHASE v. 2.1 [52]. A threshold posterior prob-

ability of 0.8 was upheld, and an allele was required to be

observed at least twice before being considered a ‘true’ allele (i.e.

in a minimum of one homozygote or two heterozygotes). We

identified eight DRA alleles (DRA*01,*03–*05,*07,*09–*11;

GenBank accession numbers AJ575299, EU930126, EU930121,

EU930118, HQ637394–HQ637396), which were previously

reported in this population [41]. This locus exhibited a total of

six single nucleotide polymorphisms (SNPs) and four amino acid

replacements, two of which occurred at ABS.

( f ) Statistical analyses
Relationships between DRA variation and parasitism were

assessed using generalized estimation equations (GEE), or
marginal models analysed within the generalized linear model

framework [53], and the following parasitological response vari-

ables: (i) GI parasite intensity defined as the square root (applied

to reduce overdispersion) of the estimated number of nematode

EPG of faeces, and (ii) ectoparasite intensity in terms of the

number of ticks. We further assessed effects of co-infection by

testing for a direct relationship between parasite types in an inde-

pendent GEE analysis. Model estimates were determined by

incorporating zebra identification as a random effect, following

an exchangeable working correlation structure that accounts for

repeated measurements from individuals [54,55]. A Poisson

error distribution with log-link function was specified; with the

GEE approach, however, no specific error distribution was

directly assumed.

Previous research has shown corresponding patterns in the

peaks of rainfall and GI parasitism, revealing season and age

as significant predictors of GI parasitism in our study population

[35]. Therefore, we accounted for season, sex and age in all stat-

istical models. Season was defined based on rainfall observed

during the study period (2007–2010), and a one-month lag was

applied due to a known time lag in parasite egg shedding

behind rainfall [56]. Thus, the wet season was defined as Novem-

ber to May and dry season as June to October (electronic

supplementary material, figure S1). Individual age was

represented as a continuous variable.

We fitted models with genetic explanatory variables that

allowed for testing the hypotheses of heterozygote advantage,

frequency-dependent and fluctuating selection (electronic

supplementary material, table S1). We defined heterozygote advan-

tage as heterozygotes having higher fitness than the average of

homozygotes in the population, which can be explained by the

‘dominance’ of resistant alleles [24]. Heterozygosity was included

as a binary fixed effect (i.e. heterozygote or homozygote). We also

included heterozygosity as the number of SNPs observed within

an individual’s genotype to address the divergent allele advantage

hypothesis. To address the frequency-dependent hypothesis, we

included the presence or absence of rare (less than 5%:

DRA*07,*10,*11), mid-frequency (5–10%: DRA*01*09,*05) and

common alleles (more than 15%: DRA*03,*04) as explanatory vari-

ables. Allele frequencies were determined from our population

data (electronic supplementary material, table S2). Finally,

we fitted an allele model for each parasite response variable that

included all DRA alleles (presence or absence of allele) as fixed

effects, to assess whether specific alleles were behind observed

associations between allele frequency classes and parasitism.

In choosing model parameters, we evaluated pairwise scat-

terplots, correlation coefficients and variance inflation factors

(VIFMAX, 3) among explanatory variables to identify outliers

and assess collinearity. Heterozygosity was highly correlated

with SNPs, and thus we fitted our models by including these

variables separately. We contrasted genetic with null models

that included season, sex and age as covariates. In total, 49

models were examined (electronic supplementary material,

tables S3 and S4) per response variable.

Model selection was conducted using the quasi-likelihood

information criterion (QIC) [57], with best-fit models indicated

by the smallest QIC values. Interactions among genetic variables

were considered to account for the combined effects of hetero-

zygosity and allele frequency. Model fit was evaluated by the

difference from the best-fit model (DQIC ¼ QICi – QICmin),

improvement over the best-fit null model (DQIC/QICnull) and

QIC weights (w) [58]. The effect of model structure was evaluated

by marginal R2 (R2
MARG) [59] or the proportion of variance in the

response variable explained by the fitted model [55]. Finally, we

validated candidate models by plotting Pearson’s residuals

against model-fitted values to assess homogeneity, examined

residual histograms to assess normality and plotted residuals

against each explanatory variable to test for homogeneity of



Table 1. Coefficient estimates and significance of parameters in best-fit models predicting GI and ectoparasitism (ECTO) in zebras. Coefficient s.e., Wald Z-test
statistics, p-values and effect sizes (with 95% CIs) are reported. Maximum cluster size was 5 for both models.

response coefficients estimate s.e. z-value p(>jzj) effect size

GIa (intercept) 3.718 0.119 927.09 ,2 � 10216***

season (wet) 0.201 0.057 12.54 4.0 � 1024*** 1.22 (1.09 – 1.37)

sex (male) 0.126 0.102 1.52 0.218 1.13 (0.93 – 1.39)

age – 0.011 0.008 1.65 0.199 0.99 (0.97 – 1.00)

SNPs 0.039 0.032 1.52 0.217 1.04 (0.98 – 1.11)

common ( presence) 0.104 0.090 1.33 0.249 1.11 (0.93 – 1.32)

rare ( presence) 0.150 0.042 12.71 3.6 � 1024*** 1.16 (1.07 – 1.26)

SNPs � common – 0.078 0.036 4.82 0.028* 0.92 (0.86 – 0.99)

ECTO (intercept) 1.179 0.271 18.95 1.3 � 1025***

season (wet) – 0.191 0.101 3.58 0.059 0.83 (0.68 – 1.01)

sex (male) – 0.046 0.173 0.07 0.789 0.96 (0.68 – 1.34)

age 0.021 0.026 0.65 0.422 1.02 (0.97 – 1.07)

common ( presence) 0.344 0.172 4.02 0.045* 1.41 (1.01 – 1.98)

mid ( presence) – 0.019 0.175 0.01 0.913 0.98 (0.70 – 1.38)

rare ( presence) 0.056 0.173 0.10 0.748 1.06 (0.75 – 1.48)
aResponse variable for GI parasitism was square-root transformed.
*p , 0.05, ***p , 0.001.
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error variances. Significance of parameter estimates was

determined using a Wald test [54] and coefficients (b) were expo-

nentiated (eb) for interpretation as incidence rate ratios. In allele

models, we controlled for multiple testing of allele effects by

using a modified false discovery rate (FDR) procedure [60] to

adjust the critical p-value (a). All computations were carried

out using R v. 2.14.2 [61] with GEE fitting performed in geepack

[62], assessment of collinearity using the corvif function [63] and

calculation of Pan’s QIC [57] in yags [64].
3. Results
(a) Ecological patterns in parasitism
Mean (+s.e.) strongylid nematode egg count was 2524

(+129) EPG, ranging from 100 to 8050 EPG. We sampled

an average of 4.7 (+0.3) ticks per individual (range: 0–29

ticks/individual). Of these, the majority of individuals

(91%) were infected by the tick species R. e. mimeticus,

supporting previous research on ticks from zebra of this

region [65]. Fewer individuals sampled were infected by

H. truncatum (20%), H. rufipes (11.4%), R. sulcatus (1%) or

R. turanicus (1%). GI parasitism was significantly higher in

the wet than the dry season (electronic supplementary

material, figure S2): mean nematode FEC was 2893(+167)

EPG and 1816(+152) EPG in the wet and dry seasons,

respectively. By contrast, there was no apparent relation-

ship with sex or age. The null model of GI parasitism

(R2
MARG ¼ 0:13) also revealed a significant effect of season

(0.217+0.051, p , 0.001; electronic supplementary material,

table S5), predicting increased parasitism in the wet season.

Initial data exploration exposed one high-leverage outlier

within the ectoparasite data; therefore, we removed this

observation from our data prior to model selection. There
was no obvious effect of any of the evaluated ecological vari-

ables on tick abundance (electronic supplementary material,

figure S2), although the null model for ectoparasitism

revealed marginal significance for season (20.204+0.105,

p ¼ 0.052; electronic supplementary material, table S5),

indicating decreased ectoparasite load in the wet season com-

pared with the dry season. This model, however, provided a

poor fit to the data (R2
MARG ¼ 0:03).
(b) Genetic effects on gastrointestinal parasitism
The inclusion of genetic variables improved the GI parasite

model fit (DQIC ¼ 86.13, per cent improvement ¼ 0.08%;

R2
MARG ¼ 0:19) with the best-fit model including SNPs,

common and rare alleles. Consistent with null model results,

the best-fit model indicated a significant effect of season

(0.201+0.057, p , 0.001; table 1 and figure 2a; electronic

supplementary material, figure S3). The presence of a rare

allele in the DRA genotype predicted increased GI parasite

burden (0.150+0.042, p , 0.001), while there was no signi-

ficant effect of common alleles. This model also included

a significant interaction between common allele presence

and number of SNPs at the DRA locus (20.078+ 0.036,

p ¼ 0.028), signifying a negative relationship between

SNPs and GI parasites in heterozygotes with a common

allele (figure 3). Coefficient estimates of explanatory vari-

ables from a maximal genetic GI parasitism model were

consistent with both null and best-fit models (electronic

supplementary material, table S5).
(c) Genetic effects on ectoparasitism
Inclusion of genetic variables improved the model fit (DQIC¼

666.82, per cent improvement ¼ 27.16%; R2
MARG ¼ 0:07) and
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the best-fit model included common, mid-frequency and rare

alleles as genetic explanatory variables (table 1). Again, mar-

ginal significance for a seasonal effect was found (20.191+
0.101, p ¼ 0.059) and the presence of a common DRA allele

predicted increased tick burden (0.344+0.172, p ¼ 0.045;

figure 2b; electronic supplementary material, figure S3). The

maximal model did not reveal any significant effects (electronic

supplementary material, table S5).

(d) DRA allele effects
The inclusion of allelic variables into the model improved null

models for both GI (percentage improvement ¼ 33.5%;

R2
MARG ¼ 0:22) and ectoparasitism (percentage improvement ¼

5%; R2
MARG ¼ 0:17). Allelic models corroborated seasonal effects

on GI parasite load (0.200+0.053, p , 0.001; electronic sup-

plementary material, table S6 and figure S4). In further

agreement, the presence of a rare allele in an individual’s geno-

type predicted increased GI parasite intensity (DRA*07:

0.245+0.088, p¼ 0.005; DRA*10: 0.273+0.126, p¼ 0.030;

DRA*11: 0.474+0.189, p¼ 0.012), while SNPs had a negative

relationship with GI parasitism (20.085+0.044, p¼ 0.05). The

ectoparasite allelic model revealed that common alleles are sig-

nificant predictors of increased tick burden (DRA*03: 0.879+
0.301, p¼ 0.004; DRA*04: 1.014+0.362, p ¼ 0.005; electronic

supplementary material, table S6 and figure S4). Effects of a
mid-frequency (DRA*05; 0.484+0.236, p¼ 0.041) and rare

allele (DRA*10; 0.730+0.359, p ¼ 0.042) were also uncovered

but were not significant after applying the FDR critical p-value

(a ¼ 0.016).
(e) Relationships between parasite types
Results from statistical models of GI parasitism and ectopar-

asitism warranted further post hoc investigation into whether

a direct inverse relationship (i.e. a co-infection effect) exists

between these broadly grouped parasite types. We used the

joint parasite data from a subset of our dataset (n ¼ 106) to

conduct an independent statistical analysis, analysing tick

abundance as an explanatory variable for GI parasitism. We

found that the co-infection coefficient was not significant

(20.005+0.008, p ¼ 0.51). Furthermore, when tick abun-

dance was added as a covariate to null, maximal and

best-fit GI models, the results were similar.
4. Discussion
In this study, we found significant immunogenetic effects

predicting parasite intensity in E. quagga. These data suggest

that the MHC locus, ELA-DRA, is centrally involved in a

complex interplay between host and parasite, and support
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the occurrence of parasite-mediated frequency-dependent

and/or fluctuating selection acting on this locus. Alleles pre-

sent at opposing population frequencies conferred increased

susceptibility to different parasite types; rare alleles were

associated with increased GI parasitism and common alleles

with increased ectoparasitism. This highlights a possible host

immunogenetic trade-off, with multiple parasite groups com-

petitively shaping patterns of MHC diversity. Although we

found little conclusive evidence for heterozygote advantage,

an interaction between an allele effect and heterozygosity, in

terms of allelic divergence within the DRA genotype, implies

that multiple selective mechanisms may act in concert.
(a) Roles of parasite-mediated selective mechanisms
Heterozygote advantage has been supported by indivi-

dual heterozygosity at MHC loci associated with increased

parasite resistance under both natural [15,25,26] and exper-

imental conditions [24]. Others found no association with

heterozygosity [21] or even reduced heterozygote fitness

[66], probably due to resistance being recessive rather than

dominant. Here, we found that DRA heterozygosity was

not a significant predictor of parasite intensity. Our analysis,

however, contrasted population-averaged parasite loads of

heterozygotes versus homozygotes and did not account for

overdominance, where the heterozygote is superior to both

homozygotes of the respective alleles in its genotype. This

is worthy to note given that only overdominance has been

shown to maintain balanced allele frequencies [8]. Thus, we

emphasize that further examination of the effects of specific

genotypes is needed to assess the importance of heterozygote

advantage in this system. However, our data suggest hetero-

zygosity defined more explicitly at the molecular level (i.e.

genotypic mutational differences) had an inverse relationship

with GI parasitism. These results support the divergent allele

advantage hypothesis [27], which asserts that more divergent

alleles will increase functionality in the peptide-binding

repertoire and have higher adaptive value.

Frequency-dependent selection may play a role in main-

taining MHC diversity if new or rare alleles confer a fitness

advantage to the individual [8]. In lemurs, Schad et al. [13]
found evidence for frequency-dependent selection; rare

MHC alleles were associated with low and common alleles

with high nematode loads. Our study similarly supports

the occurrence of frequency-dependent selection, with signi-

ficant effects of specific DRA alleles on parasitism, and

moreover by effects of different allele frequency classes. In

particular, rare allele presence predicted a 16% increase in

the population-average GI parasite load, whereas common

allele presence predicted a 41% increase in ectoparasite load

(table 1; electronic supplementary material, figure S3).

Specific alleles were found to be behind these effects (elec-

tronic supplementary material, table S6 and figure S4).

Model effect size (R2), although low, indicated that allele

variables help explain a greater proportion of the variation

in ectoparasitism (null model: R2 ¼ 0.03; genetic model:

R2 ¼ 0.07; allele model: R2 ¼ 0.17), whereas allele variables

only slightly improved GI parasite model fit over frequency

variables (null model: R2 ¼ 0.13; genetic model: R2 ¼ 0.19;

allele model: R2 ¼ 0.22). This suggests a greater role for

frequency effects on GI parasite response, while specific MHC

alleles may be more significant in driving ectoparasite

response dynamics.

Fluctuating selection, driven by spatial and temporal vari-

ation in parasite communities, may alternatively or

concurrently be a plausible explanation for allele–parasite

associations. This mode of selection is theoretically capable

of preserving MHC diversity, independent of either heterozy-

gote advantage or frequency-dependent selection, if parasite

pressures vary temporally and host resistance alleles are

dominant [23]. We previously found that the DRA exhibited

a skewed allele frequency distribution in E. quagga of ENP,

differing from that in KNP [44]. This difference is consistent

with spatially fluctuating selection and indicative of critical

differences in the drivers of selection between the host popu-

lations. The more arid climate of ENP is thought to be

responsible for the relatively lower Strongylinae nematode

species richness observed in plains zebra of ENP [34]. Con-

gruent with this, tick species richness is lower in ENP—a

total of four or five Ixodidae spp. were found previously [65]

and in this study, whereas seven Ixodidae spp. have been

identified in zebra of KNP [67]. Our data suggest rare DRA
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alleles in ENP zebra increase susceptibility to GI parasite

infections, and thus nematodes may play a greater selective

role on the MHC owing to the combination of low species

richness, but high prevalence and abundance [35]. Although

GI parasites may be significant drivers of selection at this

MHC locus, it is possible that we have only observed a snap-

shot of the process in time and that this MHC–parasite

system exists in a state of flux. Further studies that investigate

allele/genotype fitness over time and space are warranted for

a comprehensive understanding of the selective processes

acting on the MHC.

(b) ‘Susceptibility alleles’ and an immunogenetic
trade-off

We found specific DRA alleles associated with increased

parasitism, thereby conferring susceptibility rather than

resistance to both parasite types, in consonance with other

studies reporting associations of genetic variants with suscep-

tibility in wildlife [13,28,29]. A mechanism that would allow

maladaptive genetic alleles to be maintained is pleiotropy,

the phenomenon that a single gene can affect multiple

traits. Pleiotopic effects are believed to be widespread in

nature and have been theoretically shown to reduce the abil-

ity of beneficial alleles to achieve fixation [68]. Kubinak et al.
[69] demonstrated how disease-causing MHC alleles may be

maintained through antagonistic pleiotropy between a

mouse-specific retrovirus and its host, resulting in trade-offs

between MHC genotypes. Experimental evidence for MHC

heterozygote superiority against multiple pathogens was

also presented as a means for persistence of susceptibility

alleles [24]. In a study on house sparrows, Loiseau et al.
[28] provided evidence for antagonistic effects of a MHC

class I gene on multiple malarial parasite strains, suggesting

that these effects allowed for the persistence of deleterious

‘susceptibility alleles’ in the population and may arise due

to within-host competition between parasites.

Our results show opposing DRA allele associations with ticks

versus GI nematodes and imply that an MHC trade-off alters

resistance/susceptibility to multiple parasites in this system.

Whereas alleles inferred to be beneficial for reducing GI parasites

have been driven up to high frequencies, alleles associated with

susceptibility have apparently been selected against, and hence

are rare in the population. With this, there is a host immuno-

genetic trade-off for nematode resistance, in the form of

increased susceptibility to ticks. The implications of resistance

costs in determining an equilibrium level of resistance have

been widely discussed and exemplified in predator/patho-

gen–prey model systems of Escherichia coli [70] and plants

[71]. Hence, we hypothesize that the observed skew in the
DRA frequency distribution supports the conclusion that GI

parasites play a more significant role in shaping patterns of

variation at this locus than do ticks, and pleiotropic effects

modulate resistance/susceptibility to multiple parasites in this

system. Finally, the lack of significant co-infection effects

suggests that a direct relationship between parasite types does

not exist, corroborating our hypothesis that parasitism is modu-

lated indirectly, through the host immune system. This is

strengthened by the fact that these parasites inhabit different

areas of the host’s body and do not physically interact.
5. Conclusion
This study elucidates the selective mechanisms acting on an

MHC locus in the presence of multiple parasites. Strong sup-

port was found for selection by parasites on zebra hosts,

modulated by frequency-dependent and/or fluctuating selec-

tion. Further, these data suggest that heterozygote advantage,

under a divergent allele hypothesis, plays a role in conferring

resistance to GI parasites. Most significantly, this study

uniquely reports antagonistic effects of a MHC gene modu-

lating susceptibility/resistance to multiple parasites, while

excluding the possibility of direct parasite competition. We

hypothesize that the presence of disadvantageous ‘suscepti-

bility alleles’ in this population reflects an immunogenetic

trade-off. These findings underscore the importance of con-

sidering multiple parasites when investigating the selective

mechanisms driving host immune gene variation.
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