
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Optimizing for Robot Transparency

Permalink
https://escholarship.org/uc/item/5q20h9cs

Author
Huang, Sandy Han

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5q20h9cs
https://escholarship.org
http://www.cdlib.org/

Optimizing for Robot Transparency

By

Sandy H. Huang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:
Professor Anca Dragan, Co-chair
Professor Pieter Abbeel, Co-chair

Professor Juliana Schroeder

Summer 2019

Optimizing for Robot Transparency

Copyright 2019
by

Sandy H. Huang

1

Abstract

Optimizing for Robot Transparency

by

Sandy H. Huang

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Anca Dragan, Co-chair
Professor Pieter Abbeel, Co-chair

As robots become more capable and commonplace, it becomes increasingly
important that they are transparent to humans. People need to have accurate mental
models of a robot, so that they can anticipate what it will do, know when and where
not to rely it, and understand why it failed. This helps engineers ensure safety
and robustness of the robot systems they develop, and enables human end-users to
interact more safely and seamlessly with robots.

This thesis introduces a framework for producing robot behavior that increases
transparency. Our key insight is that a robot’s actions do not just influence the
physical world; they also inevitably influence a human observer’s mental model of the
robot. We attempt to model the latter—how humans might make inferences about a
robot’s objectives, policy, and capabilities from observations of its behavior—so that
we can then present examples of robot behavior that optimally bring the human’s
understanding closer to the true robot model. In this way, our framework casts
transparency as an optimization problem.

Part I introduces our framework of optimizing for robot transparency, and applies
it in three ways: communicating a robot’s objectives, which situations it can handle,
and why it is incapable of performing a task. Part II investigates how transparency is
useful not just for safe and seamless interaction, but also for learning. When humans
teach a robot, giving human teachers transparency regarding what the robot has
learned so far makes it easier for them to select informative teaching examples.

i

To my parents, Ningning Han and Xiaoqiu Huang

ii

Contents

List of Figures v

List of Tables viii

Acknowledgments ix

1 Introduction 1

2 Framework 5
2.1 Communicating Objectives . 8
2.2 Communicating Dynamic Constraints 10
2.3 Communicating Policies . 13
2.4 Transparency During Teaching . 14

I Improving Human Mental Models of Robots 16

3 Communicating Robot Objectives 17
3.1 Motivation and Background . 17
3.2 Related Work . 21
3.3 Approach: Algorithmic Teaching of Objectives 22

3.3.1 Preliminaries . 22
3.3.2 Algorithmic Teaching Framework 23
3.3.3 Exact-Inference IRL as a Special Case 24
3.3.4 Approximate-Inference Models 25
3.3.5 (Submodular) Example Selection 28
3.3.6 Hyperparameter Selection . 29

3.4 Experiments . 29
3.4.1 Experimental Domain . 29
3.4.2 Analysis with Ideal Users . 32

Contents iii

3.4.3 User Study . 34
3.4.4 Utility of Algorithmic Teaching 38

3.5 Analysis of Alternative Learner Models 41
3.5.1 Feature Mismatch . 41
3.5.2 Approximate-Inference Hyperparameter Mismatch 44
3.5.3 Hybrid Models . 45

3.6 Discussion . 47

4 Expressing Robot Incapability 50
4.1 Motivation and Background . 50
4.2 Related Work . 52
4.3 Approach: Generating Attempt Motions 54

4.3.1 Expressing Incapability, Formalized 54
4.3.2 Comparing Cost Functions . 57

4.4 Experiments . 61
4.4.1 Timing Motions That Express Incapability 61
4.4.2 Comparing Repeated Attempts 63
4.4.3 Main Study: Is Expressive Motion Expressive? 63

4.5 Discussion . 70

5 Establishing Appropriate Trust in Black-Box Policies 72
5.1 Motivation and Background . 72
5.2 Approach: Computing & Using Critical States 74

5.2.1 Preliminaries . 74
5.2.2 Computation of Critical States 76
5.2.3 Using Critical States . 77
5.2.4 Justification of Critical States 78

5.3 Experiments . 78
5.3.1 User Study: Impact of Critical States 78
5.3.2 User Study: Utility of Critical States 82

5.4 Discussion . 86

II Transparency for Robot Learning 88

6 Nonverbal Robot Feedback for Human Teachers 89
6.1 Motivation and Background . 90
6.2 Related Work . 91
6.3 Approach: Nonverbal Feedback . 93

6.3.1 Assumptions on Robot Learning Algorithm 93

Contents iv

6.3.2 Generating Feedback . 93
6.4 Analysis in Theory: Why Will Feedback Help? 95

6.4.1 Model of Human Teachers That Incorporates Feedback 95
6.4.2 Impact of Feedback . 97

6.5 Analysis in Practice: Feedback Helps 99
6.5.1 Design . 100
6.5.2 Results . 101

6.6 Analysis in Practice: Robot Gaze . 106
6.6.1 Design . 106
6.6.2 Results . 106

6.7 Discussion . 107

7 Conclusion 108

Bibliography 110

v

List of Figures

1.1 When human end-users see informative examples of a robot’s behavior,
they more quickly improve their mental model of this robot, compared to
the typical approach of relying on passive familiarization. 2

1.2 We investigate how showing informative examples of robot behavior can
improve human end-users’ understanding of how a robot will act, which
situations it can handle, and why it fails. 3

2.1 The robot’s objective is to reach the dark blue square while avoiding grey
squares. Assuming the robot acts optimally and can start from any state,
starting from the bottom-right in this grid world best communicates its
objective. 8

2.2 After seeing the informative trajectory, the belief is concentrated on the
true θ∗, whereas the uninformative trajectory leaves uncertainty over θs. 9

2.3 Our approach automatically generates an expressive trajectory that com-
municates θ∗—both the robot’s objective function and the dynamics. . . 11

2.4 The robot can only move up and right, and it cannot cross grey squares.
Assuming its policy is trained with a higher reward for the dark blue than
light blue goal, then it will have a single critical state, at which moving
up is significantly preferred to moving right. 14

3.1 Examples of informative and uninformative robot behaviors, in terms of
guiding humans toward understanding the robot’s objective function. . . 18

3.2 A visual comparison of how probabilities of candidate reward parameters
may be updated for exact-inference and approximate-inference learners. . 25

3.3 The possible driving environments cluster naturally into four classes, with
two trajectory strategies per class. 31

3.4 The number of examples shown in each of the eight trajectory classes for
the approximate-inference models, exact inference model, and random
baseline. 33

List of Figures vi

3.5 The performance of each user model, as evaluated by all other models. . 34
3.6 Performance of human participants on identifying the autonomous car’s

trajectory in test environments, after seeing the example trajectories
selected by the approximate-inference models, and after adding coverage. 36

3.7 There is no correlation between total number of environments shown in
a condition and average participant performance, but there is a corre-
lation between the number of helpful environments shown and average
participant performance. 37

3.8 The performance of each user model, as evaluated by all other models.
The assumed and true learner models differ in terms of either features
considered or hyperparameters. 42

4.1 We introduce a method to generate motion for incompletable tasks that
communicates both the intended goal of the task and why the robot is in-
capable of completing the task. The method generates an attempt motion
meant to resemble successful execution, while obeying the constraints on
the robot’s limitations. 51

4.2 For a given incompletable task, the robot first executes the task until the
point of failure, at which point it executes the attempt trajectory. To
emphasize this motion, the robot then repeats this two more times. . . . 57

4.3 Attempt trajectories that optimize the emulate-end-effector cost function,
with each of the three proposed distance metrics. 58

4.4 Attempt trajectories that optimize either the configuration- or workspace-
based cost function, with the projection distance metric. 59

4.5 Attempt trajectories that optimize our chosen cost function and distance
metric (emulate end effector and projection distance, respectively), for
five incompletable tasks. 60

4.6 Average Likert ratings toward different timings. 62
4.7 Average Likert ratings comparing repetitions with no repetitions. 64
4.8 Ratings toward the correct goal for each task, for expressive and repeated-

failure motions. 68
4.9 Ratings toward the correct cause of incapability for each task, for expres-

sive and repeated-failure motions. 69
4.10 Ratings toward the Likert statements used in Sec. 4.4.3, for expressive

and repeated-failure motions. 70

5.1 By introducing human end-users to a policy’s critical states, we enable
them to make a more informed decision about whether to deploy the
policy, and when to take control from it. 73

List of Figures vii

5.2 The query states and sets of critical states shown in our user study for
Pong. 79

5.3 Ratings for Likert statements in Sec. 5.3.1, averaged across participants
in each condition. 80

5.4 Participants’ yes/no responses for whether they would take control of the
policy at a particular query state. 81

5.5 The query states and a subset of the ten critical states shown in our main
user study. 84

5.6 Ratings for Likert statements in Sec. 5.3.2. 84
5.7 Additional ratings for Likert statements in Sec. 5.3.2. 85
5.8 Participants’ responses for whether they would take control of the policy

at a particular query state. 85

6.1 The robot uses its learned model to anticipate the teacher’s next action
and then uses gaze to communicate its belief to the teacher. 91

6.2 For mismatched priors, algorithmic teaching with feedback achieves higher
learner performance. 98

6.3 With feedback, iterative and uncertainty-aware teachers (orange) can
track the learner’s state accurately for most mismatch conditions. In
contrast, teachers significantly overestimate learner performance when
there is no feedback. 99

6.4 AMT teaching interface, where allowable object-in pairings are easily
visualized, and learners that provide feedback explicitly communicate
their intent. 100

6.5 Discrepancy in teacher’s belief of actual (final) learner ability to sort inner
and outer ring objects is lower in the presence of feedback. 102

6.6 Learner performance (6.14) versus teaching iteration in the online study
(left three) and in the in-person study with a biased prior (right-most). . 103

6.7 Likert scale responses from the AMT study, in which users taught learners
with and without feedback. 104

6.8 Real-world experiment flow: a participant gives a demonstration to the
PR2, with feedback. 106

6.9 Proportion of demonstrated objects from the outer ring on AMT (left)
and in-person (right). (*) indicates p < 0.05 and (***) p < 0.0005. 107

viii

List of Tables

3.1 Parameters of simulated driving environments 30

4.1 List of incorrect plausible goal and cause of incapability statements
participants had to choose from. 66

6.1 ANOVA Results for AMT Study Likert Questions. 105

ix

Acknowledgments

I am deeply grateful for the support I have received during my Ph.D. First, I
would like to thank my co-advisors, Professors Anca Dragan and Pieter Abbeel.
Both Anca and Pieter are amazing mentors, who care deeply about the success and
wellbeing of their students. Anca introduced me to algorithmic HRI; my class project
with her continued in several open-ended directions, and became the foundation of
this thesis. I have learned so much from Anca and Pieter—how to pick impactful
research problems, write clear papers, make pretty figures, give cohesive presentations,
and mentor others in research. I am incredibly grateful for the time and effort they
have dedicated to helping me grow.

I would also like to thank Professors Juliana Schroeder, John Canny, and Tom
Griffiths, for serving on my qualifying and thesis committees, and for providing
valuable feedback on the content of my thesis. I also learned a great deal from my
peers at Berkeley, in particular from the other students in Anca and Pieter’s lab. I
want to especially thank those who contributed to the work in this thesis—Minae
Kwon, Isabella Huang, Ravi Pandya, David Held, and Kush Bhatia.

I gratefully acknowledge the funding I received from the Berkeley Chancellor’s
Fellowship and the NSF Graduate Research Fellowship, which gave me the flexibility
to explore and pursue my research interests, without being dependent on grant
funding. Looking back, my undergraduate research experiences at Stanford were the
initial steps that led me down the path to getting a Ph.D. I want to thank Professors
Nigam Shah and Jure Leskovec for giving me the opportunity to learn in their labs.

Beyond research, I am grateful to my friends for helping me stay happy and
maintain balance. I will always have fond memories of our Chinese New Year
dumpling parties, fire trail runs, board game nights, and exciting post-conference
travel. Thank you Hong Van Pham, Sophia Nguyen, Alex Lee, Robert Nishihara,
Chelsea Finn, Dylan Hadfield-Menell, Carlos Florensa-Campo, Grant Ho, Richard
Zhang, Jacob Andreas, Eriz Tzeng, John Bolander, Elliott Jin, and Adam Kosiorek.

Finally, I would like to thank my parents and family for their unwavering love
and support. I couldn’t have done this without you.

1

Chapter 1

Introduction

Interactions between robots and humans are becoming increasingly common and
necessary, as robots become more capable and widely deployed. This is already
happening in factories [1–3], hotels and hospitals [4, 5], homes [6, 7], and on the
road [8]. Whether robots operate in collaboration with, side-by-side with, or in
service of humans, making human-robot interactions safe and seamless for humans is
essential.

Safe and seamless human-robot interaction depends on human end-users having a
reasonably-accurate mental model of the robot: in other words, a robot’s objectives,
policy, and capabilities should be transparent to end-users. When humans have an
inaccurate or incomplete mental model of a robot—and thus their expectations of the
robot are mismatched with reality—there is a greater chance of negative outcomes.
For instance, a safety driver may incorrectly expect an autonomous car to handle a
safety-critical situation appropriately, and thus fail to take control from the car. Or,
she may be surprised, scared, or panicked and unnecessarily take control when the
car drives in an unexpected (but still safe) way.

Once human end-users start interacting with a robot in the real world, over time
their mental model of the robot gradually improves; this is known as familiarization [9]
(Fig. 1.1, gray). But this process of passive familiarization may take a while, because
it depends on which situations the robot happens to encounter in the world. A
passenger riding in an autonomous car might need hours, or even days of interaction
in order to develop an intuitive understanding of how this car drives and which
situations it can handle.

During passive familiarization, humans spend a significant amount of time in-
teracting with robots that they have poor mental models of, which is dangerous.
Another approach to familiarization, that works in highly structured environments
like factories, is to enumerate how a robot will act in all possible situations. But

2

in most real-world domains in which we would like to deploy robots, this enumera-
tion is impossible—for instance, the traffic situations that an autonomous car may
encounter, or crowd configurations in a hotel lobby.

execution timeun
de

rs
ta

nd
in

g
of

 r
ob

ot

deployment

informative

passive

Figure 1.1: When human end-users see
informative examples of a robot’s behavior
(orange), they more quickly improve their
mental model of this robot, compared to
the typical approach of relying on passive
familiarization (gray).

This thesis proposes an alternative to
the existing options for familiarization.
Our key insight is that a robot’s actions
not only affect the physical world, but
also inevitably affect a human observer’s
mental model of that robot. With this
in mind, we can optimize for informa-
tive examples of robot behavior to show
human end-users, to speed up the fa-
miliarization process (Fig. 1.1, orange).
“Informative” examples are those that op-
timally bring this mental model closer
to the true robot model, given what we
know (or assume) about how humans up-
date their mental model of a robot based
on observations of its behavior. In this
way, our framework casts transparency
as an optimization problem.

Our framework can also be seen as optimizing for transparency via algorithmic
teaching. In algorithmic teaching, the teacher knows how the student learns, and
thus can select examples that optimally teach that student. In our framework, we
have a model of how humans will make inferences about a robot’s objectives, policy,
and capabilities based on examples of robot behavior. Then we can leverage this
model to select examples of robot behavior that optimally teach humans the robot’s
true objectives, policy, and capabilities.

Part I describes how we apply our framework toward achieving several possible
aims of transparency:

• Chapter 3 tackles the question of how to help users anticipate how a robot will
act, even in situations that they have not seen the robot act in before.1 Our
approach is to achieve this by giving users an intuitive understanding of the
tradeoffs in a robot’s objective function—in the case of autonomous cars, this
encodes the car’s driving style. In this setting, informative examples of robot
behavior are those that help humans differentiate between different possible
objectives. So, observing how an autonomous car drives on a mostly empty

1Chapter 3 is based on work published in RSS 2017 and AuRo 2019 [10,11].

3

(a) (b) (c)

✓
✗P

(θ
|ξ

1)

aggressive defensive

ξ1(informative)

expressive
attempt

Figure 1.2: We investigate how showing informative examples of robot behavior
can improve human end-users’ understanding of (a) how a robot will act in new
environments, (b) which situations a robot can handle, and (c) both what task a
robot was trying to do and why it is incapable of accomplishing it.

road is not informative, because cars with different driving styles would still
behave similarly; in contrast, observing how this autonomous car changes lanes
when there is another car in the way is informative, because it highlights the
tradeoff that this car makes between safety and efficiency (Fig. 1.2a). This work
is related to a large body of prior work on inverse reinforcement learning [12],
in which a robot learns an objective function from human demonstrations; in
our case, we attempt to model how humans would infer a robot’s objective
from its behavior.

• Chapter 4 tackles a narrower goal, of communicating the robot’s incapability
with respect to a single task setup.2 The hope is that if users understand
both what a robot is trying to do and why it failed, they would be equipped
to better assist it. We focus on robot failures that are caused by a dynamic
constraint—e.g., trying to lift or push something that is too heavy, or trying
to open a locked door or cabinet. We propose a heuristic, such that optimizing
for robot motion based on this heuristic communicates the objective as well as
the dynamics constraint to humans. This approach automatically generates
expressive attempt motions, and generalizes across different possible failures
(Fig. 1.2c). This work is related to prior work on robots learning both the
objective function and dynamics from human demonstrations [14]; in our case,
we attempt to model how humans would infer this from robot behavior.

• Chapter 5 tackles the question of how to give users an understanding of which
2Chapter 4 is based on work published in HRI 2018 [13].

4

states a robot acts correctly in (Fig. 1.2b).3 In many domains (including
driving), the definition of which actions are “correct” is broad for most states.
For instance, if an autonomous car is driving without any cars nearby, it does
not matter if it slows down or speeds up a little, or turns a little to the right
or left—none of these actions will lead to a collision. However, there is a
relatively small set of states in which it is extremely important which action
the robot takes; we call these critical states. In such domains, human end-users
just need to know how the robot acts (i.e., its policy) in critical states, and
we can communicate this by showing informative examples of robot behavior
that cover the set of states that the robot considers to be critical. Whereas
communicating objectives only applies to policies that perfectly optimize an
objective function, because their tradeoffs must be consistent across situations,
this critical-states approach can be applied to a broader range of robot policies,
including those that are black boxes.

Part II investigates how transparency can be useful, beyond just increasing
comfort and safety in interactions. In Chapter 6, we explore how transparency can
improve human teaching of robots.4

3Chapter 5 is based on work published in IROS 2018 [15].
4Chapter 6 is based on work under submission.

5

Chapter 2

Framework

The main contribution of this thesis is a formalization of what it means to increase
transparency of robots to human end-users. In this chapter, we will first lay out the
general formalization, and then connect this framework to how we achieve specific
aims of transparency in the following chapters.

Let θ∗ denote the parameters that fully specify the robot’s model—this could be,
for example, the weighting on reward features for a robot’s objective function, or the
parameters of a robot’s policy. Then we can denote a person’s mental model of the
robot as P (θ): her belief over the possible parameter settings of the robot’s model.
In this formulation, complete transparency means that the person’s mental model of
the robot is exactly correct; in other words, that P (θ) = 1θ=θ∗ .

Our key insight is that a robot’s actions change not only the physical environment,
but also human observers’ mental models (i.e., understanding) of the robot. Motivated
by this, we formulate increasing transparency in the framework of a Markov Decision
Process (MDP). An MDP is defined by a tuple (S,A,P ,R, γ), where S is the
state space, A the action space, P : S × A × S → R the transition probabilities,
R : S × A × S → R the reward function, and γ ∈ (0, 1] the discount factor. The
following describes each component of our MDP.

• A state [s, b] ∈ S consists of both a physical world state s and a belief over θs,
which we will use the notation b(θ) to denote. S contains all possible physical
world states and human beliefs. For example, if the person is considering k
possible robot models, then b ∈ ∆k, the probability simplex over k dimensions.

• An action ξ ∈ A consists of the robot’s behavior. This can be either a single
action, a, or it can be a sequence of actions [a0, · · · , aT−1]. In general, actions
could be from a variety of modalities, including physical motion, speech, and
visualization.

6

• For the transition probabilities P , we assume we have a model H that captures
how a person will make inference updates to their belief. Recent work in
cognitive science proposed a Bayesian framework for human reasoning about
the beliefs and objectives of other agents [16–19]. In light of this, we assume
that humans perform Bayesian inference over possible robot models, with the
expectation that the robot is acting optimally:

b′(θ) ∝ b(θ)PH(ξ|θ, s) . (2.1)

The choice of PH(ξ|θ), the likelihood of action ξ given θ, depends on what θ
encodes, as described in the following subsections.

• The reward function R captures the improvement in the person’s mental model
of the robot, with respect to the true model, which has parameters θ∗. We
define this as the decrease in KL-divergence between the two models:

R(b, ξ, b′) = −[DKL(1θ=θ∗‖b′(θ))−DKL(1θ=θ∗‖b(θ))] (2.2)
= log b′(θ∗)− log b(θ∗) . (2.3)

• For simplicity, we set the discount factor γ to be 1. This means that all rewards
(i.e., increases in transparency) are equally valued, whether they occur at the
start or the end of a robot trajectory.

We consider a finite-horizon MDP with n steps. In this MDP, the value function
of any policy π, starting at state b1, is

V π(b1) = E[
n∑
t=1

γtR(bt, ξt, bt+1)|π, b1] . (2.4)

Based on our definitions above, the optimal value function (i.e., the best the robot
can do in terms of increasing transparency) is thus

V ∗(b1) = max
ξ1:n

log bn+1(θ∗)− log b1(θ∗) , 1 (2.5)

where bn+1 is the human’s belief, after starting with a prior belief of b1 and observing
n instances of robot behavior, ξ1:n.

1This is because after replacing R(bt, ξt, bt+1) with log bt+1(θ
∗)− log bt(θ

∗) in the summation of
(2.4), the intermediate bt terms (for 1 < t < n+ 1) cancel out in the summation.

7

Since b1 does not depend on the robot’s behavior, we can optimize for transparency
(i.e., obtain maximum reward in this MDP) by choosing examples that satisfy:

arg max
ξ1:n

PH(θ∗ | ξ1:n) . (2.6)

To make more explicit the dependence on ξ1:n and assumption of a model H of human
inference updates, we now switch to the notation PH(θ∗|ξ1:n) in place of bn+1(θ∗).

This framework, of leveraging a model of human inference to optimize for examples
that maximize their understanding, is closely related to the notion of legibility [20]
in robotics. Legible motion makes the intentions of the robot (i.e., which goal it
is moving toward) clear as early as possible in a trajectory. As in legibility, we
focus on robot motion as the mode of communication, because humans naturally
and inevitably draw conclusions about a robot based on its motions. We generalize
the notion of legibility to optimize for human understanding of a robot’s objective
function (Chapter 3), its policy (Chapter 5), and its dynamic constraints (Chapter 4),
rather than only its goals. In the remainder of this chapter, we will describe how
each of these approaches fit into this framework—in particular, what the parameters
θ∗ refer to, what form the examples ξ take, and how the human’s updated mental
model PH(θ∗ | ξ1:n) is computed.

The form the examples ξ take depends on whether the robot has control over
the environment it is placed in. When the environment setup is fixed, then the
robot can communicate via exaggerating its motion—humans are good at drawing
inferences from motion, as observed by animators [21] and leveraged by prior work in
human-robot interaction [20,22,23]. This is the assumption we make when generating
expressive failure motions (Chapter 4).

However, if the robot does have control over the setup of the environment
(which is often the case in simulation, but rarer in the real world), then it can
maximize transparency by both selecting environments based on informativeness
and exaggerating its motion within those environments. This is the assumption we
make for communicating a robot’s objective function (Chapter 3) and its policy
(Chapter 5). In these works, we make an additional simplifying assumption, that the
robot’s actions are optimal rather than exaggerated.

In the following subsections, we describe how to adapt our proposed general
framework to achieve these specific aims of transparency. This is part of the
contribution of this thesis—we show that these varied goals of transparency in
robotics can be tackled via a common approach.

2.1. COMMUNICATING OBJECTIVES 8

2.1 Communicating Objectives
In Chapter 3, we focus on robots that optimize an objective function that is a

linear combination of reward features, with weights θ∗ (Sec. 3.3.1). So, θ∗ encodes
the tradeoffs that a robot makes, and we want to communicate the robot’s objectives
to human end-users by giving them an (intuitive) understanding of what θ∗ is.

Since people naturally get a sense of these tradeoffs as they observe the robot
(optimally) acting in a variety of situations, we select examples ξE that are this
robot’s optimal behavior in a particular environment E. By modeling humans as
performing Bayesian inference over the space of possible objective parameters, it
follows that

PH(θ∗ | ξE1:En) =
1

Z
P (θ∗)

n∏
i=1

PH(ξEi | θ∗) , (2.7)

where Z denotes the normalization constant,
∑

θ∈Θ P (θ)
∏n

i=1 PH(ξEi | θ). PH(ξEi | θ)
denotes the likelihood the person assigns to a particular trajectory ξEi , if they believe
the robot’s objective function is parameterized by θ.

Proof-of-Concept Example

(a) (b)

uninformative informative critical states

(c)
Figure 2.1: The robot’s objective is to
reach the dark blue square while avoiding
grey squares. Assuming the robot acts
optimally and can start from any state,
starting from the bottom-right in this grid
world best communicates its objective.

As a proof-of-concept, we will ap-
ply this to a point robot in a simple
grid world environment (Fig. 2.1), where
θ = [r1, r2, r3]>. Blue squares are termi-
nal states; r1 and r2 are the rewards
for reaching dark-blue and light-blue
squares, respectively. All white squares
have a reward of 0 and grey squares have
a reward of r3 ≤ 0. There are five ac-
tions per grid square location (no-op, up,
down, left, right) and transitions are de-
terministic. Taking an action into a wall
or after running out of power results in
no movement.

We choose θ∗ to be [10, 1,−10] and
set Θ to be all combinations of r1 ∈
{1, 10}, r2 = 11− r1, and r3 ∈ {0,−10}.
Recall that the robot only demonstrates optimal behavior, so the trajectory ξE is
the optimal trajectory in environment E with respect to the true robot objective, θ∗.
We model PH(ξE|θ), the likelihood that a person assigns to ξE given that the robot

2.1. COMMUNICATING OBJECTIVES 9

is making tradeoffs θ, as proportional to the exponentiated cumulative discounted
reward of the trajectory ξE in terms of the objective θ, with a discount factor of 0.9.
This is an exact-inference model, since we assume the person perceives the exact
trajectory ξE, can exactly compute the reward of ξE with respect to the objective θ,
and makes complete inference updates based on this likelihood.

For simplicity, the “environments” that we choose from are each of the possible
starting states of the robot in a single grid world, without also varying the grid
world itself. Given this restriction, the robot best communicates its objective θ∗ by
starting from the white square closest to the light blue square. Its optimal behavior
is to travel all the way around the grey squares in order to reach the dark blue
square—intuitively, we can see that this communicates that the dark blue goal is
significantly preferable to the light blue goal, and the grey squares need to be avoided
(Fig. 2.1). In contrast, if the robot were to start on the white square next to the dark
blue square, then the optimal trajectory would not communicate that grey squares
need to be avoided (Fig. 2.2).

Beyond Grid Worlds

uninformative

inform
ative

Figure 2.2: After seeing the informative
trajectory (Fig. 2.1), the belief is con-
centrated on the true θ∗ (= [10, 1,−10]),
whereas the uninformative trajectory
leaves uncertainty over θs.

Chapter 3 extends this to the domain
of autonomous driving, and a larger set
of possible environments—with a vari-
ety of situations, rather than only al-
tering the starting state in a fixed sit-
uation. We also can no longer assume
an exact-inference model for the likeli-
hood PH(ξE|θ), because realistically, hu-
man observers make noisy inference up-
dates and cannot perfectly observe the
states and actions in a robot trajectory
ξE. Thus, a key contribution of this work
is introducing and evaluating candidate
models of how humans compute this like-
lihood, that incorporate noise from hu-
man inference and perception (Sec. 3.3.2). For evaluation, we compute what the
optimal teaching examples for each candidate model of human inference are, and
then show these examples to real human users and test their resulting understanding
of θ∗.

2.2. COMMUNICATING DYNAMIC CONSTRAINTS 10

2.2 Communicating Dynamic Constraints
In Chapter 4, we focus on robots that fail to complete a task because of dynamics

constraints, and we would like to communicate to a human end-user both what the
robot was trying to do (i.e., its objective) and why it is unable to accomplish it (i.e.,
the dynamics constraints).

Analogously to our approach for communicating objectives, we model humans as
performing Bayesian inference over the space of θs, where each θ specifies both the
robot’s objective and the dynamics constraints it is subject to. Given a trajectory
ξ = [s0, a0, s1, . . . , aT−1, sT], its likelihood P (ξ|θ) depends on both the quality and
feasibility of the transitions in ξ, with respect to θ:

P (ξ | θ) =
T−1∏
i=0

PH(ai | si, θ)PH(si+1 | si, ai, θ) . (2.8)

The term PH(a|s, θ) captures the quality of a transition; a natural choice is for it to be
proportional to the exponentiated Q-value2 of action a in state s, under the objective
specified by θ. The term PH(s′|s, a, θ) depends on the transition probabilities of the
dynamics defined by θ. If the transition (s, a, s′) is impossible under these dynamics,
then this is zero.

Analogous to (2.7), but with the newly-defined likelihood term that takes into
account both the objective and dynamics constraints, humans perform the following
inference update:

PH(θ∗ | ξ) =
1

Z
P (θ∗)P (ξ | θ∗) , (2.9)

where Z is the normalization constant,
∑

θ∈Θ P (θ)P (ξ|θ).
Typically, humans can only observe the states in a robot’s trajectory, not the

actions that the robot takes. For instance, if a robot stops moving after grasping an
object placed on a table, it is not clear to a human observer whether the robot is
pausing, or whether it is exerting a force on the object that is not large enough to
actually move it. Thus, in this case, it is more reasonable to consider a trajectory ξ
to be a sequence of states, [s0, s1, . . . , sT], and we can model humans as marginalizing
over the possible actions that could have led from one state to another:

PH(ξ | θ∗) =
∑
a

PH(a | si, θ∗)PH(si+1 | si, a, θ∗) da . (2.10)

2The Q-value Qθ(s, a) is the expected cumulative discounted reward obtained, if the agent were
to take action a in state s and act optimally thereafter with respect to θ.

2.2. COMMUNICATING DYNAMIC CONSTRAINTS 11

(c) (d)(a) (b)

Figure 2.3: Our approach automatically generates an expressive trajectory that
communicates θ∗—both the robot’s objective function and the dynamics. In this
grid world, the robot starts in the lower-left corner, and receives a reward of 10 for
reaching the dark-blue square and a smaller reward of 1 for reaching the light-blue
square. But the robot cannot cross the dark-grey squares. The posterior belief
PH(θ∗|ξ) is greater than 0.75 for the orange trajectory ξ shown in (a) and greater
than 0.95 for (b), when the true reward is augmented with a proximity reward. The
same is true for (c) and (d), but with the true reward and reasoning about pointing.

Proof-of-Concept Example

As a proof-of-concept, we apply this approach to a point robot in a simple grid
world environment (Fig. 2.3), where θ = [r1, r2, α, β]>. This is the same as the grid
world in Sec. 2.1, except for the dynamics constraints, which are specified by α and β:
α is the amount of power the robot has at the start of the episode (i.e., the number
of time steps it can act before running out of power), and β is 1 if the dark-grey
squares act as walls for the robot and 0 otherwise.

We choose θ∗ to be [10, 1,∞, 1]> and set Θ to be all combinations of r1 ∈ {1, 10},
r2 = 11 − r1, α ∈ {1, 2, . . . , 9, 10,∞}, and β ∈ {0, 1}. We use beam search, with
a width of 10, 000, to find an expressive trajectory that maximizes PH(θ∗|ξ) from
Eqn. (2.9). We assume humans compute the likelihood of actions, PH(a|si, θ), based
on a softmax over the corresponding Q-values:

PH(a|si, θ) =
eQθ(si,a)∑
a′ e

Qθ(si,a′)
. (2.11)

In our grid world, we can compute Q-values exactly via value iteration, with a
discount factor of 0.9. But, when the dynamics constraints in θ prevent the robot
from reaching all goal locations (as is the case for the chosen θ∗), all Q-values are
zero, so there is no incentive for the robot to move at all.

2.2. COMMUNICATING DYNAMIC CONSTRAINTS 12

We consider two options for addressing this. The first possibility is that humans
believe the robot’s proximity to a goal indicates how much the robot values that
goal, even if it cannot actually reach the goal. To capture this, we can augment the
reward with an additional proximity reward,

rproximity(s) = max
g∈G

[(
1− ‖s− g‖1

maxs′ ‖s′ − g‖1

)
r(g)

]
, (2.12)

where state s and goal g are (x, y) locations in the grid, G is the set of all goal
locations, and r(g) is the reward for goal g. We then compute Q-values based on the
augmented reward, r(p) + λrproximity(p). λ determines the tradeoff between the true
reward and the proximity reward; we set this to 0.1 in our experiments. Optimizing
for an expressive trajectory that communicates θ∗ in this way results in a robot that
moves toward the higher-reward goal, in the upper-right corner, and moves back and
forth up there—this communicates both which goal the robot prefers, and that it is
not able to cross the dark-grey barrier (Fig. 2.3(a) and (b)).

Another possibility is that humans intuitively reason about where a robot’s
trajectory is “pointing.” To capture this, we can define PH(ai|si, θ) as the average
between the softmax over Q-values (with respect to only the true reward) and the
softmax over ∑

s′

P (s′|s, a, θ∗) max

(
0,

(s′ − s)>(gbest − s)
‖s′ − s‖‖gbest − s)‖

)
, (2.13)

where gbest denotes the (x, y) location of the highest-reward goal. Optimizing for an
expressive trajectory that communicates θ∗ in this way results in similar trajectories
as with the first approach (Fig. 2.3(c) and (d)).

Beyond Grid Worlds

In Chapter 4, we apply this approach to generate expressive failure motions
on a real robot, that communicate both the robot’s objective and the dynamics
constraints that prevent it from completing its task. We introduce an approximation
based on the proximity reward, taking inspiration from the behavior that emerges in
Fig. 2.3(b). We first use trajectory optimization to find an attempt trajectory that
is as close as possible to what a successful trajectory would look like, while being
subject to the dynamic constraints. Then we augment this with the back-and-forth
motion that we see in the grid-world trajectories.

2.3. COMMUNICATING POLICIES 13

2.3 Communicating Policies
In Chapter 5, instead of assuming that humans model the robot as doing opti-

mization and use that to infer how the robot acts, here we focus on modeling the
policy itself: θ∗ denotes the parameters of the function approximation for a robot’s
policy, πθ∗ . For a neural network policy, for example, θ∗ would be the concatenated
network weights of the trained policy. As before, we model humans as performing
Bayesian inference over the space of possible θs. For a set of state-action pairs
{(s1, a1), (s2, a2), . . . , (sn, an)}, where each ai = πθ∗(si) is the action chosen by the
robot’s policy, we model humans as inferring

PH(θ∗|{(si, ai)}1:n) =
1

Z
P (θ∗)

n∏
i=1

PH(ai | si, θ∗) , (2.14)

where Z is the normalization constant,
∑

θ∈Θ P (θ)
∏n

i=1 PH(ai | si, θ). Note that
unlike before, we do not constrain these state-action pairs to be from a single
trajectory.

Unfortunately, there are no true informative examples that distinguish θ∗ from
other possible parameters, for expressive policy function approximations. This is
because if the policy class has high enough capacity, then each example (s, πθ∗(s))
only provides enough information about θ∗ to reconstruct how πθ∗ acts at state
s, leaving the policy’s behavior across the rest of the state space undefined. To
communicate its θ∗, the robot would need to show how it acts at every single state,
which is impossible for large or continuous state spaces.

However, if we look at stochastic policies, our observation is that most tasks
do not require taking a specific action, but allow for flexibility in which action to
take. Only a few of the states are critical states, in which it is very important to
take one or a few actions over others. So, we only need to show enough examples to
communicate what the critical states of πθ∗ are and what actions this policy prefers
in those states, and the human can infer that the policy has no strong preference
over actions for the other states. In other words, our approach is to show humans
which states the robot policy considers to be critical, and inform them that the
robot only considers these states and similar ones to be critical. This implicitly
communicates that in all the other states, the robot does not consider any action to
be important—so this concisely communicates how it would act (i.e., randomly) in
the vast majority of possible states.

Proof-of-Concept Example

2.4. TRANSPARENCY DURING TEACHING 14

(a) (b)

uninformative informative critical states

(c)Figure 2.4: The robot can only
move up and right, and it cannot
cross grey squares. Assuming its
policy is trained with a higher re-
ward for the dark blue than light
blue goal, then it will have a single
critical state (the orange point), at
which moving up is significantly
preferred to moving right.

As a proof-of-concept, consider a point robot
in a grid world that is the same as the one
in Sec. 2.1, except the robot cannot cross gray
squares, and can only move up and to the right.
This constraint on movement is analogous to that
for a car, which (in most situations) drives in a
limited range of forward directions. For simpli-
fication, assume that we have trained a policy
such that it acts exactly according to a softmax
of the Q-values corresponding to a reward of 10
for the dark blue square, 1 for light blue, 0 for
white, and a discount factor of 0.9. Then there
is a single critical state, that has minimum en-
tropy over actions—the one at which if the policy
takes the suboptimal action, there is a “point of
no return” in terms of being forced to go to the
lower-reward goal (Fig. 2.4).

Beyond Grid Worlds

In Chapter 5, we apply this approach to com-
municate neural neural network policies that are
trained with maximum-entropy-based reinforcement learning.3 We further assume
that humans generalize to similar states in a way that is consistent with how the
robot does—for a neural network policy, this amounts to generalizing based on the
distance between internal representations of states (e.g., the output of the last hidden
layer). We ensure coverage over the set of the robot’s critical states by first clustering
states based on this internal representation, and then showing how the robot acts
for the most critical state in each cluster.

2.4 Transparency During Teaching
So far, we have focused on robots “teaching,” or communicating to, humans

something about the robot itself to increase transparency. Typically, the teaching
happens the other way around—humans end-users want to teach robots how to do a

3Training with a maximum-entropy-based algorithm encourages policies to maximize performance
while acting as randomly as possible, so policies are more likely to learn the true critical states of a
task, rather than converging to a nearly-deterministic policy.

2.4. TRANSPARENCY DURING TEACHING 15

task according to their preferences. Transparency can also help this teaching process
go more smoothly, by either revealing what the robot’s current understanding is or
revealing what prior (over preferences) the robot started out with, or which feature
space it is aware of.

The core assumption of algorithmic teaching is that the teacher has an accurate
model of how the learner learns. When this assumption is violated (e.g., when humans
are teaching robot learners and do not know how they learn), then transparency
on the part of the learner has the opportunity to help the teacher select better
teaching examples. We study this both with simulated teachers and real-world
human teachers, and find that a simple kind of transparency—the robot indicating
what it thinks the human’s next action will be—does help teachers identify what the
robot does and does not know, and thus select better teaching examples, that lead
to faster robot learning.

16

Part I

Improving Human Mental Models of
Robots

17

Chapter 3

Communicating Robot Objectives

In this chapter, our overarching goal is to efficiently enable end-users to correctly
anticipate a robot’s behavior in novel situations. When a robot’s behavior is a direct
result of its underlying objective function, our insight is that end-users need to have
an accurate mental model of this objective function in order to understand and
predict what the robot will do.

While people naturally develop such a mental model over time through observing
the robot act, this familiarization process may be lengthy. Our approach reduces this
time by having the robot model how people infer objectives from observed behavior,
in order to then show those behaviors that are maximally informative.

We introduce two factors to define candidate models of human inference, and
show that certain models indeed produce example robot behaviors that better enable
users to anticipate what it will do in novel situations. Our results also reveal that
choosing the appropriate model is key, and suggest that our candidate models do not
fully capture how humans extrapolate from examples of robot behavior. We leverage
these findings to propose a stronger model of human learning in this setting, and
conclude by analyzing the impact of different ways in which the assumed model of
human learning may be incorrect.1

3.1 Motivation and Background
Imagine riding in a self-driving car that needs to quickly change lanes to make

a right turn. The car suddenly brakes in order to merge safely behind another
car, because it deems it unsafe to speed up and merge in front of the other car.

1This work was published as Enabling robots to communicate their objectives in RSS 2017 [10]
and as an invited submission in AuRo 2019.

3.1. MOTIVATION AND BACKGROUND 18

P(
θ

|
ξ 1

)
aggressive defensive

ξ1 (informative) ξ2 (uninformative)

P(
θ

|
ξ 2

)

aggressive defensive

Figure 3.1: We show examples ξ of the yellow autonomous car’s behavior that
are maximally informative in guiding the human toward understanding the robot’s
objective function (e.g., aggressive versus defensive). For instance, in environments
where the car needs to merge into the right lane, its behavior is more informative
when there is another car present (left) than when the lane is empty (right). We
consider the case where the robot’s objective function is represented by a linear
combination of features, weighted by θ.

A passenger who knows this self-driving car is defensive and that it values safety
much more than efficiency would be able to anticipate this behavior. But passengers
less familiar with the car would not anticipate this sudden braking, so they may be
surprised and possibly frightened.

There are many reasons why it is beneficial for humans to be able to anticipate a
robot’s movements, from subjective comfort to ease of coordination when working
with and around the robot [24, 25]. Our goal is to enable end-users to accurately
anticipate how a robot will act, even in novel situations that they have not seen the
robot act in before—like a new traffic scenario, or a new placement of objects on a
table that the robot needs to clear.

A robot’s behavior in any situation is a direct consequence of the objective (or
reward) function the robot is optimizing: (most) robots are rational agents, acting to
maximize expected cumulative reward [26]. Whether the robot’s objective function
is hard-coded or learned, it captures the trade-offs the robot makes between features
relevant to the task. For instance, a car might trade off between features related
to collision avoidance and efficiency [27], with more “aggressive” cars prioritizing
efficiency at the detriment of, say, distance to obstacles [28].

The insight underlying our approach is the following:

The key to end-users being able to anticipate what a robot will do in novel

3.1. MOTIVATION AND BACKGROUND 19

situations is having a good understanding of the robot’s objective function.

Note that understanding the objective function does not mean users must be
able to explicate it—to write down the equation, or even to assign the correct reward
to a behavior or a state-action pair. Rather, users only need to have an implicit
representation of what drives the robot’s behavior, i.e., a qualitative understanding
of the trade-offs the robot makes.

Fortunately, users will naturally improve their mental model of how a robot
acts, given examples of the robot behaving optimally [9]. Further, evidence suggests
that people will use this behavior to make inferences about the robot’s underlying
objective function [17–19], which will enable them to anticipate its behavior in novel
situations.

A fundamental challenge with this prior work is that it is passive: people get
exposed to robot behavior in different environments as the robot encounters them.
The difference in this work is that we explicitly account for the fact that not all
environments are equally informative. In many environments, a robot’s optimal
behavior does not fully describe the trade-offs that the robot would make in other
environments, i.e., parts of the robot’s objective will remain under-determined. For
example, an autonomous car driving down a highway with no cars nearby will drive
at the speed limit and stay in its lane, regardless of its trade-off between efficiency
versus staying far away from other cars. Another example is when an autonomous car
changes lanes without interacting with any other cars (Fig. 3.1, right). An end-user
mainly exposed to these types of behavior will have difficulty forming an accurate
mental model of the robot’s objective function and anticipating how the robot will
behave in more complex scenarios. On the other hand, suppose an autonomous
car speeds up to merge in front of another car, cutting it off (Fig. 3.1, left). This
scenario more clearly illustrates the trade-offs this car makes regarding safety versus
efficiency.

We focus on enabling robots to purposefully choose such informative behaviors
that actively communicate the robot’s objective function. As mentioned in Chapter 1,
we envision a training phase for interaction, where the robot showcases informative
behavior in order to quickly teach the end-user what it is optimizing for. This
training phase may need to happen in a simulator, when it is impractical to construct
these informative environments in the real world.

In order to choose the most informative example behaviors for communicating a
robot’s objective function to humans, we take an algorithmic teaching approach [29–
34]: we model how humans make inferences about the robot’s objective function
from examples of its optimal behavior, and use this model to generate examples that
increase the probability of humans inferring the correct objective function.

3.1. MOTIVATION AND BACKGROUND 20

The reverse problem, machines inferring objective functions from observed human
behavior, can be solved using inverse reinforcement learning (IRL) [12]. Prior work
has investigated how to teach an objective function through example behavior to
machine learners running IRL [35]. But the challenge in teaching people instead of
machines is that while machines can perform exact inference, people are likely to be
approximate in their inference. People do not have direct access to configuration-
space trajectories and the exact environment state, whereas robots do, at least in
kinesthetic teaching (and in [35]). People also cannot necessarily distinguish between
a perfectly optimal trajectory for one objective and an ever-so-slightly suboptimal
one [36].

In this chapter, our main contribution is to introduce a systematic collection
of approximate-inference models and, in a user study, compare their performance
relative to the exact inference model. We focus on the autonomous driving domain,
where a car chooses example behaviors that are informative about the trade-offs
it makes in its objective function. We measure teaching performance—how useful
the generated examples are in enabling users to anticipate the car’s behavior in test
situations—and find that one particular approximate-inference model significantly
outperforms exact inference (while the others perform on par). This supports our
central hypothesis that accounting for approximations in user inference is indeed
helpful, but suggests that we need to be careful about how we model this approximate
inference.

Further analysis shows teaching performance correlates with covering the full
space of strategies that the robot is capable of adopting. For instance, the teaching
algorithm cannot just show the car cutting others off; it also needs to show an example
where it is optimal to brake and merge behind. We show the best results are obtained
by a coverage-augmented algorithm that both leverages an approximate-inference
user model and encourages full coverage of all possible driving strategies.

The importance of coverage implies that users are not only learning the robot’s
objective function and generalizing to novel scenarios based on that; they may also be
relying on a memory-based, nearest-neighbor-like approach: directly comparing each
novel scenario with the ones they have seen the robot act in, and making inferences
based on that. Based on this observation, we study a combined approximate-inference
and nearest-neighbor model that better captures how users learn in this domain.

We conclude with a discussion of the implications and limitations of this work.
At the forefront of these limitations is our model’s assumption of the robot and the
human sharing a common understanding of the features that the robot’s objective
function depends on. We present an analysis of how the results change when this is
not true.

This chapter takes a stab at an important yet under-explored problem of commu-

3.2. RELATED WORK 21

nicating robot objective functions to people. This is important in the short term for
human-robot interaction, because it enables transparency and makes robot behavior
easier to anticipate. But it is also important in the long term. As AI systems become
more capable of optimizing their objective functions, ensuring that these objective
functions are aligned with what system designers and end users actually want will
become key to ensuring that these systems behave in the intended way [37,38]. We
are hopeful that our work on clarifying these objectives through illustrative examples
can help verify objective functions, and contribute toward aligning them with human
values. Our results are encouraging, but also leave room for better models of how
people extrapolate from observed robot behavior.

3.2 Related Work
A key challenge in our work is modeling how humans make inferences about

a robot’s objective function from observing its behavior. Humans naturally infer
plans, intentions, and goals from the behavior of other agents [39,40]. Recent work
proposed a Bayesian framework for human reasoning, which predicts that humans
score candidate hypotheses of an agent’s beliefs and desires by the probability that
they would have led to the observed behavior, weighted by a prior [16–19]. This
probability may depend, for example, on the utility the desire would assign to
the observed behavior [19]. This Bayesian framework accurately predicts human
reasoning in goal-oriented tasks.

We also model humans as performing Bayesian inference, but we are interested
in a trajectory-oriented setting. Even when the goal remains the same (e.g., drive
to a particular destination), the trajectory a robot takes depends on the trade-offs
it makes in its objective function. Thus, human end-users need to understand not
only the robot’s goal, but also its objective function. In our work, we introduce
approximate-inference models of how humans may score candidate hypotheses for
objective functions.

Prior work on enabling humans to better anticipate robot motion has relied on
modifying the robot’s motions, either by making them more human-like and thus
easier to anticipate [41,42], or by adding anticipatory motion to prepare users for
the robot’s upcoming action [43,44]. Our work is complementary to these; it does
not require modifying the robot’s motion and would improve human anticipation
even when the robot moves in a non-human-like way.

Related work explored communicating the payoff matrix in a discrete-action
state-invariant game, in which the human observes the reward associated with an
action once the robot executes it [45]. What is challenging about our problem

3.3. APPROACH: ALGORITHMIC TEACHING OF OBJECTIVES 22

statement is that 1) there are multiple states, and the human needs to generalize
the reward to novel state-action pairs, and 2) the human does not get to observe
reward directly, but merely sees the robot act, thus all the information they get is
that the action was optimal (with respect to discounted cumulative future reward).

Other methods for making robot behavior more transparent include explaining
failure modes [46,47], verbalizing experiences [48,49], and explaining policies [50].

We leverage algorithmic teaching to choose the most informative examples of
optimal robot behavior to show end-users. Prior work on using algorithmic teaching
to teach humans primarily focuses on teaching binary classification of images [51–54].
In line with our work, Patil et al. [54] show accounting for human limitations (in
their case limiting the number of recalled examples) improves teaching performance.

In our algorithmic teaching framework, we model human learners as running
Bayesian IRL [55, 56]: they start with a prior over objective functions that the
robot may be optimizing, and update their belief with the likelihood of the observed
robot trajectories given the objective function. Prior approaches for Bayesian IRL
either rely on exact inference [55] or an action-based likelihood distribution [56].
Action-based distributions have the undesirable effect of favoring trajectories with a
smaller action branching factor, whereas trajectory-based distributions do not [57].
Our work considers several trajectory-based distributions, motivated by how humans
may perform approximate inference in this domain (Sec. 3.3.4). One of these is
equivalent to that in MaxEnt IRL [57].

It is worth noting that many (non-Bayesian) IRL approaches are equivalent
to finding the maximum a posteriori estimate in Bayesian IRL, with respect to a
particular prior and likelihood function [58]. Modeling learners directly as Bayesian
IRL allows us to choose informative example robot behaviors that maximize the
posterior probability of the correct objective function while minimizing the probability
of others.

3.3 Approach: Algorithmic Teaching of Objectives
We model how people infer a robot’s objective function from its behavior, and

leverage this model to generate informative examples of behavior.

3.3.1 Preliminaries

Let S be the (continuous) set of states and A be the (continuous) set of actions
available to the robot. We assume the robot’s objective (or reward) function is

3.3. APPROACH: ALGORITHMIC TEACHING OF OBJECTIVES 23

represented as a linear combination of features2 weighted by some θ∗ [59]:

Rθ∗(st, at, st+1;E) = θ∗>φ(st, at, st+1;E), (3.1)

where st is the state at time t, at is the action taken at time t, and E is the
environment (or world) description. In the case of driving, E contains information
about the lanes, the trajectories of other cars, and the starting state of the robot.

A robot’s trajectory ξ is defined by a sequence of states st and actions at for
t = 1, . . . , T . Given an environment E, the parameters θ of the objective function
determine the robot’s (optimal) trajectory ξθE:

ξθE = arg max
ξE∈ΞE

θTµ(ξE), (3.2)

where µ(ξE) =
∑T−1

t=0 γ
tφ(st, at, st+1;E) denotes the discounted accumulated feature

vector of the trajectory, and γ is a discount factor between 0 and 1 that favors
obtaining rewards earlier. ΞE refers to all possible trajectories in environment E.

3.3.2 Algorithmic Teaching Framework

We model the human observer as starting with a prior P (θ) over what θ∗ might
be, and updating their belief as they observe the robot act. We assume the human
knows the features φ(·) relevant to the task. (This is just our learner model for
algorithmic teaching—we put this to the test with real users who do not necessarily
have this understanding in Sec. 3.4.3. Further, in Sec. 3.5, we explore what happens
when this assumption does not hold.) The robot behaves optimally with respect to
the objective induced by θ∗, but as Fig. 3.1 shows, the details of the environment (e.g.,
locations of nearby cars and the robot’s goal) influence its behavior, and therefore
influence what effect this behavior has on the person’s belief.

To best leverage this effect, we search for a sequence of environments E1:n such
that when the person observes the optimal trajectories in those environments, their
updated belief places maximum probability on the correct θ, i.e., θ∗:

arg max
E1:n

P (θ∗|ξθ∗E1:n
) (3.3)

To solve this optimization problem, the robot needs to model how examples
update P (θ∗|ξθ∗E1:n

), the person’s belief for the robot’s true reward parameters. We

2We can assume this without loss of generality, as there are no restrictions on how complex
these features can be.

3.3. APPROACH: ALGORITHMIC TEACHING OF OBJECTIVES 24

propose to model P (θ∗|ξθ∗E1:n
) via Bayesian inference:

P (θ|ξθ∗E1:n
) ∝ P (ξθ

∗

E1:n
|θ)P (θ) = P (θ)

n∏
i=1

P (ξθ
∗

Ei
|θ). (3.4)

Computing the normalization factor
∫
θ′
P (ξθ

∗
E1:n
|θ′)P (θ′) is intractable, so we approx-

imate this by uniformly sampling candidate θs. Conditional independence can be
assumed, since θ contains all the information needed to compute the probability of a
trajectory.

With this assumption, modeling how people infer the objective function parame-
ters reduces to modeling the likelihood term P (ξ|θ): how probable they would find
trajectory ξ if they assumed the robot optimizes the objective function induced by θ.
We explore different models of this, starting with exact-inference IRL as a special
case. We then introduce models that account for the inexactness that is inevitable
when real people make this inference.

3.3.3 Exact-Inference IRL as a Special Case

Inverse reinforcement learning (IRL) [12] extracts an objective function from
observed behavior by assuming that the observed behavior is optimizing some
objective from a set of candidates. When that assumption is correct, IRL finds an
objective function that assigns maximum reward (or minimum cost) to the observed
behavior.

Algorithmic teaching has been applied to exact-inference IRL learners [35]: the
learner eliminates all objective functions which would not assign maximum reward to
the observed behavior. This can be expressed by the model in (3.4) via a particular
distribution for P (ξθ

∗
E |θ):

P (ξθ
∗

E |θ) =

{
1, if ∀ξE, θ>µ(ξθ

∗
E)− θ>µ(ξE) ≥ 0.

0, otherwise.
(3.5)

This assumes people assign probability 0 to trajectories that are not perfectly
optimal with respect to θ, so those candidate θs receive a probability of zero. Thus,
each trajectory that the person observes completely eliminates from their belief
any objective function that would not have produced exactly this trajectory when
optimized. Assuming learners start with a uniform prior over objective functions,
the resulting belief is a uniform distribution across the remaining candidate objective
functions—θs for which all observed trajectories are optimal.

While this is a natural starting point, it relies on people being able to perfectly
evaluate whether a trajectory is the (or one of the) global optima of any candidate
objective function. We relax this requirement in our approximate-inference models.

3.3. APPROACH: ALGORITHMIC TEACHING OF OBJECTIVES 25

. . .

ex
ac

t
IR

L
de

te
rm

eff

ec
t

pr
ob

eff

ec
t

Figure 3.2: A visual comparison of how probabilities of candidate reward parameters
θs may be updated for exact-inference and approximate-inference learners, where
each dot corresponds to a particular candidate θ. This assumes the models share the
same distance metric and the same sequence of examples is shown to each model,
until only the true parameters θ∗ remain.

3.3.4 Approximate-Inference Models

We introduce a space of approximate-inference models, obtained by manipulating
two factors in a 2–by–3 factorial design.

Deterministic versus Probabilistic Effect

In the exact-inference model, a candidate θ is either out or still in: the trajectories
observed so far have either shown that θ is impossible (because they were not global
optima for the objective induced by that θ), or have left it in the mix, assigning it
equal probability as the other remaining θs.

We envision two ways to relax this assumption that a person can identify whether
a trajectory is optimal given a θ. One way is for observed trajectories to still either
eliminate the θ or keep it in the running, but to be more conservative about which
θs get eliminated. That is, even if the observed trajectory is not a global optimum
for a θ, the person will not eliminate that θ if the trajectory is close enough (under
some distance metric) to the global optimum. We call this the deterministic effect.

A second way is for observed trajectories to have a probabilistic effect on θs: rather
than eliminating them completely, trajectories can make a θ less likely, depending

3.3. APPROACH: ALGORITHMIC TEACHING OF OBJECTIVES 26

on how far away its optimal trajectory is from the observed trajectory.
In both cases, P (ξθ

∗
E |θ) no longer depends on the example trajectory being optimal

with respect to θ. Instead, it depends on the distance d(·, ·) between ξθE, the optimal
trajectory for θ, and ξθ∗E , the observed trajectory which is optimal given θ∗.

Given some distance metric d along with hyperparameters τ, λ > 0,

• For deterministic effect, P (ξθ
∗
E |θ) ∝ 1 if d(ξθE, ξ

θ∗
E) ≤ τ , or 0 otherwise.

• For probabilistic effect, P (ξθ
∗
E |θ) ∝ e−λ·d(ξθE ,ξ

θ∗
E).3

The deterministic effect results in conservative hypothesis elimination: it models a
user who will either completely eliminate a θ or not, but who will not eliminate θs with
optimal trajectories close to the observed trajectory. In contrast, the probabilistic
effect decreases the probability of θs with far away optimal trajectories, never fully
eliminating any (Fig. 3.2).

The exact-inference IRL model (Sec. 3.3.3) is a special case with deterministic
effect and a reward-based distance metric with τ = 0; it assumes there is no
approximate inference.

Distance Metrics

Both deterministic and probabilistic effects rely on the person’s notion of how
close the optimal trajectory with respect to a candidate θ is from the observed
trajectory. We envision that closeness can be measured either in terms of the reward
of the trajectories with respect to θ, or in terms of the trajectories themselves.

We explore three options for d. The first depends on the reward. This distance
metric models people with difficulty comparing the cumulative discounted rewards
of two trajectories, with respect to a given setting of the reward parameters. So, if
in environment E the observed trajectory ξθ∗E has almost the same reward as ξθE, the
optimal trajectory with respect to θ, then P (ξθ

∗
E |θ) will be high.

• reward-based4: dr(ξθE, ξθ
∗
E) = θ>µ(ξθE)− θ>µ(ξθ

∗
E).

The second option depends not on reward, but on the physical trajectories. It
assumes it is not high reward that confuses people about whether the observed trajec-
tory is optimal with respect to θ, but rather physical proximity to the true optimal

3We noticed normalizing this distribution produced very similar results to leaving it unnormalized,
so we do the latter in our experiments, analogous to other algorithmic teaching work not based on
reward functions [53].

4Note that this is always positive because ξθE has maximal reward with respect to θ.

3.3. APPROACH: ALGORITHMIC TEACHING OF OBJECTIVES 27

trajectory: this models people who cannot perfectly distinguish between perceptually-
similar trajectories. We measure physical proximity in terms of Euclidean distance,
which approximately captures how humans judge perceptual similarity when stimulus
dimensions are not easily separable (as is the case for object locations) [60, 61].

• Euclidean-based: de(ξθE, ξθ
∗
E) = 1

T

∑T
t=1 ||sθE,t − sθ

∗
E,t||2. sθE,t is the state at time

t for trajectory ξθE.

This assumes the two trajectories are the same length, as is the case in our experi-
mental example domain. When trajectories are not the same length, they must first
be aligned temporally, for instance via dynamic time warping [62]. In addition, using
this distance metric requires an appropriate representation of the state space, e.g., if
the dimensions of sθE,t have different ranges, normalization may be necessary. In our
example domain, the state is the robot’s two-dimensional location.

Finally, a more conservative version of the Euclidean distance metric is the
strategy-based metric. The idea here is that for any environment E, trajectories
generated by candidate θs can be clustered into types, or strategies. The strategy-
based metric assumes people do not distinguish among trajectories that follow the
same strategy. For instance, people will consider all trajectories in which the robot
speeds up and merges in front of another car to be equivalent, and all trajectories in
which the robot merges behind the car to be equivalent. So, if in environment E
the observed trajectory and the optimal trajectory with respect to θ have the same
strategy, then P (ξθ

∗
E |θ) ∝ 1.

• strategy-based: ds(ξθE, ξθ
∗
E) = 0 if ξθE and ξθ∗E are in the same trajectory strategy

cluster, ∞ otherwise.

Note that the type of effect (deterministic versus probabilistic) does not matter
for the strategy-based distance metric, since distances are either 0 or ∞. So, there
are a total of five unique approximate-inference models.

Relation to MaxEnt IRL

MaxEnt IRL [57] is an IRL algorithm that assumes demonstrations are noisy
(i.e., not necessarily optimal). In our setting, we instead assume demonstrations are
optimal but the learner is approximate. These two sources of noise result in the
same model: the MaxEnt distribution is equivalent to our probabilistic reward-based
model:

P (ξθ
∗

E |θ) ∝ eλθ
Tµ(ξθ

∗
E) (3.6)

∝ eλ(θTµ(ξθ
∗
E)−θTµ(ξθE)) = e−λ·dr(ξ

θ
E ,ξ

θ∗
E). (3.7)

3.3. APPROACH: ALGORITHMIC TEACHING OF OBJECTIVES 28

Algorithm 1 Informative example selection
Require: Set of possible environments, E
Require: Robot’s reward parameters, θ∗
Require: Set of candidate reward parameters, Θ
Require: Prior over reward parameters, PM(θ)
Require: Number of examples to select, n
{P̂ (θ) keeps track of the learner’s belief over reward parameters}
Initialize P̂ (θ)← PM(θ)
Initialize X = []
for i = 1 to n do
for all E ∈ E do
ξθ
∗
E ← arg maxξE∈ΞE

θ∗Tµ(ξE)

Z ←
∑

θ PM(ξθ
∗
E |θ) P̂ (θ)

PM(θ∗|ξθ∗X+[E]) = 1
Z
PM(ξθ

∗
E |θ∗) P̂ (θ∗)

end for
Ei ← arg maxE PM(θ∗|ξθ∗X+[E])

X ← X + [Ei]
P̂ (θ)← P̂ (θ)PM(ξθ

∗
E |θ)

end for
return Sequence of informative examples X

3.3.5 (Submodular) Example Selection

Given a learner modelM that predicts PM(θ∗|ξθ∗E1:n
), our approach greedily selects

the environment Et that maximizes PM(θ∗|ξθ∗E1:t
). We allow the model to select up

to ten examples; it stops early if no additional example improves this probability.
Algorithm 1 outlines this approach.

This greedy approach is near-optimal for deterministic effect with a uniform
prior, since this makes maximizing PM(θ∗|ξθ∗E1:t

) equivalent to maximizing a non-
decreasing monotonic submodular function [63]: the total number of candidate
θs that are eliminated after observing ξθ∗E1:t

. These two are equivalent because all
non-eliminated θs are equally likely (Fig. 3.2). Recall that when deterministic-effect
learners observe an example trajectory, they eliminate all candidate θs for which the
observed trajectory is not close enough to the optimal trajectory under that θ. The
total number of eliminated candidate θs is non-decreasing because adding example
trajectories ξθ∗E can only eliminate candidate θs, not add them, and we assume the set
of candidate θs considered by the human does not change over time. Additionally, a
particular observed trajectory ξθ∗E eliminates the same set of θs no matter when it is

3.4. EXPERIMENTS 29

added to the sequence. Thus, showing that example later on in the sequence cannot
eliminate more θs than adding it earlier, which makes this function submodular.

3.3.6 Hyperparameter Selection

We would like to select values for hyperparameters τ and λ (for deterministic
and probabilistic effect, respectively) that accurately model human learning in this
domain. τ and λ affect the informativeness of examples. If τ is too large, then most
environments will be uninformative, since the observed trajectory will be within τ
distance away from optimal trajectories of many θs, so those θs will not be eliminated.
Thus, PM(θ∗|ξθ∗E1:n

) will be low no matter which examples ξθ∗E1:n
are selected. On the

other hand, if τ is too small, then some environments will be extremely informative,
so only one or a few examples will be selected before no further improvement in
PM(θ∗|ξθ∗E1:n

) can be achieved. Analogous reasoning holds for λ.
We expect humans to be teachable (i.e., τ cannot be too large) and to have

approximate rather than exact inference (i.e., τ cannot be too small), so they would
benefit from observing several examples rather than just one or two. Based on this,
we select τ and λ for each approximate-inference model by choosing the value in
{10−5, 10−4, . . . , 104, 105} that results in an increase from PM(θ∗|ξθ∗E1

) to PM(θ∗|ξθ∗E1:n
)

of at least 0.1, and selects the largest number of unique examples to show.

3.4 Experiments

3.4.1 Experimental Domain

We evaluate how our proposed approximate-inference models perform for teaching
the driving style of a simulated autonomous car. In this domain, participants witness
examples (in simulation) of how the car drives, with the goal of being able to
anticipate how it will drive when they ride in it.

Driving Simulator

We model the dynamics of the car with the bicycle vehicle model [64]. Let the
state of the car be x = [x y θ v α]>, where (x, y) are the coordinates of the center
of the car’s rear axle, θ is the heading of the car, v is its velocity, and α is the
steering angle. Let u = [u1 u2]> represent the control input, where u1 is the change
in steering angle and u2 is the acceleration. Let L be the distance between the front

3.4. EXPERIMENTS 30

and rear axles of the car. Then the dynamics model of the vehicle is

[ẋ ẏ θ̇ v̇ α̇] = [v ∗ cos(θ) v ∗ sin(θ)
v

L
tan(α) v ∗ u1 u2] (3.8)

Environments

We consider a total of 21,216 environments of highway driving configurations
(Table 3.1). Each environment has three lanes and a single non-autonomous car.
The autonomous car always starts in the middle lane with the same initial velocity,
whereas the initial location and velocity of the non-autonomous car varies.

Table 3.1: Parameters of simulated driving environments

Axis of Variation Acceptable Values

Goal [merge to right,
drive forward]

Distance between autonomous
and non-autonomous car

[-240, -220,. . . , -100]
[100, 120, . . . , 240]

Lane of non-autonomous car [Left, Center, Right]
Initial velocity, non-autonomous [20, 25, . . . , 80]
Acceleration time, non-auton. [0, 0.5, 1, 1.5, 2]
Final velocity, non-auton.
car (if acceleration time 6= 0)

[20, 30, 70, 80]

These environments naturally fall into four classes, with two trajectory strategies
per class (Fig. 3.3):

• Merging : when the non-autonomous car starts in the right lane, and the goal in
this environment is to merge into the right lane. The two trajectory strategies
are to either speed up and merge ahead of the non-autonomous car, or slow
down and merge behind the non-autonomous car.

• Braking : when the non-autonomous car starts in the center lane in front of the
autonomous car, and the goal is to drive forward. The two trajectory strategies
are to either keep driving in the center lane behind the non-autonomous car,
or merge into another lane to pass it.

• Tailgating : when the non-autonomous car starts in the center lane behind the
autonomous car, and the goal is to drive forward. The two trajectory strategies

3.4. EXPERIMENTS 31
M

ER
G

IN
G

M

er
ge

 B
eh

in
d

M
er

ge
 in

 F
ro

nt

Sl
ow

 D
ow

n

Pa
ss

TA
IL

G
AT

IN
G

BR
AK

IN
G

O

TH
ER

Ch
an

ge
 L

an
es

Sp
ee

d
Up

G
oa

l:
M

er
ge

G
oa

l:
Fo

rw
ar

d

Figure 3.3: The possible driving environments cluster naturally into four classes,
with two trajectory strategies per class. Each image shows the trajectories of the
autonomous car (yellow) and non-autonomous car (gray) in a particular environment.
Positions later in the trajectory are more opaque. The goal of the autonomous car in
each environment is highlighted in blue: merge into the right lane or drive forward.

are to either change lanes to avoid the tailgater, or speed up to maintain a safe
distance from the tailgater.

• Other : all environments not included in one of the first three. The autonomous
car is able to reach its goal without any interaction with the other car.

The majority of environments (14,144) are in the other class. Of the remaining
environments, 3536 are in the merging class, 1768 are in tailgating, and 1768 are in
braking.

Reward Features

We use the following reward features φ(·):

• distance to other car :
∑T

t=0 γ
tN (pt|p′t,Σt), where pt = [xt, yt]

>, p′t is the
position of the non-autonomous car, and Σt is chosen such that the major axis
is along the non-autonomous car’s heading.

• acceleration, squared:
∑T−1

t=0 γ
t (vt+1 − vt)2

• deviation from initial speed, squared:
∑T

t=0 γ
t (vt − v0)2

3.4. EXPERIMENTS 32

• turning :
∑T

t=0 γ
t |θt − θ0|

• distance from goal :
∑T

t=0 γ
t max(0, (x1 + w)− xt)2 if the goal is to merge into

the right lane, and yT if the goal is to drive forward. w is the width of one
lane.

The last four features do not depend on the environment, so we normalize them
such that the maximum value of each feature across all trajectories is 1 and the
minimum is 0. We use γ = 1.

Optimal Objective Parameters

We select θ∗ = [−64 − 0.1 − 1 − 0.1 − 0.5]>, a reward function that is not
overly cautious about staying away from other cars. We uniformly sample 1000
candidate θs, and assume learners start with a uniform prior P (θ).

3.4.2 Analysis with Ideal Users

In Sec. 3.3.4, we proposed five possible approximate-inference user modelsM.
They all model people as judging candidate θs based on the distance between the
trajectory they observed and the optimal trajectory with respect to θ, but they differ
in what the distance metric is, and whether they completely eliminate candidate θs
(deterministic effect) or smoothly re-weight them (probabilistic effect).

Here, we investigate how well algorithmic teaching with these models performs
for teaching θ∗ to ideal users. First, we generate a sequence of examples for each
of our approximate-inference modelsM, by greedily maximizing PM(θ∗|ξθ∗E1:n

), as
described in Sec. 3.3.5. We also generate the sequence for the exact-inference model
and include a random sequence, for a total of seven sequences.

Run-time

For each of the approximate-inference models, it takes less than a minute to
generate this sequence of examples. This includes hyperparameter selection of τ and
λ (Sec. 3.3.6). Since we have a fixed set of environments E and candidate reward
parameters Θ, we pre-computed the optimal trajectories and distances between pairs
of optimal trajectories ξθ∗E and ξθE for all E ∈ E and θ ∈ Θ, to speed up example
selection.

3.4. EXPERIMENTS 33

Reward Euclidean Strategy Exact/Random
de

te
rm

.
pr

ob
.

Figure 3.4: The number of examples shown in each of the eight trajectory classes
for the approximate-inference models, exact inference model, and random baseline.
White = 0 examples shown, and black = 4. The environment classes are arranged in
the 2x4 grid as in Fig. 3.3.

Types of Examples Selected

Fig. 3.4 summarizes the types of examples each algorithm selected for its teaching
sequence. The exact-inference model selects a single example, because that is enough
to completely eliminate all other θs. This works well for an ideal user running exact
inference, but our hypothesis is that it does not work as well for real users.

Evaluation with Ideal Users

We evaluate algorithmic teaching on six ideal users, whose learning is precisely
exact-inference IRL or one of our five approximate-inference models. We measure,
for each “user” M, the probability they assign to the correct objective function
parameters, PM(θ∗|ξθ∗E1:n

), given ξθ∗E1:n
from each of the seven generated sequences.

Fig. 3.5 shows the results. First, we see for any ideal user M, the sequence
generated by assuming a learner modelM performs best at teaching that user. This
is by design—that sequence of examples is optimized to teachM.

Looking across the columns of Fig. 3.5, we see all seven sequences perform
equally well for teaching an exact IRL learner (column 1)—even random, because the
examples it provides are enough to perfectly eliminate all incorrect θs. This suggests
exact IRL does not accurately model real users, whose performance likely varies
based on which examples they see. Looking across the rows, we notice assuming a
Euclidean distance approximation when generating examples (rows 3 and 5) leads to
robust performance across different user models. In the following section, Sec. 3.4.3,
we evaluate these generated sequences on real users.

Finally, the random sequence is very uninformative for all ideal users except exact
IRL, showing the utility of algorithmic teaching. We explore this utility with real
users in Sec. 3.4.4.

3.4. EXPERIMENTS 34

exact
IRL

deterministic probabilistic
reward Euc. reward Euc. strategy

de
te

rm
in

ist
ic

re
wa

rd

Eu
c.

pr
ob

ab
ili

st
ic

re
wa

rd

Eu
c.

st
ra

te
gy

ra

nd
om

ex

ac
t

IR
L

True Learner Model
As

su
m

ed
 L

ea
rn

er
 M

od
el

Figure 3.5: The performance of each user model, as evaluated by all other models.
White indicates PM(θ∗|ξθ∗E1:n

) ≈ 0, where M is the true learner model and envi-
ronments E1:n are chosen based on the assumed learner model. Black indicates
PM(θ∗|ξθ∗E1:n

) = 1.

3.4.3 User Study

We now evaluate whether approximate-inference models are useful with real, as
opposed to ideal, users.

Experiment Design

Manipulated Variables. We manipulate whether algorithmic teaching assumes
exact- or approximate-inference. For the approximate-inference case, we manip-
ulated two variables: the effect of approximate inference (either deterministic
or probabilistic) and the distance metric (reward-based , Euclidean-based , or

3.4. EXPERIMENTS 35

strategy-based), in a 2–by–3 factorial design, for a total of six approximate inference
models. Recall that since the type of effect does not matter for the strategy-based
distance metric, there are five unique approximate-inference models.

We show the participant one training environment at a time, in the order that
the examples were selected by each algorithm.
Dependent Measures. In the end, we are interested in how well human partici-
pants learn a specific setting of reward parameters θ∗ from the training examples.
Since we cannot ask them to write down a θ, or to drive according to how they think
the car will drive (people can drive like themselves, but not so easily like others), we
evaluate this by testing each participant’s ability to identify the trajectory produced
by θ∗ in a few test environments. For each test environment, we show the participant
four trajectories and ask them to select the one that most closely matches the
autonomous car’s driving style, and report their confidence (from 1 to 7) for how
closely each of the four trajectories matches the driving style.

We have two dependent variables: whether participants correctly identify ξθ∗Etest

for each test environment Etest, and their confidence in selecting that trajectory. We
combine the two in a confidence score: the confidence if they are correct, negative
of the confidence if they are not—this score captures that if one is incorrect, it is
better to be not confident about it.

We use rejection sampling to select test environments in which there are a wider
variety of possible robot trajectories. To make sure the four trajectories do not look
too similar, we ensure the rewards of alternate trajectories under θ∗ are below a
certain threshold. In order to not bias the measure, we select one test environment
for each of the two trajectory strategy clusters in each of the three informative
environment classes, for a total of six test environments. For each test environment,
we show two trajectory options in each strategy cluster.
Hypothesis. Accounting for approximate inference significantly improves perfor-
mance (as measured by the confidence score). We leave open which approximate-
inference models work well and which do not, since the goal is to identify which
captures users’ inferences the best.
Subject Allocation. We used a between-subjects design, since examples of
the same reward function interfere with each other. We ran this experiment on a
total of 191 participants across the six conditions, recruited via Amazon Mechanical
Turk. At the end of the experiment, we ask participants what the two possible
goals were, to filter out those who were not paying attention. 30 out of 191 (15.7%)
answered incorrectly. The average age of the 161 non-filtered participants was 37.0
(SD = 11.0). The gender ratio was 0.46 female.

3.4. EXPERIMENTS 36

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

0_5		
0_6		
0_4_2		

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

0_5		
0_6		
0_4_2		

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

0_5		
0_6		
0_4_2		

Co
nfi

de
nc

e
Sc

or
e

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

*

approx*

exact inference IRL
reward-based

random
coverage-random
approx*
coverage-approx*

*

Euclidean-based
strategy-based

probabilistic de
te

rm
in

ist
ic

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

No	coverage,	
determeuc	
Coverage,	
determeuc	

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

No	coverage,	
determeuc	
Coverage,	
determeuc	

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

No	coverage,	
determeuc	
Coverage,	
determeuc	

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

0_2		
0_3		
0_4		

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

0_0		

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

No	coverage,	
random	
Coverage,	
random	

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

0_2		
0_3		
0_4		

-2.5	

-2	

-1.5	

-1	

-0.5	

0	

0.5	

1	

1.5	

No	coverage,	
random	
Coverage,	
random	Figure 3.6: Performance of human participants on identifying the autonomous car’s

trajectory in test environments, after seeing the example trajectories selected by
the approximate-inference models (left) and after adding coverage (right) to the
sequence of environments selected by the best-performing approximate-inference
model, approx* . Participants in the coverage-approx* condition performed signifi-
cantly better than those in the random condition. In contrast, enforcing coverage
but selecting random sequences (coverage-random) does not lead to statistically
significantly better performance.

Analysis

Number of Examples. The number of examples shown depends on which user
model is assumed. Exact-inference IRL may produce as few as one example (and
does in our case). Approximate-inference models produce more, and random can
produce an almost unlimited amount if allowed. Thus, a possible confound in our
experiment is the number of examples.

We checked whether this is indeed a confound: do more examples help? Surpris-
ingly, we found no correlation between the number of examples and performance:
the sample Pearson correlation coefficient is r = 0.03 (Fig. 3.7, left). This suggests
that example quantity matters less than example quality.
Approximate-Inference Models. We begin by comparing the approximate-

3.4. EXPERIMENTS 37

-7

-5

-3

-1

1

3

5

7

0 2 4 6 8

Co
nfi

de
nc

e
Sc

or
e

-7

-5

-3

-1

1

3

5

7

-3 -1 1 3

Number of Helpful
Environments Shown

Total Number of
Environments Shown

Figure 3.7: Left: Lack of correlation between total number of environments shown
in a condition, and average participant performance on each test example in that
condition. Right: Correlation exists between the number of helpful training examples
shown for an environment class, and average participant performance on the test
example corresponding to that environment class.

inference models. We ran a factorial ANOVA on confidence score with distance
measure and determinism as factors (Fig. 3.6, left). We found a marginal effect for
distance (F (2, 163) = 2.69, p = .07), with Euclidean-based distance performing the
best (as suggested by our experiment in Sec. 3.4.2, where Euclidean was the most
robust across different ideal users), and reward-based distance performing the worst.

Euclidean-based might be better than reward-based because people decide to
keep imperfect θs not when the trajectory they see obtains high reward under that
θ, but when it is visually similar to what optimizing for θ would have produced.
Euclidean-based might be better than strategy-based because people differentiate
between trajectories even when they follow the same strategy. For example, a
trajectory that gets very close to another car would be in the same strategy class as
a trajectory that stays farther away, as long as they both merge behind the other
car, but these two trajectories may give people very different impressions of the car’s
driving style.

There was no effect for determinism. On average, probabilistic models performed

3.4. EXPERIMENTS 38

ever-so-slightly worse than deterministic ones, and the difference was largest for
Euclidean distance. This might be because keeping track of what is possible is easier
than maintaining an entire probability distribution.

The best-performing approximate-inference model used the Euclidean-based
distance with deterministic effects. We refer to this as the approx* model (Fig. 3.6,
left).
Hypothesis: Utility of Approximate Inference. We found that despite
showing more examples, most approximate-inference models did not perform much
better than exact-inference IRL. This shows that not just any approximate-inference
model is useful. However, it does not imply that no approximate-inference model is
useful. To test the utility of accounting for approximate inference, we compared the
best model, approx* , with exact-inference IRL, and found a significant improvement
(Welch’s t-test p = 0.025).

This supports our central hypothesis, that accounting for approximate
inference in our model of human inferences about objective functions
helps, with the caveat that not just any approximation will work.

3.4.4 Utility of Algorithmic Teaching

So far, we have tested our central hypothesis, that accounting for approximate
IRL inferences can indeed improve the performance of algorithmic teaching of humans
in this domain. While this is promising, we also want to test the utility of algorithmic
teaching itself: whether our approach is preferable not just to algorithmic teaching
with exact inference, but to the robot not actively teaching. Instead, the person
must learn from the robot’s behavior in environments that it happens to encounter.

Baselining Performance

Baseline Condition. We ran a follow-up study comparing algorithmic teaching
with a sequence of optimal trajectories in random environments—simulating that the
robot does not choose these, but instead happens to encounter them. We recruited
33 users for this condition. The average age of the 28 non-filtered participants was
33.3 (SD = 9.6). The gender ratio was 0.46 female.
Controlling for Confounds. There are several variables that could confound
this study. First, when generating the random sequence, we might get very lucky or
unlucky and generate a particularly informative or uninformative one. To avoid this,
we randomly sample 1000 random sequences with the desired number of examples,
and sort them based on PM(θ∗|ξθ∗E1:n

), whereM is the exact-inference IRL model.

3.4. EXPERIMENTS 39

Then we choose the median sequence in that ranking as our random sequence, which
will have median informativeness.

Second, different algorithms produce different numbers of examples. For instance,
exact-inference IRL only selects one example, which eliminates all θs other than
θ∗—because in that environment the optimal trajectories for all θs are at least
slightly different than that for θ∗. To give the random baseline the best chance,
we choose to select eight environments for it, which is the maximum number of
examples shown by any of the other conditions. Since the majority of environments
are uninformative (i.e., not in the merging, braking, or tailgating classes), providing
the random condition with eight environments is needed to not put it at a serious
disadvantage.
Analysis. Algorithmic teaching with our approximate inference model did out-
perform the random baseline, albeit not significantly (Welch’s t-test p = 0.23 when
comparing participants’ confidence scores). Algorithmic teaching without accounting
for approximate inference actually seems to perform poorly compared to random
(Fig. 3.6, right).
Coverage. Digging deeper, we realized users tended to perform well on test cases
for strategies in which they had seen a training example. In addition, for each pair of
environment strategies A and B (e.g., merge-in-front and merge-behind), if users did
not see an example from strategy A but saw one from strategy B, their performance
was worse than if they did not see any examples from either A or B! In other words,
if users see one trajectory strategy in the training examples and not the opposite
strategy, they tend to think the autonomous car will always take the first strategy in
that environment type.

Based on this observation, for a particular trajectory strategy A and training
environments E1:n, we define the number of helpful (training) environments for A as:{∑n

i=1 1[h(ξθ
∗
Ei

) = A], if
∑n

i=1 1[h(ξθ
∗
Ei

) = A] > 0.

−
∑n

i=1 1[h(ξθ
∗
Ei

) = B], otherwise.
(3.9)

The function h maps a trajectory to the strategy it belongs to, and B is the opposite
strategy of A. For instance, if A is the speed-up strategy, then B is the other strategy
for the tailgating environment, change-lanes. We found a strong correlation between
the number of helpful environments shown and users’ confidence scores, with a
Pearson correlation coefficient of r = 0.83 (p = 1.4× 10−11) (Fig. 3.7, right).

Motivated by this result, we introduce augmented algorithms that ensure coverage
of strategies.

3.4. EXPERIMENTS 40

Coverage-Augmented Algorithmic Teaching

Since coverage correlates with better user performance, we add a coverage term
to our optimization over trajectories ξθ∗E1:n

:

arg max
ξθ
∗
E1:n

PM(θ∗|ξθ∗E1:n
) + ν

∑
c

1[∃i, h(ξθ
∗

Ei
) = c], (3.10)

where the sum is over trajectory strategy clusters c.
When greedily selecting the next environment Et that maximizes Eqn. (3.10), we

set
ν = 1[PM(θ∗|ξθ∗E1:t

) − PM(θ∗|ξθ∗E1:t−1
) < ε],

so that only after no examples will significantly increase the probability of θ∗, extra
examples are selected to provide coverage across the strategies. We select these extra
examples by choosing the best with respect to the approximate-inference model
M, to ensure they are informative. Using this approach, we augment our best
approximate-inference model, approx* , to achieve coverage of all possible strategies.

User Study on Coverage

We next run a study to test the benefit of coverage.
Manipulated Variables. We manipulate two variables: whether we augmented
the training examples with coverage, and whether we used a user model to generate the
examples or sampled uniformly. We select our best model for the former, approx* .
From the previous experiment, we have obtained user performance data along the no-
coverage dimension—for random and approx*—so we run this experiment on only
the two new conditions that incorporate coverage: coverage-random and coverage-
approx* . We generate random sequences with coverage by randomly selecting
exactly one random environment from each of the eight trajectory strategy classes.
Dependent Measures. We keep the same dependent measures as in our previous
user study (Sec. 3.4.3).
Hypothesis. We hypothesize coverage augmentation improves user performance
in both conditions, random and approx* , compared to the respective conditions
without coverage.
Subject Allocation. We used a between-subjects design, with a total of 63
participants across the two conditions. The average age of the 53 non-filtered
participants was 34.43 (SD = 9.0). The gender ratio was 0.53 female.
Analysis. We ran a factorial ANOVA on confidence score with coverage and
model as factors. We found a marginal effect for coverage (F (1, 107) = 1.82, p = .07),

3.5. ANALYSIS OF ALTERNATIVE LEARNER MODELS 41

suggesting that coverage improves performance. There was no interaction effect,
suggesting that coverage helps regardless of using a user model for teaching or not.

Coverage-approx* performed best out of the four conditions. The coverage
augmentation enabled it to significantly outperform the random baseline (with a
Welch’s t-test p = 0.049), which suggests coverage is useful. Coverage augmentation
did not enable the coverage-random condition to outperform the random baseline
(p = 0.159), which suggests the approximate-inference model is useful (Fig. 3.6,
right).

Overall, coverage alone helped, but was not sufficient to outperform the random
baseline. From the previous experiment, we know that the approximate-inference
user model helped, but was also not sufficient to outperform this baseline. The
improvement is largest (and significant, modulo compensating for multiple hypotheses)
when we have a coverage-augmented approximate-inference IRL model.

When leveraged together, coverage with the right model of approximate
inference have a significant teaching advantage over random teaching, as
well as over IRL models that assume exact-inference users.

3.5 Analysis of Alternative Learner Models
Algorithmic teaching relies on having a reasonably accurate model of how the

learner learns. For instance, we found that when accounting for approximate inference
in the learner model, most approximations did not perform significantly better than
the exact-inference IRL baseline, although the best model did (Sec. 3.4.3). In this
section, we will reconsider several key assumptions that our approach makes about
human learning of objective functions, and analyze how teaching effectiveness is
affected when they do not hold. These assumptions are that human end-users (1)
pay attention to exactly the same set of features that define the robot’s objective
function, (2) adhere to a particular setting of hyperparameters for approximate
inference, and (3) use only their understanding of the robot’s objective function to
anticipate its behavior.

3.5.1 Feature Mismatch

Recall that we model human end-users as updating their belief over candidate
θs as they observe the robot act (Sec. 3.3.2). Each candidate θ corresponds to a
particular setting of trade-offs between the reward features φ(·) considered by the
robot. The set of candidates includes θ∗, the true parameters for the objective
function optimized by the robot.

3.5. ANALYSIS OF ALTERNATIVE LEARNER MODELS 42

exact
IRL

deterministic probabilistic
reward Euc. reward Euc. strategy

de
te

rm
in

ist
ic

re
wa

rd

Eu
c.

pr
ob

ab
ili

st
ic

re
wa

rd

Eu
c.

st
ra

te
gy

ra

nd
om

ex

ac
t

IR
L

As
su

m
ed

 L
ea

rn
er

 M
od

el

True Learner Model (ignores acceleration)

de
te

rm
in

ist
ic

re
wa

rd

Eu
c.

pr
ob

ab
ili

st
ic

re
wa

rd

Eu
c.

st
ra

te
gy

ra

nd
om

ex

ac
t

IR
L

As
su

m
ed

 L
ea

rn
er

 M
od

el

True Learner Model (ignores turning)

(a)

exact
IRL

deterministic probabilistic
reward Euc. reward Euc. strategy

True Learner Model

As
su

m
ed

 L
ea

rn
er

 M
od

el
(ig

no
re

s a
cc

ele
ra

tio
n)

As

su
m

ed
 L

ea
rn

er
 M

od
el

(ig
no

re
s t

ur
ni

ng
)

True Learner Model

(b)

deterministic probabilistic
reward Euc. reward Euc.

True Learner Model

As
su

m
ed

 L
ea

rn
er

 M
od

el

(more conservative)

As
su

m
ed

 L
ea

rn
er

 M
od

el

True Learner Model (less conservative)

(c)

Figure 3.8: The performance of each user model, as evaluated by all other models.
The assumed and true learner models differ in terms of either features considered or
hyperparameters. White indicates PM(θ̂∗|ξθ∗E1:n

) ≈ 0, whereM is the true learner
model and environments E1:n are chosen based on the assumed learner model. Black
indicates PM(θ̂∗|ξθ∗E1:n

) = 1. (a) The assumed learner model considers all (five)
features φ(·), but the true learner model ignores one of them. (b) The true learner
model considers all features, but the assumed learner model ignores one of them. (c)
Both the assumed and true learner models consider all features. However, the true
learner model is either more or less conservative in the elimination or downweighting
of candidate θs than the corresponding assumed learner model.

But what if end-users do not pay attention to exactly the same reward features
φ(·) as the robot does? In the context of our autonomous driving example domain,
perhaps they do not notice sudden braking (the acceleration feature) or unnecessary

3.5. ANALYSIS OF ALTERNATIVE LEARNER MODELS 43

lane changes (the turning feature). To determine how much of an impact feature
mismatch has, we analyze how well algorithmic teaching performs for teaching θ∗
to ideal end-users, that reason over either a subset or superset of the features that
define the robot’s objective function.

Note that when users reason over a different set of reward features φ̂(·), the space
of candidate θ̂s no longer includes the true parameters θ∗. So, the best we can do is
to teach users the true trade-offs between the reward features in common for the
users’ and robot’s objective functions. Let Θ̂∗ denote the set of all correct candidates,
that have the same tradeoffs as θ∗ for these shared reward features. As in Sec. 3.4.2,
we evaluate teaching performance by measuring, for each “user” M, the probability
they assign to the correct objective function parameters (maxθ̂∗∈Θ̂∗ PM(θ̂∗|ξθ∗E1:n

)),
given ξθ∗E1:n

from each of the generated sequences of examples.5 Unlike in Sec. 3.4.2,
these ideal users no longer correspond to one of the models used to select examples.

Missing Features

We first greedily maximize PM(θ∗|ξθ∗E1:n
) to generate a sequence of teaching

examples for each of our five approximate-inference modelsM and the exact-inference
model, as well as generate a random sequence (same as those in Sec. 3.4.2). We then
take our original set of five features (Sec. 3.4.1) and remove either the acceleration or
turning feature, resulting in two subsets of features that our ideal users could reason
over. We always keep the features for distance to other car, distance from goal, and
deviation from initial speed (i.e., the speed limit) since these are fundamental to the
driving task. There is a single true reward parameter θ̂∗ that matches the trade-offs
of θ∗ in the subset of features considered by the user.

We found that when users only pay attention to a subset of features, teaching is
much less effective (Fig. 3.8a). This may be because our original set of five features
does not contain any redundant ones. So, for many environments, the optimal
trajectory for θ∗ is different than that for θ̂∗.6

Consequently, we see that now almost no sequence of examples is able to teach the
exact-inference IRL learner. Since for many environments E, the observed trajectory
ξθ
∗
E is not optimal for θ̂∗, this leads to P (ξθ

∗
E |θ̂∗) = 0 for exact-inference IRL learners

and the true reward parameter θ̂∗ is then eliminated. For similar reasons, it is no
5We take the maximum probability assigned to a correct candidate because we would be happy

with the user learning any of these.
6When θ̂∗ ignores the acceleration feature, the optimal trajectory differs in 50% of the envi-

ronments selected as teaching examples, and the strategy of the optimal trajectory differs in 21%.
When θ̂∗ ignores the turning feature, the optimal trajectory differs in 50% and the strategy differs
in 14%. (Two trajectories are the same if they consist of the same sequence of states.)

3.5. ANALYSIS OF ALTERNATIVE LEARNER MODELS 44

longer the case that for any ideal user modelM, the sequence generated by assuming
that learner model performs best at teaching that user.

Out of all the models, it seems deterministic Euclidean is slightly more robust
for teaching users who reason over a subset of features. In particular, when (ideal)
users expect that the robot does not consider the acceleration feature (e.g., gradually
braking and slamming on the brakes are equally fine), the results are similar to
those in our user study (Sec. 3.4.3): the sequence of examples generated by assuming
deterministic, Euclidean-based approximate-inference is most effective at teaching
(Fig. 3.8a, top, row 3). This suggests that the real users in our study may have
overlooked acceleration of the autonomous car—this is reasonable, since they were
viewing the car’s trajectory as a video; acceleration would have been much more
apparent if users sat in a realistic driving simulator with force feedback.

Additional Features

To measure the effect of users reasoning over a superset of the features that
determine the robot’s objective function, we alter the robot’s objective function to
be a linear combination over four of the original five reward features φ(·), ignoring
either the acceleration or turning feature. For each of these two subsets of features,
we recompute a sequence of teaching examples for each of the approximate-inference
modelsM and the exact-inference model by greedily maximizing PM(θ∗|ξθ∗E1:n

), as
well as generate a random sequence.

Our ideal users reason over the full set of features. Since the robot’s goal is
to communicate the tradeoffs between only the features that it is paying attention
to, there is no restriction on the reward weights corresponding to features that the
robot is not paying attention to. So, there are multiple correct reward candidates
θ̂∗ considered by the user, that match the trade-offs of θ∗ in the subset of features
considered by the robot.

We found that when users pay attention to a superset of features, teaching is as
effective as when users pay attention to the exact set of features that the robot does
(Fig. 3.8b and Fig. 3.5, respectively). This may be because in our problem setup, we
are equally happy with the user learning any of the correct candidates in Θ̂∗, which
may not be the case in practice.

3.5.2 Approximate-Inference Hyperparameter Mismatch

Recall that our proposed approximate-inference models require setting a hyper-
parameter: τ for deterministic effect, λ for probabilistic effect. This hyperparameter
controls how conservative the learner is in eliminating or downweighting candidate θs

3.5. ANALYSIS OF ALTERNATIVE LEARNER MODELS 45

(Sec. 3.3.6). More conservative means that learners eliminate fewer θs or downweight
them by less, which corresponds to a larger τ and a smaller λ. Less conservative
means the opposite, and corresponds to a smaller τ or a larger λ. We originally
chose the hyperparameter for each approximate-inference modelM with a heuristic,
to be similar to how humans might learn (Sec. 3.3.6).

We consider teaching ideal users that are either more or less conservative, by a
factor of two for τ and λ, in how they eliminate or downweight candidate reward
parameters. The teaching sequences are the same as in Sec. 3.4.2. As one might
expect, when users are more conservative in eliminating or downweighting θs, they
become less teachable: even after observing multiple example trajectories, they do
not prune their space of candidate θs by much, so P (θ∗|ξθ∗E1:n

) is close to zero across
all models and teaching sequences (Fig. 3.8c, top). On the other hand, when users are
less conservative, they tend to perform well across all teaching sequences computed for
approximate-inference models (with a reward- or Euclidean-based distance metric).
However, these ideal users are still unable to learn from a random sequence or the
single example computed to teach exact-inference IRL learners (Fig. 3.8c, bottom).

3.5.3 Hybrid Models

A key assumption underlying our approach is that human end-users use their
understanding of the robot’s objective function to anticipate the robot’s behavior.
This understanding is what enables them to generalize and anticipate the robot’s
behavior in novel scenarios, that are different than those they have seen the robot
act in previously (e.g., the test environments in our user studies).

However, the importance of coverage implies that users are unable to generalize
perfectly, since they need to see all possible strategies of robot behavior. This suggests
something else is going on: users may also be learning the robot’s policy directly
(analogous to robots using imitation learning to learn from human demonstrations),
or they may be learning objective functions that are complex and environment-
dependent, and therefore difficult to generalize across test cases. Alternatively,
people may use hierarchical reasoning, in which they first determine which trajectory
strategy the robot will take (for which they need examples of each possible strategy),
and then select the most likely trajectory within that strategy cluster.

Along the lines of direct policy learning, we explore the possibility that users
are learning a policy that maps from environment to the trajectory taken by the
robot, by relying on a nearest neighbor approach: directly comparing each novel
environment with the ones they have seen the robot act in, and making predictions
based on that. This is motivated by the observation that humans seem to use such
a nearest-neighbor, or exemplar -based, approach in other domains, in particular

3.5. ANALYSIS OF ALTERNATIVE LEARNER MODELS 46

category learning [65,66].
We hypothesize that a hybrid model, that combines approximate inference with

exemplar-based reasoning, will better capture how humans learn in this domain. We
will first introduce a framework for combining these two types of learning, and then
evaluate how well a hybrid model correlates with responses from our user studies.

Instead of modeling people as solely performing inference over objective function
parameters, we can model them as computing a distribution over possible trajectories
for a new environment Et:

P (ξEt |ξθ
∗

E1:n
).

If humans compute this distribution by only reasoning over objective function
parameters (as we have assumed up until now), then we have

PM(ξEt|ξθ
∗

E1:n
) ∝ Eθ∼PM(θ|ξθ∗E1:n

)P (ξEt |θ) (3.11)

In contrast, if humans compute this distribution through exemplar-based reason-
ing, then we have

P (ξEt|ξθ
∗

E1:n
) ∝

n∑
i=1

gE(Et, Ei)gT (ξEt , ξ
θ∗

Ei
) (3.12)

where gE and gT are similarity metrics between environments and robot trajectories,
respectively.

One way to combine these two models into a hybrid model is to take the smaller
of the two values:

P (ξEt |ξθ
∗

E1:n
) ∝ min (Eθ∼P (θ|ξθ∗E1:n

)P (ξEt |θ),
n∑
i=1

gE(Et, Ei)gT (ξEt , ξ
θ∗

Ei
)). (3.13)

This models end-users as being conservative: both lines of reasoning must indicate
that a particular trajectory is likely, in order for people to anticipate that the robot
will take that trajectory.

Evaluation

Recall that in our user studies, we showed participants a sequence of autonomous
car trajectories ξθ∗E1:n

(that varied across conditions) and then asked them to assign a
confidence rating for each of four trajectories in a new environment Et, based on
whether they thought it was the same autonomous car driving for that new trajectory.

3.6. DISCUSSION 47

These confidence ratings capture how likely a participant thinks that trajectory
is in environment Et, given the observed examples of robot behavior. So, we can
evaluate modelsM of human learning based on how well their predicted values of
PM(ξEt |ξθ

∗
E1:n

) correlate with the confidence ratings from our user studies, averaged
across all users in the same condition. The (five) approximate-inference models all
have a weak correlation, with Pearson correlation coefficients r between 0.34 and
0.40 (p-values < 10−5).

For the exemplar-based model, we set gE(Ea, Eb) to 1 if Ea and Eb are in the
same environment class (e.g., merging), and 0 if they are not. This captures that
when faced with a novel environment, people might recall what they observed the
robot doing in other environments with the same class, and use that to anticipate
what the robot will do in the new environment. We set gT (ξa, ξb) to 0 if ξa and ξb are
not in the same trajectory strategy cluster, and to de(ξa, ξb) if they are. This captures
that people consider a trajectory more likely if it shares the same strategy and is
similar (in terms of Euclidean distance) to one they have observed in the past. In
particular, people only realize the robot is capable of executing a particular strategy
if they have previously observed the robot doing it. This exemplar-based model also
correlates weakly with the user data, with a Pearson correlation coefficient r of 0.40
(p-value < 10−5).

This particular exemplar-based model relies on having a reasonable specification
of environment classes and trajectory strategies. In our experimental domain, these
were defined based on hand-picked rules, but they could be automatically computed
instead. Environment classes can be obtained automatically by clustering the
environments. Trajectory strategies can be obtained automatically by clustering
the trajectories in each environment class, e.g., based on trajectory feature vectors
µ(ξE). Or, trajectory strategies could correspond to the homotopy classes in an
environment.

Our proposed hybrid model (Eqn. (3.13)) correlates more strongly with the user
data than either the approximate-inference or exemplar-based models alone, with
Pearson correlation coefficients r between 0.40 and 0.61 (p-values < 10−5). This
suggests that participants rely on both modes of learning in this domain.

3.6 Discussion
Summary

We take a step toward communicating robot objective functions to people. We
found that an approximate-inference model using a deterministic Euclidean-based
update on the space of candidate objective function parameters performed best

3.6. DISCUSSION 48

at teaching real users, and outperforms algorithmic teaching that assumes exact
inference. After augmenting such a model with a coverage objective, it outperformed
letting the user passively familiarize to the robot.

We additionally provide an empirical analysis of alternative learner models, in
which we evaluate how mismatch between the assumed learner model and the true
model impacts the effectiveness of algorithmic teaching, and propose a combined
approximate-inference and exemplar-based model that better captures how users
learn in this domain.

Implications

Making robot objective functions more transparent to people is a worthwhile
goal to work towards. As robots become increasingly capable and are deployed in
more situations, understanding what a robot is optimizing for (and thus being able
to anticipate how it will move around in its environment) is key to safe, comfortable,
and coordinated human-robot interaction.

As an example of a concrete future use case, imagine allowing users to tune a
knob that controls the objective function a robot optimizes. This knob would likely
not correspond to the true reward features; it may instead collapse them onto one or
two interpretable axes. For instance, for an autonomous car, this knob may control
how efficient versus defensive the car drives. Each point on the dial would correspond
to a different setting of reward parameters. Our approach could be used to efficiently
communicate the behavior corresponding to each point, so passengers can choose
the one they are most comfortable with.

Limitations and Future Directions

Our results reveal the promise of algorithmic teaching of robot objective functions.
Future work could apply this framework to teach more complex objective functions,
for instance those that reason about the intentions and goals of other agents, or how
other agents will respond to the robot’s behavior (as in [67]).

However, the coverage results suggest that an IRL-only model is not sufficient
for capturing how people extrapolate from observed robot behavior. We took a step
toward investigating whether users may be directly learning policies in addition to
reasoning about the robot’s objective function. There is more work to be done on
finding accurate models of human learning in this domain.

Our analysis also suggests that it is important for the robot and end-users to
achieve common ground on which features are important. This analysis was limited
to end-users considering either a subset or superset of the features that define the

3.6. DISCUSSION 49

robot’s objective function. Future work could study more complex differences in
features considered, or investigate interactions for achieving common ground on
which features to pay attention to.

Furthermore, in this work we focus on the robot’s physical behavior as a com-
munication channel because people naturally infer utility functions from it. Future
work could augment this with other channels, such as visualizations of the objective
function or language-based explanations.

Finally, this work applies only to robots that behave optimally with respect to
their underlying objective function. So, our approach cannot be applied directly
to robot policies trained with imitation learning or reinforcement learning, since
they are not guaranteed to behave optimally with respect to any objective function.
The next chapter explores how it is still possible to show informative examples of
robot behavior that give human end-users better mental models of black-box neural
network policies, trained with deep reinforcement learning.

50

Chapter 4

Expressing Robot Incapability

In the previous chapter, we assumed that robots can successfully accomplish the
task at hand, but this is not always the case. It is useful for humans to understand
why a robot has failed, in order to be better equipped to assist the robot, and gain
an understanding of other situations that this robot would fail in. Thus, the goal
of this chapter is to enable robots to express their incapability, and to do so in
a way that communicates both what they are trying to accomplish and why they
are unable to accomplish it. We frame this as a trajectory optimization problem:
maximize the similarity between the motion expressing incapability and what would
amount to successful task execution, while obeying the physical limits of the robot.
We introduce and evaluate candidate similarity measures, and show that one in
particular generalizes to a range of tasks, while producing expressive motions that
are tailored to each task. Our user study supports that our approach automatically
generates motions expressing incapability that communicate both what and why
to end-users, and improve their overall perception of the robot and willingness to
collaborate with it in the future.1

4.1 Motivation and Background
As robots become increasingly capable, they may unintentionally mislead hu-

mans to overestimate their capabilities [68]. Thus, it is important for a robot to
communicate when it is incapable of accomplishing a task. There are two relevant
pieces of information when expressing incapability: what the task is, and why the
robot is incapable of accomplishing it.

Understanding why the robot is incapable gives observers a better understanding
1This work was published as Expressing robot incapability in HRI 2018 [13].

4.1. MOTIVATION AND BACKGROUND 51

xd

expressive
attempt

xf

Figure 4.1: We introduce a method to generate motion for incompletable tasks that
communicates both the intended goal of the task and why the robot is incapable of
completing the task. The method generates an attempt motion meant to resemble
successful execution (e.g., moving the end-effector from xf to xd) while obeying the
constraints on the robot’s limitations. In this example, the robot ends up lifting its
elbow to communicate that it is trying to lift the cup, but the cup is too heavy for it.

of its capabilities, which improves joint human-robot task performance [45]. Trans-
parency about the causes of incapability also helps observers assign blame more
accurately [69]. If observers also understand what the robot was trying to do, they
are better able to help the robot complete the task [47,70,71].

One of the simplest ways to express incapability is to carry out the failure.
Unfortunately, not all failures are inherently communicative about the what and the
why. The fact that the robot failed to complete the task means that it might not
have gotten far enough in the task for the what to become obvious—in fact, robots
sometimes fail before they even start. Our goal in this work is to expressively show
a robot’s incapability, beyond simply failing.

In general, even just acknowledging an incapability (e.g., via language or motion)
mitigates the damage to human perception of the robot [22,72,73]; in some situations,
demonstrating an incapability may actually increase the likeability of the robot [74,75],
due to the Pratfall Effect [76]. If we can further ensure better understanding, we
hope that people will not only evaluate the robot more favorably, but they will
also be able to make more accurate generalizations of the robot’s capability across

4.2. RELATED WORK 52

different tasks.
We focus on the robot’s motion as the communication channel, which has al-

ready been established as an effective and natural way of communicating a robot’s
intent [20].

Our key insight is that a robot can express both what it wants to do and
why it is incapable of doing it by solving an optimization problem: that of
executing a trajectory similar to the trajectory it would have executed had
it been capable, subject to constraints capturing the robot’s limitations.

Take lifting a cup that is too heavy as an example, or turning a valve that is
stuck. Once the robot realizes that it is incapable of completing the task, the robot
would find some motion that still conveys what the task is and sheds light on the
cause of incapability, all without actually making any more progress on lifting the
cup or turning the valve. We call this motion an attempt ; Fig. 4.1 shows what an
attempt might look like for the lifting example.

We focus on situations like these, in which the robot is unable to accomplish a
task due to dynamics constraints, that prevent it from moving its end-effector (and
the object it is manipulating) to the desired goal pose. Although this is a relatively
narrow set of tasks that the robot may be incapable of completing, it is a step toward
automatically generating task-specific motions expressing incapability: prior work
relied on either simple strategies [70, 77] or motions hand-crafted for each specific
situation in which the robot is incapable [22].

Our main contribution is to frame the construction of expressive incapability
trajectories as a trajectory optimization problem, motivated by our framework for
increasing transparency (Chapter 2). We explore several reasonable objectives for
this optimization problem, and find that one generalizes best across a range of
incompletable tasks. Our user study shows that attempt trajectories significantly
improve not only participants’ understanding of what the robot is trying to do and
why it cannot, but also their overall perception of the robot and willingness to
collaborate with it in the future.

4.2 Related Work
Our motions communicate both the what and the why, i.e., both intent and the

cause of incapability.

4.2. RELATED WORK 53

What/Intent

Much work has focused on motion for conveying robot intent, i.e., what task the
robot is doing [20,43,44]. What is different in our work is that the robot is incapable
of actually doing the intended task, so it needs a way to convey enough about the
task without being able to actually do it. This is our idea of attempt : in our work,
the robot generates a (failed but expressive) attempt at the task. We focus on how
to autonomously generate such attempts.

Communicating intent is useful: legible motion improves joint human-robot task
performance [25] and in fact arises naturally from optimizing for joint performance [78].
Beyond motion, prior work has explored communicating intent through visualizing
planned trajectories (e.g., via targeted lighting [79] or augmented reality [80, 81]),
gaze [82], body language [83], human-like gestures [84, 85], verbal communication
[86], and LED displays [87].

Why/Cause of Incapability

Prior work on using motion to communicate why a robot cannot complete a
task relied on simple strategies: moving back-and-forth when stuck in front of
an obstacle [77], or repeatedly executing a failing action [70]. In the context of
lifting a cup that is too heavy, the latter approach would result in a trajectory that
repeatedly reaches for the cup, grasps it, then rewinds. We show in Sec. 4.4.3
that our approach significantly improves identification of the task goal and cause
of incapability, compared to the latter method. Another approach relies on hand-
designed motions, crafted per-task using animation principles, to indicate recognition
of success or failure in completing the task [22]. In contrast, our approach of
optimizing for motions expressing incapability generalizes to multiple tasks, while
resulting in an attempt trajectory tailored to each task.

Communicating why a robot is incapable is closely related to work that examines
how robots can warn before failing. Robots can forewarn users of possible failures
through text [72] or confidence levels [88,89], trajectory timings [23], and actively
choosing actions that showcase failure modes [45]. Setting accurate expectations of
robot capabilities is important for narrowing the gap between the perceived and true
capabilities of the robot [68].

4.3. APPROACH: GENERATING ATTEMPT MOTIONS 54

4.3 Approach: Generating Attempt Motions

4.3.1 Expressing Incapability, Formalized

Notation

A robot’s trajectory ξ is a sequence of T robot configurations: ξt is the configura-
tion of the robot at time t. φb : Q 7→ SE(3) is the forward kinematics function at
body point b, and thus gives the pose (rotation and translation) of the body part
at that point. φ′b : Q 7→ R3 gives the translation of body point b. The body points
we consider in our particular implementation are ee (end-effector), el (elbow), sh
(shoulder), and ba (base), which we found to be a reasonable discretization of the
arm.

Incompletable Task Definition

A task is defined by a starting configuration qs, along with a desired final pose
xd for the end-effector (or, in more specific instances, a desired configuration qd).
Fig. 4.1 shows an example of xd for the task of lifting a cup. There may also be
additional constraints that define the task, such as the need to keep contact with an
object as the robot moves its end-effector from φee(qs) to xd.

An incompletable task is one in which the end-effector cannot make progress
beyond a certain failure point xf . For instance, if the cup the robot tries to lift is
too heavy, then xf would be the pose of the end-effector when it first grasps the cup
(because it can no longer proceed in the task from there due to the cup’s weight). xd
would be vertically above xf : the location to which, if the robot were holding on to
the cup, the cup would be lifted. Fig. 4.1 also shows xf for this example.

Expressing Incapability as an Optimization Problem

The goal of expressive incapability trajectories is to communicate what the robot
was attempting to do and why it is incapable of it—in other words, its objective and
the dynamics constraints, respectively. A simple approach would be to move to xf
(i.e., as far as the robot can get with the task), and stop. Prior work has suggested
also repeating this motion [70,77].

We hypothesize we can do better, by optimizing for a robot trajectory that best
communicates the robot’s objective and dynamics constraints to human end-users.
In Chapter 2, we explained how to achieve this by using our framework for increasing
transparency, and explored this problem in a simple grid world setting, in which the
dynamics constraints prevent the point robot from reaching its goal location. This

4.3. APPROACH: GENERATING ATTEMPT MOTIONS 55

results in trajectories where the robot first gets as close to the goal as possible, then
backs up, and repeats this back-and-forth motion.

Taking inspiration from this, on real robots, our idea is to continue the task
by executing an attempt trajectory past the failure point. Our insight is that we
can formalize this as an optimization problem: find an attempt trajectory that
maximizes similarity to the trajectory from xf to xd that would have been executed,
had the incapability not existed. We solve this optimization subject to the dynamics
constraint that the end-effector cannot proceed further.

We capture similarity, or rather dissimilarity, via a cost function c(ξ, xf , xd), and
find the attempt trajectory as:

ξ∗ = argmin
ξ

c(ξ;xf , xd) +
1

λ

T−1∑
t=0

‖ξt+1 − ξt‖2

subject to φee(ξt) = xf , ∀t ∈ {0..T}
collision-free(ξ).

(4.1)

This objective trades off between the similarity cost and a smoothness term common
in trajectory optimization [90,91].

Cost Functions

Crucial to generating a good attempt trajectory is finding a good cost function
c(ξ;xf , xd). We investigate cost functions that seek to mimic the change from xf
to xd. But since the end-effector cannot move in ξ, c cannot just consider the
end-effector’s motion: it has to consider the configuration space.

If the desired configuration qd is not provided, we define it as the inverse kinematics
solution for xd that is closest to the starting configuration ξ0 for the attempt:

qd = argmin
q

‖q − ξ0‖2

subject to φee(q) = xd.
(4.2)

Configuration-Based Cost cq: A natural starting point is to try to mimic in ξ
the change in configuration from ξ0 (with the end-effector at the failure point xf) to
qd:

cq(ξ;xf , xd) = d(ξT − ξ0, qd − ξ0), (4.3)

where d is some distance metric such as the `2-norm (we discuss options below).
Workspace-Based Cost cb: Since configuration spaces can sometimes be counter-
intuitive, we also look at a cost that tries to mimic, for each body point, the change

4.3. APPROACH: GENERATING ATTEMPT MOTIONS 56

in position for that body point:

cb(ξ;xf , xd) =
∑
b∈B

d(φ′b(ξT)− φ′b(ξ0), φ′b(qd)− φ′b(ξ0)) (4.4)

Despite the end-effector staying put, this incentivizes, for instance, the elbow to
move in the same direction it would have moved had the task been successful.
Emulate End-Effector Cost cee: We also introduce a third, somewhat less obvious
cost function. Since the end-effector is central to the task, and now it cannot proceed
further, this cost function tries to mimic using the other body points what the
end-effector would have done:

cee(ξ;xf , xd) =
∑
b∈B

d(φ′b(ξT)− φ′b(ξ0), x′d − x′f) (4.5)

Distance Metrics

Each of these costs relies on a distance metric between vectors. We consider three
distance metrics d(v1, v2):

1. The squared `2-norm encourages v1 and v2 to have similar direction and
magnitude:

d`2(v1, v2) = ‖v1 − v2‖2. (4.6)

2. The (negative) dot product encourages v1 and v2 to have similar direction and
large magnitudes:

ddot(v1, v2) = − v1 · v2 = −‖v1‖ ‖v2‖ cos θ. (4.7)

3. We also introduce a generalization of the dot product that uses a hyperparame-
ter k to control the trade-off between v1 and v2 having similar direction versus
large magnitudes:

dproj(v1, v2; k) = − v1 · v2

(
v1 · v2

‖v1‖ ‖v2‖

)k−1

= −‖v1‖ ‖v2‖ (cos θ)k.

(4.8)

The last two distance metrics are motivated by the fact that a larger magnitude
makes the attempt trajectory more obvious to human observers. Intuitively, dproj

projects v1 onto v2, projects the result back onto v1, projects the result onto v2, and
so on. The hyperparameter k defines how many times this projection happens, so
for larger k, matching direction matters more than large magnitudes. Note that
dproj(v1, v2; 1) = ddot(v1, v2).

4.3. APPROACH: GENERATING ATTEMPT MOTIONS 57

qs to ξ0 attempt: ξ0 to ξT rewind: ξT to ξ0
3x

Figure 4.2: For a given incompletable task, the robot first executes the task until the
point of failure (left), at which point it executes the attempt trajectory ξ∗ (center).
To emphasize this motion, the robot then executes the reverse of ξ∗ to rewind back
to ξ∗0 (right), and repeats this two more times.

Overall Attempt

The robot starts at qs, and moves along the normal task execution trajectory to
the point of failure xf ; at this point its configuration is ξ∗0 , where ξ∗ is the optimum
from Eqn. (4.1). From there, it executes ξ∗.

Since prior work on using motion to express incapability found repetitions to
be useful [70,77], we also explore rewinding and repeating: the robot executes the
reverse of ξ∗ to get back to ξ∗0 , and repeats the execute-rewind twice more, as in
Fig. 4.2.

In what follows, we first show the outcome ξ∗ that each cost function leads to, and
use this to select a good cost function. We then run experiments to determine the
appropriate relative timing of the ξ∗ and the rewind (to enhance expressiveness [23]),
as well as whether repetitions of the attempt help. Armed with the right general
parameters, we conduct a main study across different incompletable tasks to test
whether these motions, optimized to be more expressive, lead to better understanding
of what task the robot is trying to do and why it will fail.

4.3.2 Comparing Cost Functions

In this section, we contrast the different behaviors produced by the cost functions
and distance metrics.

4.3. APPROACH: GENERATING ATTEMPT MOTIONS 58

dl2 ddot
pu
sh

lif
t

✖	

✖	

✔

✔

✔

✔

dproj

Figure 4.3: Attempt trajectories ξ∗ that optimize cost function cee with each of the
three proposed distance metrics. Each image shows ξ0 (transparent) and ξT for that
attempt trajectory. dproj (last row) results in communicative attempt trajectories for
both the lift and push tasks.

Implementation Details

We use a simulated PR2 robot in OpenRAVE [92] and optimize for attempt
trajectories using TrajOpt [91]. Since costs cb and cq depend on qd, which in turn
depends on ξ0, we simplify the optimization problem by optimizing over ξ1:T for each
possible starting configuration ξ0 of the attempt trajectory (found by running an
inverse kinematics solver on xf), and then select the full trajectory ξ that minimizes
the objective function.

We use grid search to select the hyperparameter λ and a bias α separately for
each cost function and distance metric pair.2 We chose k = 9 for dproj. For cb,
B = {el, sh} and for cee, B = {ba, el, sh}. This is because matching the configuration
would not make as much sense for the base, but the base can be useful as another
body point with which to mimic the end-effector motion. In general, which body
points to use might be a robot-specific question, to be determined from a few tasks

2We found that optimization is more stable if the terms in the objective are in the same
range. So, we add a bias α to the cost function: c′(ξ;xf , xd) = c(ξ;xf , xd) + α. We select
λ ∈ {10, 20, 40, 80, 160} and α ∈ {0, 0.3, 0.6, 1.0, 2.0}.

4.3. APPROACH: GENERATING ATTEMPT MOTIONS 59

lift push

c b

✔ ✖	
ξ0 ξT ξ0 ξTξ0 qd ξ0 qd

c q

?✖	

		
		 		

		

Figure 4.4: Attempt trajectories ξ∗ that optimize cost function cb or cq, with distance
metric dproj. When optimizing for cb, the attempt trajectory for lift is communicative,
but for push the robot swings out to the left, which does not indicate that it is
trying to push. When optimizing for cq, the attempt trajectory for push is reasonable
(although it could be confused for pulling, since the robot moves away from the
shelf), but for lift the robot’s elbow moves downward, which does not indicate that
it is trying to lift.

and generalized to new tasks.

Behaviors

Overall, we found that cee (the cost that mimics the desired end-effector motion
with the other body points) with dproj (the distance metric that generalizes the dot
product) is a combination that reliably leads to attempt trajectories that both move
in a way that makes the task clear, and have enough movement to be noticeable. We
explain this finding below by first contrasting distance metrics, and then contrasting
cost functions. We use two incompletable tasks for this contrast: lifting a cup that
is too heavy (the lift task), and pushing a shelf that is immovable (the push task).
Explanation of Attempt Behavior. Fig. 4.3 shows the results of cee with each
distance metric. Across the board for lift, optimizing for cee encourages the robot to

4.3. APPROACH: GENERATING ATTEMPT MOTIONS 60

lift push

c ee
 &

 d
pr

oj

pull pull down push sideways

Figure 4.5: Attempt trajectories ξ∗ that optimize cost function cee with distance
metric dproj, for five incompletable tasks. Arrows show the direction of movement for
the considered body points (elbow, shoulder, and base)—for each task, these body
points imitate how the robot’s end-effector would move, if it were able to successfully
accomplish the task.

use its elbow to produce the motion that the end-effector would otherwise produce.
We thus see the robot lifting its elbow while keeping the end-effector on the cup that
is too heavy to lift. Across the board for push, the robot is using its elbow, shoulder,
and base, to mimic the end-effector forward motion. As a result, the robot moves
forward toward the shelf, as the end effector stays put, unable to actually push the
shelf.
Distance Comparison. dproj works across both tasks. In contrast, using the d`2
distance metric results in an attempt trajectory for push that barely moves, and
using the ddot distance metric results in an over-exaggerated motion for lift in which
the robot’s elbow twists toward the center.
Cost Comparison. Now we turn to examining the performance of the other two
cost functions (cb and cq) with the best distance metric dproj.

Optimizing for cb results in a confusing attempt trajectory for push where the
robot swings to the left. This is because the elbow and shoulder body points move
slightly to the left from ξ0 to qd: if the robot were successful in pushing, its end-
effector would move further out, extending the arm, and the elbow would no longer
protrude to the right, and instead move inward (to the left of the robot). The
optimization thus selects an attempt trajectory that moves the elbow and shoulder
as far as possible inward along this general direction (Fig. 4.4). We observe that
moving the other body points (e.g., the elbow or shoulder) in the way they ideally
would during a successful task execution is not always indicative of the task.

Optimizing for cq results in a confusing attempt trajectory for lift, where the
robot’s elbow moves downward to match the desired configuration qd (Fig. 4.4). In
the attempt for push, the robot moves away from the shelf rather than toward it, also
to match qd—which would have the arm extended out after a successful push. This

4.4. EXPERIMENTS 61

could work, but could also be mistaken for pulling instead of pushing. We observe
that because configuration spaces are often counterintuitive, mimicking the motion
in configuration space can lead to surprising, counterintuitive motions.

In contrast, it seems that using the other body points to imitate what the end-
effector cannot do might actually be indicative of what the robot is trying to achieve.
We put this to the test in Sec. 4.4.3. But first, we tune the hyperparameters of
attempts—the timing of the motions, and whether to include repetitions.
cee Across More Tasks. Optimizing for cee with dproj also generates communica-
tive attempt trajectories for other incompletable tasks, shown in Fig. 4.5: opening a
locked cabinet (the pull task), turning a locked door handle (the pull down task),
and pushing a shelf to the side (the push sideways task). Across all five tasks, we set
k = 3, λ = 20, and α = 0.3.3 These are the attempt trajectories that we show in our
user studies (in video form). A video summary of the cost comparisons and attempt
motions for each task is at youtu.be/uSnUtpcdlck.

4.4 Experiments

4.4.1 Timing Motions That Express Incapability

Our aim was to manipulate timing in order to enhance the expressiveness of
our optimized motions. We temporally divided a motion expressing incapability
into attempt and rewind motions. The attempt motion consists of the trajectory ξ∗
produced by the cost function optimization from Eqn. (4.1). The rewind motion,
which is the reverse of the attempt trajectory, immediately follows the attempt
motion. Our goal in this study was to find the pair of timings for the attempt and
rewind motions that best convey a robot’s task goal and the cause of incapability.

Experiment Design

Manipulated Variable. We manipulated timing in this study and chose three
speeds (Fast, Moderate, and Slow). We were only interested in the relative speed
between the attempt and rewind motions, so we fixed the rewind speed at Moderate
and varied the attempt speed, creating three conditions: Fast attempt with Moderate
rewind (Fast, Moderate), Slow attempt with Moderate rewind (Slow, Moderate),
and Moderate attempt with Moderate rewind (Moderate, Moderate).
Other Variables. We tested timing across the five tasks in Fig. 4.5.

3To simplify optimization, we additionally assume a fixed base when computing forward kine-
matics for non-base body points.

https://www.youtube.com/watch?v=uSnUtpcdlck

4.4. EXPERIMENTS 62

"It was easy
to tell [goal]"

"Confused
about what

the robot was
trying to do"

"Understood
[goal] but

did not
understand

[cause]"

"It was clear
that the

robot failed
because of

[cause]"

1

2

3

4

5

R
at

in
g

4.3

1.9

3.0
3.4

3.7

2.3

2.9 2.9

4.2

1.9

3.1
3.0

* *

*

*
*

Comparison of Timings
Fast,Medium Slow,Medium Medium,Medium

Figure 4.6: Average Likert ratings toward different timings. Timing was within-
subjects, meaning participants rated each of the timing pairs. Overall, participants
preferred Fast attempt and Moderate reset.

Subject Allocation. We recruited 60 participants (37% female, median age
32.5) via Amazon Mechanical Turk (AMT). All participants were from the United
States and had a minimum approval rating of 95%. Timing was within-subjects:
participants saw each of the three timing conditions. Task type was between-subjects:
participants saw only one type of task.
Dependent Variables. Participants saw videos of all three timings. We explained
to the participants what the robot was trying to do (its intended goal), and why it
could not complete the task. We then asked them to help us select the timing that
best expresses both the goal and cause of incapability. We created four statements to
assess each timing (Fig. 4.6), and asked participants to rate their level of agreement
with these statements on a 5-point Likert scale. We also asked participants to rank
the three timings.

Analysis

We ran a repeated-measures ANOVA with timing as a factor and user ID as a
random effect, for each item. We found significant effects of timing on how easy
it was to tell the goal (F (2, 118) = 8.26, p = .0004), how confusing the goal was
(F (2, 118) = 4.47, p = .013), and how clear the cause was (F (2, 118) = 5.13, p = .007).
Across the board, the timing that worked best was (Fast, Moderate), as shown in
Fig. 4.6. 58% of participants ranked this timing first. This indicates the attempt part

4.4. EXPERIMENTS 63

of the motion should be faster than the rewind, which intuitively makes sense—it
perhaps conveys that the attempt portion is the purposeful action on which the robot
expends more energy, and the rest is at a normal speed that the robot would use to
move around. We use this (Fast, Moderate) timing in our main study, described in
Sec. 4.4.3.

4.4.2 Comparing Repeated Attempts

After determining the best timing for the attempt and rewind motions, we looked
at whether including repetition for the attempt motions enhances expressiveness.

Experiment Design

Manipulated Variable. We manipulated repetition, where we compared N=3
iterations of the attempt motion with a single (N=1) iteration of the attempt motion.
Dependent Variables. We used the same measures as in Sec. 4.4.1.
Subject Allocation. We recruited 60 participants (47% female, median age 35)
via AMT. All participants were from the United States and had a minimum approval
rating of 95%. Repetition type was within-subjects: every participant saw N=1 and
N=3 iterations of the attempt motion. Task type was between-subjects: participants
saw only one type of task.

Analysis

We ran a repeated-measures ANOVA with timing as a factor and user ID as
a random effect, for each item. We found repetitions significantly increased how
easy it was to tell the goal (F (1, 58.14) = 20.21, p < .0001), decreased confusion
about the goal (F (1, 62.71) = 15.95, p = .0002), and made the cause more clear
(F (1, 63.64) = 16.94, p = .0001). Fig. 4.7 shows the results. We proceed with
repetitions for our main study.

4.4.3 Main Study: Is Expressive Motion Expressive?

With the details of how to generate motions expressing incapability out of the
way, we now turn to how much this helps people identify the robot’s goal and cause
of incapability.

4.4. EXPERIMENTS 64

"It was easy
to tell [goal]"

"Confused
about what

the robot was
trying to do"

"Understood
[goal] but

did not
understand

[cause]"

"It was clear
that the

robot failed
because of

[cause]"

1

2

3

4

5

R
at

in
g

4.3

2.0

3.3 3.1
3.4

2.7

3.4

2.3

*

*
*

Comparing Repetitions v. No Repetitions
With Repetition Without Repetition

Figure 4.7: Average Likert ratings comparing repetitions with no repetitions. The
study was within-subjects, meaning participants rated both motions with repeti-
tion and motions without repetition. Overall, participants preferred motions with
repetitions.

Experiment Design

Manipulated Variable. We compared our motions expressing incapability against
the state-of-the-art approach for automatically generating motion to express robot
incapability [70,77]. With the state-of-the-art approach, the robot repeatedly executes
a failing action. The manipulated variable was generating the attempt motion via
our optimization-based approach versus via the repeated-failures approach.

We created motions expressing incapability following the process in Fig. 4.2.
For each task, we optimize cee with dproj to generate the attempt ξ∗. The robot
moves from qs to ξ∗0 , executes the attempt at speed=Fast, rewinds back to ξ∗0 at
speed=Moderate, and repeats the attempt-rewind two more times for a total of N=3
iterations.

For the repeated-failure motions, the robot moves from qs to ξ∗0 , rewinds back
T time steps at speed=Moderate, and moves back to ξ∗0 at speed=Fast. The robot
rewinds T time steps and moves back to ξ∗0 two more times for a total of N=3
iterations. The timing and number of iterations are the same as for our approach, to
limit possible confounds.
Dependent Variables. Our dependent variables included how well participants
could infer the robot’s goal and cause of incapability, as well as measures regarding
their perception of the robot.

4.4. EXPERIMENTS 65

We assessed goal recognition—how well participants could infer the intended
task goal—in several ways. First, using an open-ended response, we asked participants
to state what they thought the task goal was. Second, we presented four plausible task
goals, with the correct task goal as once of the choices. We then asked participants to
rate, on a 5-point Likert scale labeled “Strongly Disagree” to “Strongly Agree,” how
well each task goal described what the robot’s goal was. Lastly, we asked participants
to explicitly rank the task goals in order of how well they described the robot’s goal.
Incorrect goal alternatives are described in Table 4.1.

We measured cause of incapability recognition—how well participants infer
the incapability underlying the robot’s failure—in a similar way. The only difference
was that the Likert-scale questions included a second correct option (“The robot was
not strong enough [to complete the task]”) because it is a plausible interpretation of
our motion: our method is not meant to differentiate between, for instance, the cup
being too heavy and the robot not being strong enough. Rather, our method is meant
to differentiate between these two correct options and other causes of incapability
that are possible, but untrue, for instance the robot running out of battery, its
planning algorithm or software system getting stuck or crashing, and so forth, see
Table 4.1.

For assessing task goal and cause of incapability, participants saw either the
motions expressing incapability or the repeated-failure motions. Next we assessed
participants’ subjective perceptions and attitudes toward the robot, and for that,
we wanted participants to compare the two “robots”—with expressive motions gen-
erated by either our optimization-based approach or the repeated failures. We felt
comparisons were important here in order to ground participants’ perceptions, thus
improving experimental reliability. We thus introduced the other robot and asked
them, for each robot, to rate their level of agreement with the statements in Fig. 4.10.

4.4. EXPERIMENTS 66

Incorrect Goal Recognition Statements
Lift The robot was trying to push the cup.

The robot was trying to pull the cup.
The robot was trying to knock over the cup.

Pull The robot was trying to slide the cabinet door
sideways.

The robot was trying to sense the cabinet handle.
The robot was trying to push the cabinet away.

Pull The robot was trying to sense the door handle.
Down The robot was trying to prevent someone from

opening the door on the other side.
The robot was trying to remove the door handle.

Push The robot was trying to sense the box.
The robot was trying to stroke the box.
The robot was trying to knock on the box.

Push The robot was trying to sense the shelf.
Sideways The robot was trying to lift the shelf.

The robot was trying to knock on the shelf.

Incorrect Cause of Incapability Statements
The robot had a mechanical failure (e.g. ran out of battery, arm
got stuck, etc.) or software crash.

The robot did not know how to [goal].
The robot is waiting for permission to [goal].

Table 4.1: List of incorrect plausible goal and cause of incapability statements
participants had to choose from. The cause of incapability statements were similar
across tasks.

Subject Allocation. We recruited 120 participants (38% female, median age 33)
through Amazon Mechanical Turk. All participants were from the United States and
had a minimum approval rating of 95%. The optimization-based versus repeated-
failure manipulation was between-subjects for the first part of the study and was
within-subjects for the last part, in which we evaluated subjective perceptions of
the robot. We had 24 participants for each of the five tasks, where 12 were in

4.4. EXPERIMENTS 67

the optimization-based expressive motion condition and the other 12 were in the
repeated-failure condition.
Hypotheses. We hypothesized that motions expressing incapability will help
participants understand the robot’s goal and incapability better than repeated-
failures will, across all tasks. We also hypothesized that participants will perceive
the robot with motions expressing incapability more positively than they perceive
the robot with repeated-failures.
H1: Motions expressing incapability improve goal recognition.
H2: Motions expressing incapability improve cause of incapability recognition.
H3: Participants perceive the robot more positively when it uses motions expressing
incapability on an incompletable task.

Analysis

Goal Recognition. We first analyzed participants’ ratings of the different possible
goals. We ran a two-way ANOVA with motion type as the independent variable
for each possible goal’s rating. We found that motions expressing incapability
significantly improved the rating of the correct goal (F (1, 119) = 19.43, p < .0001),
and significantly decreased the average rating given to the incorrect goals (F (1, 119) =
23.79, p < .0001). This supports our hypothesis H1.

Fig. 4.8 shows a task breakdown of the correct goal rating. We can see that the
largest improvements are in push and push sideways, probably because the context
is not enough for these tasks to be conveyed by the non-expressive motion—some
attempt is really needed to understand what the robot is trying to do. In contrast,
as the robot reaches for the cup, its intended goal of lifting the cup becomes pretty
clear even without an attempt.

Next, we analyzed participant’s rankings of the possible goals. Motions expressing
incapability significantly improved the ranking of the correct goal (F (1, 119) = 30.69,
p < .0001) from an average ranking of 1.65 (already close to the top) to one of 1.05,
with nearly all participants selecting the correct goal (95% as opposed to 60%).

We also analyzed participants’ open-ended responses. We categorized an open-
ended response as correct if the response contained all keywords, or synonyms of
keywords, from the correct goal recognition statement. For example, in the correct
statement, “The robot was trying to pick up the cup,” we designated “pick up” and
“cup” as keywords. We had two experimenters code the statements where one coder
coded all statements and the other coded 10%. There was strong agreement between
the two coders’ judgments, with Cohen’s κ = 1, p = .001. We found that participants
who saw the motion expressing incapability were able to explain the robot’s goal
correctly (in their open-ended response) significantly more than participants who

4.4. EXPERIMENTS 68

lift pull pull
down

push push
sideways

averaged

Tasks

1

2

3

4

5
R

at
in

g

* * *
4.9 5.0

4.5
4.3

4.9
4.74.8 4.8

4.3

2.7

3.5
4.0

Goal Recognition
optimization-based repeated-failure

Figure 4.8: Ratings toward the correct goal for each task. A higher value indicates
higher confidence. The averaged values represent mean ratings of expressive and
non-expressive motions across tasks.

saw the repeated-failure, p = .0003.
Finally, we analyzed the two goal-recognition Likert-scale subjective questions at

the end of the study (“It was easier to tell [the robot’s goal].” and “I was confused
about what the robot was trying to do.”). We used a repeated-measures ANOVA,
since this part was within-subjects. We found that motions expressing incapability
improved the ease of identifying the goal (F (1, 119) = 602.38, p < .0001) and
decreased confusion about the goal (F (1, 119) = 183.13, p < .0001).

Overall, our results support H1: our motions expressing incapability
improved goal recognition.

Cause of Incapability Recognition. Looking first at the ratings for possible
causes of incapability, participants rated five causes, where one was the robot’s actual
cause of incapability, and another was that the robot was not strong enough—a
plausible cause that is hard to disambiguate from the actual cause within each task.
The other causes were incorrect.

We found that motions expressing incapability significantly improved the rating
of the correct cause (F (1, 119) = 13.6, p = .0003), but did not have a significant
effect on the rating of the plausible cause. Motions expressing incapability decreased
the average ratings of the incorrect causes (F (1, 114) = 19.05, p < .0001). Fig. 4.9
shows a task breakdown of the correct cause of incapability rating. We see that there
is an improvement across all tasks, with the largest improvement in push.

4.4. EXPERIMENTS 69

lift pull pull
down

push push
sideways

averaged

Tasks

1

2

3

4

5
R

at
in

g
*

*

2.5

3.8
3.5

4.3
4.4

3.7

2.0

2.8
2.6

3.3

3.7

2.9

Cause of Incapability Recognition
optimization-based repeated-failure

Figure 4.9: Ratings toward the correct cause of incapability for each task. A higher
value indicates higher confidence. The averaged values represent mean ratings of
optimization-based and repeated-failure motions across tasks.

Motions expressing incapability also significantly improved the rank of the correct
cause (F (1, 119) = 23.71, p < .0001), from an average of 3.02 to an average of 1.98.

Next, we looked at participants’ open-ended responses. We used the same coding
scheme as we did for the goal-recognition open-ended statements. We found that
there was a strong agreement between the two coders’ judgments, with Cohen’s
κ = 1, p = .001. Participants who saw the motions expressing incapability were
significantly more likely to describe the correct cause of incapability compared to
those who saw the repeated-failures, p = .0002.

Finally, we conducted a repeated-measures ANOVA on the one subjective rating
relevant to cause of incapability recognition (“It was clear that [cause of incapabil-
ity].”). We found motions expressing incapability significantly improved this rating
(F (1, 119) = 182.31, p < .0001).

Overall, our results support H2: our method for generating motions
expressing incapability improved cause of incapability recognition.

Perception of Robot. We ran a repeated-measures ANOVA for each statement.
With motions expressing incapability, users perceived the robot as more like an
animated character (F (1, 119) = 30.82, p < .0001), wanted to help the robot more
(F (1, 119) = 51.93, p < .0001), thought it was more trustworthy (F (1, 119) = 31.76,
p < .0001) and a better teammate (F (1, 119) = 85.97, p < .0001), and were more

4.5. DISCUSSION 70

"It was easy
to tell [goal]"

"Confused
about what the

robot was
trying to do"

"It was clear
that the

robot failed
because of

[cause]"

"Reminded
me of a

Disney/Pixar
character"

"Robot's motion
made me
want to
help it"

"Robot is
trustworthy"

"Robot is a
good

teammate"

"Would be
willing to

collaborate with it"

1

2

3

4

5

R
at

in
g

*

*
*

*

* *
* *4.7

1.8

4.1

2.6

3.4 3.4

3.8 3.9

1.7

3.7

1.8
2.1

2.4
2.7

2.5
2.7

Perception Toward Robot
optimization-based repeated-failure

Figure 4.10: Ratings toward the Likert statements used in Sec. 4.4.3. A higher value
indicates higher confidence. For each statement, ratings for the optimization-based
and repeated-failure conditions were averaged across tasks.

willing to collaborate with the robot in the future (F (1, 119) = 69.66, p < .0001).
See Fig. 4.10 for details.

Overall, our results support H3: our method for generating motions
expressing incapability improved users’ perceptions of the robot.

4.5 Discussion
Summary

We use an optimization-based approach to automatically generate expressive
trajectories that communicate what a robot is trying to do and why it will fail. The
optimization produces a trajectory where body points on the robot “mimic” how
the end-effector would move if the robot had been capable of completing the task.
We complemented the expressiveness of our optimized trajectory by manipulating
repetition and timing. Our results show that, compared to the state-of-the-art
approach, motions expressing incapability improve intent recognition and cause of
incapability inference while also increasing positive evaluations of the robot.

Our optimization enables robots to automatically and efficiently generate motions
expressing incapability. On average, solving Eqn. (4.1) for for cost cee, distance dproj,
and a specified qf takes half a second when the base does not move (e.g., for the
lift and pull down tasks) and a few seconds when the base is able to move. Given

4.5. DISCUSSION 71

this, it is feasible for the robot to detect incapability in the middle of execution, and
compute an expressive motion on the fly.

Limitations and Future Work

Perhaps the greatest limitation of our work is that our optimization covers only a
narrow set of tasks the robot is incapable of completing. Incapabilities that are not
about the end-effector position changing, such as grasping, or incapabilities that have
nothing to do with the end-effector, such as those related to perception, cannot be
communicated using our optimization. Our approach also does not address when or
how expressive motions should be accompanied by other channels of communication,
such as verbal communication. Although these are very important areas for future
work, we are excited to see that the same method can automatically generate motion
that is expressive and useful across a range of different tasks.

72

Chapter 5

Establishing Appropriate Trust in
Black-Box Policies

Learned neural network policies make it particularly challenging for humans to
have an accurate mental model of a robot’s capabilities and how it acts. In this
chapter, we propose an approach for helping end-users build a mental model of
such policies. Our key observation is that for most tasks, the essence of the policy
is captured in a few critical states: states in which it is very important to take a
certain action. Our user studies show that if the robot shows a human what its
understanding of the task’s critical states is, then the human can make a more
informed decision about whether to deploy the policy, and if she does deploy it, when
she needs to take control from it at execution time.1

5.1 Motivation and Background
When humans have an accurate mental model of a robot, their subsequent

interactions with this robot are safer and more seamless. This mental model may
include the robot’s intentions [20,43,44], its objectives (as explored in Chapter 3),
its capabilities [45] (and further explored in Chapter 4), or its decision-making
process [93].

In particular, giving human end-users an accurate mental model of a robot’s
capabilities is key to establishing an appropriate level of trust in the robot [94–96].
Establishing appropriate levels of trust in robots is essential: if end-users do not
trust a robot, they may unnecessarily interfere with its operation, and will fail to
take advantage of all its capabilities [97]. On the other hand, if end-users over-trust

1This work was published as Establishing appropriate trust via critical states in IROS 2018 [15].

5.1. MOTIVATION AND BACKGROUND 73

Critical States do not deploy,
because of

deploy, but
take control at

Figure 5.1: By introducing human end-users to a policy π’s critical states Cπ (left),
we enable them to make a more informed decision about whether to deploy the
policy, and when to take control from it. For example, suppose that a self-driving
car’s policy believes it is critical to stop when it encounters red lights, a pedestrian
crossing a crosswalk, and an empty crosswalk. An end-user (top right) might see
these critical states and decide not to ride in this car, because the last critical state
is clearly incorrect. A different end-user (bottom right) might be comfortable riding
in this car, but will be more aware of possibly needing to take control when there is
a pedestrian crossing the road without a crosswalk in sight, because the policy did
not consider that to be a critical state.

a robot, they will expect it to act correctly in situations that it in fact cannot handle,
which leads to unexpected behavior, and perhaps injuries and damage. As robots
become more capable, they may unintentionally lead humans to over-trust them [68].
In general, trust is a complex phenomenon, and there are a variety of ways in which
robots and machines may influence human end-users’ trust [98–100].

Forming an accurate mental model, and thus establishing appropriate trust, is
particularly challenging when the robot has learned a complex black-box policy.
For instance, recently neural network policies have been trained to perform robotic
manipulation skills [101] and drive in the real world [102]. These neural networks are
trained end-to-end to map directly from raw inputs (e.g., images) to a distribution
over actions to take. To decide how much to trust a learned policy, we have to know
whether the robot has figured out the correct actions to take. But, it is impossible
to examine what the robot plans to do in every possible state.

Our insight is that the end-user does not need to know what the robot would do in
all states. For many tasks, in most states the ultimate outcome of the task is similar,

5.2. APPROACH: COMPUTING & USING CRITICAL STATES 74

regardless of which action the robot takes locally. But there are a few states—critical
states—where it really matters which action the robot takes. For instance, imagine
an autonomous car driving down a highway. When there are no vehicles nearby, it
does not matter whether the car maintains its current speed, speeds up or slows
down slightly, or turns slightly to the right or left. In contrast, if the vehicle directly
in front slams on its brakes, the autonomous car must immediately slow down as
well. The latter is a critical state, whereas the former is not.

If a robot’s policy is stochastic, then it should output a low-entropy action
distribution for critical states. A (stochastic) policy’s critical states are thus a concise
summary of that policy, since in all other states, the policy has no strong preference
about which action to take. So, showing how a policy acts in critical states is
the optimal thing to do from the standpoint of increasing transparency to human
end-users (as discussed in Chapter 2).

Motivated by this, we propose showing end-users how a robot acts in critical
states, to give them a better understanding of what it has learned, and enable them
to decide which situations to trust the robot in (Fig. 5.1). After seeing how a robot
acts in critical states, a potential user may decide that this robot is not trustworthy,
and decline to use it. Or, in human-in-the-loop setups—for instance, a passenger
riding in a self-driving car, or an engineer supervising robot arms in a factory—this
ensures users are well-equipped to decide when they need to take control over the
robot’s operation.

Our main contribution is a method for algorithmic assurance [103], that enables
end-users to more quickly establish an appropriate level of trust in robots that they
interact with, rely on, or supervise. Our user studies suggest that humans are indeed
able to develop more appropriate trust in a robot through observing how it acts
in what it considers to be critical states, compared to just observing it act over
time. We evaluate this through both self-reported measures of trust, as well as
through allowing users to take control during execution of the policy [97]: if they
have developed an appropriate level of trust, they would only choose to take control
in critical states that the robot likely cannot handle.

5.2 Approach: Computing & Using Critical States

5.2.1 Preliminaries

Notation

We consider the setting of a Markov Decision Process (MDP), defined by
{S,A,P ,R, γ}, where S is the state space, A the action space, P : S ×A× S → R

5.2. APPROACH: COMPUTING & USING CRITICAL STATES 75

the transition probabilities, R : S ×A× S → R the reward function, and γ ∈ (0, 1]
the discount factor.

A robot’s policy π is a stochastic function mapping each state to a distribution
over actions (π : S → ∆A, where ∆A is the probability simplex on A). Its value
function at state s is

V π(s) = max
a

∫
s′
P (s, a, s′)[R(s, a, s′) + γV π(s′)], (5.1)

and its action-value function at state s and taking action a is

Qπ(s, a) =

∫
s′
P (s, a, s′)[R(s, a, s′) + γmax

a′
Qπ(s′, a′)]. (5.2)

In this framework, a critical state s is one for which Qπ(s, a) varies greatly across
different actions a: there are a small number of actions for which Qπ(s, ·) is high,
but for most actions it is mediocre or low. We will define this formally in the next
section.

Maximum-Entropy Reinforcement Learning

Typically a robot’s goal is to maximize expected cumulative discounted reward,
or return:

Eπ,P

[∑
t

γtR(st, at, st+1)

]
. (5.3)

Depending on the MDP, this may result in policies that are essentially deterministic,
treating all states as critical.

In contrast, in maximum-entropy reinforcement learning, the policy is trained
to not only maximize return, but also to act as randomly as possible while doing
so [57,104,105]. Concretely, the policy is trained to maximize

Eπ,P

[∑
t

γt[R(st, at, st+1) + αH(π(·|st))]

]
, (5.4)

where α determines the tradeoff between maximizing return and entropy, and
H(π(·|st)) is the entropy of the policy’s output action distribution at state st. This
leads to a policy with meaningful critical states, since it learns to acts randomly in
states where the action has little impact on return, and to act purposefully in states
where the action does have a major impact on return.

5.2. APPROACH: COMPUTING & USING CRITICAL STATES 76

We train our neural network policies using Soft Actor-Critic2 (SAC) [105], a deep
reinforcement learning method that is based on maximum entropy reinforcement
learning. We find that in practice, training with SAC indeed produces policies with
meaningful critical states.

5.2.2 Computation of Critical States

Policy-Based

Recall that critical states are those in which a policy (or human) greatly prefers a
small set of possible actions over all others. A natural definition of the set of critical
states Cπ for a stochastic policy π is thus

Cπ = {s |H(π(·|s)) < t}, (5.5)

where H(π(·|s)) is the entropy of the policy’s output action distribution at state s,
and t ∈ R is the threshold for being considered “critical.” This definition of critical
states can be applied to both continuous and discrete action spaces.

Value-Based

Certain reinforcement learning approaches for training policies, such as actor-
critic methods, also learn a value or action-value function in parallel to (or instead
of) learning a policy [106]. Value functions capture the long-term consequences of
a policy’s actions, so when they are available, they are a reasonable alternative for
computing critical states.

If we define critical states more concretely as those in which acting randomly will
produce a much worse result than acting optimally, then the set of critical states Cπ
for a stochastic policy π is:

Cπ = {s | (max
a
Qπ(s, a)− 1

|A|
∑
a

Qπ(s, a)) > t}, (5.6)

where Qπ is the learned action-value function. If the action space is continuous, this
can be applied after discretization. Computing critical states based on a learned
value function V π is also possible, by using one-step rollouts to estimate Qπ for each
action.

We train our policies with SAC, which learns a policy and an action-value function
in parallel. In practice, we found that computing critical states based on action-value

2We use the implementation at github.com/haarnoja/sac.

github.com/haarnoja/sac

5.2. APPROACH: COMPUTING & USING CRITICAL STATES 77

functions was more reliable, because the policy may learn to exploit environment
characteristics (e.g., action clipping) to maximize entropy.

Note that with either of these two approaches, computing the critical states of a
policy is agnostic to the implementation of the policy itself; only access to either the
policy’s or action-value function’s output is required, so this can be directly applied
to black-box policies.

5.2.3 Using Critical States

We assume a human expert at the task. Let Ch be the set of (ground-truth)
states that she considers critical. We do not know what Ch is—and, in fact, this
may differ across human end-users—so we cannot check whether Cπ and Ch are the
same. However, what we can do is expose the human to Cπ. Below, we describe the
interaction we envision.

Decline to deploy due to false positives, false negatives, incorrect actions

Before using a robot that has learned a policy π, the human end-user first gets
to observe its actions in the states it considers as critical, Cπ. If the human spots
false-positive or false-negative critical states (i.e., states that are in Cπ but not in
Ch or vice versa), then she can decline to deploy the robot. False-negative critical
states happen, for instance, when an autonomous car does not realize that stopping
for a red light is a critical state. False-positive critical states happen, for instance,
when an autonomous car considers it critical to slow down, even if there is quite a
bit of space left to the car in front. Both false-negative and false-positive critical
states indicate that the robot has failed to learn something fundamental about the
task, and thus perhaps should not be trusted. Similarly, if the policy identifies a
true-positive critical state but is mistaken about which action is correct in that state,
then the end-user will observe that and not trust the policy as a result.

Take control

We are also interested in the case where Cπ does not have any obvious false-
positive, false-negative, or incorrect-action critical states, and the user decides to go
ahead and deploy the robot, but the robot operates with the user in the loop. At
execution time the user is able to take control from the policy whenever she deems it
necessary. Because she has already observed how the policy acts for states in Cπ, the
user is better equipped to take control from the policy when necessary, and refrain
from doing so when not necessary.

5.3. EXPERIMENTS 78

5.2.4 Justification of Critical States

The user should have enough information based on critical states to take con-
trol when necessary at execution time. Note that at execution time, any state s
encountered by the robot must fall into one of three cases: (1) s 6∈ Ch, (2) s ∈ Ch
and s ∈ Cπ, or (3) s ∈ Ch and s 6∈ Cπ.

In case (1), the user does not consider this state to be critical, so by definition
she does not care which action the policy chooses and will refrain from taking control.
In contrast, in cases (2) and (3), the user does consider this state to be critical,
and cares about which action the policy takes. Since the user has observed (and
approved) the policy’s actions for states in Cπ, she should trust the robot in case (2).
In case (3), s is a false-negative critical state that the end-user forgot about when
approving this policy. Since this is a critical state that the policy does not know is
critical, she should take control from the policy immediately.

If the user had not been able to observe how the policy acts for states in Cπ, then
she would not be able to distinguish between when she absolutely must take control
(states in case (3)), and when she should not but may be tempted to (states in case
(2)).

5.3 Experiments

5.3.1 User Study: Impact of Critical States

We begin by investigating how human end-users draw conclusions after observing
the critical states of a policy, and how they respond to different errors (i.e., false
positives, false negatives, or incorrect actions) in these critical states. In order to
explore this in a systematic way, instead of obtaining critical states from trained
policies, we construct sets of critical states where each set has at most one error.
From this we can learn, for example, how much seeing a false-positive critical state
impacts trust, versus seeing an incorrect-action. Later, in our main user study
(Sec. 5.3.2), we expose end-users to critical states from actual trained policies.

Experiment Design

The study consists of three phases. In the query phase, we first introduce
participants to the task and ask them, for a handful of states, whether they consider
it critical to take a particular action in that state (Fig. 5.2, top row). This is to
get a sense of what Ch is across participants. In the exposure phase, we introduce
participants to a policy, for instance by showing them its critical states. Finally, in

5.3. EXPERIMENTS 79

Query States

Critical States

correct
weak false positive

false positive
false negative

incorrect action

Figure 5.2: The query states and sets of critical states Cπ shown in our user study
for Pong. The policy controls the yellow paddle. Query states s1 through s4 are not
critical, because the paddle has plenty of time to reach the ball, whereas s5 and s6

are. The colored bars indicate which states are included in each possible Cπ. For
example, the incorrect-action Cπ contains one correct critical state (the leftmost one)
and one incorrect-action critical state (the rightmost one). The false-negative Cπ
contains one correct critical state, but is missing the second correct critical state—so
the corresponding policy would likely miss balls heading toward it from above. Each
possible Cπ contains at least one correct critical state (the leftmost one).

the test phase, we ask participants whether they would take control from the policy,
for each of the same states as in the query phase.
Domain. We chose a straightforward task with clear critical states: Pong. In
Pong, a ball bounces back and forth between two paddles, and the goal is to use
your paddle to hit the ball past your opponent’s. So states in which the ball is
headed back toward your opponent are non-critical, since it does not matter much
how you move your paddle. In contrast, states in which the ball is heading toward
your paddle and has almost reached it are critical.
Manipulated Variables. We manipulate the set of critical states Cπ shown to
the participant. We construct five options for Cπ—correct, false-negative, weak-false-
positive, false-positive, and incorrect-action—that cover all the possible problems
with a particular policy’s critical states (Fig. 5.2). In the baseline condition, instead
of showing the participant a set of critical states, we simply give them a summary

5.3. EXPERIMENTS 80

statistic of the robot’s performance: “this policy wins in 95% of cases.” This
establishes a baseline of how much participants trust policies for Pong that are
reasonably good.
Dependent Measures. We are interested in whether observing a set of critical
states leads participants to develop appropriate trust in the policy that generated
those critical states. We measure trust in two ways: subjectively with five-point
Likert questions, and objectively with which test phase states participants choose
to take control from the policy in, and whether those are correct (i.e., in Ch and
either not in Cπ, or in Cπ but as an incorrect action). This test phase simulates
execution-time: after the end-user has already chosen to deploy the policy, and is
now supervising it.
Hypothesis.
H1. When Cπ contains false-negative, false-positive, or incorrect-action critical
states, users are less inclined to trust the policy π, compared to if its critical states
match Ch perfectly (i.e., the correct condition).
H2. In states that are critical (i.e., in Ch), participants will take control if a policy
π’s critical states Cπ suggest that this policy will not choose the correct action in this
state. For example, since the false-negative Cπ for Pong is missing critical states in
which the paddle needs to immediately move upward to hit the ball, this should lead
participants to take control in similar states at execution time (e.g., query state s5).
But, they should not take control at state s6, since the false-negative Cπ includes a
similar critical state and chooses the right action.
Subject Allocation. We used a between-subjects design. We ran this experiment
on a total of 72 participants across the six conditions, recruited via Amazon Mechan-
ical Turk. The average age of the participants was 31.4 (SD = 6.7). The gender
ratio was 0.32 female.

I trust this robot. I would deploy this robot. I think this robot needs my help.
0

1

2

3

4

5

ra
ti

ng

* * *

Perception Toward Robot

baseline correct weak false positive false positive false negative incorrect action

Figure 5.3: Ratings for Likert statements in Sec. 5.3.1, averaged across participants
in each condition. Higher ratings mean higher agreement.

5.3. EXPERIMENTS 81

query s3 query s4 query s5 query s6
0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

? ?

*

Taking Control from Robot
baseline correct weak false positive false positive false negative incorrect action

Figure 5.4: Participants’ yes/no responses for whether they would take control of
the policy at a particular query state (from Fig. 5.2). A ? indicates that this is a
state in which participants should choose to take control, based on the critical states
they observed. Results for s1 and s2 are omitted—people overwhelmingly chose to
not take control, regardless of which condition they were in.

Analysis

Subjective. We asked participants how much they trust the robot, whether they
would deploy it, and whether they thought the robot needed their help (Fig. 5.3).

We found a significant difference between incorrect-action and correct for all
three subjective measures (Student’s t test, p < 0.0001). However, false-positives
and false-negatives did not decrease users’ perception compared to correct (the trend
is in the right direction for the false positives). This may be because Pong is a
relatively simple domain, which makes humans more inclined to give policies the
benefit of the doubt, in terms of being able to generalize to other critical states (in
the case of the false-negative Cπ).
Objective. We also asked participants, for each of the six query states (Fig. 5.2),
a yes/no question for whether they would take control of the policy at that state
(Fig. 5.4). In the query phase, participants agreed that of the six states, only s5

and s6 are truly critical (i.e., in Ch). We see that overall, across all conditions,
participants tend to take control in these two critical states, and not in the others.
This supports our assumption that humans will tend to only take control of policies
in states that are within Ch.

However, this also indicates that participants are taking control even when it
is not necessary. For instance, users who saw the correct Cπ saw it act correctly in
states similar to both critical query states, but still almost half of users choose to
take control in that state.

On the bright side, we saw a number of trends in line with our hypothesis. First,
we do notice that for these two critical query states, users tend to be less likely to
take control after seeing correct Cπ, compared to just being told a summary statistic

5.3. EXPERIMENTS 82

about the policy, in the baseline condition.
Second, participants in the incorrect-action condition again indicated low trust

in the robot, by choosing to take control more often, even in state s3, which is only
weakly critical. We found participants chose to take control significantly more in the
incorrect-action condition than the correct condition for s3 (Student’s t, p < 0.01)
and s5 (p = 0.05).

Third, participants who saw false-positive and false-negative critical states actually
tended to take control more often than those who saw correct ones, suggesting that
they did pick up somewhat on the problems indicated by Cπ (with weak significance,
for s5 and s6, p = 0.11).
Summary. Overall, participants responded most strongly to critical states that
reveal incorrect actions. There, they would intervene before deployment. For false
negatives, they would tend to take control away from the robot more compared to
participants who saw correct critical states. False positives only benefited from slight
improvements in how much participants would take control, though at the same time
false positives are the smallest of errors, as we discussed in Sec. 5.2.

5.3.2 User Study: Utility of Critical States

Our previous study analyzed how people respond to different errors that critical
states might reveal. In our main user study, we evaluate the utility of showing the
critical states of a policy π against other options of exposing end-users to the policy,
in terms of establishing appropriate trust.

We train two neural network policies for a driving domain, and hypothesize that
critical states are best at helping people figure out which one is better. We train these
policies using SAC, and use Gaussian mixture policies with four components [105].

In practice, critical states in Cπ may be very similar to each other, so instead of
showing all states in Cπ to the human, we first cluster these states (with k-means++)
and then show the policy’s behavior in the most critical state from each cluster. We
take advantage of the fact that neural network policies learn hidden-layer feature
representations, and use the output of the last hidden layer as features for clustering.
Concretely, we collect 10,000 timesteps by rolling out each policy, cluster the 10%
most critical states into ten clusters, and show the most critical state from each
cluster. So, we end up showing ten critical states per policy.

Experimental Design

This study consists of the same three phases as the previous study.

5.3. EXPERIMENTS 83

Domain. We train policies to drive in a top-down driving simulator that mimics
highway driving. The goal of the policy is to navigate down this road while passing
other, slower cars. Car dynamics follow the bicycle vehicle model [64]. The state
space consists of an indicator for which lane the robot car is currently in, its position
and heading, and the relative positions, heading, and speed of other nearby cars. The
action space is continuous and one-dimensional, in the range [−1, 1]; it corresponds
to the change in steering angle.3 The reward function encourages forward progress
and penalizes getting close to other cars, being off-center in the lane, turning, and
steering sharply.
Manipulated Variables. We manipulate two variables: how a user is exposed
to the policy, and the quality of the policy. For exposure type, we compare our
approach of showing critical states to two baselines: showing a one-minute rollout of
the policy, and showing how the policy acts in random states, rather than critical
ones. These two baselines are meant to approximate the states a user would happen
to encounter as she observes and interacts with the robot over time.

For the quality of the policy, we have a policy πA trained for 10,000 iterations,
and another policy πB that is trained for only 3,000 iterations. Both policies achieve
similar performance on the task: πA averages one crash per 700 timesteps, and
πB averages one crash per 640 timesteps.4 But πB fails in a few simple traffic
scenarios, that πA has learned to navigate successfully—including query states s5

and s7 (Fig. 5.5).
Fig. 5.5 shows a subset of the ten critical states per policy. Looking closely

at the critical states of policy πB (Fig. 5.5), we see the rightmost two states are
false-positives, whereas all the critical states of policy πA look reasonable. On average,
the critical states of policy πB are also of simpler driving scenarios, which suggests
that it may not be able to handle more challenging ones.
Dependent Measures. We keep the same dependent measures as in the previous
user study (Sec. 5.3.1), except we add two Likert questions that ask participants
more specifically about how much they trust the policy with respect to critical states,
and change the yes/no question for taking control to a five-point Likert question
where higher means more likely to take control.
Hypothesis. Showing users the critical states of a policy establishes appropriate
trust, compared to other approaches of exposing users to policies. Appropriate
trust, in this setting, means that participants trust πA over πB, both in their Likert
responses and in how often they choose to take control from the policy.

3We discretize this action space evenly into 200 possible actions, in order to compute critical
states using the learned action-value function.

4Note that since the agent can only steer, and the other cars surrounding the agent are all
driving slower than it, it will often encounter situations where crashes are inevitable.

5.3. EXPERIMENTS 84

Query States

Critical States Critical States

Figure 5.5: The query states and a subset of the ten critical states Cπ shown in our
main user study. The policy controls the steering of the yellow car. Query states s1

and s2 are not critical, but the rest are.

Subject Allocation. We used a between-subjects design for exposure type, and
within-subjects for policy quality to reduce variance. We ran this experiment on a
total of 60 participants across the three conditions, recruited via Amazon Mechanical
Turk. The average age of the participants was 32.5 (SD = 6.7). The gender ratio
was 0.27 female.

I trust this robot. I would deploy this robot. I think this robot needs my help.
0

1

2

3

4

5

ra
ti

ng

Perception Toward Robot

rollout, πA rollout, πB random, πA random, πB critical, πA critical, πB

Figure 5.6: Ratings for Likert statements in Sec. 5.3.2, averaged across participants
in each condition. Higher ratings mean higher agreement.

5.3. EXPERIMENTS 85

This robot can handle
all possible crucial scenarios.

I agree with what this
robot thinks is crucial.

0

1

2

3

4

5

ra
ti

ng

*
Perception Toward Robot (cont.)

Figure 5.7: Additional ratings for Likert statements in Sec. 5.3.2.

query s3 query s4 query s5 query s6
0

1

2

3

4

5

fr
ac

ti
on

Taking Control from Robot

rollout, πA rollout, πB random, πA random, πB critical, πA critical, πB

query s7 query s8 query s9 queries s3 to s9, combined
0

1

2

3

4

5

fr
ac

ti
on

*

Figure 5.8: Participants’ responses for whether they would take control of the policy
at a particular query state (from Fig. 5.5). Results for s1 and s2 are omitted, since
people overwhelmingly chose not to take control, regardless of which condition they
were in.

Analysis

Subjective. We see that across all five questions, users who have seen the critical
states of both policies tend to favor policy πA, the better one (Fig. 5.6, Fig. 5.7).
This trend is also visible for participants who see a one-minute rollout of each policy,
but not as consistently. In contrast, when participants see how the policy acts in
randomly-selected states, they rate policies πA and πB similarly, indicating that their
trust is incorrectly calibrated.

5.4. DISCUSSION 86

We ran a two-way repeated-measures ANOVA, with exposure and policy quality
as factors and user ID as a random effect, for each item except the question on
agreement. We observe a weak interaction effect between exposure and policy quality
for the question on trust (F(2,57) = 2.37, p = 0.1). We also ran a post-hoc Tukey
HSD for each item, which confirmed the trend that participants in the critical-states
condition favor the better policy, but this was not statistically significant.

We ran a one-way repeated-measures ANOVA, with policy quality as a factor
and user ID as a random effect, for the question on agreement with critical states,
and found a significant effect (F(1,19) = 7.92, p = 0.01).
Objective. We asked participants, for each of the query states (Fig. 5.5), whether
they would take control from the policy at that state. Participants in the critical-
states condition consistently choose to take control more in the case of the worse
policy, πB. We do not see this trend in either of the two baseline conditions (Fig. 5.8).

We also see that across all critical query states (s3 through s9), participants who
saw the critical states of either policy are more likely to trust that policy and not
take control of it, compared to participants who saw either a rollout of the policy or
how it acts in randomly-selected states.

We ran a two-way repeated-measures ANOVA for the combination of participants’
responses across all seven critical query states, and find a significant effect exposure
(F(2,57) = 5.57, p = 0.006) and a significant interaction effect for exposure and
policy quality (F(2,777) = 5.30, p = 0.005). We then ran a post-hoc Tukey HSD,
which showed that when participants see the critical states of πA and πB, they take
control significantly more for policy πB (p = 0.001), but this is not true for either of
the baseline conditions.

This suggests that by showing human end-users the critical states of a policy, we
not only lead them to trust the policy more, but also enable them to appropriately
calibrate their trust for good and not-as-good policies.

5.4 Discussion
Our user studies suggest that showing the critical states of a policy is a promising

approach for not only building trust in the policy, but also for revealing whether it
is trustworthy in the first place. This can be applied to any policy trained with a
maximum-entropy-based approach.

The question is, what if a policy has incorrect critical states, but it performs very
well, at least in the training environment. Should we trust this policy? Or should we
not trust it, because the fact that it has incorrect critical states implies that it does
not truly understand the task? This is an open question for future work. Our hunch

5.4. DISCUSSION 87

is that the latter is true—if a policy’s critical states do not make sense, there are
likely states (outside the training distribution) that it will not be able to generalize
to.

The primary drawback of our approach is that it places significant responsibility
and mental burden on the human end-user. For instance, we assume this end-user
has domain knowledge about the task; this is likely true for supervising a self-driving
car or robots in a factory, but might not be true for more complex tasks. In addition,
identifying false-negative critical states requires the end-user to generalize correctly
about what other states the robot considers as critical, given the ones they saw. One
way to address this limitation is to reason about how humans do this generalization,
and show the end-user how the robot acts in additional states (critical or not) to
correct their understanding.

Nonetheless, this approach of showing critical states is a step toward giving
human end-users a better chance of knowing whether or not to deploy a robot, and
when to take control during deployment.

88

Part II

Transparency for Robot Learning

89

Chapter 6

Nonverbal Robot Feedback for
Human Teachers

In Part I, we discussed approaches for efficiently improving humans’ mental
models of robots. Improved mental models not only helps human end-users interact
with robots more safely and comfortably, but may also improve how well humans
are able to teach robots. In this chapter, we explore how increased transparency of
what a robot has learned, improves teaching from humans.

Robots can learn preferences from human demonstrations, but their success
depends on how informative these demonstrations are. Being informative is unfortu-
nately very challenging, because during teaching, people typically get no transparency
into what the robot already knows or has learned so far. In contrast, human stu-
dents naturally provide a wealth of nonverbal feedback that reveals their level of
understanding and engagement. In this chapter, we study how a robot can similarly
provide feedback that is minimally disruptive, yet gives human teachers a better
mental model of the robot learner, and thus enables them to teach more effectively.
Our idea is that at any point, the robot can indicate what it thinks the correct next
action is, shedding light on its current estimate of the human’s preferences. We
analyze how useful this feedback is, both in theory and with two user studies—one
with a virtual character that tests the feedback itself, and one with a PR2 robot
that uses gaze as the feedback mechanism. We find that feedback can be useful for
improving both the quality of teaching and teachers’ understanding of the robot’s
capability.

6.1. MOTIVATION AND BACKGROUND 90

6.1 Motivation and Background
If robots are to be useful to humans, they need to do more than optimize reward

functions—they need to be able to figure out what reward functions should be
optimized in the first place. Inverse Reinforcement Learning (IRL) [12] enables
robots to infer preferences from human demonstrations. For instance, by collecting
data of human drivers, we can infer a human-like driving style [27, 59].

Traditionally, IRL is applied in settings where data is collected offline from people
who have no idea that a robot is supposed to learn from this data. When it comes
to learning preferences for the purpose of assisting people—which is arguably the
goal for most robots and AI agents—there is an opportunity to explicitly involve
people in teaching the robot about what they want. It can be much more effective
for me to actively teach my robot how to organize my kitchen, for instance, instead
of having the robot collect data of me putting things away over and over again until
it eventually figures out my preferences. When I teach, I get the chance to select
examples that might be especially informative to the robot—ones that effectively
illustrate the core of my approach.

Unfortunately, effective teaching is tricky even when we teach other people. We
have to figure out what the person knows and does not know, what teaching strategy
works best for them as an individual, etc. Teaching robots is monumentally harder.
We have much poorer mental models of how robots learn compared to our mental
models of how humans do. What is more, when we teach humans we receive a great
deal of feedback from them. One traditional way we get feedback is through tests,
by asking questions to probe the learner’s understanding. More interestingly though,
human students continually provide (nonverbal) feedback to the teacher during the
teaching process itself. They look confused or bored, nod along, fidget, or gaze at
various things [107,108].

Our goal is for robots to provide similar feedback, at the same time as the
teacher is providing examples. We take a step towards that in this paper based on a
simple idea: to use the states that the teacher is in as opportunities to inform the
teacher about what the robot expects them to do, according to the robot’s current
understanding of the task. We resort to nonverbal cues (e.g., gaze) as an intuitive
and minimally-disruptive way for the robot to signal how it expects the teacher to
act next. For example, imagine teaching the robot how to organize objects in a
decluttering task (Fig. 6.1). Every time you pick up an object, the robot gazes at
where it thinks the object should go. This helps you gain a better understanding of
the robot’s current hypothesis about your preferences, which helps you figure out a
better next example to provide. It also helps you realize when the robot has finished
learning, and you can stop teaching.

6.2. RELATED WORK 91

Figure 6.1: The robot uses its learned model to anticipate the teacher’s next action
(i.e., placing the object in the yellow bin) and then uses gaze to communicate its
belief to the teacher.

Our main contributions are as follows: 1) we propose a form of feedback that
robots can provide while teaching is ongoing, that consists of a prediction of the
teacher’s next action along with the confidence; 2) we provide a theoretical motivation
for why this form of feedback should improve teaching effectiveness, by introducing
an algorithmic teaching model that takes feedback into account; and 3) we test out
this feedback with real people, both in an online user study with virtual learners
and in-person with a real robot, where gaze is the feedback mechanism. We find
that feedback can improve the teacher’s estimate of the learner’s understanding,
quantifiably change the teacher’s strategy, and result in higher learner accuracy.
Results with real users support our theoretical analysis. With gaze, we find that
these effects are stronger when participants know explicitly about the feedback
they should expect—otherwise, some participants interpret gaze differently, e.g., as
acknowledgement or as purely functional.

6.2 Related Work
Improving Quality of Human Input

Teaching robots via demonstration [109] is challenging; humans may have trouble
providing useful demonstrations [51, 110] and knowing when to stop teaching [111].
Robots can take a more active role in learning, by asking for additional demonstrations

6.2. RELATED WORK 92

where they are uncertain [112–115] or know information is missing [116], or by asking
clarification questions [117]. Robots can ask for different kinds of teacher input as
well—e.g., labels, feature queries, or demonstrations—to maximize usefulness [35].
However, when robots are active learners, humans lose control over the teaching
process, which can make them feel frustrated and disengaged [118,119].

We take an orthogonal approach, in which humans maintain control of teaching,
while the robot tries to be transparent about what it has learned. Transparency
enables algorithmic teaching, in which the teacher’s understanding of how the learner
learns enables her to select teaching examples that optimally teach this learner.1
Robot learners can be more transparent by demonstrating their current learned
policy [120], allowing teachers to ask questions that probe their understanding [121,
122], or showing where they succeed and fail [111]. However, these approaches require
people to stop teaching and separately test the robot. In contrast, we focus on how
robots can provide feedback at the same time as humans are teaching—similar to the
nonverbal feedback cues that human students give. This form of feedback requires
minimal context switching from the teacher and does not add to the total interaction
time. On the real robot, we implement this feedback as gaze.

Robot Gaze

Robots can use gaze to be transparent in social interactions with humans (see
Admoni and Scassellati [123] for a detailed survey). Robot gaze can also be useful in
human-robot collaboration tasks, by disambiguating referenced objects [124, 125],
communicating which action the robot is about to take [126], and influencing the
human’s actions [127].

In this work, we also use robot gaze to communicate to humans, but specifically
while the robot is learning. Thomaz and Breazeal [128] explored this for reinforcement
learning (RL) agents: when agents use gaze to communicate what action they are
about to take, humans are able to provide more informative rewards, thus speeding
up learning. However, in RL the robot acts while the person observes. When robots
instead learn from human demonstrations, the opposite is true, which makes the
robot’s learning opaque. Taking inspiration from the RL setting, we aim at having
the robot always convey what it thinks is the optimal action to take, so that the
person can adjust their demonstrations appropriately.

1Since the teacher knows the task, algorithmic teaching is typically more efficient than active
learning [33].

6.3. APPROACH: NONVERBAL FEEDBACK 93

6.3 Approach: Nonverbal Feedback

6.3.1 Assumptions on Robot Learning Algorithm

We focus on robot learners that infer reward functions from demonstrations
via IRL [12]. The benefit of IRL is that this underlying reward function typically
generalizes better across tasks, compared to directly learning a mapping from states
to actions, as in behavior cloning [129,130]. In addition, humans are naturally inclined
to infer the objectives of other agents [16, 19], and thus might expect robot learners
to do the same. We parameterize the reward function Rθ as a linear combination of
reward features φ(·) with weights θ,

Rθ(s, a) = θ>φ(s, a) ,

where s is the state and a is the action. There is no limitation on what these reward
features can be, so this assumption is not restrictive [59].

The robot maintains a belief b(θ) over reward function parameters. We model
humans as providing demonstrations (s, a) that are approximately optimal, according
to a Boltzmann distribution [131]. This induces the following observation model that
links human actions to the reward parameters,

p(a|s, θ) ∝ eβQ
∗
θ(s,a) , (6.1)

where β specifies the level of suboptimality and Qθ(s, a) is the action-value function:
the discounted sum of future rewards, after taking action a in state s and acting
optimally thereafter with respect to Rθ. As in Bayesian IRL [56], the robot uses this
observation model to update its belief over θ:

b′(θ) ∝ p(a|s, θ) b(θ) . (6.2)

6.3.2 Generating Feedback

We propose and investigate a form of feedback where at every step, the robot
communicates what it believes the optimal action is. Intuitively, this should help
human teachers understand what the robot knows and does not know as they
proceed through teaching the task, enabling them to adapt what they teach and
recognize when they can stop teaching. In addition, this form of feedback is minimally
disruptive and allows teachers to maintain control of teaching, in contrast to tests of
comprehension and active learning, respectively. We leave open the question of how
this feedback should be communicated; we experiment with movement of a virtual
avatar and gaze on a real robot.

6.3. APPROACH: NONVERBAL FEEDBACK 94

Feedback Target

The robot first uses its current belief over reward parameters to predict the
human’s next action,

â = arg max
a

∫
θ

p(a|s, θ) b(θ) dθ , (6.3)

with the observation model from Eqn. (6.1). Based on this prediction, it determines
what the most likely next state is, i.e., where the human will go next:

ŝ = arg max
s′

p(s′|s, â) . (6.4)

In a deterministic environment, this is ŝ = f(s, â), with f being the dynamics. The
robot then communicates this prediction to the human teacher, for instance by gazing
in the direction of ŝ.

Feedback Speed

If the robot can control the speed of feedback (e.g., the speed at which it moves
its hand or gazes), it can use this to convey how confident it is in its prediction:

v = vmax p(ŝ|s, â)

∫
θ

p(â|s, θ) b(θ) dθ , (6.5)

with vmax being the maximum allowed speed.

Grounding in Our Experimental Domain

To make this more concrete, consider the domain of decluttering: objects need
to be sorted appropriately into bins, and only the human knows the correct sorting
mechanism. States are locations of objects and bins, and actions place objects
into bins. Every action a corresponds to a particular bin Ba, and we assume the
environment is deterministic; taking action a in state s means putting the object
from location s into Ba. φ(s, a) is a feature vector that consists of descriptors of
object-bin match, e.g., distance, color match, shape match, etc.

Each human action teaches the robot about the relationship between the features
and the reward, i.e., about the correct weights θ∗. Once the human has selected
an object, the robot predicts, according to its current belief, which action â the
human will take next, and indicates Bâ, for instance via gaze. Each θ assigns different
probabilities to different bins, and the robot combines all this information to compute
a confidence in its estimate of bin Bâ, which it uses to adjust its feedback speed.

6.4. ANALYSIS IN THEORY: WHY WILL FEEDBACK HELP? 95

6.4 Analysis in Theory: Why Will Feedback Help?

6.4.1 Model of Human Teachers That Incorporates Feedback

To provide a theoretical justification for feedback, we construct potential models
of human teaching that incorporate feedback, and analyze how feedback improves
teachers’ decisions. These models are based on algorithmic teaching [29, 30, 33], and
thus have two components: tracking the learner’s state (e.g., what does the learner
know), and selecting informative demonstrations based on this.

Tracking Learner State

We assume our teacher knows how the learner performs an update after every
example via Eqn. (6.2). However, the teacher is still missing information about the
learner, in particular the learner’s prior belief b0, and the feature space Θ that the
learner assumes—which may differ from the teacher’s. A sophisticated teacher is
aware of this uncertainty. At every step, she has a belief over what the robot’s belief
might be, that takes into account the robot’s learning updates, its feedback, and the
uncertainty over which prior and feature space the robot is using.

After the first time step, this teacher computes the probability of the robot’s new
belief given the robot’s feedback (x0, v0) for the object she picked up, s0, and the
action she took, a0:

p(b1|s0, a0, x0, v0)

=

∫
b0,Θ

p(Θ)p(b0|Θ)︸ ︷︷ ︸
teacher priors

p(x0, v0|b0, s0)︸ ︷︷ ︸
feedback generation

Eqn. (6.7) (6.8)

p(b1|b0, s0, a0,Θ)︸ ︷︷ ︸
robot learning

Eqn. (6.2)

dΘdb0 (6.6)

Since we assume the teacher knows how the learner performs belief updates, for
the robot learning distribution, p(b1|b0, s0, a0,Θ), the teacher places all probability
mass on the correct new belief according to Eqn. (6.2). For the feedback generation
distribution, p(x0, v0|b0, s0), we use how the robot actually generates feedback. From
x0, the teacher recovers â0 = f−1(s0, x0), the action that the robot predicted, based
on inverse dynamics f−1. From there, the teacher computes the probability of that
action under the belief b0:

p(x0|b0, s0) = p(â0|b0, s0) =

∫
θ

p(â0|s0, θ) b0(θ) dθ . (6.7)

For v0, the teacher assigns probability based on a Gaussian around her predicted
speed for â0:

p(v0|b0, s0, x0) = p(v0|b0, s0, â0) = N (v0|vmax p(â0|b0, s0), vvar) . (6.8)

6.4. ANALYSIS IN THEORY: WHY WILL FEEDBACK HELP? 96

The teacher keeps incorporating such updates based on robot feedback for each new
demonstration. In practice, we approximate this update by initializing the teacher’s
priors p(Θ) and p(b0|Θ) with sampled learner prior beliefs b0 and possible feature
spaces Θ, and iteratively updating this set of samples with the evidence, analogous
to running a particle filter [132] (see Sec. 6.4.2 for details).

We also consider a less sophisticated teacher model, who does not account for
the uncertainty over the robot’s prior and feature space. Rather than maintaining a
belief over beliefs, this iterative teacher starts with a uniform belief over what the
robot’s reward estimate might be, and updates it at every step. First, the teacher
updates based on the feedback:

b′1(θ|s0, x0, v0) ∝ p(x0, v0|θ, s0) b0(θ), (6.9)

with the feedback probabilities computed as in Eqn. (6.7) and Eqn. (6.8), but for a
single θ. Next, the teacher shows a0 and accounts for the fact that the robot will
learn:

b1(θ|s0, a0, x0, v0) ∝ p(a0|θ, s0) b′1(θ). (6.10)

Motivated by the “win stay, lose shift” strategy in cognitive psychology [133], iterative
teachers only update if the feedback disagrees with their current belief in the learner’s
state. In other words, if the learner predicts the bin that the teacher’s maximum a
posteriori (MAP) estimate of the learner’s θ deems most likely, and the corresponding
velocity for this θMAP is within 0.05 ∗ vmax of the learner’s feedback speed, then the
teacher does not update based on this feedback. Thus, if the teacher has a perfect
model of how the learner learns, then whether the learner provides feedback or not,
the teacher would maintain the same belief over the learner’s hypothesis, and thus
teach in the exact same way. If we did not make integrating feedback conditional,
then this teacher would potentially teach worse in this situation, since the additional
feedback-based updates cause the teacher’s estimate to diverge from the true one.

Selecting Examples Based on Current Learner State

At every step, our teacher uses the tracked learner state to select the most
informative example to give next. This is the example that leads to the largest
increase in learner performance. The iterative teacher teaches:

(s∗t , a
∗
t) = arg max

st,at

g(bt+1(θ|st, at)), (6.11)

where g(·) computes the learner’s expected performance on the task (if its belief were
bt+1) and bt+1(θ|st, at) ∝ p(at|θ, st) bt(θ), according to the learner’s learning update
via Eqn. (6.2).

6.4. ANALYSIS IN THEORY: WHY WILL FEEDBACK HELP? 97

The uncertainty-aware teacher does the same, but in expectation over the robot’s
current belief and the feature space the robot uses:

(s∗t , a
∗
t) = arg max

st,at

Ebt,Θ [g(bt+1(θ|st, at))] (6.12)

6.4.2 Impact of Feedback

We now investigate how much feedback helps for our models of human teaching.
If the teacher has a perfect model of the learner, then feedback is not necessary [30].
So, we focus on the kinds of mismatches that might occur—the learner might start
off with a bad prior, or not know the correct feature space. For these simulated
experiments, we randomly sampled N bins and O objects; each bin and object is
represented by a d-dimensional feature vector. We set N = 3, O = 50, and d = 3.
Manipulated Variables. We manipulate the teacher type: iterative, uncertainty-
aware, and random. The random teacher is a baseline, that chooses random teaching
examples rather than maximally informative ones. The learners vary along two
factors: whether they provide feedback or not (feedback versus no-feedback), and in
terms of whether the teacher-learner mismatch is none, the prior (prior mismatch),
the learner missing a feature (feature mismatch), or the learner learning a separate θ
for each bin (reward generalization mismatch, i.e., reward features are computed in
terms of only the object s, as in φ(s)).
Learner Models. In the prior mismatch condition, we bias the learner toward a
randomly-selected θ′ by setting the prior as the softmax of the distance between θs:

p(θ) ∝ eβ
′ θ>θ′ , (6.13)

with β′ = 50 for a fairly strong bias. In the feature mismatch condition, the learner
ignores the last feature dimension. In other words, the set of θs that the learner
considers all have θd = 0. In the reward generalization mismatch condition, the
learner learns a separate θ for each bin. So the space of θs the learner is considering
now has dimensions B ∗ d.

For learning updates, we set β = 20 for a learner that assumes demonstrations
are close to optimal. For feedback, we set vmax = 1.0 and enforce a minimum speed
of 0.05. We sampled 1000 θs to approximate the learner’s belief.
Teacher Models. In the prior mismatch condition, the uncertainty-aware teacher
considers P +1 possible learner models, one of which is the default (i.e., uniform prior
b0); the other P are biased towards different θs, including the one that the learner is
actually biased towards. In the feature mismatch condition, the uncertainty-aware
teacher considers d+ 1 possible learner models: one with all features, and d that are
each missing a different one of the d features. Finally, in the reward generalization

6.4. ANALYSIS IN THEORY: WHY WILL FEEDBACK HELP? 98

mismatch condition, the uncertainty-aware teacher considers two possible learner
models, one of which has reward features φ(s, a) that depend on both the object and
bin, and the other of which has reward features φ(s) that depend only on the object.
We assume uncertainty-aware teachers start off believing that the learner likely has
a uniform prior b0, considers all d features, and uses reward features φ(s, a)—so we
set the teachers’ priors (i.e., p(b0|Θ) and p(Θ)) to place equal probability on all of
the models, except ten times more probability on this most-likely learner model. For
teacher updates, we assume vvar = 0.0025.
Learner Performance. We measure learning performance with expected soft
classification error,

g(bt(θ)) = Eθ∼bt(θ)

[
1

|S|
∑
s∈S

p(a∗(s)|s, θ)

]
, (6.14)

where a∗(s) = argmaxaRθ∗(s, a) denotes the correct bin to place the object in.

0 5 10 15 20

number of examples

0.2

0.4

0.6

0.8
le

a
rn

e
r

p
e
rf

o
rm

a
n
ce

no feedback

random

iterative, w/ fdbk

uncertainty-aware,
w/ feedback

Figure 6.2: For mismatched
priors, algorithmic teaching
with feedback achieves higher
learner performance (6.14).
Standard error bars are across
100 trials.

Analysis. As one might expect, we found that
feedback has different effects, depending the teacher-
learner mismatch and whether the teacher does iter-
ative or uncertainty-aware updates. We found two
main positive effects: feedback allows the teacher to
1) select more effective teaching examples, and 2)
track the capabilities of the learner more accurately.

Feedback leads to more effective teaching for only
the prior mismatch condition (Fig. 6.2). Uncertainty-
aware teachers very quickly narrow down which
learner model is correct, and are able to nearly-
perfectly estimate the learner’s performance (Fig. 6.3).
This makes the potentially strong assumption that the
uncertainty teacher’s possible learner models contain
the true one. This is reasonable though, in the case of
feature mismatch and interpretable reward features,
because then the teacher could just be reasoning over
the power set of features.

In the features mismatch and reward generaliza-
tion mismatch conditions, the learner cannot actually
learn the task because it is reasoning over the incorrect space of θs, but there is still
a benefit to the teacher estimating the learner’s performance correctly: they have a
better idea of when to stop teaching (i.e., when their estimated performance stops
increasing), and they have a more accurate estimate of the learner’s performance at

6.5. ANALYSIS IN PRACTICE: FEEDBACK HELPS 99

0 5 10 15 20

prior mismatch

0.15

0.00

0.15

0.30

m
e
n
ta

l
m

o
d
e
l
d
is

cr
e
p
a
n
cy

0 5 10 15 20

features mismatch
0 5 10 15 20

reward generalization
mismatch

no feedback

iterative, w/ feedback

uncertainty-aware, w/ feedback

Figure 6.3: With feedback, iterative and uncertainty-aware teachers (orange) can track
the learner’s state accurately for most mismatch conditions. In contrast, teachers
significantly overestimate learner performance when there is no feedback. Standard
error bars are computed from 100 trials with ten random teaching sequences each.
The y-axis is the teacher’s estimate of learner performance minus true performance
(6.14); the x-axis is the number of teaching examples.

the end of training. They also have a better chance of identifying which feature(s)
the learner is missing, which gives them a better idea of the learner’s capabilities for
future tasks.
Summary. Our analysis on algorithmic-teaching-based human models suggests that
feedback helps teachers. When the learner can learn the task, feedback makes it
easier for teachers to select effective teaching examples. Feedback also improves the
teacher’s estimate of the learner’s capabilities, so when the learner cannot learn the
task, feedback enables users to realize this.

6.5 Analysis in Practice: Feedback Helps
We next investigate whether real human teachers also benefit from feedback. In

this section, we test the benefits of the feedback itself with virtual learners that
explicitly predict the teacher’s action with varying confidence. In the next section,
we test whether these benefits still exist when the feedback is realized through gaze
on a real robot.

6.5. ANALYSIS IN PRACTICE: FEEDBACK HELPS 100

Figure 6.4: Amazon Mechanical Turk teaching interface, where correct object-bin
pairings are visualized (left, bin 3), and learners’ feedback explicitly signals their
prediction (right).

6.5.1 Design

We recruited 87 participants (ages 22-71, 41% female) on Amazon Mechanical
Turk (AMT) to teach a decluttering task to an agent. Participants demonstrated
correct object-bin pairings to the agent; we instructed them to give as few teaching
examples as possible while still ensuring that the agent learns the correct sorting
rules. The decluttering setup (Fig. 6.4) consisted of three numbered bins surrounded
by two rings of objects, with the following sorting rules: 1) an object lying on an
inner ring belongs to the closest bin, and 2) an object lying on an outer ring belongs
to the bin with the same shape as it.

Users clicked on the object they wanted to demonstrate, and it would be moved
into the correct bin. When feedback was activated, the learner avatar would move
toward its best guess for the corresponding bin and declare that it thought the object
belonged there (Fig. 6.4, bottom). Then the object would be moved to its bin, and
the learner would acknowledge whether they were mistaken.
Manipulated Variables. We manipulated the feedback : no feedback from the
learning agent, full feedback that indicates the learner’s best-guess bin with variable
speed corresponding to its confidence level, or partial feedback to indicate the best-
guess bin with a fixed speed. We also manipulated learner prior belief : a uniform
prior over all weights in the teacher’s feature space Θ, a biased prior over Θ, or a
uniform prior over weights in a mismatched feature space different from the teacher’s.
We did not conduct the 3 by 3 factorial—instead, we analyze the impact of prior
condition separately from the impact of partial feedback, since we did not hypothesize

6.5. ANALYSIS IN PRACTICE: FEEDBACK HELPS 101

any interactions there. We thus did a 2 by 3 study with full feedback and no feedback,
and only tested the partial feedback on the prior belief condition.
Implementation Details. We generated 1024 θs for the learner to reason over,
including those that corresponded to conceptually intuitive sorting rules (e.g., objects
belong to bins with their same shape). In the uniform prior case, the belief was
uniform over these θs, and in the biased prior case, the learner heavily preferred
sorting all objects into their closest bin. In the mismatched features condition, we
removed the shape dimension feature in the learner’s belief space.
Dependent Measures.
Objective. We measure the learner performance (6.14) throughout teaching. We
record the teaching sequence length and measure proxy metrics for teaching strategy,
e.g., the proportion of objects demonstrated from each ring.
Subjective. We also ask open-ended and Likert scale questions about the confidence
of the teacher in the learner’s understanding, their ability to track the learner’s
progress, the helpfulness of feedback, and the effects of feedback on teaching.
Combined. In addition, we compute a mental model discrepancy metric [119]: the
human’s Likert estimate of the robot’s understanding of a sorting rule (scaled to the
0-1 range), minus the learner performance for objects classified by that rule.
Hypotheses. We hypothesize that for all learner prior conditions, H1: Feedback
will allow the teacher to better track the learner’s progress and understanding, H2:
The teacher will adapt their strategy according to their improved estimate of learner
capabilities, and H3: This adjustment, enabled by feedback, will ultimately result
in increased learning performance.
Subject Allocation. Participants were randomly allocated between-subjects across
the learner prior conditions. Full versus no feedback was within-subjects, to ensure
a direct comparison, since people may have significantly different teaching strategies
and capabilities. With no feedback, teachers had to make up a plan and execute open-
loop. With feedback, they could adjust this plan based on what they found out about
the learner via feedback. Because of this, we put the open-loop plan first—if users
were able to see the feedback first, they would keep the robot’s limitations in mind
even for the open-loop case, which could bias the results. To ensure understanding
of both the interface and the sorting rules, participants completed a practice task
different from the main teaching task, and had to pass a quiz on the sorting rules
before teaching.

6.5.2 Results

H1: Feedback improves tracking of robot understanding. In learner prior
conditions with high mental model discrepancy at the end of teaching without

6.5. ANALYSIS IN PRACTICE: FEEDBACK HELPS 102

Uniform
 prior

Biased
 prior

Missing
 feature

Partial
 feedback

0.4

0.2

0.0

0.2

0.4

**
**

w/o feedback (inner ring)
w/ feedback (inner ring)
w/o feedback (outer ring)
w/ feedback (outer ring)

Figure 6.5: Discrepancy in teacher’s belief of actual (final) learner ability to sort
inner and outer ring objects is lower in the presence of feedback. Lower magnitude
is better; positive values mean that the teacher overestimates the learner capability,
and negative values mean they underestimate. (**) indicates p < 0.005 and (***)
p < 0.0005.

feedback, adding feedback reduces this discrepancy (Fig. 6.5). A 2 by 3 factorial
repeated-measures ANOVA with feedback and prior belief as factors showed a
significant interaction effect on both outer (F (2, 84) = 19.78, p < .0001) and inner
(F (2, 84) = 4.51, p = 0.013)) ring mental model discrepancy. The post-hoc Tukey
HSD found that feedback significantly decreases discrepancy in the uniform prior
condition for both the outer (p = 0.001) and inner (p = 0.002) ring rules, and in the
missing feature condition for outer (p < 0.0001). Subjective Likert responses also
support this hypothesis; see the analysis at the end of this section for details.
H2: Feedback changes teaching strategy. In the biased prior and the missing
feature conditions, feedback leads teachers to demonstrate more outer-ring objects
(Fig. 6.9); an ANOVA found a significant main effect for feedback on this measure
(F (1, 85) = 31.49, p < .0001). This is reasonable: in both conditions, the learner has
trouble learning the outer ring rule, participants give more teaching examples: an
ANOVA on the teaching sequence length found an interaction effect between the
feedback and learner mismatch (F (2, 63) = 6.613, p = .0025). A post-hoc Tukey HSD
found that the number of teaching examples is significantly higher for the missing
feature case when people receive feedback—they persist in teaching the learner the
outer ring rule, until they finally realize it is impossible.
H3: Feedback improves learning performance. Feedback during teaching

6.5. ANALYSIS IN PRACTICE: FEEDBACK HELPS 103

0.0 2.5 5.0 7.5 10.0 12.5
Uniform prior

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ne
r P

er
fo

rm
an

ce

0.0 2.5 5.0 7.5 10.0 12.5
Biased prior

0.0 2.5 5.0 7.5 10.0 12.5
Missing feature

w/o feedback
w/ feedback

0.0 2.5 5.0 7.5 10.0 12.5
In-person study

G1 w/o feedback
G1 w/ feedback
G2 w/o feedback
G2 w/ feedback

Figure 6.6: Learner performance (6.14) versus teaching iteration in the online study
(left three) and in the in-person study with a biased prior (right-most). The x-axis is
the number of teaching examples.

leads to improved learner performance in the biased prior case (Fig. 6.6), in line
with our results on ideal teacher models (Sec. 6.4). We ran a 2 by 3 factorial
repeated-measures ANOVA on final learner performance with feedback and prior
belief as factors, and number of examples as a covariate. We found a significant
interaction effect between feedback and prior belief (F (2, 1925) = 29.74, p < .0001).
A post-hoc Tukey HSD found that feedback significantly improves performance for
the biased prior case, significantly decreases it for missing feature, and makes no
difference for uniform prior. Since the learner cannot learn the task at all in the
missing features condition, it is more important that the teacher recognizes the
robot’s learning limitations—which feedback does help with.

We found no significant differences between full versus partial feedback in terms
how effective teachers were (i.e., final learning performance), the proportion of
demonstrated objects from the outer ring, and the number of teaching examples
shown. However, learners with partial feedback do tend to overestimate learner
performance for the outer ring rule (Fig. 6.5), possibly because they assume the
learner is consistently confident in its prediction.

Analysis of Likert Responses

We ran a two-way repeated measures ANOVA on each of the subjective measures
(i.e., Likert questions) with the feedback and prior belief as factors. The full details
are reported in Table 6.1. For clarity, shorthand for the questions will be used (full
questions can be found in Table 6.1.
Tracking robot understanding. In the uniform prior condition, when the learner
is able to learn both the inner and outer ring sorting rules, participants’ subjective
Likert responses indicate that when they were given feedback, they were significantly
more confident that the learner learned correctly (Fig. 6.7, inner and outer). A

6.5. ANALYSIS IN PRACTICE: FEEDBACK HELPS 104

Inner Outer Informative Stop

Knows Doesn’t Happy

with feedback (uniform prior)no feedback (uniform prior)

no feedback (biased prior) with feedback (biased prior)

no feedback (missing feature) with feedback (missing feature)

no feedback (biased prior) partial feedback (biased prior)

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Figure 6.7: Likert scale responses from the AMT study, in which users taught learners
with and without feedback. (*) indicates p < 0.05, (**) indicates p < 0.005 and (***)
indicates p < 0.0005. The full Likert statements can be found in Table 6.1.

post-hoc Tukey HSD found a significant difference between feedback and no feedback
for both inner (p = 0.004) and outer (p = 0.004).

Similarly, in the missing feature condition, when the learner is not able to learn
the outer ring rule, participants who received feedback were more aware of this; a
post-hoc Tukey HSD found a significant difference between feedback and no feedback
for outer (p = 0.0003).

Across all prior belief conditions, participants found it overwhelmingly easier to
recognize what the learner does not understand; the ANOVA found a significant
main effect for feedback for doesn’t. Participants also generally found it easier to
recognize what a learner understands; a post-hoc Tukey HSD found a significant
difference between feedback and no feedback for the uniform prior (p < 0.0001) and
partial feedback (p < 0.0001) conditions.
User satisfaction. For happy, a post-hoc Tukey HSD found a significant difference
between feedback and no feedback for the missing feature condition (p = 0.0011).
This makes sense, because when feedback was given in the missing feature condition,
participants were clearly aware that the robot was unable to learn the task, despite

6.5. ANALYSIS IN PRACTICE: FEEDBACK HELPS 105

Table 6.1: ANOVA Results for AMT Study Likert Questions.

Statement Effect F-score p-value

Inner: “[Learner] correctly learned the rule
that if an object lies in an inner ring, it
belongs to the closest bin” interaction F (3, 83) = 7.99 p < 0.0001

Outer: “[Learner] correctly learned the rule
that if an object lies in an outer ring, it
belongs to the bin with the same shape” interaction F (3, 83) = 14.12 p < 0.0001

Informative: “I found it easy to choose
informative teaching examples for [Learner]” none N/A N/A

Stop: “It was easy to know when to stop
teaching [Learner]” none N/A N/A

Knows: “It was easy to tell what [Learner]
knows about the task rules” interaction F (3, 83) = 3.89 p = 0.01

Doesn’t: “It was easy to tell what [Learner]
doesn’t know about the task rules” interaction F (1, 83) = 87.7 p < 0.0001

Happy: “I would be happy to teach [Learner]
again” interaction F (3, 83) = 6.14 p = 0.0008

their efforts to teach it.
Full versus partial feedback. An ANOVA on each of the subjective measures
with the feedback level as a factor (full feedback versus partial feedback) found
significant differences between the partial and full feedback condition for only the stop
(F (1, 47) = 8.43, p = 0.0059) and happy (F (1, 47) = 5.57, p = 0.02) questions. The
average for the partial feedback condition was higher in both cases. We hypothesize
that this is because participants found the partial feedback (with constant speed) to
be easier to reason about. This suggests that there is a need for investigating other
mechanisms for expressing feedback confidence.

Summary

Overall, our results with human teachers were remarkably similar to what we
saw in simulation with our teacher model: 1) feedback helped in the biased prior
condition; and 2) although feedback did not help in the uniform prior or missing
feature conditions, it helped reduce discrepancy between the teacher’s model of the
learner and the actual learner.

6.6. ANALYSIS IN PRACTICE: ROBOT GAZE 106

Figure 6.8: Real-world experiment flow (from left to right): the participant 1) selects
the object to demonstrate, 2) picks it up and shows it to the PR2, 3) observes the
PR2’s gaze feedback, and 4) places the object in the correct bin.

6.6 Analysis in Practice: Robot Gaze
In the real world, gaze cues are more natural and less disruptive than explicit

communication. We conducted an in-person study with a PR2 robot, to investigate
whether more subtle gaze feedback cues are indeed interpretable and usable by
humans. Thus, participants were not told beforehand of the purpose of the robot’s
gaze patterns.

6.6.1 Design

We replicated the virtual interface in a real-world decluttering task, using the
same object-bin layout. Instead of a virtual learner that explicitly moves to its
best-guess bin, in this study a PR2 robot relies only on gaze for feedback, changing
its head orientation at varying speeds (Fig. 6.8).

We chose to only test the biased prior condition, because this is where feedback
has the largest positive impact on learner performance—for both ideal teacher models
and human teachers of virtual learners that provide feedback explicitly. We maintain
the same hypotheses from the AMT study.

We recruited 17 users (ages 18-26, 47% female) from the general student popula-
tion of our university—a limitation we discuss in Sec. 6.7. Each taught the PR2 the
same task twice: first with no feedback, and then with gaze feedback. Participants
were told that the robot was reset between the two tasks, so they would not assume
the agent retained knowledge from previous demonstrations.

6.6.2 Results

Nine participants realized the gaze was related to the robot’s belief of the sorting
rule. The others misunderstood the robot’s gaze as either observing where the
demonstrated object was selected from or an acknowledgement of its understanding
(since its gaze at the bin in front resembles a nod).

6.7. DISCUSSION 107

Uniform
 prior

Biased
prior

Missing
feature

G1 G2
0.0

0.2

0.4

0.6

0.8

*** *** *

w/o feedback
w/ feedback

Figure 6.9: Proportion of demonstrated
objects from the outer ring on AMT (left)
and in-person (right). (*) indicates p <
0.05 and (***) p < 0.0005.

We thus report findings separately
for those who understood the true in-
tent of the gaze (G1) and those who did
not (G2). For G1, feedback indeed im-
proves learner performance (Fig. 6.6). A
repeated-measures ANOVA confirmed this
(F (1, 8) = 9.53, p = .01). Feedback
also increases the proportion of examples
from the outer ring, as in the AMT study
(Fig. 6.9). A repeated-measures ANOVA
on the proportion of outer ring objects
found a significant main effect for feed-
back (F (1, 8) = 9.25, p < .02). None of this is true for G2. Moreover, virtually no
participants were aware of the variations in speed of the robot’s head motion, which
suggests that more natural gaze patterns (e.g., modulating acceleration) or more
noticeable gaze pattern differences should be explored.

6.7 Discussion
Summary. We find that our proposed form of nonverbal robot feedback, predicting
the teacher’s next action, helps improve the teacher’s effectiveness and mental model
of the learner. Findings in practice echo those from our algorithmic teaching model.
We also find communicating confidence does not help significantly in practice, and
about half of users do not naturally interpret gaze as the intended form of feedback.
Limitations and Future Work. Our work is limited in several ways. The main
limitation is that our experiments are on a relatively simple, non-sequential task.
In the real world, for more complex tasks with larger action spaces, gaze may have
less communicative power; investigating effective combinations of gaze and other
feedback channels is a promising future direction. In addition, due to the small and
biased sample, the results of our study with gaze on the PR2 should be interpreted
as trends. Further work is necessary to explore the viability of gaze as a feedback
mechanism, e.g., explicitly explaining to users the purpose of gaze, or making the
gaze itself more human-like.

Finally, the form of feedback we study only improves learning when the learner
can learn the task, but the teacher’s model of the learner is not perfect (e.g., a
mismatched prior). However, even when the task is not learnable, this form of
feedback is still important in helping teachers recognize the robot’s limitations and
correctly estimate its (lack of) learning.

108

Chapter 7

Conclusion

It is important for human end-users to have accurate mental models of the robots
they interact with, to ensure safe and seamless interactions. Unfortunately, this
process typically takes a while, since it depends on which situations the human gets
to interact with or observe the robot in, and this is left up to chance.

The research in Part I shows it is possible to speed up how long it takes end-users
to form accurate mental models. Our key insight is that a robot’s actions influence
not just the physical world, but also what a person thinks about it. Thus, robots
have the opportunity to give informative examples of behavior that are especially
useful for improving end-users’ mental models.

In Chapter 2, we introduced a framework for selecting informative examples,
by framing the problem as an MDP over the human’s belief, in which the robot
is rewarded for giving examples of behavior that bring the human’s belief closer
to the true robot model. The human’s belief could concern a robot’s objectives,
the dynamics constraints it is subject to, and/or its policy. Each of these assists
with different goals of transparency. Knowing a robot’s objectives helps users
anticipate what this robot will do, even in novel scenarios (Chapter 3); additional
understanding of a robot’s dynamics constraints enables users to understand why
it failed (Chapter 4); and understanding a robot’s policy enables users to decide in
which situations to trust the robot or not (Chapter 5).

Accurate mental models of robots not only make human-robot interaction more
safe and seamless, but also help humans teach robots more effectively. Part II found
that even a simple form of feedback from the robot, predicting the human teacher’s
next action, helps human teachers both better estimate the robot’s capabilities and
select more effective examples for teaching it (Chapter 6).

109

Future Directions

A main challenge of this work is that we do not know the true transition function
of the MDP, i.e., how humans update their belief about the robot given observations
of its behavior. In practice, the choice of the human model H can have a significant
impact on the informativeness of examples for actual humans (Chapter 3). Thus,
a promising direction for future work is to make the communication process more
interactive—while the robot shows examples of its behavior, it should also be
estimating what the human’s current mental model of it is, so that it can use this to
refine which future examples of behavior it shows. This is analogous to Chapter 6,
in which we showed that when (human) teachers do not have a perfect model of
how the (robot) learner learns, feedback from the learner helps teachers select more
effective teaching examples.

A robot has the most flexibility for showing informative examples when it not
only has control over its own trajectory, but also over the layout of its environment.
Allowing for the latter typically requires showing these examples via a simulator,
since it is often impossible for a robot to arrange its environment in the physical
world (e.g., setting a particular configuration of nearby cars, pedestrians, and traffic
signals). Then the realism of the simulator directly impacts the accuracy of the
mental models that people form. It would be worthwhile to study how well people are
able to apply the mental model they form of the robot in simulation, to interactions
with the real robot. Effective transfer may require using more realistic simulators
than, for example, the simple top-down driving simulators that we used for our
experiments in Chapter 3 and Chapter 4.

Finally, the works in this thesis all use motion as the robot’s communication
channel, since humans naturally draw conclusions about robots based on their
motions, and motions are more precise. A natural extension is to combine this
with other communication modalities, such as speech and visualization, that have
complementary strengths compared to motion—speech is not as precise but is more
concise, and visualizations are longer and less natural to process but can be more
rich.

110

Bibliography

[1] C. Heyer, “Human-robot interaction and future industrial robotics applications,”
in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010.

[2] S. Pellegrinelli, A. Orlandini, N. Pedrocchi, A. Umbrico, and T. Tolio, “Motion
planning and scheduling for human and industrial-robot collaboration,” CIRP
Annals, vol. 66, no. 1, pp. 1–4, 2017.

[3] M. F. Zaeh, M. Beetz, K. Shea, G. Reinhart, K. Bender, C. Lau, M. Ostgathe,
W. Vogl, M. Wiesbeck, M. Engelhard, C. Ertelt, T. Rühr, M. Friedrich, and
S. Herle, The Cognitive Factory, pp. 355–371. Springer London, 2009.

[4] “Savioke Relay.” http://www.savioke.com/. Accessed: 2019-03-13.

[5] M. J.-Y. Chung, J. Huang, L. Takayama, T. Lau, and M. Cakmak, “Iterative
Design of a System for Programming Socially Interactive Service Robots,” in
International Conference on Social Robotics (ICSR), 2016.

[6] B. Hendriks, B. Meerbeek, S. Boess, S. Pauws, and M. Sonneveld, “Robot
Vacuum Cleaner Personality and Behavior,” International Journal of Social
Robotics, vol. 3, pp. 187–195, Apr 2011.

[7] J. Fink, V. Bauwens, F. Kaplan, and P. Dillenbourg, “Living with a Vacuum
Cleaning Robot,” International Journal of Social Robotics, vol. 5, pp. 389–408,
Aug 2013.

[8] S. Gibbs, “Google sibling Waymo launches fully autonomous ride-hailing
service,” The Guardian, Nov 11 2017.

[9] A. Dragan and S. Srinivasa, “Familiarization to robot motion,” in Proceedings
of the Ninth International Conference on Human-Robot Interaction, 2014.

https://ieeexplore.ieee.org/abstract/document/5651294
https://www.sciencedirect.com/science/article/pii/S0007850617300951
https://www.sciencedirect.com/science/article/pii/S0007850617300951
https://link.springer.com/chapter/10.1007/978-1-84882-067-8_20
http://www.savioke.com/
https://link.springer.com/chapter/10.1007/978-3-319-47437-3_90
https://link.springer.com/chapter/10.1007/978-3-319-47437-3_90
https://link.springer.com/article/10.1007/s12369-010-0084-5
https://link.springer.com/article/10.1007/s12369-010-0084-5
https://link.springer.com/article/10.1007/s12369-013-0190-2
https://link.springer.com/article/10.1007/s12369-013-0190-2
https://www.theguardian.com/technology/2017/nov/07/google-waymo-announces-fully-autonomous-ride-hailing-service-uber-alphabet
https://www.theguardian.com/technology/2017/nov/07/google-waymo-announces-fully-autonomous-ride-hailing-service-uber-alphabet
https://doi.org/10.1145/2559636.2559674

BIBLIOGRAPHY 111

[10] S. H. Huang, D. Held, P. Abbeel, and A. D. Dragan, “Enabling robots to com-
municate their objectives,” in Proceedings of the Thirteenth Annual Robotics:
Science and Systems (RSS), 2017.

[11] S. H. Huang, D. Held, P. Abbeel, and A. D. Dragan, “Enabling robots to
communicate their objectives,” Autonomous Robots (AURO), no. 2, pp. 309–
326, 2019.

[12] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learning,” in
Proceedings of the Seventeenth International Conference on Machine Learning,
2000.

[13] M. Kwon, S. H. Huang, and A. D. Dragan, “Expressing robot incapability,” in
Proceedings of the Thirteenth Annual ACM/IEEE International Conference on
Human Robot Interaction (HRI), 2018.

[14] M. Herman, T. Gindele, J. Wagner, F. Schmitt, and W. Burgard, “Inverse
reinforcement learning with simultaneous estimation of rewards and dynamics,”
in Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2016.

[15] S. H. Huang, K. Bhatia, P. Abbeel, and A. D. Dragan, “Establishing appropriate
trust via critical states,” in Proceedings of the Thirty-First Annual IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2018.

[16] C. L. Baker, R. Saxe, and J. B. Tenenbaum, “Action understanding as inverse
planning,” Cognition, vol. 113, no. 3, p. 329–349, 2009.

[17] T. Ullman, C. Baker, O. Macindoe, O. Evans, N. Goodman, and J. B. Tenen-
baum, “Help or hinder: Bayesian models of social goal inference,” in Proceedings
of the Twenty-Second Annual Conference on Neural Information Processing
Systems, 2009.

[18] C. L. Baker, R. R. Saxe, and J. B. Tenenbaum, “Bayesian theory of mind:
Modeling joint belief-desire attribution,” in In Proceedings of the Thirtieth
Third Annual Conference of the Cognitive Science Society, pp. 2469–2474, 2011.

[19] J. Jara-Ettinger, H. Gwen, L. E. Schulz, and J. B. Tenenbaum, “The naïve
utility calculus: Computational principles underlying commonsense psychology,”
Trends in Cognitive Sciences, vol. 20, no. 8, p. 589–604, 2016.

http://ai.stanford.edu/~ang/papers/icml00-irl.pdf
http://proceedings.mlr.press/v51/herman16.html
http://proceedings.mlr.press/v51/herman16.html
http://dx.doi.org/10.1016/j.cognition.2009.07.005
http://dx.doi.org/10.1016/j.cognition.2009.07.005
https://papers.nips.cc/paper/3747-help-or-hinder-bayesian-models-of-social-goal-inference.html
http://csjarchive.cogsci.rpi.edu/proceedings/2011/papers/0583/index.html
http://csjarchive.cogsci.rpi.edu/proceedings/2011/papers/0583/index.html
http://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(16)30053-5
http://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(16)30053-5

BIBLIOGRAPHY 112

[20] A. D. Dragan, K. C. T. Lee, and S. S. Srinivasa, “Legibility and predictability
of robot motion,” in Proceedings of the Eighth ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pp. 301–308, ACM, 2013.

[21] J. Lasseter, “Principles of Traditional Animation Applied to 3D Computer An-
imation,” in Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH), 1987.

[22] L. Takayama, D. Dooley, and W. Ju, “Expressing thought: Improving robot
readability with animation principles,” in Proceedings of the Sixth ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pp. 69–76, ACM,
2011.

[23] A. Zhou, D. Hadfield-Menell, A. Nagabandi, and A. D. Dragan, “Expressive
robot motion timing,” in Proceedings of the Twelfth ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pp. 22–31, ACM, 2017.

[24] N. Sebanz, H. Bekkering, and G. Knoblich, “Joint action: Bodies and minds
moving together.,” Trends in Cognitive Sciences, vol. 10, p. 70–76, 2006.

[25] A. Dragan, S. Bauman, J. Forlizzi, and S. Srinivasa, “Effects of robot motion
on human-robot collaboration,” in Proceedings of the Tenth International
Conference on Human-Robot Interaction, 2015.

[26] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice
Hall Press, 3rd ed., 2009.

[27] S. Levine and V. Koltun, “Continuous inverse optimal control with locally op-
timal examples,” in Proceedings of the Twenty-Ninth International Conference
on Machine Learning, 2012.

[28] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan, “Information gathering
actions over human internal state,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2016.

[29] S. A. Goldman and M. J. Kearns, “On the complexity of teaching,” Journal of
Computer and System Sciences, vol. 50, no. 1, p. 20–31, 1995.

[30] F. J. Balbach and T. Zeugmann, “Recent developments in algorithmic teach-
ing,” in Proceedings of the Third International Conference on Language and
Automata Theory and Applications, 2009.

https://dl.acm.org/citation.cfm?id=37407
https://dl.acm.org/citation.cfm?id=37407
http://www.sciencedirect.com/science/article/pii/S1364661305003566
http://www.sciencedirect.com/science/article/pii/S1364661305003566
http://www.ri.cmu.edu/pub_files/2015/3/collaboration_study.pdf
http://www.ri.cmu.edu/pub_files/2015/3/collaboration_study.pdf
http://dl.acm.org/citation.cfm?id=1671238
http://graphics.stanford.edu/projects/cioc/cioc.pdf
http://graphics.stanford.edu/projects/cioc/cioc.pdf
https://people.eecs.berkeley.edu/~anca/papers/IROS16_active.pdf
https://people.eecs.berkeley.edu/~anca/papers/IROS16_active.pdf
https://www.cis.upenn.edu/~mkearns/papers/teaching.pdf
https://www-alg.ist.hokudai.ac.jp/~thomas/publications/bz_lata2009.pdf
https://www-alg.ist.hokudai.ac.jp/~thomas/publications/bz_lata2009.pdf

BIBLIOGRAPHY 113

[31] A. N. Rafferty, E. Brunskill, T. L. Griffiths, and P. Shafto, “Faster teaching by
POMDP planning,” in Proceedings of the Fifteenth International Conference
on Artificial Intelligence in Education, p. 280–287, 2011.

[32] S. Zilles, S. Lange, R. Holte, and M. Zinkevich, “Models of cooperative teaching
and learning,” Journal of Machine Learning Research, 2011.

[33] X. Zhu, “Machine teaching: An inverse problem to machine learning and an
approach toward optimal education,” in Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[34] K. R. Koedinger, E. Brunskill, R. S. J. de Baker, E. A. McLaughlin, and
J. C. Stamper, “New potentials for data-driven intelligent tutoring system
development and optimization.,” AI Magazine, vol. 34, no. 3, p. 27–41, 2013.

[35] M. Cakmak and M. Lopes, “Algorithmic and human teaching of sequential deci-
sion tasks,” in Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, 2012.

[36] E. Vul, N. D. Goodman, T. L. Griffiths, and J. B. Tenenbaum, “One and done?
Optimal decisions from very few samples,” Cognitive Science, vol. 38, no. 4,
p. 599–637, 2014.

[37] D. Hadfield-Menell, A. Dragan, P. Abbeel, and S. Russell, “Cooperative inverse
reinforcement learning,” in Proceedings of the 30th International Conference
on Neural Information Processing Systems (NIPS), 2016.

[38] D. Hadfield-Menell, S. Milli, P. Abbeel, S. Russell, and A. D. Dragan, “Inverse
reward design,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems (NIPS), 2017.

[39] C. Schmidt, N. Sridharan, and J. Goodson, “The plan recognition problem:
An intersection of psychology and artificial intelligence,” Artificial Intelligence,
vol. 11, no. 1, pp. 45–83, 1978.

[40] P. Cohen, C. Perrault, and J. Allen, “Beyond question answering,” in Strategies
for Natural Language Processing, pp. 245–274, 1981.

[41] D. Matsui, T. Minato, K. F. MacDorman, and H. Ishiguro, “Generating natural
motion in an android by mapping human motion,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005.

http://www.cs.cmu.edu/~ebrun/FasterTeachingPOMDP_planning.pdf
http://www.cs.cmu.edu/~ebrun/FasterTeachingPOMDP_planning.pdf
http://www.jmlr.org/papers/volume12/zilles11a/zilles11a.pdf
http://www.jmlr.org/papers/volume12/zilles11a/zilles11a.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9487/9685
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9487/9685
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2484/2377
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2484/2377
https://hal.inria.fr/hal-00755253/file/aaai_teaching_final.pdf
https://hal.inria.fr/hal-00755253/file/aaai_teaching_final.pdf
http://onlinelibrary.wiley.com/doi/10.1111/cogs.12101/full
http://onlinelibrary.wiley.com/doi/10.1111/cogs.12101/full
https://dl.acm.org/citation.cfm?id=3157535
https://dl.acm.org/citation.cfm?id=3157535
https://papers.nips.cc/paper/7253-inverse-reward-design.pdf
https://papers.nips.cc/paper/7253-inverse-reward-design.pdf
https://www.sciencedirect.com/science/article/pii/0004370278900127
https://www.sciencedirect.com/science/article/pii/0004370278900127
http://www.dtic.mil/dtic/tr/fulltext/u2/a100432.pdf
http://ieeexplore.ieee.org/document/1545125/
http://ieeexplore.ieee.org/document/1545125/

BIBLIOGRAPHY 114

[42] M. J. Gielniak, C. K. Liu, and A. L. Thomaz, “Generating human-like mo-
tion for robots,” International Journal of Robotics Research, vol. 32, no. 11,
p. 1275–1301, 2013.

[43] M. J. Gielniak and A. L. Thomaz, “Generating anticipation in robot motion,”
in 20th IEEE International Symposium on Robot and Human Interactive
Communication, 2011.

[44] D. Szafir, B. Mutlu, and T. Fong, “Communication of intent in assistive free
flyers,” in Proceedings of the 2014 ACM/IEEE International Conference on
Human-Robot Interaction, 2014.

[45] S. Nikolaidis, S. Nath, A. Procaccia, and S. Srinivasa, “Game-theoretic modeling
of human adaptation in human-robot collaboration,” in Proceedings of the 2017
ACM/IEEE International Conference on Human-Robot Interaction, 2017.

[46] V. Raman and H. Kress-Gazit, “Explaining impossible high-level robot behav-
iors,” IEEE Transactions on Robotics, vol. 29, no. 1, p. 94–1104, 2013.

[47] S. Tellex, R. Knepper, A. Li, D. Rus, and N. Roy, “Asking for help using
inverse semantics,” in Proceedings of Robotics: Science and Systems, 2014.

[48] V. Perera, S. P. Selvaraj, S. Rosenthal, and M. M. Veloso, “Dynamic generation
and refinement of robot verbalization,” in 25th IEEE International Symposium
on Robot and Human Interactive Communication, 2016.

[49] S. Rosenthal, S. P. Selvaraj, and M. M. Veloso, “Verbalization: Narration of
autonomous robot experience,” in Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, 2016.

[50] B. Hayes and J. A. Shah, “Improving robot controller transparency through
autonomous policy explanation,” in Proceedings of the 2017 ACM/IEEE Inter-
national Conference on Human-Robot Interaction, 2017.

[51] F. Khan, B. Mutlu, and X. Zhu, “How do humans teach: On curriculum
learning and teaching dimension,” in Proceedings of the Twenty-Fourth Annual
Conference on Neural Information Processing Systems, 2011.

[52] S. Basu and J. Christensen, “Teaching classification boundaries to humans,” in
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
2013.

http://journals.sagepub.com/doi/pdf/10.1177/0278364913490533
http://journals.sagepub.com/doi/pdf/10.1177/0278364913490533
http://ieeexplore.ieee.org/document/6005255
https://dl.acm.org/citation.cfm?id=2559672
https://dl.acm.org/citation.cfm?id=2559672
http://doi.acm.org/10.1145/2909824.3020253
http://doi.acm.org/10.1145/2909824.3020253
http://dx.doi.org/10.1109/TRO.2012.2214558
http://dx.doi.org/10.1109/TRO.2012.2214558
http://www.roboticsproceedings.org/rss10/p24.pdf
http://www.roboticsproceedings.org/rss10/p24.pdf
https://doi.org/10.1109/ROMAN.2016.7745133
https://doi.org/10.1109/ROMAN.2016.7745133
http://www.ijcai.org/Proceedings/16/Papers/127.pdf
http://www.ijcai.org/Proceedings/16/Papers/127.pdf
http://dl.acm.org/citation.cfm?id=3020233
http://dl.acm.org/citation.cfm?id=3020233
http://pages.cs.wisc.edu/~jerryzhu/pub/teaching.pdf
http://pages.cs.wisc.edu/~jerryzhu/pub/teaching.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/07/Basu_Teaching-Classification-Boundaries-to-Humans_AAAI13.pdf

BIBLIOGRAPHY 115

[53] A. Singla, I. Bogunovic, G. Bartok, A. Karbasi, and A. Krause, “Near-optimally
teaching the crowd to classify,” in Proceedings of the Thirty-First International
Conference on Machine Learning, 2014.

[54] K. R. Patil, X. Zhu, Ł. Kopeć, and B. C. Love, “Optimal teaching for limited-
capacity human learners,” in Proceedings of the Twenty-Seventh Annual Con-
ference on Neural Information Processing Systems, 2014.

[55] U. Chajewska, D. Koller, and D. Ormoneit, “Learning an agent’s utility func-
tion by observing behavior,” in Proceedings of the Eighteenth International
Conference on Machine Learning, pp. 35–42, 2001.

[56] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learning,”
in Proceedings of the Twentieth International Joint Conference on Artifical
Intelligence, pp. 2586–2591, 2007.

[57] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. Dey, “Maximum entropy inverse
reinforcement learning,” in Proceedings of the Twenty-Second AAAI Conference
on Artificial Intelligence, 2008.

[58] J. Choi and K. Kim, “MAP Inference for Bayesian Inverse Reinforcement
Learning,” in Proceedings of the Twenty-Fourth Annual Conference on Neural
Information Processing Systems, pp. 1989–1997, 2011.

[59] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement
learning,” in Proceedings of the Twenty-First International Conference on
Machine Learning, 2004.

[60] R. N. Shepard, “Attention and the metric structure of the stimulus space,”
Journal of Mathematical Psychology, vol. 1, no. 1, p. 54–87, 1964.

[61] F. G. Ashby, Multidimensional models of perception and cognition. Psychology
Press, 1st ed., 1992.

[62] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for
spoken word recognition,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 26, no. 1, pp. 43–49, 1978.

[63] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approxima-
tions for maximizing submodular set functions,” Mathematical Programming,
vol. 14, no. 1, p. 265–294, 1978.

http://www.jmlr.org/proceedings/papers/v32/singla14.pdf
http://www.jmlr.org/proceedings/papers/v32/singla14.pdf
https://papers.nips.cc/paper/5541-optimal-teaching-for-limited-capacity-human-learners.pdf
https://papers.nips.cc/paper/5541-optimal-teaching-for-limited-capacity-human-learners.pdf
https://dl.acm.org/citation.cfm?id=655652
https://dl.acm.org/citation.cfm?id=655652
https://dl.acm.org/citation.cfm?id=1625692
http://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
http://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
https://papers.nips.cc/paper/4479-map-inference-for-bayesian-inverse-reinforcement-learning
https://papers.nips.cc/paper/4479-map-inference-for-bayesian-inverse-reinforcement-learning
http://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf
http://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf
http://www.sciencedirect.com/science/article/pii/0022249664900173
http://dl.acm.org/citation.cfm?id=1671238
https://ieeexplore.ieee.org/document/1163055/
https://ieeexplore.ieee.org/document/1163055/
http://link.springer.com/article/10.1007/BF01588971
http://link.springer.com/article/10.1007/BF01588971

BIBLIOGRAPHY 116

[64] S. Taheri and E. H. Law, “Investigation of a combined slip control braking
and closed loop four wheel steering system for an automobile during combined
hard braking and severe steering,” in Proceedings of the American Control
Conference, 1990.

[65] D. L. Medin and M. M. Schaffer, “Context theory of classification learning,”
Psychological Review, vol. 85, no. 3, p. 207–238, 1978.

[66] R. M. Nosofsky, “Attention, similarity, and the identification-categorization
relationship,” Journal of Experimental Psychology: General, vol. 115, no. 1,
p. 39–57, 1986.

[67] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for au-
tonomous cars that leverage effects on human actions,” in Proceedings of
Robotics: Science and Systems, 2016.

[68] E. Cha, A. D. Dragan, and S. S. Srinivasa, “Perceived robot capability,” in
Proceedings of the Twenty-Fourth IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), pp. 541–548, 2015.

[69] T. Kim and P. Hinds, “Who should i blame? effects of autonomy and trans-
parency on attributions in human-robot interaction,” in Proceedings of the
Fifteenth IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pp. 80–85, 2006.

[70] M. N. Nicolescu and M. J. Mataric, “Learning and interacting in human-robot
domains,” IEEE Trans. Systems, Man, and Cybernetics, Part A, vol. 31, no. 5,
pp. 419–430, 2001.

[71] C. J. Hayes, M. Moosaei, and L. D. Riek, “Exploring implicit human responses
to robot mistakes in a learning from demonstration task,” in Proceedings of the
Twenty-Fifth IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pp. 246–252, 2016.

[72] M. K. Lee, S. Kielser, J. Forlizzi, S. Srinivasa, and P. Rybski, “Gracefully miti-
gating breakdowns in robotic services,” in Proceedings of the Fifth ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pp. 203–210,
ACM, 2010.

[73] D. J. Brooks, M. Begum, and H. A. Yanco, “Analysis of reactions towards
failures and recovery strategies for autonomous robots,” in Proceedings of the
Twenty-Fifth IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pp. 487–492, 2016.

http://ieeexplore.ieee.org/document/4791051/
http://ieeexplore.ieee.org/document/4791051/
http://ieeexplore.ieee.org/document/4791051/
http://psycnet.apa.org/record/1979-12633-001
http://psycnet.apa.org/record/1986-16297-001
http://psycnet.apa.org/record/1986-16297-001
http://www.roboticsproceedings.org/rss12/p29.html
http://www.roboticsproceedings.org/rss12/p29.html

BIBLIOGRAPHY 117

[74] N. Mirnig, G. Stollnberger, M. Miksch, S. Stadler, M. Giuliani, and M. Tscheligi,
“To err is robot: How humans assess and act toward an erroneous social robot,”
Frontiers in Robotics and AI, vol. 4, p. 21, 2017.

[75] M. Ragni, A. Rudenko, B. Kuhnert, and K. O. Arras, “Errare humanum
est: Erroneous robots in human-robot interaction,” in Proceedings of the
Twenty-Fifth IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pp. 501–506, 2016.

[76] E. Aronson, B. Willerman, and J. Floyd, “The effect of a pratfall on increasing
interpersonal attractiveness,” Psychonomic Science, vol. 4, no. 6, pp. 227–228,
1966.

[77] K. Kobayashi and S. Yamada, “Informing a user of robot’s mind,” in Proceedings
of the Third International Conference on Computational Intelligence, Robotics
and Autonomous Systems (CIRAS), 2005.

[78] F. Stulp, J. Grizou, B. Busch, and M. Lopes, “Facilitating intention prediction
for humans by optimizing robot motions,” in Proceedings of the Twenty-Eighth
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 1249–1255, 2015.

[79] S. Augustsson, J. Olsson, L. G. Christiernin, and G. Bolmsjö, “How to transfer
information between collaborating human operators and industrial robots in an
assembly,” in Proceedings of the Eighth Nordic Conference on Human-Computer
Interaction (NordiCHI): Fun, Fast, Foundational, pp. 286–294, ACM, 2014.

[80] J. Carff, M. Johnson, E. M. El-Sheikh, and J. E. Pratt, “Human-robot team
navigation in visually complex environments,” in Proceedings of the Twenty-
Second IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3043–3050, 2009.

[81] E. Rosen, D. Whitney, E. Phillips, G. Chen, J. Tompkin, G. Konidaris, and
S. Tellex, “Communicating robot arm motion intent through mixed reality
head-mounted displays,” in Proceedings of the International Symposium on
Robotics Research (ISRR), 2017.

[82] B. Mutlu, F. Yamaoka, T. Kanda, H. Ishiguro, and N. Hagita, “Nonverbal leak-
age in robots: Communication of intentions through seemingly unintentional
behavior,” in Proceedings of the Fourth ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pp. 69–76, ACM, 2009.

BIBLIOGRAPHY 118

[83] C. Breazeal and P. Fitzpatrick, “That certain look: Social amplification of
animate vision,” in AAAI Fall Symposium, pp. 18–22, 2000.

[84] A. Haddadi, E. A. Croft, B. T. Gleeson, K. MacLean, and J. Alcazar, “Analysis
of task-based gestures in human-robot interaction,” in Proceedings of the 2013
IEEE International Conference on Robotics and Automation (ICRA), pp. 2146–
2152, 2013.

[85] B. Gleeson, K. MacLean, A. Haddadi, E. Croft, and J. Alcazar, “Gestures for
industry: Intuitive human-robot communication from human observation,” in
Proceedings of the Eighth ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pp. 349–356, ACM, 2013.

[86] V. Raman, C. Lignos, C. Finucane, K. C. Lee, M. Marcus, and H. Kress-Gazit,
“Sorry dave, i’m afraid i can’t do that: Explaining unachievable robot tasks
using natural language,” in Robotics: Science and Systems, 2013.

[87] M. Matthews, G. Chowdhary, and E. Kieson, “Intent communication between
autonomous vehicles and pedestrians,” arXiv preprint arXiv:1708.07123, 2017.

[88] M. Desai, P. Kaniarasu, M. Medvedev, A. Steinfeld, and H. Yanco, “Impact of
robot failures and feedback on real-time trust,” in Proceedings of the Eighth
ACM/IEEE International Conference on Human-Robot Interaction (HRI),
pp. 251–258, IEEE Press, 2013.

[89] P. Kaniarasu, A. Steinfeld, M. Desai, and H. Yanco, “Robot confidence and trust
alignment,” in Proceedings of the Eighth ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pp. 155–156, ACM, 2013.

[90] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.
Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant hamiltonian
optimization for motion planning,” International Journal of Robotics Research
(IJRR), vol. 32, no. 9-10, pp. 1164–1193, 2013.

[91] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil,
K. Goldberg, and P. Abbeel, “Motion planning with sequential convex op-
timization and convex collision checking,” International Journal of Robotics
Research (IJRR), vol. 33, no. 9, pp. 1251–1270, 2014.

[92] R. Diankov, Automated construction of robotic manipulation programs. PhD
thesis, Carnegie Mellon University, Robotics Institute, August 2010.

BIBLIOGRAPHY 119

[93] N. Wang, D. V. Pynadath, and S. G. Hill, “Trust calibration within a human-
robot team: Comparing automatically generated explanations,” in Proceedings
of the Eleventh ACM/IEEE International Conference on Human Robot Inter-
action (HRI), pp. 109–116, ACM, 2016.

[94] M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G. Pierce, and H. P.
Beck, “The role of trust in automation reliance,” International Journal of
Human-Computer Studies, vol. 58, pp. 697–718, June 2003.

[95] J. D. Lee and K. A. See, “Trust in automation: Designing for appropriate
reliance,” Human Factors, vol. 46, no. 1, pp. 50–80, 2004.

[96] S. Ososky, D. Schuster, E. Phillips, and F. Jentsch, “Building appropriate
trust in human-robot teams,” in Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.

[97] A. Freedy, E. DeVisser, G. Weltman, and N. Coeyman, “Measurement of
trust in human-robot collaboration,” in 2007 International Symposium on
Collaborative Technologies and Systems, pp. 106–114, May 2007.

[98] B. M. Muir, “Trust between humans and machines, and the design of decision
aids,” International Journal of Man-Machine Studies, vol. 27, no. 5, pp. 527–
539, 1987.

[99] D. H. McKnight and N. L. Chervany, “What trust means in e-commerce cus-
tomer relationships: An interdisciplinary conceptual typology,” International
Journal of Electronic Commerce, vol. 6, no. 2, pp. 35–59, 2001.

[100] M. Lewis, K. Sycara, and P. Walker, “The role of trust in human-robot interac-
tion,” in Foundations of Trusted Autonomy (H. A. Abbass, J. Scholz, and D. J.
Reid, eds.), pp. 135–159, Springer International Publishing, 2018.

[101] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” Journal of Machine Learning Research, vol. 17, no. 39,
pp. 1–40, 2016.

[102] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba,
“End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

BIBLIOGRAPHY 120

[103] B. W. Israelsen and N. R. Ahmed, “ ‘Dave...I can assure you...that it’s going to
be all right..’ A definition, case for, and survey of algorithmic assurances in
human-autonomy trust relationships,” arXiv preprint arXiv:1711.03846, 2017.

[104] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with
deep energy-based policies,” in International Conference on Machine Learning,
2017.

[105] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor.,” in
Neural Information Processing Systems (NIPS) Deep Reinforcement Learning
Symposium, 2017.

[106] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cam-
bridge, MA, USA: MIT Press, 1st ed., 1998.

[107] T. A. Angelo and K. P. Cross, Classroom assessment techniques: A handbook
for college teachers. Jossey-Bass Publishers, 2nd ed., 1993.

[108] J. M. Webb, E. M. Diana, P. Luft, E. W. Brooks, and E. L. Brennan, “Influence
of Pedagogical Expertise and Feedback on Assessing Student Comprehension
from Nonverbal Behavior,” The Journal of Educational Research, vol. 91, no. 2,
pp. 89–97, 1997.

[109] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and Autonomous Systems, vol. 57,
no. 5, pp. 469–483, 2009.

[110] M. Cakmak and A. L. Thomaz, “Optimality of human teachers for robot
learners,” in Proceedings of the IEEE Ninth International Conference on De-
velopment and Learning (ICDL), 2010.

[111] A. Sena, Y. Zhao, and M. J. Howard, “Teaching human teachers to teach
robot learners,” in IEEE International Conference on Robotics and Automation
(ICRA), 2018.

[112] T. Inamura, M. Inaba, and H. Inoue, “Acquisition of probabilistic behavior
decision model based on the interactive teaching method,” in Proceedings of
the Ninth International Conference on Advanced Robotics (ICAR), 1999.

[113] A. P. Shon, D. Verma, and R. P. N. Rao, “Active imitation learning,” in
Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI),
2007.

http://www.jstor.org/stable/27542135
http://www.jstor.org/stable/27542135
http://www.jstor.org/stable/27542135
http://www.sciencedirect.com/science/article/pii/S0921889008001772
http://www.sciencedirect.com/science/article/pii/S0921889008001772
https://ieeexplore.ieee.org/document/5578865
https://ieeexplore.ieee.org/document/5578865
https://ieeexplore.ieee.org/document/8461194
https://ieeexplore.ieee.org/document/8461194
http://www.jsk.t.u-tokyo.ac.jp/~inamura/research/paper/ICAR1999.pdf
http://www.jsk.t.u-tokyo.ac.jp/~inamura/research/paper/ICAR1999.pdf
https://dl.acm.org/citation.cfm?id=1619767

BIBLIOGRAPHY 121

[114] S. Chernova and M. Veloso, “Interactive policy learning through confidence-
based autonomy,” Journal of Artificial Intelligence Research, vol. 34, no. 1,
pp. 1–25, 2009.

[115] D. Silver, J. A. Bagnell, and A. Stentz, “Active learning from demonstration for
robust autonomous navigation,” in IEEE International Conference on Robotics
and Automation (ICRA), 2012.

[116] J. Miura, K. Iwase, and Y. Shirai, “Interactive teaching of a mobile robot,”
in Proceedings of the 2005 IEEE International Conference on Robotics and
Automation (ICRA), 2005.

[117] D. Whitney, E. Rosen, J. MacGlashan, L. L. S. Wong, and S. Tellex, “Reducing
errors in object-fetching interactions through social feedback,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), 2017.

[118] C. Chao, M. Cakmak, and A. L. Thomaz, “Transparent active learning for
robots,” in Proceedings of the Fifth ACM/IEEE International Conference on
Human-Robot Interaction (HRI), 2010.

[119] M. Cakmak, C. Chao, and A. L. Thomaz, “Designing interactions for robot
active learners,” IEEE Transactions on Autonomous Mental Development,
vol. 2, pp. 108–118, June 2010.

[120] S. Calinon and A. Billard, “Active teaching in robot programming by demon-
stration,” in Proceedings of the IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), 2007.

[121] L. Steels and F. Kaplan, “AIBO’s first words: The social learning of language
and meaning,” Evolution of Communication, vol. 4, no. 1, pp. 3–32, 2001.

[122] G. H. Lim, M. Oliveira, V. Mokhtari, S. H. Kasaei, A. Chauhan, L. S. Lopes,
and A. M. Tomé, “Interactive teaching and experience extraction for learning
about objects and robot activities,” in The 23rd IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN), 2014.

[123] H. Admoni and B. Scassellati, “Social eye gaze in human-robot interaction: A
review,” Journal of Human-Robot Interaction, vol. 6, no. 1, pp. 25–63, 2017.

[124] H. Admoni, T. Weng, and B. Scassellati, “Modeling communicative behaviors
for object references in human-robot interaction,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2016.

https://dl.acm.org/citation.cfm?id=1622717
https://dl.acm.org/citation.cfm?id=1622717
https://ieeexplore.ieee.org/document/6224757
https://ieeexplore.ieee.org/document/6224757
https://ieeexplore.ieee.org/document/1570632
https://ieeexplore.ieee.org/document/7989121
https://ieeexplore.ieee.org/document/7989121
https://ieeexplore.ieee.org/document/5453178
https://ieeexplore.ieee.org/document/5453178
https://ieeexplore.ieee.org/document/4415177
https://ieeexplore.ieee.org/document/4415177
http://digital.csic.es/bitstream/10261/128358/1/AIBO.pdf
http://digital.csic.es/bitstream/10261/128358/1/AIBO.pdf
https://ieeexplore.ieee.org/document/6926246
https://ieeexplore.ieee.org/document/6926246
https://dl.acm.org/citation.cfm?id=3109975
https://dl.acm.org/citation.cfm?id=3109975
https://ieeexplore.ieee.org/document/7487510
https://ieeexplore.ieee.org/document/7487510

BIBLIOGRAPHY 122

[125] J.-D. Boucher, U. Pattacini, A. Lelong, G. Bailly, F. Elisei, S. Fagel, P. F.
Dominey, and J. Ventre-Dominey, “I reach faster when I see you look: Gaze
effects in human–human and human–robot face-to-face cooperation,” Frontiers
in Neurorobotics, vol. 6, no. 3, 2012.

[126] A. Moon, D. M. Troniak, B. Gleeson, M. K. X. J. Pan, M. Zheng, B. A.
Blumer, K. MacLean, and E. A. Croft, “Meet me where I’m gazing: How
shared attention gaze affects human-robot handover timing,” in Proceedings of
the 2014 ACM/IEEE International Conference on Human-Robot Interaction
(HRI), 2014.

[127] H. Admoni, A. Dragan, S. Srinivasa, and B. Scassellati, “Deliberate Delays
During Robot-to-Human Handovers Improve Compliance With Gaze Com-
munication,” in International Conference on Human-Robot Interaction (HRI),
2014.

[128] A. L. Thomaz and C. Breazeal, “Teachable robots: Understanding human
teaching behavior to build more effective robot learners,” Artificial Intelligence,
vol. 172, no. 6-7, pp. 716–737, 2008.

[129] D. A. Pomerleau, “Efficient training of artificial neural networks for autonomous
navigation,” Neural Computation, vol. 3, pp. 88–97, March 1991.

[130] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics
(AISTATS), 2011.

[131] P. A. Ortega and A. A. Stocker, “Human decision-making under limited time,”
in Advances in Neural Information Processing Systems (NeurIPS) 29, 2016.

[132] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings F - Radar
and Signal Processing, vol. 140, pp. 107–113, April 1993.

[133] M. Nowak and K. Sigmund, “A strategy of win-stay, lose-shift that outperforms
tit-for-tat in the Prisoner’s Dilemma game,” Nature, vol. 364, pp. 56–58, 1993.

https://www.frontiersin.org/articles/10.3389/fnbot.2012.00003/full
https://www.frontiersin.org/articles/10.3389/fnbot.2012.00003/full
https://dl.acm.org/citation.cfm?id=2559656
https://dl.acm.org/citation.cfm?id=2559656
https://www.ri.cmu.edu/publications/deliberate-delays-during-robot-to-human-handovers-improve-compliance-with-gaze-communication/
https://www.ri.cmu.edu/publications/deliberate-delays-during-robot-to-human-handovers-improve-compliance-with-gaze-communication/
https://www.ri.cmu.edu/publications/deliberate-delays-during-robot-to-human-handovers-improve-compliance-with-gaze-communication/
https://dl.acm.org/citation.cfm?id=1342790
https://dl.acm.org/citation.cfm?id=1342790
https://dl.acm.org/citation.cfm?id=1351019
https://dl.acm.org/citation.cfm?id=1351019
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
https://papers.nips.cc/paper/6249-human-decision-making-under-limited-time.html
https://ieeexplore.ieee.org/abstract/document/210672
https://ieeexplore.ieee.org/abstract/document/210672
https://www.nature.com/articles/364056a0
https://www.nature.com/articles/364056a0

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Framework
	Communicating Objectives
	Communicating Dynamic Constraints
	Communicating Policies
	Transparency During Teaching

	I Improving Human Mental Models of Robots
	Communicating Robot Objectives
	Motivation and Background
	Related Work
	Approach: Algorithmic Teaching of Objectives
	Preliminaries
	Algorithmic Teaching Framework
	Exact-Inference IRL as a Special Case
	Approximate-Inference Models
	(Submodular) Example Selection
	Hyperparameter Selection

	Experiments
	Experimental Domain
	Analysis with Ideal Users
	User Study
	Utility of Algorithmic Teaching

	Analysis of Alternative Learner Models
	Feature Mismatch
	Approximate-Inference Hyperparameter Mismatch
	Hybrid Models

	Discussion

	Expressing Robot Incapability
	Motivation and Background
	Related Work
	Approach: Generating Attempt Motions
	Expressing Incapability, Formalized
	Comparing Cost Functions

	Experiments
	Timing Motions That Express Incapability
	Comparing Repeated Attempts
	Main Study: Is Expressive Motion Expressive?

	Discussion

	Establishing Appropriate Trust in Black-Box Policies
	Motivation and Background
	Approach: Computing & Using Critical States
	Preliminaries
	Computation of Critical States
	Using Critical States
	Justification of Critical States

	Experiments
	User Study: Impact of Critical States
	User Study: Utility of Critical States

	Discussion

	II Transparency for Robot Learning
	Nonverbal Robot Feedback for Human Teachers
	Motivation and Background
	Related Work
	Approach: Nonverbal Feedback
	Assumptions on Robot Learning Algorithm
	Generating Feedback

	Analysis in Theory: Why Will Feedback Help?
	Model of Human Teachers That Incorporates Feedback
	Impact of Feedback

	Analysis in Practice: Feedback Helps
	Design
	Results

	Analysis in Practice: Robot Gaze
	Design
	Results

	Discussion

	Conclusion
	Bibliography

