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Abstract 
X-ray standing-wave photoemission experiments involving multilayered samples are emerging 
as unique probes of the buried interfaces that are ubiquitous in current device and materials 
research. Such data require for their analysis a structure optimization process comparing 
experiment to theory that is not straightforward. In this work, we present a new computer 
program for optimizing the analysis of standing-wave data, called SWOPT, that automates this 
trial-and-error optimization process. The program includes an algorithm that has been 
developed for computationally expensive problems: so-called black-box simulation 
optimizations. It also includes a more efficient version of the Yang X-ray Optics Program 
(YXRO) [Yang, S.-H., Gray, A.X., Kaiser, A.M., Mun, B.S., Sell, B.C., Kortright, J.B., Fadley, 
C.S., J. Appl. Phys. 113, 1 (2013)] which is about an order of magnitude faster than the original 
version. Human interaction is not required during optimization. We tested our optimization 
algorithm on real and hypothetical problems and show that it finds better solutions significantly 
faster than a random search approach.  The total optimization time ranges, depending on the 
sample structure, from minutes to a few hours on a modern laptop computer, and can be up to 
100x faster than a corresponding manual optimization. These speeds make the SWOPT 
program a valuable tool for realtime analyses of data during synchrotron experiments. 

Keywords: SWOPT, YXRO, SO-I, data analysis, optimization 
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1. Introduction 
X-ray standing-wave techniques have been developed in the 1960s, and since then blossomed 
into a powerful set of tools for investigating the electronic structure of materials with high spatial 
resolution. Initially, Bragg reflections from crystal lattices were used to selectively probe the 
structure of materials on the atomic scale, using X-ray fluorescence or Auger emission as the 
probe [1-4]. Later, periodic polycrystalline samples — such as magnetic multi-layered materials 
— were used to investigate structural properties with unprecedented depth selectivity, using 
reflectivity, fluorescence, and X-ray absorption as probes [5].  

The use of photoemission (PES) in standing-wave studies came somewhat later beginning in 
the 1990s with single-crystal systems and hard/tender X-rays with energies of about 3 keV [6]. 
This method was then extended into multilayer systems with soft X-rays [7]. The small inelastic 
mean free path of photoelectrons — as generated by soft X-rays — renders the PES technique 
very surface sensitive. Even though surface sensitivity is undesirable in experiments probing 
bulk or buried-interface properties, the PES sensitivity to chemical states, electric fields and 
electron momentum makes it an irreplaceable tool for studying core-level and valence band 
properties and enables direct mapping of the electronic band structure. For example, there are 
by now approximately 40 papers on soft- and hard- X-ray SW-PES in the literature, including 
both single-crystals and synthetic heterostructures, as reviewed elsewhere [8, 9]. 

One of the latest expansions of SW-PES was angle-resolved studies of valence states. The 
technique successfully addressed emergent phenomena at complex oxide interfaces such as 
LSMO/STO [10], GTO/STO [11], and LNO/STO [12].  Another important development was 
combining standing-waves with ambient-pressure XPS to study ion adsorption [13] and electro-
oxidation [14] at solid/liquid interfaces. More recently, standing-wave hard X-ray photoemission 
was used to obtain site- and element-specific band structure in single crystals of a dilute 
magnetic semiconductor: Mn-doped GaAs [15]. 

The experimental data in SW-PES are usually collected in the form of core-level photoelectron 
intensities as a function of incidence angle (aka rocking curves or RCs) or photon energy. First-
order Bragg reflection creates a strong periodic modulation in the exciting electric field, and by 
slightly changing the incident angle or the photon energy one is able to scan the position of the 
standing-wave by half of its period. Spatially resolved information is obtained by correlating the 
experimental data with calculations using a specially written X-ray optical program called YXRO 
[16].  

Using multi-layer mirrors as the SW generators — with layers of interest grown within or 
transferred onto them — brings certain challenges. Apart from uncertainties in the structural 
parameters of the sample itself, one has to consider the imperfections present in the mirror. 
However, using photoemission rather than simple reflection/diffraction/absorption data brings 
further dimensions of information to the experiment; each chemical species exhibits a distinctive 
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rocking curve, as they originate from different depths and their locations with respect to the 
nodes/antinodes of the standing-wave are generally different. For example, recent work that 
combined X-ray standing-wave photoemission with ambient-pressure PES (SWAPPS) resulted 
in unprecedented accuracy in probing solid/liquid interfaces [13]; this demonstrates the ability of 
the SWAPPS technique to study more complicated systems that involve chemical species that 
are free to move in a liquid layer, in contrast to the fixed layers in a solid. 

The task of obtaining the theoretical RCs that best match the experimental RCs is essentially an 
optimization problem with the goal to minimize the discrepancy between theory and experiment 
by determining the individual layer thicknesses and upper and lower interdiffusion 
lengths/roughnesses. An analytical measure of this discrepancy and its derivatives are not 
available. Thus, a derivative-free global optimization method is needed to avoid falling into a 
false minimum in the search. The parameter space is proportional to the complexity of the 
problem at hand. The state of the art approach to solving these problems is to use chemical 
intuition and sheer computational force. But this can engender human error in searching the 
parameter space, and also can be very time consuming. In this work, we present an efficient, 
automated method to address this problem. We use a global optimization algorithm that was 
developed for computationally expensive black-box simulation optimization problems, and for 
which analytical expressions of the objective function and its derivatives are not available. The 
result is a computer program for optimizing the analysis of SW data called SWOPT that accepts 
a problem definition — including the experimental RCs and known estimates of the structure of 
the system — and returns the best solution without any intermittent user input. SWOPT uses 
YXRO’s original computation code [16] without the graphical user interface (GUI), a black-box 
optimizer (BBO), and a custom interface that orchestrates the data transfer between the user, 
YXRO, and the BBO. 

To illustrate the capabilities of SWOPT, we have used it to solve three example problems and 
we show a clearly better performance in each case, as compared to a random search method, 
which uses sheer computational force. The increased speed of YXRO and the elimination of 
user interaction makes SWOPT very attractive for realtime data analyses during SW-PES 
synchrotron experiments. 
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2. Computational Approach 
In the following, we describe the general structure of SWOPT. Figure 1 shows a flowchart of the 
program, which is an integrated MATLAB® code that consists of YXRO, the BBO and an 
interface between the two and the user. We provide more details in the following subsections. 

 

Figure 1: The general structure of the computer program SWOPT, which solves structure 
optimization problems using YXRO and a black-box optimizer. 

2.1. YXRO-Ultra 
YXRO was originally created as a standalone MATLAB® program that is used through a GUI 
[16]. For problems where hundreds or even thousands of simulations need to be run to find the 
optimum structure, the initiation and termination of the GUI adds considerable computation time 
which is not spent on simulating RCs. Furthermore, YXRO does not provide the kind of flexibility 
that is needed for complex problems like solid/liquid interfaces, where solution phases overlap 
one another in depth and need to have their distributions optimized. To address these issues, 
we used a modified source code of YXRO — which is still written in MATLAB® — that runs 
without the GUI and is completely accessible to a higher-level optimization code. We call the 
resulting program “YXRO-Ultra”. YXRO-Ultra is computationally about an order of magnitude 
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more efficient than YXRO, not only due to the removal of the GUI, but probably also due to the 
elimination of the old, separate runtime system. 

Below, we provide the details of the operation of the program. 

2.2. User Input/Problem Definition 
The problem definition is provided by the user and is based on a so-called template file. This 
template is a regular YXRO input file, which can be generated either with the graphical user 
interface of YXRO or within the YXRO-Ultra scripts. The template defines basic sample 
properties such as layers with their composition and optical properties, and it defines the 
experimental conditions such as electron binding energies, photon energy, angles of X-ray 
incidence and electron exit, etc.  

The next step for the user is to define the optimization parameter ranges, which will be varied by 
the BBO to modify the sample properties or experimental conditions based on the template. The 
user sets the range in which each parameter should be varied, and since these physical 
properties cannot be measured beyond a certain accuracy, the user also defines the step size 
for sampling each parameter. In this way we discretize the search space, reducing the total 
number of possible solutions to a finite set. In most cases these parameters are layer 
thicknesses and interdiffusion lengths within the sample. In addition to the range of individual 
parameters, the problem definition allows for constraints. These are analytical conditions that 
will render a parameter vector invalid if they are violated. An example would be the relationship 
between the elemental and native oxide layer thicknesses for a Si capping layer. That is, when 
elemental Si at the top of a Si layer oxidizes, the volume per Si atom increases by a factor of 
2.20 due to the incorporation of O atoms into the structure. This can be translated into analytical 
terms as 𝛥𝑡!"#! = −2.20𝛥𝑡!" , where Δt denotes the layer thickness change of both layers, 
relative to the situation with no oxide. 

For most problems, such as examples 1 and 2 in this article, the definition of thickness and 
interdiffusion/roughness parameters in combination with constraints are sufficient to determine 
the sample properties. However, the script-based problem definition, which directly uses YXRO-
Ultra, allows the user to include and modify any property of the sample or the experiment that is 
defined within the YXRO program. Therefore, the user can also set up more advanced 
properties as optimization parameters, such as thickness gradients, material densities, or 
electron inelastic mean free paths. In example 3 we make use of this by optimizing the 
distribution of two independent chemical elements within a water layer.  

2.3. User/YXRO/Optimizer Interface 
This interface connects the user input with the BBO and YXRO-Ultra in the following way: 

1. It interprets the problem definition of the user and creates a simplified definition for the 
black-box optimizer. 
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2. It receives parameters from the optimizer and translates them into a YXRO input. 
3. It receives the YXRO output (i.e. rocking curves or energy scans), calculates the error 

(i.e. the objective function for the optimizer), and returns this error to the optimizer. 
4. For each trial, it returns the problem solution to the user, as plots and data files. 
5. Guided by the optimizer, it loops on parameters that lie within the ranges specified by 

the user, until a desired degree of fit is obtained, as judged by a sum of R factors 
 

The interface interprets the broad problem definition and presents the optimizer a simplified 
problem. The mathematical formulation of the optimization problem from the optimizer’s 
perspective is as follows: 

 min! 𝑓 𝑥   (1) 

  𝑐! 𝑥 ≤ 0, 𝑗 = 1,… ,𝑚  (2) 

 𝑥! ∈ {𝑥!! ,… , 𝑥!!}, 𝑖 = 1,…  ,𝑑, 𝑥! ∈ ℕ  (3) 

where 𝑓(𝑥) is the overall error as summed over all of the 𝑑 optimization parameters,  𝑥!! and 𝑥!! 
are the lower and upper bounds of the 𝑖th optimization parameter. These parameters can be 
layer thicknesses and interdiffusion lengths. The constraints 𝑐!(𝑥) are given analytically and if 
violated, they disqualify parameter vectors (an example would be the relationship between the 
elemental and native oxide layer thicknesses for a Si capping layer discussed above). For the 
black-box optimizer, we transform the search space such that all parameters are integers (ℕ 
denotes the set of natural numbers), with a trivial back transformation to report results to the 
user. 

The optimizer takes the simplified problem definition and returns a set of initial parameters to 
evaluate with YXRO. The interface uses these parameters and the problem definition to 
generate a YXRO input, sends it to YXRO, and receives the simulated RCs as output. It then 
compares the YXRO output to the experimental RCs and calculates the error 𝑓 𝑥 =  𝑅 using 
the following expressions: 

 𝑓 𝑥 =  𝑅 = 𝑅!
!
!!!  (4) 

 𝑅! =  𝑤! 𝐼!,!
Exp − 𝐼!,!Sim

!!
!!!   (5) 

where 𝐼 is the signal intensity (typically normalized to be unity outside of the Bragg reflection 
regime), N is the number of angle or energy points in a RC, and 𝑄 is the total number of RCs. 𝑤! 
is a weighting factor with a default value of 1, but can also be input by the user to give more 
weight to experimental RCs with higher counts (i.e., less statistical noise). Other formulas for R 
factors could also in principle be defined by the user in the future, such as that given by Pendry 
for low energy electron diffraction [17], 
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 𝑅! =
!!,!
!"#!!!,!

!"#!
!!!

!

!!,!
!"# !

! !!,!
!"# !!

!!!

 (6) 

Other R-factors and normalizing expressions that are discussed elsewhere might also be used 
[18].   

In deriving the intensities 𝐼!,!
!"# in Eq. (5), the raw RCs are typically normalized by one of the 

three available normalization options: by dividing each RC by i) the mean of the RC, ii) a 
polynomial background which is typically fitted through the non-modulating part of the RC, or iii) 
the maximum of the RC. These procedures are used to eliminate angle-dependent instrumental 
effects, e.g. having to do with the extent of the emitting spot on the sample as seen by the 
spectrometer. For consistency, the same procedure is applied to the raw simulated RCs to 
obtain 𝐼!,!!"#. 

𝑅 is the objective function 𝑓(𝑥) that the optimizer minimizes. The interface returns the 𝑅 value 
for a given parameter set to the optimizer and receives a new set of parameters from it. YXRO 
runs a simulation for these parameters, and this cycle continues until the optimizer reaches a 
satisfying condition, which is currently a maximum number of simulations. At that point, the best 
parameter vector is returned to the interface and the interface creates a summary of the 
problem solution for the user. 

2.4. Black-Box Optimizer 
When faced with computationally expensive black-box optimization problems, one widely 
adopted approach is to use surrogate models to inform the optimization search. A surrogate 
model 𝑠 𝑥  is a computationally cheap approximation of the time-expensive simulation objective 
function 𝑓 𝑥 , [19], with 𝑓 𝑥  requiring in general many iterations of the YXRO program: 

 𝑓 𝑥 =  𝑠 𝑥 +  𝑒 𝑥 . (7) 

Here, 𝑒 𝑥  is the difference between the time-expensive simulation function and the time-cheap 
surrogate model. Different types of surrogate models have been developed in the literature, 
among others radial basis functions [20], kriging [21], multivariate adaptive regression splines 
[22], polynomial regression models [23], and ensembles of different models [24]. Our surrogate 
integer optimization algorithm works similar to the SO-I scheme introduced elsewhere [25]. In 
this paper, we extend the functionalities of SO-I to take analytical fast-to-compute constraints 
into account. 

Generally, any type of surrogate model could be used, but in this work, we use radial basis 
function (RBF) surrogate models [20], because our objective function is deterministic and RBFs 
are interpolating and they therefore predict the true function value at an already evaluated point. 
An RBF surrogate model is defined as follows: 



An Efficient Algorithm for Automatic Structure Optimization 
in X ray Standing-Wave Experiments 

 8 

 𝑠 𝑥 =  𝜆!𝜙 𝑥! − 𝑥 !
!
!!! + 𝑝 𝑥 , (8) 

where 𝑥! , 𝑘 = 1,… , 𝑛 , are the parameter vectors at which we have already evaluated the 
expensive simulation objective function, 𝜙 ⋅  is the radial basis function (here, we use the cubic, 
𝜙 𝑟 =  𝑟!), and 𝑝 𝑥  is the polynomial tail whose order depends on the type of RBF we have 
chosen (for the cubic RBF, we need at least a linear polynomial, 𝑝 𝑥 =  𝛽! + 𝛽!𝑥 ). The 
parameters 𝜆! , 𝑘 = 1,… , 𝑛, 𝛽!,  and 𝛽 = 𝛽!,… ,𝛽! ! are determined by solving a linear system of 
equations:  

 𝛷 𝑃
𝑃! 0

𝜆
𝛾 = 𝐹

0 , (9) 

where, 

 𝑃 =  

𝑥!!   1
𝑥!!   1
⋮

𝑥!!   1

, 𝜆 =  
𝜆!
⋮
𝜆!

, 𝛾 =

𝛽!
⋮
𝛽!
𝛽!

,𝐹 =
𝑓 𝑥!
⋮

𝑓 𝑥!
, (10) 

and 𝛷!,! = 𝜙( 𝑥! − 𝑥! !), 𝜄, 𝜈 = 1,… , 𝑛.  || ⋅ ||! denotes the Euclidean norm. The matrix in the 

linear system in (9) is invertible if and only if rank(𝑃) = 𝑑 + 1.  

We use the RBF models in our iterative optimization algorithm in order to only select the most 
‘’promising’’ parameter vectors for evaluation (promising in the sense that it is the solution to a 
computationally cheap auxiliary optimization problem). The optimization algorithm takes into 
account all constraints 𝑐! , 𝑗 = 1,… ,𝑚, and all integrality constraints. Hence, we do not waste 
time calculating the objective function for parameter vectors that are clearly unphysical. The 
steps of the algorithm are illustrated in Figure 2 and the details are summarized in the appendix. 
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Figure 2: Flowchart of the optimization algorithm (BBO). 

A graphical illustration of the individual steps of the BBO for a one-dimensional example is 
provided in Figure 3 below.  Note that this method tends to avoid getting trapped in false local 
minima. For example, it does not just focus the search on the immediate neighborhood of 
x ≈ 14.7 in this figure. 
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Figure 3: One-dimensional illustration of the surrogate model based optimization search. Initial 
experimental design (top left); fit a surrogate model (top right); select and evaluate a new point 
(bottom left); update the surrogate surface with the new information (bottom right). 
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3. Example Applications  
In this section, we will demonstrate the effectiveness of SWOPT on three examples. In each 
example, we will compare the performance of our black-box optimization algorithm to a simple 
brute-force random search of structural parameter vectors. Our aim is to demonstrate that the 
adaptive parameter selection of BBO works significantly better than brute-force approaches 
such as manually varying only a few structural parameters — as done previously for one system 
[13] — or randomly sampling the structural parameters over the entire space. 

The calculations for the following examples were performed using an Intel® CoreI i5-2500 CPU 
@ 3.30GHz. The parallelization of our program used 4 cores of the CPU for the YXRO 
simulation. The total calculation time is mostly defined by the YXRO simulations, which depend 
on the experimental scenario. The average time per evaluation in the following examples 
ranged from 1.4 s in example 1 to 2.2 s in example 3. In this article we allowed a total number of 
10,000 evaluations for each trial, which means that the total optimization time is ~4–6 h each. 
However, as we will show in the following, in most cases a satisfactory solution can be found 
with fewer evaluations, and greater parallelization in the future can lead to further reduction in 
optimization times. For most cases, our program will allow for a realtime analysis of SW data on 
laptop computers and yields acceptable optimization results within ~1–2 h. 

3.1. Example 1: An Artificial Test Case — Ideal Sample on Si/Mo Multilayer 
Mirror 
The first example is a hypothetical Si/Mo multilayer mirror (MLM) where we generate “pseudo-
experimental” data with YXRO (i.e. we know the optimal solution). We expect that SWOPT will 
find the exact structure since the data have no noise and can be reproduced exactly by YXRO. 
However, there may be other near-optimal solutions. This example serves as proof-of-concept 
to test the accuracy of the optimization method. 

The problem definition is given in Figure 4a. The photon energy for this example is in the 
hard/tender X-ray regime at 3500 eV. The hypothetical sample is 5 layers of metal (from top to 
bottom: Au, Pt, Ti, Pt, Ti) on top of a Si/Mo multilayer mirror of 80 repeats, where the Mo and Si 
layer thicknesses are fixed at 9 and 25 Å, respectively. The interfaces of all layers are defined to 
be sharp. During optimization, each Au, Pt, and Ti layer thickness can vary from 0 to 35 Å, with 
a step size of 0.5 Å. One complication of this problem is that Pt and Ti signals come from two 
sets of distinctly separated layers and are integrated to give only one RC for each element. The 
Pt and Ti RCs depend strongly on how thick each of these layers are, whereas the Au RC 
depends on the total thickness of Pt+Ti layers. Another complication of the problem is that 
neither the pseudo-experimental nor the simulated RCs are normalized. Thus, the optimizer has 
to match the exact amplitudes, rather than relative amplitudes. This is expected to drive the 
optimizer more to the global minimum rather than to local minima. 
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Figure 4: (a) Problem definition for Example 1, (b) pseudo-experimental data (solid circles), 
SWOPT-found (curves-left), and random-search-found (curves-right) rocking curves for Au 4f, 
Pt 4f, and Ti2p, (c) best R value found as a function of the number of simulations performed for 
SWOPT and random search. The darker curves represent the mean R values of 10 different 
runs of 10,000 simulations each, whereas the lighter curves indicate standard deviation around 
the means. “ 𝑅 − 𝜎” for SWOPT becomes negative after ~500 simulations and thus has been 
left out of the plot, which is logarithmic. 

We ran SWOPT and the random search 10 times each with random initial guesses and with 
10,000 YXRO simulations each time. The RC’s of the median (5th best) of 10 solutions are given 
in Figure 4b. SWOPT found the exact solution whereas the random search found a solution that 
almost matches the phase but not the intensities. The convergence behavior of the two 
algorithms can be seen in Figure 4c. SWOPT approaches the optimal solution significantly 
faster and with a standard deviation that is significantly smaller (note the logarithmic scale of the 
y-axis) than the random search method. 
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Table 1: Layer thicknesses obtained from SWOPT and the random search algorithm 
(“Random”) for the artificial test case. “Median” refers to the thicknesses obtained in the 5th best 
out of 10 solutions of SWOPT and random. “min/max” refers to the minimum/maximum value 
found for the parameter within the 10 runs. Mean values are reported for completeness; they 
are ensemble averages and don’t necessarily correspond to a solution of SWOPT or random 
search. 

  median [Å] mean (st.dev.) [Å] min [Å] / max [Å] 

 true value [Å] SWOPT Random SWOPT Random SWOPT Random 

dAu 11.0 11.0 12.0 11.1 (0.2) 11.5 (0.5) 11.0 / 11.5 11.0 / 12.0 

dPt,1 13.0 13.0 11.0 12.9 (0.3) 12.4 (2.9) 12.5 / 13.5 5.5 / 15.0 

dTi,1 17.0 17.0 8.5 16.6 (1.0) 18.9 (7.8) 14.5 / 17.0 8.5 / 29.5 

dPt,2 7.0 7.0 5.0 7.2 (1.2) 7.4 (7.1) 4.5 / 8.5 0.0 / 23.5 

dTi,2 22.0 22.0 34.5 22.4 (1.8) 20.6 (8.3) 21.0 / 26.5 7.0 / 34.5 

 

The values found for the five layer thicknesses defined in the problem are given in Table 1. The 
median solution found by SWOPT is essentially exact, whereas the one found by the random 
search algorithm is significantly inaccurate for the bottom three layers. The inadequacy of the 
random search can also be seen in the standard deviations, which are 40-96% for the bottom 
three layers. The standard deviations increase from the top to the bottom layers for both 
SWOPT and random search. 

3.2. Example 2: Si-Mo Multilayer Mirror 
The second example is a real pristine MLM consisting of 80 Si/Mo bilayers. The mirror was 
prepared at the Center for X-ray Optics at Lawrence Berkeley National Laboratory using 
magnetron sputtering on a polished Si substrate. The nominal thicknesses of Si and Mo layers 
were 25.5 Å and 8.9 Å, respectively, giving a bilayer period of 34.4 Å in excellent agreement 
with the 34.4 Å  as determined by Cu Kα reflectivity at 8.04 keV. Hard X-ray photoelectron 
spectroscopy measurements were performed at beamline 9.3.1 of the Advanced Light Source at 
Lawrence Berkeley National Laboratory, with 3100 eV photon energy. 

The problem definition provided to the optimizer is given in Table 2 and in Figure 5a. There are 
5 layer thicknesses and 4 interdiffusion lengths to be optimized: a total of 9 parameters. The 
repeating part (80 repeats) is defined with dMo (repeating Mo thickness), dSi,ML (repeating Si 
thickness), and rML (repeating interdiffusion length between Mo and Si). The non-repeating part 
consists of dSi,top (thickness of the topmost Si layer), dSiO2 (thickness of the native oxide — SiO2), 
and dC (thickness of  the surface carbon contamination), as well as the corresponding 
interdiffusion lengths/roughnesses for the top three layers: rSi,top, rSiO2, and rC, respectively. The 
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interdiffusion length between the topmost Si layer and the topmost Mo layer is also defined to 
be equal to rML (i.e. the repeating interdiffusion length). The RCs were normalized by dividing 
each point by the second-order polynomial background that was fitted to the off-Bragg tails of 
the RCs. 

Table 2: Limits and step sizes of the parameters in Example 2 

 min [Å] step [Å] max [Å] 

dC 0 0.2 10 

dSiO2 0 0.2 50 

dSi,top 0 0.2 30 

dMo 6 0.2 10 

dSi,ML 24 0.2 30 

rC 0 0.5 8 

rSiO2 0 0.5 8 

rSi,top 0 0.5 8 

rML 0 0.5 6 

 

SWOPT and the random search were run 10 times with 10 different random initial guesses and 
10,000 YXRO simulations each time. Figure 5b shows the RCs corresponding to the 5th best, or 
approximately median solution of SWOPT, together with the experimental RCs. Figure 5c-d-e 
show the evolution of the best R value found so far as a function of the number of simulations 
performed. While Figure 5d and Figure 5e show the progress of the 10 individual runs for 
SWOPT and the random search, Figure 5c compares the averages of these two approaches — 
standard deviations are included in lighter colors. The average curves in Figure 5c show that 
SWOPT needed about an order of magnitude fewer evaluations than the random search to 
reach a certain R value. The standard deviation for SWOPT was also smaller.  
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Figure 5: (a) Problem definition for Example 2; (b) experimental (solid circles) and median 
SWOPT-found (curves) RCs for C 1s, O 1s, Si 1s (elemental), and Mo 3p; best R value found 
as a function of the number of simulations performed for 10 different runs: (c) averages with 
standard deviations, (d) SWOPT for individual runs, (e) random search for individual runs. 

The median (5th best), mean — with standard deviations — and minimum/maximum solutions 
for each parameter are given in Table 3 for both SWOPT and the random search. The two 
algorithms give similar results for layer thicknesses. The results of SWOPT have smaller 
standard deviations, which is likely an indication of better convergence. The carbon layer 
thickness “dC” has a large relative standard deviation for SWOPT (71%) probably because it’s a 
small fraction (∼10%) of the standing-wave period and the RCs are normalized (i.e. absolute 
intensity information is lost). Note that the effective period of the multilayer is 
25.2 + 8.2 = 33.4 Å, within about 3% of the 34.4 Å determined by hard X-ray diffraction.  
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Table 3: Layer thicknesses obtained with SWOPT and the random search algorithm for the real 
Si/Mo multilayer case. “Median” refers to the thicknesses obtained in the 5th best solution of 10 
trials with SWOPT and the random search (“Random”). “min/max” refers to the 
minimum/maximum value found for the parameter within the 10 runs. Mean values are reported 
for completeness; they are ensemble averages and don’t necessarily correspond to a solution of 
SWOPT or random search. 

 median [Å] mean (st.dev.) [Å] min. [Å] / max. [Å] 

 SWOPT Random SWOPT Random SWOPT Random 

dC 6.8 0.0 4.5 (3.2) 3.2 (2.1) 0.6 / 9.8 0.0 / 5.8 

dSiO2 10.0 11.0 11.2 (1.6) 11.1 (2.4) 8.0 / 13.2 7.8 / 15.0 

dSi,top 25.0 25.6 25.1 (0.2) 25.3 (0.8) 24.8 / 25.4 24.0 / 26.6 

dMo 8.2 9.2 8.9 (0.8) 8.6 (0.7) 8.2 / 10.0 7.4 / 9.6 

dSi,ML 25.2 25.4 24.9 (0.3) 25.2 (0.6) 24.6 / 25.4 24.0 / 26.2 

rC 3.5 2.0 5.0 (1.6) 3.2 (2.1) 3.5 / 7.5 0.5 / 7.0 

rSiO2 8.0 1.0 8.0 (0.0) 3.5 (2.6) 8.0 / 8.0 0.0 / 8.0 

rSi,top 0.5 1.0 0.4 (0.8) 3.0 (1.6) 0.0 / 2.5 1.0 / 5.5 

rML 4.0 5.0 4.5 (0.4) 4.3 (0.6) 4.0 / 5.0 3.0 / 5.0 

 

3.3. Example 3: Cs+Na Aqueous Solution/Fe2O3/Si-Mo Multilayer Mirror 
The third example is the re-evaluation of data that was published earlier [13], with all details 
discussed in this reference. In addition to the random search method, we compare the 
performance of SWOPT to the manual analysis performed by Nemšák et al. The original 
analysis of this problem took about two weeks with frequent human computer input. With 
SWOPT, it took the user ~1 h to set up the program definition, which is rather advanced 
compared to examples 1 and 2. After this, a single optimization run with 10,000 evaluations 
finished within ~6 h with no further human interaction required. This is thus roughly a factor 50 
reduction in analysis time. Considering that 10,000 evaluations is at least twice of what is 
needed to obtain a solution akin to Nemšák’s, we can say that a factor of ~100 reduction in data 
analysis time has been achieved for this particular example; and of course, human bias in 
varying parameters has also been removed. 

In more detail, the sample is a Fe2O3 layer deposited on a Si/Mo MLM that is identical to the one 
in the previous example. A thin NaOH+CsOH layer was dropcast on Fe2O3 from an aqueous 
solution. The sample was hydrated in situ with 0.4 Torr H2O at 2.5 °C, which corresponds to 
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∼8% relative humidity. The ions are thus expected to be mobile. This requires a more complex 
problem definition than the other examples, whereby the Na and Cs layers (i.e. the volumes that 
contain Na+ and Cs+ ions) can overlap and are free to move within the liquid layer. The 
parameterization of SWOPT, which includes the full functionality of YXRO-Ultra scripts, permits 
defining this complex problem in a complete way directly amenable to the BBO. 

Figure 6a shows the problem definition where dFe2O3, dH2O, dNa, and dCs are the thicknesses of 
the corresponding layers. To model the mobility of the Cs and Na layers, we introduced a layer 
above (bCs,top and bNa,top) and a layer below (bCs,bot and bNa,bot) each, whose thicknesses can vary 
independently. One condition, for this particular problem, is that: 

𝑑!!! = 𝑏!",!"# + 𝑑!" + 𝑏!",!"#  = 𝑏!",!"# + 𝑑!" + 𝑏!",!"# , 

that is, both ions must be found somewhere in the water layer of thickness dH2O. 

The SWOPT and the random search were run 10 times with 10 different initial random guesses 
and 10,000 YXRO simulations each time. Figures 6b and 6c show the RCs for the median (5th 
best) solution of SWOPT, and the solution of the manual analysis, respectively. Figure 6d and 6f 
show the convergence of individual runs for SWOPT and the random search, respectively.  
Figure 6d compares the averages of these two approaches — standard deviations are included 
in lighter colors. The average curves show that SWOPT outperforms random search — within 1 
standard deviation — after ∼500 iterations. The relatively small standard deviation for SWOPT 
indicates that it likely convergences close to the global minimum. 
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Figure 6: (a) Problem definition for Example 3; (b) solutions for the problem obtained via 
SWOPT, for the 5th-best ≈ median solution showing experimental (solid circles) and computed 
(curves) RCs for C 1s (aliphatic), O 1s (everything except Fe2O3 and H2O(g)), Fe 3p, Na 2p, and 
Cs 4d; (c) same as (b) but the solution was found manually by Nemšák et al. [13]; best R value 
found as a function of the number of simulations performed for 10 different runs: (d) averages 
with standard deviations, (e) SWOPT, (f) random.   

The results extracted from the median SWOPT solution agree — as presented in Table 4 —
extremely well with the parameters optimized by the much less sophisticated manual 
optimization, which essentially is a brute force method that optimized three parameters from the 
set at a time. Figure 6g presents the detailed distributions derived for this sample from SWOPT. 
The deviations between the two found solutions are within a few Å, which is also a limiting 
precision of this type of experiment, considering that the SW period is roughly one order-of-
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magnitude larger than these deviations. The solutions of all 10 trials of SWOPT optimizations 
unanimously confirm the conclusion that Na+ ions are most likely stripped of their solvation 
shells and are adsorbed specifically at the liquid/hematite interface. For the Cs+ ions, not every 
trial resulted in a sizable spacing between hematite and liquid, which is represented by dCs,bot in 
Table 4 with a mean value of dCs,bot = 0.7 Å ± 0.6 Å. This variation is explained by the fact that 
the exact shape of the RC, and therefore also the objective function value, are much less 
dependent on the bottom interfaces of the liquid and ion distributions compared to the top 
interfaces. However, judging by the best of the 10 SWOPT solutions we found a spacing of 
1.3 Å between the hematite and the Cs+ ions, which is consistent with the results by Nemšák et 
al. [13]. These results are furthermore consistent with earlier studies of alkali adsorption on 
hematite [26, 27] as well as different behavior between Na+ and Cs+ at the liquid/vapor interface 
[28, 29]. SWOPT results, just like the analysis by Nemšák et al., indicate that Cs+ ions are 
directly at the liquid/vapor interface — probably with a partial solvation shell — and Na+ ions are 
excluded from this interface to a depth of ∼4 Å. 

 

Figure 7: Comparison of element distribution determined by manual analysis [13] to the best 
result of the 10 SWOPT trails that are presented here. (Note that the original figure in ref. [13] 
showed interdiffusion lengths that were too low by a factor of 2, which was corrected here.) 

Figure 7 shows the element distributions that were determined by the manual analysis of 
Nemšák et al. compared to the best of the 10 SWOPT trials. Despite slight differences in the 
exact shape of the distributions, the overall agreement is good. Especially the main conclusions 
of the original study — the repulsion of Cs+ from the hematite, and of Na+ from the liquid/vapor 
interface — are reproduced by SWOPT, even if the program had to be run several times at 
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10000 iterations to find the best result. The best, worst, and median (5th best) objective function 
values that we received using SWOPT were R = 0.00314, 0.00337, and 0.00316, respectively, 
compared to R = 0.0039 in the manual analysis. Therefore, we can conclude that SWOPT is at 
least as reliable as the manual analysis. In addition, it is much less dependent on the intuition of 
the scientist analyzing the data. While the results are similar, the manual analysis relied largely 
on the experience of the scientist to find a good initial guess of the structure, and then was 
limited to varying a maximum of three parameters simultaneously to optimize the sample 
properties. This not only explains the significant amount of human interaction needed in the 
manual analysis, but it also makes it unlikely that a scientist with less experience in analyzing 
SW-PES data could find a sufficiently accurate solution, at least not without expending a much 
greater amount of time. Our new program SWOPT does not rely on initial and often subjective 
guesses beyond the upper and lower limit for each optimization parameter. 

Table 4: Layer thickness and roughness values obtained manually [13], from the SWOPT 
program, and the random search, for the SWAPPS example. 

  median [Å] mean (st.dev.) [Å] min [Å] / max [Å] 

 manual 
analysis [Å] SWOPT Random SWOPT Random SWOPT Random 

dH2O 15.1 13 14 13.1 (0.5) 13.8 (0.5) 12.5 / 13.5 13.0 / 14.5 

dNa,top 4.2 4.6 3.8 4.7 (0.9) 4.0 (1.1) 4.1 / 6.3 2.6 / 5.8 

dNa 10.9 8.5 9.8 8.4 (1.2) 9.0 (1.5) 6.3 / 9.5 7.0 / 11.6 

dNa,bot 0.0 0.0 0.4 0.0 (0.0) 0.7 (0.6) 0.0 / 0.0 0.1 / 1.9 

dCs,top 0.0 0.0 0.0 0.0 (0.0) 0.3 (0.4) 0.0 / 0.1 0.0 / 1.4 

dCs 11.7 12.4 14 12.4 (0.3) 12.4 (1.7) 12.2 / 13.0 8.5 / 14 

dCs,bot 3.4 0.6 0.0 0.7 (0.6) 1.0 (1.1) 0.0 / 1.3 0.0 / 3.2 

dFe2O3 40.5 42.5 42.0 42.4 (0.4) 41.9 (0.3) 42.0 / 43.0 41.5 / 52.5 

rH2O 0.0 2.0 3.0 2.0 (0.0) 2.5 (0.5) 2.0 / 2.0 2.0 / 3.5 

rFe2O3 3.0 2.0 2.0 2.0 (0.0) 3.1 (0.8) 2.0 / 2.0 2.0 / 4.5 
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4. Conclusions 
We show that our new computer program (SWOPT) solves the structure optimization problem in 
SW-PES problems involving multilayered samples quickly (minutes to hours), and without 
extensive human interaction. We compared the performance of our black-box optimizer (BBO) 
algorithm to a random search method by running each 10 times for three test cases. In every 
case the SWOPT significantly outperformed the random search. 

The complex hypothetical test case involving “pseudo-experimental” data from 5 layers on a 
Mo/Si multilayer showed that for the layers closer to the surface, thicknesses could be analyzed 
more accurately. The relative standard deviations of layer thicknesses for 10 independent 
solutions were in the range of 2–8 %. 

The experimental test case for a bare Si/Mo multilayer, which is a relatively simple problem, 
showed that the best of the 10 random searches gave similar results to SWOPT after 10,000 
iterations. However, SWOPT not only found the solution more efficiently, it also consistently 
found a good solution in all 10 trials. Thus, SWOPT can be relied on for finding a solution under 
time limitations or with little computational resources and proves to be far more reliable after 
only a single trial run. 

We also used SWOPT to reanalyze the results of an earlier SWAPPS study that investigated 
the Cs+/Na+ distribution normal to the surface in a liquid layer on Fe2O3. SWOPT reproduced the 
results found earlier within ∼1 Å for all but one parameter: only an ∼3 Å difference with the 
manual analysis was found for the Cs+/Fe2O3 gap, which is within the precision of the 
experiment. 

The versatility of SWOPT is an important advantage for tackling future SW-PES problems with 
greater complexity. The ∼10 fold speed gained through “YXRO-Ultra”, and the extra speed 
through the BBO algorithm, which ultimately leads to analyses about 50-100x faster, makes this 
program an invaluable tool for “realtime” analysis of data during synchrotron experiments.  We 
will make SWOPT available online to the community in the future. 
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6. Appendix – Surrogate Optimization Algorithm For 
Constrained Integer Problems 

Below, we describe the detailed individual steps of the black-box optimization method (BBO).  

 

Step 1:  Create an initial experimental design with min {𝐾,𝑑 + 1} points, where 𝐾 is the 
total number of possible solutions (including infeasible solutions). We use a 
symmetric Latin hypercube design and round the parameter values to the closest 
integers. Denote the solution set by 𝒮!. 

Step 2:  Compute the (computationally cheap) constraint function values and discard the 
infeasible points. Denote the remaining solution set by 𝒮!. 

Step 3: If the rank condition for the matrix 𝑃 (see Eq. 9) corresponding to the points in  𝒮! 
is not satisfied, keep adding feasible points to 𝒮! until the rank condition is 
satisfied. Denote the final set of points by 𝒮. 

Step 4:  Compute the objective function values at all points in 𝒮, denote the vector of 
function values by 𝐹. 

Step 5:  Find the point in 𝒮 with the smallest objective function value. Denote the point by 
𝑥best and its function value by 𝑓best. 

Step 6: Iterate while stopping criterion is not met: 

Step 6a:  Given the points in 𝒮 and their function values 𝐹, compute the parameters 
of the RBF surrogate model, 𝑠 𝑥  (see Eq. 8).  

Step 6b:  Create a large set of candidate points around 𝑥best  by perturbing the 
variable values of 𝑥best and by uniformly selecting points from the whole 
variable domain. All created candidate points satisfy the integrality 
constraints. 

Step 6c:  Discard all candidate points that do not satisfy the constraints 𝑐!. Denote 
the remaining candidate points by 𝜒!,… ,𝜒!. 

Step 6d:   Use the surrogate model to predict the objective function values for all 
candidate points and denote the set of predicted values by 
𝑠 𝜒! ,… , 𝑠 𝜒! } and scale these values to [0,1] such that the smallest 
predicted value is set to 0 and the largest value is set to 1. Denote the set 
of scaled values by 𝑉ℛ . 

Step 6e:  Compute the distance of all candidate points to the set 𝒮, denote the set 
by 𝛥 𝜒!, 𝒮 ,… ,𝛥 𝜒! , 𝒮 . Scale the distance values to [0,1] such that the 
candidate with the largest distance obtains score 0 and the candidate 
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closest to 𝒮 obtains score 1. Denote the set of scaled distance values by 
𝑉𝒟 . 

Step 6f:  Compute a weighted sum of both scores 𝒱 = 𝜔𝑉ℛ + 1 − 𝜔 𝑉𝒟 for each 
candidate point and select the candidate with the lowest score as new 
evaluation point, 𝑥new. 

Step 6g:  Compute the expensive objective function at the new point, 𝑓(𝑥new).  

Step 6h:  If 𝑓(𝑥new) < 𝑓best 

   𝑓best = 𝑓(𝑥new) 

   𝑥best = 𝑥new 

Step 6i:  𝒮 = 𝒮 ∪ {𝑥new}; 𝐹 = 𝐹 ∪ {𝑓 𝑥new }. 

Step 7: Return the best solution found.  

In Step 1 of the algorithm, if 𝐾 is small enough, we may do a complete enumeration of all 
possible solutions, discard all infeasible points, and only sample from the remaining set of 
points. This approach makes the creation of the initial sample points and the candidate points in 
Step 6b easier. In the iterative sampling procedure, we ensure that no point will be selected for 
evaluation more than once. Since the objective function is deterministic, repeatedly evaluating 
at the same point will not add new information.  

In Step 6d, we scale the predicted objective function values of all candidates to [0,1] according 
to 

𝑉ℛ 𝜒! =
𝑠 𝜒! − 𝑠min
𝑠max − 𝑠min

, 𝑙 = 1,… ,𝑀, 𝑠min = min s χ! , 𝑙 = 1,… ,𝑀 , smax = max 𝑠 𝜒! , 𝑙 = 1,… ,𝑀 .  

The distance scores in Step 6e are computed as follows: 

𝛥 𝜒! = min
!!∈𝒮

𝜒! − 𝑥! !, 𝑙 = 1,… ,𝑀. 

The [0,1] scaling is done according to  

𝑉𝒟 𝜒! =
𝛥max − 𝛥(𝜒!)
𝛥max − 𝛥min

, 𝑙 = 1,… ,𝑀,𝛥max = max 𝛥! , 𝑙 = 1,… ,𝑀 ,𝛥min = min{𝛥! , 𝑙 = 1,… ,𝑀} 

(see also [30]). In Step 6f, we compute a weighted score between the surrogate model 
prediction and the distance to already evaluated points: 

𝒱 𝜒! = 𝜔𝑉ℛ 𝜒! + 1 − 𝜔 𝑉𝒟 𝜒! , 𝑙 = 1,… ,𝑀 

The weights 𝜔 are selected from a range of possibilities, namely 𝒲 = 1, 0.9, 0.75, 0.6, 0.5,
0.35, 0.25, 0 . When selecting only a single point in each iteration for doing the expensive 
function evaluation, we cycle through this weight pattern. Our implementation allows also to 
select more than one point in each iteration, in which case we select 8 points (the length of the 
weight pattern 𝒲) and each point is chosen based on using a different weight. We update the 
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best point and the best function value found so far as well as the set of already evaluated points 
and the corresponding set of function values. The algorithm stops once we have reached a 
predefined maximum number of objective function evaluations.  

The convergence of the algorithm to the global optimum follows from a simple counting 
argument. As there exist only a finite number of possible solutions and the algorithm never 
evaluates a parameter vector more than once, it follows that as the number of evaluations 
approaches 𝐾 , we will eventually sample at the global optimum. However, in practice, we 
cannot allow 𝐾 evaluations and we have to be satisfied with the best solution we can obtain 
within our computation time budget. Typically we let the program run through about 10,000 
iterations. 
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