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Abstract

This paper describes and evaluates a computational model of
anomalous data integration. This model makes use of three
factors: entrenchment of the current theory (the amount of data
explained), the relative probability of the contradictory expla-
nations (based on conditional probabilities as part of the
domain-knowledge), and the availability of alternative expla-
nations based on learning. In an experimental study we found
that the entrenchment of a theory and the availability and like-
lihood of an alternative explanation influenced solution speed
and the correctness of inferred causal explanations. However,
in detail, the single levels of both factors were not clearly dis-
tinguishable and did not follow the predictions. These findings
suggest that entrenchment itself is not a major factor in deter-
mining the difficulty of a task. Instead, we hypothesize that
task difficulty is dominated by a person’s ability to construct
an alternative explanation of a given situation, a factor that is
only indirectly related to entrenchment.

Introduction

Integrating anomalous data with an existing theory or expla-
nation is an essential subtask in scientific discovery, diag-
nostic reasoning and in everyday problem solving such as
story understanding. In this paper we focus on the integra-
tion of anomalous data into an existing multicausal explana-
tion for a set of observations. In its simplest form, a causal
inference has the following form: Given knowledge that A
causes B, upon observing B, A is hypothesized as the expla-
nation for B. This is a kind of abductive inference (Joseph-
son & Josephson, 1994). In multicausal abductive tasks the
explanation is composed of multiple causal hypotheses,
which together explain the observations. An anomaly occurs
when new evidence contradicts the existing explanation. The
general problem then is to decide how to modify the multi-
causal explanation, so that all evidence, including the new
observation, is explained. We have designed and imple-
mented a mental model based theory of abduction in Soar
(see Johnson, Krems & Amra, 1994, for details) for which
we have proposed a mechanism of anomalous data interpre-
tation. This paper describes this mechanism and also pre-
sents results of an experimental study in which the cognitive
plausibility of the mechanism was evaluated.
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Multicausal Explanations and Anomalies

In abductive reasoning, an anomaly occurs whenever new
evidence contradicts one or more hypotheses in the exist-
ing multicausal explanation for previously given evidence.
New evidence can contradict the existing explanation in
one of two ways: 1) The new evidence is logically incon-
sistent with the existing explanation, such that there is no
way to explain the new evidence without modifying the
explanation; or 2) The hypothesis chosen to explain the
new evidence contradicts the existing explanation, but a
different hypothesis for the new evidence is consistent
with the explanation.

When an anomaly occurs, the reasoner must either mod-
ify the old explanation so that it is valid for both the new
and pre-existing evidence, or select a different hypothesis
for the new data so that the new hypothesis is consistent
with the explanation for the old evidence. Our major
research question is to clarify the factors that affect this
decision and the processes used to make the decision.

Previous studies of the interpretation of anomalous data
provide evidence on the role of various factors, such as
entrenchment of a theory, the availability and likelihood of
an alternative explanation, and a subject’s background
knowledge. Chinn and Brewer (1993) argue that the
entrenchment of a theory is one of the characteristics of an
individuals current beliefs that influence how a person
responds to anomalies. One way theories are entrenched is
due to the amount of evidence they explain. Applied to
abductive reasoning this should mean that theory-preserv-
ing responses should covariate with the amount of data
already explained by the current theory. The literature on
the confirmation bias (e.g., Klayman & Ha, 1987; Krems,
1994) as well as studies by Burbules and Linn (1988) also
indicate that the availability and likelihood of an alterna-
tive hypothesis can influence a person’s response to anom-
alous data.

Although researchers have proposed several models of
scientific discovery and abductive reasoning, most do not
provide a detailed process model of anomalous data inter-
pretation. For example, Dunbar and Klahr’s (1989) model
(SDDS, Scientific Discovery as Dual Search) shows how
explanations are formed and modified by searching in
hypothesis and experiment spaces, but does not provide a



detailed description of what happens when new data contra-
dicts the current explanation. Thagard's (1992) theory of
explanatory coherence (TEC) offers an account of how
anomalous data affects the strength (or coherence) of new
and existing hypotheses; however, it does not offer a theory
for how people use belief changes to decide how to modify
the explanation so that it can account for both the new and
old data. TEC does imply, however, that a person would
attempt to retain the most coherent hypotheses. Thus, it
seems reasonable for a model based on TEC to search for
alternative hypotheses to replace the less coherent, contra-
dictory hypotheses. Theories based on case-based explana-
tion generation (Schank, Riesbeck and Kass, 1994)
emphasize the role of prior experience in explaining anoma-
lies. Read and Cesa (1991) showed that expectation failures
are important cues for retrieving relevant memories of previ-
ous anomalies. However, little is known about the process of
explanation modification.

A Computational Model

Basic Features of the Model

In previous work, we developed a mental model based the-
ory of abduction and implemented it in Soar (Newell, 1990).
For details of the model see Johnson, Krems and Amra
(1994). We view abduction as the sequential comprehension
and integration of data into a single situation model that
represents the current best explanation of the data. Suppose
that a new datum is available. First, the situation model is
updated to include the new datum. Next, the new datum is
comprehended, i1.e., knowledge is brought to bear to
determine what the new datum implies about the situation.
Comprehension results in one or more explanations for the
datum, where each explanation consists of one or more
hypotheses together with the data they explain. If the gener-
ated explanation is inconsistent with any hypotheses or data
in the existing situation model, an anomaly has occurred and
the model must be updated by either finding an alternative
explanation for the new datum or by altering an explanation
for the old data.

Processing Anomalous Data

The model responds to anomalous data by rejecting all but
one of the anomalous explanations and then constructing
alternative explanations for the data left unexplained by the
rejection(s). It does this using a limited lookahead search to
determine which explanation is the best to keep. Suppose
that explanations, e/ and e2, for two data, d/ and 42, are
inconsistent. In the lookahead search it first selects one of
the explanations, say e/, and rejects it. Then it searches for
an alternative explanation for d/ and evaluates the resulting
situation model. Next it returns to the original anomalous sit-
uation, rejects e2, searches for an alternative to explain d2
and evaluates the results.
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The model then rejects the explanation whose rejection
resulted in the best situation model (where best is defined
as the model that explains the most data with the fewest
number of explanatory components). For example, if
rejecting el results in a better alternative explanation (than
that found by rejecting e2), then e/ will be rejected and the
alternative explanation for e/ will be used.

If an alternative explanation for one of the data items
cannot be found (either because none exists or because
processing limitations prevent adequate search), then the
explanation for that datum will be retained and the expla-
nation for the other datum will be modified. If rejecting e
and e2 result in equally good situation models, then the
difference between the probabilities (if known) that e/
explains d/ versus that e2 explains d2 is used to break the
tie. The probability (or frequency) that a given set of evi-
dence is explained by a certain set of causes is not calcu-
lated by the model but is considered to be part of the
domain knowledge. A number of studies reveal that peo-
ple can implicitly acquire such frequency of occurrence
information and then use it during decision making (see
Hasher & Zacks, 1984).

Thus, to decide which explanation to reject, the model
makes use of three factors: entrenchment of the current
theory (the amount of data explained), the relative proba-
bility of the contradictory explanations (based on condi-
tional probabilities as part of the domain knowledge), and
the availability of alternative explanations.

We assume that the availability of alternative explana-
tions depends on situation-specific knowledge and the
amount of time spent searching for an alternative. The
more often a situation is faced in which the existing expla-
nation is replaced by an alternative, the more likely it is
that the person has generated an appropriate alternative for
that explanation. This means that availability of potential
explanations should increase with problem solving experi-
ence. It also means that subjects’ confidence in their
explanations should correlate with the relative frequencies
that the explanations were correct for a set of data.

The Task

To explore human abductive problem solving we use a
task called Black Box (BBX). In this task, four atoms are
hidden in a box (an 8 x 8 matrix) and the player’s goal is to
discover their locations by shooting rays into the box (the
subjects are trained on these rules prior to introducing
them to the abductive task). The BBX device is shown in
Figure 1. Each atom (labeled 1-4) has a field of influence
(shown as a larger circle around the atom). These fields
deflect or absorb light rays (according to certain laws) as
illustrated in the figure. If a ray directly hits an atom, it is
absorbed, and the ray’s input cell is marked with a circle
(Rays B, C, D and E); if a ray enters and exits at the same
location (Rays I, J and H), that location is marked with
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Figure 1: The Black Box with four atoms and the paths of sev-
eral light rays visible.

double arrows (this is called a reflection); otherwise, the
locations at which the ray enters and exits the box are
marked with a unique symbol (Rays A, F and G, marked
with letters). The player does not actually see the path that
the ray follows; hence, the path must be inferred.

We selected Black Box for three primary reasons. First, it
shares many features with real-world abductive tasks such as
device diagnosis and medical test interpretation. These simi-
larities include: 1) Additional data must be collected based
on the current working hypothesis; 2) The data can be
decomposed into subsets such that the data in a subset can be
explained by the same hypothesis; and 3) A single datum can
require multiple individual hypotheses to explain. Second,
Black Box is easy to understand—subjects easily learn the
rules of the task within one hour of training. Third, one of the
major problems with many studies of abductive reasoning
(such as those done in medical domains or natural scientific
domains) is the difficulty in controlling for background

knowledge differences between subjects. By using a sim-
ple domain like Black Box we can ensure that all subjects
have the same knowledge of the device and that no addi-
tional external knowledge is given to the subjects.

Anomalous Data Interpretation in BlackBox

A typical example of an anomaly in Black Box and two
ways to resolve it are illustrated in Figure 2. In Figure 2a
the subject sees Ray A and places Atom 1. Next, Ray B is
shot and the subject assumes that the ray actually traveled
straight through the box as shown in Figure 2a. This expla-
nation is anomalous, however, with the explanation for
Ray A, because Atom 1 will cause Ray B to turn to the
right. The typical response, at this point is to assume that
Atom 1 is incorrect and to generate an alternative explana-
tion for Ray A. Figure 2b shows one possible alternative in
which Atom 1 is removed and Ray A is explained using
three different atoms. Figure 2c, however, shows a com-
pletely different possibility in which Ray A is still
explained by Atom 1, but Ray B is explained by an alter-
native configuration. Thus, the existence of an anomaly
depends on how the data is initially explained.
Entrenchment in this task refers to the number of rays
accounted for by a certain atom. The model predicts that
the higher this number is before anomalous data are seen
the harder it is to give up the current explanation. Relative
probability indicates which of the two contradictory expla-
nations is more probable. Specifically, relative probability
is the ratio of probabilities between the two contradictory
explanations—for example, between the probability that
Ray A is explained by the path shown in Figure 2a and the
probability that Ray B is explained by the straight path in
Figure 2a. The model predicts that the less probable expla-
nation has a greater chance of being modified. Finally, the
model predicts that availability of an explanation will
increase with level of practice. Therefore, level of practice
should affect a person’s responses to anomalous data.
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Figure 2: (a) illustrates an anomalous situation; (b) and (c) illustrate two ways to resolve the anomaly.

279



Experimental Evaluation of the Predictions

The predictions described in the last section were investi-
gated in an experimental study. Ten undergraduate students
at the University of Regensburg played on five consecutive
days a total number of 185 games (25 training games and 12
test games every day).

Design and Procedure

A S (level of practice) x 3 (confirmatory evidence) x 4 (rela-
tive probability) within-subjects design was used. The factor
level of practice has five levels: one for each day of training.
Confirmatory evidence was measured in terms of the number
of ray markers an explanation (one or more atoms) accounts
for. This factor varied from 2 to 4. Relative probability refers
to the ratio of the probability of the old versus the new expla-
nation. This factor had four levels: equal, new explanation is
less likely than the old explanation, new explanation is more
likely, and new datum absolutely contradicts the explanation
for the old data, i.e., the new datum cannot be explained
without modifying the existing explanation. The relative
probabilities are based on the frequencies that were com-
puted for all possible combinations of ray patterns and atoms
in BBX (e.g., we know that 86.7% of all absorptions are
explained by a single atom). Combining these two factors
results in 12 different combinations.

Every session consisted of a training phase followed by a
test phase. In the training phase, subjects were trained on 25
randomly generated games. In the test phase, subjects were
presented with 12 critical cases (one for each of the above
mentioned combinations) containing anomalies. The sub-
jects’ task in the training and the test games was to develop
an explanation of rays by placing atoms. In a modified ver-
sion of the oniginal BBX game, subjects could place atoms,
remove atoms or ask for new data. New data was requested
by clicking on a button, labeled “More Data,” which high-
lighted one of the perimeter cells of the Black Box matrix.
This told the subject where the ray would be shot into the
box. Clicking on this perimeter cell revealed the outcome of
the ray shot. Thus the data was presented sequentially as it
would be if the subjects had actually shot the rays them-
selves. By not allowing the subjects to select their own ray
shots, we could use predefined games and therefore better
control the situations presented to the subjects during the tri-
als. After placing an atom, the subjects gave a confidence
judgment that the location was correct. The confidence scale
consisted of seven categories (between guessing and cer-
tain). All atom placements, removals and data requests were
time-stamped and recorded.

Results

Amount of evidence. On average, it took subjects less time
to solve games with two or four pieces of confirming evi-
dence than games with three data items (see Figure 3). In an
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ANOVA we found that the main factors practice, Fp,, =
31.44, p < 0.01, and confirmatory evidence, F¢,,; =
23.71, p < 0.01, and their interaction, Fp,, , conf= 6.43, p
< 0.01, were highly significant.

With respect to difficulty (measured in terms of the
number of correctly placed atoms), we found that games
with two and three pieces of evidence were the hardest
over all days. The mean of correct solutions remained sig-
nificantly below the games with four confirming data
items. Both main factors were significant, Fp , = [14.94, p
<0.01, Fcppp=8.21, p < 0.01. However, there was no sig-
nificant interaction between confirmatory evidence and
practice (concerning the correctness of solutions), Fp,, ,
conf=1.91,p < 0.071.

Relative Probability. Subjects took longest to solve
inconsistent situations, followed by games in which the
new explanation was more likely or as likely as the exist-
ing one. Games in which the old explanation was more
likely were comparatively quick to play, FRetpr = 7.7, p <
0.001. Solution time decreased constantly with level of
practice, Fp,,=19.2, p < 0.000, Fpy x Relpr =1.13, p <
0.34. The mean of correct solutions was lowest with
inconsistent situations, followed by equal and then by new
and old, F = 10.5, p < 0.01. New and old switched after
the first two trial sessions (see Figure 3). There was a gen-
eral improvement between the training sessions, Fp, =
14.93, p < 0.01 With respect to correctness, no interaction
between the factors relative probability and level of prac-
tice could be found, Fp,, x geyp, = 0.67, p = 0.8.

Confidence-Rating. The model predicts that anomalous
situations will lead subjects to search for alternative expla-
nations, hence with practice on anomalous situations peo-
ple should become more aware of alternatives. This means
that the confidence ratings should increase for explana-
tions that rarely proved to be wrong, but decrease for
explanations that were frequently wrong due to anomalous
data. The first assumption could be verified, x2= 2894, p
< 0.00. For the second hypothesis, however, statistical
tests showed that the categorical variables confidence (7
categories) and level of practice (5 days) are independent,
x2 = 13.24, p > 0.05. This means that subjects stabilized
their judgment in cases where the current explanation
remained correct but they did not become “more careful”
or “more uncertain” for anomalous situations. Even after
having seen a set of counterexamples that made it neces-
sary to give up a current explanation, subjects continued
placing these atoms with a degree of confidence that did
not change based on experience.

Discussion and Conclusions

The amount of evidence and the likelihood of an alterna-
tive interpretation clearly influenced the modification of
explanations. This is, in general, consistent with the find-



% CONF I
S —
= 3
< o i
% el |
E 8
= m
[=]
5
«©
o
E

g

Day

g s RPROB
e - \\-\
% =
< —— €q
g u§; new
] — old
E §
°
g
€ 8

L

Day

mean of Correct

25

mean of Correct

25

35

30

35

3.0

2.0

Day

Figure 3: Improvement across level of practice (day) dependent on the confirmatory evidence of the existing explanation
(above) and the relative probability of the alternatives (bottom). The graphs on the left show improvement in terms of mean
time per action (ms), where an action consisted of placing or removing an atom or asking for more data. The right-most graphs

show improvement in terms of the number of atoms correctly placed. [CONF—confirmatory evidence, RPROB—relative

probability with inc—inconsistent, eq—equal.]

ings of Chinn and Brewer (1993) and also with the literature
on cognitive biases (e.g. Klayman & Ha, 1987). However, in
detail, the single levels of both factors were not clearly dis-
tinguishable and did not follow the predictions.

Based on these findings we assume that entrenchment
itself is not a major factor in determining the difficulty of a
task. Instead, we hypothesize that a person’s ability to con-
struct an alternative explanation of a given situation affects
task difficulty. We hypothesize that in a situation with anom-
alous data a person selects an explanation to modify based
on awareness of alternatives for that explanation and on the
possibility to explain all conflicting data by an alternative. If
such an alternative explanation can be developed, then the
simplest version that requires the smallest number of
changes to the existing explanation, but that explains the
most data, is selected. This is indirectly connected to the
amount of confirming data. The greater this number is for
the current theory the harder it may be to find an alternative
that explains this data as well as the conflicting data. This is
consistent with the model we outlined earlier.

Note, the necessity to construct an alternative explanation
is a specific feature of the BBX task. Anomalous data in this
task cannot just be ignored by rejection or exclusion, in con-
trast to the task used by Chinn and Brewer (1993). Therefore
entrenchment and relative probability are dominated by a
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search for (and availability of) an alternative explanation.
According to our model, search for an explanation ends as
soon as a single satisfactory explanation is found. The
empirical results on the confidence rating support this
assumption since subjects’ confidences in their initially
constructed explanations remain constant even after seeing
anomalous situations in which they had to construct alter-
native explanations for the same data. Thus, a subject’s
confidence in an explanation was independent of the rela-
tive frequencies that a certain explanation is correct for a
pattern of data. This suggests that the confidence in a
hypothesis is either dominated by the ease with which a
hypothesis can be initially generated from domain knowl-
edge or by parsimony.

The subjects not only got faster, but also achieved better
accuracy (see Figure 3). We hypothesize the following
explanation based on bounded search and knowledge com-
pilation. According to the bounded search hypothesis,
people will only expend a limited amount of effort before
terminating a search with failure. These searches are not
done in vain, however, because knowledge compilation
will compile many of the steps of the terminated search.
The next time a search is done, the person will be able to
reach the previous point of the search process with less
effort, due to the compiled steps. This allows the person to



search further. Eventually they will reach a desired state and
generate a solution which will, in turn, affect the quality of
their performance. Thus, we assume that people engage in a
ty pe of progressive deepening where the depth of succeeding
searches is extended as a result of learning over prior
searches (Johnson, Zhang & Wang, 1994). Quality of perfor-
mance improves with experience because it may take many
terminated search attempts before enough knowledge is
compiled to permit a successful search.
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