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In the process of finding Einstein metrics in dimension n ≥ 3, we can search metrics
critical for the scalar curvature among fixed-volume metrics of constant scalar curva-
ture on a closed oriented manifold. This leads to a system of PDEs (which we call
the Fischer–Marsden Equation, after a conjecture concerning this system) for scalar

functions, involving the linearization of the scalar curvature. The Fischer–Marsden con-
jecture said that, if the equation admits a solution, the underlying Riemannian manifold
is Einstein. Counter-examples are known by Kobayashi and Lafontaine, and by our first
paper. Multiple solutions to this system yield Killing vector fields. We showed in our
first paper that the dimension of the solution space W can be at most n + 1, with
equality implying that (M, g) is a sphere with constant sectional curvatures. Moreover,
we also showed there that the identity component of the isometry group has a factor
SO(dim W ). In this second paper, we apply our results in the first paper to show that
either (M, g) is a standard sphere or the dimension of the space of Fischer–Marsden
solutions can be at most n − 1.

Keywords: Critical metrics; metrics with constant scalar curvature; sphere; elliptic PDE
system; killing vector fields; isometry group; Fischer–Marsden solutions; cohomogeneity
one metrics; scalar curvature functional; linearization of scalar curvature.
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1. Introduction and Summary of Results

Let M be a closed, connected, orientable manifold of dimension n ≥ 3. Consider
the scalar curvature s as a function on the space S of Riemannian metrics of fixed
(unit) volume and constant scalar curvature. Define the Laplacian as the trace of the
Hessian � = gij∇i∇j . Eigenvalues of the Laplacian are (necessarily non-negative)
constants λ ≥ 0 for which there exist functions u ∈ C∞(M), not identically zero,
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such that

�u + λu = 0. (1)

Beware that in Besse [1], for instance, the opposite sign convention is used for �.
From Koiso [8], we can conclude that, for any g ∈ S, if s/(n − 1) is not a positive
eigenvalue of the Laplacian, then, for any symmetric bilinear 2-tensor h such that

Lh := ∇i∇jhij −�(hijg
ij) − hijR

ij = 0 and
∫

M

hijg
ijdµ = 0 (2)

we can find a one-parameter family g(t) in S with g′(0) = h. Thus, for generic
g ∈ S, the set of these h can be thought of as the tangent space of S. L is in fact
the linearization of the scalar curvature, so that

∂

∂t

(
sg+th+O(t2)

)
t=0

= Lh. (3)

Following [1, p. 128], suppose g is a metric with s/(n− 1) not a positive eigenvalue
of the Laplacian (so s = 0 is allowed). Define a metric g ∈ S to be critical for
the Einstein–Hilbert action E(g) =

∫
M sgdµ if, given any one-parameter family

g(t) in S with derivative g′(0) = h as above, we have d
dtE(g)(0) = 0. Then (in

[1, Remark 4.48], see also [1, 4.47]) g is critical in this sense if and only if there
exists some function f ∈ C∞(M), such that

(L∗f)ij := ∇i∇jf − (�f)gij − fRij = Rij − s

n
gij , (4)

where L∗ denotes the L2-adjoint of L. Without assuming that s is constant, one
could always prove that (e.g. see [2, Proposition 2.3]) s is a non-negative constant,
if there is nontrivial function in the kernel of L∗. Now, taking the trace of Eq. (4),
we obtain

�f +
s

n − 1
f = 0 (5)

so that, since s/(n− 1) is not a positive eigenvalue, we must have f a constant (in
fact, zero) and g must be an Einstein manifold Rij = (s/n)gij . Besse [1, 4.48] goes
further and asks, what if s/(n− 1) is in the spectrum? if g obeys Eq. (4) (and so is
formally critical), must g be Einstein? If g is not Einstein, f cannot be a constant.

In our work, we choose to focus on what happens if there are multiple solutions
f1 and f2 to (4). Indeed, since f is an eigenfunction of the Laplacian, we can write
u := 1 + f and rewrite (4) as the critical metric equation

∇i∇ju = uRij − s

n − 1

(
u − 1

n

)
gij . (6)

If u = 1 + f1 and v = 1 + f2 are solutions to the above, then their difference
x = f1 − f2 solves the linear equation

∇i∇jx = x

(
Rij − s

n − 1
gij

)
(7)

and x is an eigenfunction of the Laplacian with eigenvalue s/(n − 1). We call x a
Fischer–Marsden solution. The Fischer–Marsden Conjecture asked whether g that
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satisfy (7) are Einstein. Counterexamples to that have been found (see, for instance,
Kobayashi [7] and Lafontaine [9] as well as our first paper [3]). We notice that, in
almost all the known examples, the dimension of the solution space of (7) is at
least 2.

If u and v are solutions to the critical metric equation (6), then (udv − vdu)�

is a conformal Killing field. Even nicer, if x and y are Fischer–Marsden solutions,
then

Y = x∇y − y∇x (8)

is a Killing field (as observed in Lafontaine [10], where the situation in dimension
n = 3 is studied).

In our first paper [3], we proved

Ric(Y ) = ρY (9)

for some smooth function ρ defined, where Y �= 0 (depending on g, but not on
choice of Y ).

One can prove that the space of Fischer–Marsden solutions has dimension less
than or equal to (n + 1) with equality only if (M, g) has constant curvature (the
dimension bound also appeared in [2, Corollary 2.4], but, it did not mention what
happens when the dimension achieves the upper bound n + 1 there). In fact, we
proved in our first paper [3], the following stronger statement.

Proposition 1. Let W be the space of Fischer–Marsden solutions of (7), and Iso0

be the identity component of the isometry group of (M, g). Then Iso0 is locally
SO(dimW ) × G1 with a compact Lie group G1, which is the kernel of the action
of Iso0 on W . Moreover, all the SO(dimW ) orbits are either Sdim W−1 or its fixed
points.

Therefore, if dim W = n, then the SO(dimW ) orbits are either Sn−1 or fixed
points. In particular, M is cohomogeneity one with Sn−1 as the generic orbits. There
is an SO(dimW ) equivariant dense open set N of M such that N = I × Sn−1 and
g = dt2 + (f(t))2g0 with g0 the standard metric on Sn−1. We now state our main
result.

Theorem. Let (M, g) be a compact Riemannian manifold with a dimension n ≥ 3,

and let W be the space of the nonconstant solutions of the Fischer–Marsden equa-
tion. If dim W ≥ n, then (M, g) is a standard sphere.

In Sec. 2, all Riemann metrics are assumed to have positive constant scalar
curvatures. We notice that, if (7) holds, s is a contant. Since s is an eigenvalue, it
is non-negative. If s = 0, our solutions are constants. Therefore xRij = 0 and g is
Ricci flat. In particular, if s = 0, g is Einstein.

We notice that our situation here is a special case of the cohomogeneity one case.
We should deal with the cohomogeneity one case in the near future. Our method
of warp products could be regarded as a reformulation of the reduction method in
[10]. We shall apply our new method to the general case.
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2. The Proof

In this section, we state and prove several lemmas which will establish the main
Theorem, so we assume that we are working under the conditions in the Theorem.

By choosing the right orthonormal solutions x and y in Proposition 4 in our first
paper [3], we might assume that Y x = βy = −y and Y y = −βx = x, i.e. β = −1.

Lemma 1. Let Y = x∇ y−y ∇x be a Killing vector field generated by orthonormal
Fischer–Marsden solutions x and y. Then |Y |2 = x2 + y2.

Proof. By the proof of Proposition 1 as well as [3, Proposition 4], we have

|Y |2 = xY (y) − yY (x) = x2 + y2. (10)

This proves the lemma.

Recall on N ⊂ M g has the form dt2 + (f(t))2g0 with g0 the standard metric
on Sn−1.

We also notice that Y acts on each of the SO(dim W ) orbits and does not depend
on t. W gives us an SO(dimW ) equivariant conformal map from each orbit to its
image with a metric (h(t))2g0. Every function in W is just a linear function in the
image. Therefore, x = h(t)x0 for some function h(t) > 0 and some linear function
x0 on Sn−1. Moreover, we have.

Lemma 2. Let x0 be a Fischer–Marsden solution on the standard Sn−1. We have
that x = f(t)x0 is a solution on (M, g).

Proof. We have

|Y |2 = (f(t))2|Y |20 = (f(t))2(x2
0 + y2

0) = x2 + y2.

Since (x, y) is proportional to (x0, y0), we have x = f(t)x0.

Lemma 3. ff ′′ − (f ′)2 + 1 = 0 and 1 − (f ′)2 = s
n(n−1)f

2.

Proof. We have ∆x + s
n−1x = 0 and ∆0x0 + (n − 1)x0 = 0. We choose an

orthonormal basis

∂t, e1/f, . . . , en−1/f

near our considered point on M with ej, j = 1, . . . , n − 1, an orthonormal basis on
the standard Sn−1.

We notice that

grad(x) = f ′x0∂t + f−1grad0(x0).

By Proposition 35 in [6, p. 206], we have

∇∂t(f
′x0∂t + f−1grad0(x0)) = f ′′x0∂t + (f ′/f)f−1grad0(x0) − f ′/f2grad0(x0)

= x0f
′′∂t, (11)
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where we applied the Leibniz rule to the second term. We also have the component
of the second covariant derivatives tangent to the orbits:

tan(∇ej/f (f ′x0∂t + f−1grad0x0)) = x0(f ′)2/f2ej + f−2∇0
ej

grad0x0.

The Laplace of x is:

∇i∇ix = x0f
′′ + (n − 1)((f ′)2/f)x0 + (∆0x0)/f

= x0[f ′′ + (n − 1)(f ′)2/f − (n − 1)/f ], (12)

where i sums from 0 to n − 1.
Therefore, since ∆x = −sx/(n − 1) = −sfx0/(n − 1), we have:

ff ′′ + (n − 1)((f ′)2 − 1) = −sf2/(n − 1). (13)

On the other hand, by Corollary 43 in [6, p. 211], we have Ric(∂t, ∂t) = −(n −
1)f ′′/f ,

Ric(ej/f, ej/f) = (n − 2)/f2 − f ′′/f − (n − 2)(f ′)2/f2.

That is,

s = (n − 1)[−f ′′/f + ((n − 2)/f2 − f ′′f − (n − 2)(f ′)2/f2)]

= −(n − 1)[2f ′′/f − (n − 2)(1 − (f ′)2)/f2]. (14)

Compare these two equations, we get our Lemma.

Lemma 4. f = A−1 sin(At + B) with A2 = s
n(n−1) and A > 0.

Proof. We have f ′ = ±√
1 − (Af)2. But f is not constant, so we have

Af = sin(±At + B). (15)

But

sin(−At + B) = −sin(At − B) = sin(At − B + π) (16)

which proves the lemma.

With all these in place, we can establish our main Theorem.
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