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ABSTRACT

A generalized quasiparticle transforﬁation is
presented wﬁich includes»n—n,p—p,»and n-p (T =0and T = 1)
paifiné éorrelatibns. The quasipariicle co?ordinates
are requiféd to be complex. The resulting gap equations
for N = 2 eveh—éven nuclei are solved for the nuclei in
the sd shell, To permit interactioﬁ bétween.the Hartree;v
>Foék (HF) and pair poténtials, the Hartree-Fock—Bogéliubdv
(HFS).eQuaéions,'including both T =.O“and T = 1 pairing,
are.also:sélved far tﬁese nuélei. |

Although T = 1 pairiﬁg éorrelatiéns are not significant,
T = 0 pairing correlationé play a very important‘role,
rectifying many of the fdilures of the HF theory in this

region, T =0 pairing restores axial symmetry'to the
24

equilibrium shapes of Mg““ and 532 and explains the

vibrational nature of ar3%, These conclusions are
reprodﬁced by the folloWing,nuéleon-nucleon interactions:
the Yale T -matrix (s-p~sd), the Nestor-Davies-Krieger-

Baranger effective interaction (s-p-sd and s-p-sd-pf),

and the Rosenfeld effective interaction (sd). A 5 ~

Evaluation of various approximations to HFB is -
facilitated by deriving the canonical form of the density.'
matrix and the pairing tensor for generalized isospin
pairing, ‘The gene£a1 quasiparticle trahsformatién is
equiyaleﬁt to the pibdﬁct'éf three tranéfbrmatiohé:'(l)jén

isospin-conserving rotation in particle space (canonical
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baeiS), (25e'aﬁ ieospin—géneralized "vpeeiéi“ quaeiparticle
transformation, (3) a rotatlon in quas;particle space.
The canonical ‘basis often bears no resemblance to -

the correSpondlng HF ba31s. The third transformation
- MmAay not be approximated by the unit transformatlon, noxr

is the pair pobentlal diagonal in the canonical ba51s.

The BCS appr0V1mation of nedlectlng elewent° of the'

pair potentlal connectlng different nDatldl orbltals.is
_therefore»unjustifled. Iterating between the HF and the
BCS equations in an attemét to permit both degrees of
ffeedom'to interact with one another is an even worse
' aporoxiﬁetion to HFB.than merely solving the BCS equations

'

with the trivial HF basis.

Tﬁe HPMB equations are derived by a variational
pr1n01ple. The self-consistent symmetries of the HFB
solutions are discussed, Usage of the same effective'

interac ion in both the HF and the pair potential is

jugtifled



6A

INTRODUCTION

A satisfactory theory of nuclear structure-shouid
explain the properties of nuclei in terms of the inter—
actions between their constiﬁuent partiéles. It is
convenient to neglect relativistic effects and the
possible existencefef many-body fofces. The>S¢hroedihger
equation with two body interactions should thenlprovide
a fundamental descfiptidh ef a mény hucleon system. The
first ordef description one should arrive at ie;the shell
model | | |

The nuclear shell model of Mayer and Jensen (1950)
vas the first successgul attempt to explain some
eJenentary p:ooertieg of nuclear structure in termns of
an 1ndonenaent partlcle model Each nucleon moves in a
,stationary-orblt determlned byra cehtral.potential wnich
is aoaumed.to represent én,average effeet of the actual
internucleon forces. s these forces ere short~-ranged
and strong, it is not evident that they give rise to
such an independent bérticle description, The early
shell model makes no attempt  to derive the average
potential from the real forces. |

The Brueckner-Goldstone ‘theory of-nucleér métter '
supplies this'fundamental justification of the shell
model’ for an 1nfinitely large nucleus conLalnlng an .

equal number of uniformly dis rlbuueg.protons:"



and heutrons. The.Coulomb force is ionored The
vaiue in coﬁ idering such a system is that the 51ngle
partlcle wave functions are known to be plane waves.
Unfortunately real nuclei are flnlte.‘ Ootalning the
wvave function becomes a formldable part of the theory.
Héffreo—Focﬁ (HF)vﬁheofy is a”good fifsﬁ approximation '

in our attemot‘to jUstify an indeoendent oarticle model,

It has tn@ udvantaoe of provwding a self-con31gtcnt

potentlal ln 1ndepenoent partlcle deocLlotloﬂ of nuclel
did not ooem olauclble ‘before the Layer~Jensen shell |
model and the Brueckner—eoldstone theory. It is_for this
reason that HF was fifét.appiied to nuclei.(1963) so

long after it had‘been‘sucoessfﬁloin deéerminiho‘the Vave

functions of atomic electrons (1930). It has been most

v exten31vely applled to’ nucle1 in the ZS-ld shell The

intrinsic state properties (deformatlon,moments of
inertia).of mahy.ﬁuciei in this shell arevnotvcorrectly
prédicﬁedhby HF theory;

.The shell model or HF potential does’not'accognt for
all effects of the actual inter-nucleon forces. Residﬁal
componenﬁs of.these.fOrcesjintroducévadditional correlations
into the wave functions. One'such_corrélation is the
pairing effect; Two nﬁcleons in time-reversed degenerate
orbitals have a large sﬁatial overlap and therefore form
a'pairlwith an‘incremeﬁt in:binding eneryy. 'A theory of
pairing-correlations was obtained.when the.Bardeeb-Cooper-

Schrieffer (3Cs) - Bogoliubov
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theory of supercohdﬁctivity'was adapted to nuclei‘by'
A, Bohr, B.R. Mottleson, and D, Pines and by S, Belyaev,
The indépéndent.modés of the system are no longer

| particles but quasiéarticles ( 2 linear combination of
pértiéle and Boié)._ In the most familiar form only
proton=-proton (p-p) and neutrdn—neuﬁron (n-n) pairing
are consideéred., We find that such correlations are
not impdftéht in the 2s-1d shell, and theréforé do not

explain the failure of IHF.

There are compelling physical arguments to demonstrate

the likéiihood of neutfbn—proton (n-p)‘pairing being

an”importént corrélation in N=2 e&en-even-nuclei.

The negléCé of n-p péifing'Cannot be justified. ¥e

presenﬁ é_genefaiizéd.quasipafﬁiéle transférmation which

includes p-p, n-n, and n-p (T =0 and.T'=-l) pairing

correlaﬁioﬁs. A simple sét of géneralized gap equationé

are dérived for N = Z even-even nuclei. These gap |

equations were first derived by Goswami and Chen with the

Green'sbfﬁnction rather than the quasiparticle formalism,
The BCS theofy has thé defect that ‘

the paifing correiations are not pe;mitted to alter

the underiying single particle basis (3? dégrees of

freedom). a:satisfactory theory should allow HF

and pairing degrees of freedomAto interact with each other

in a self-consistent fashion., The general quasiparticle

transformation provides the appropriate formalisms-




Havrtree-;lf‘csck- &goliﬁbbv (#F3) theory.

Thé géheral quasiparticle*trénsfotmaﬁion is expressed
in tefﬁs of the.isosoin-generalizéd"spnéiai" quasiparticle
transfornation to demonstrate the relatlonship between
HFB and'the varlous appro ihatiOﬂs to HF3: -HF«BCS,iterating
'beﬁweéh_dart se~Bogoliubov (AB) and 5CS , and iterating
between vap oximate H3 (a nmodifi ed H") and BCs, We
éxémine #he_condltlons for which each of these appréxiﬁations
is valid. o | |

The efLectlve 1nteraction apprOpriate for the HF
B potential is the T ~matr1x. Pairlngvcorrelations alter
the E-ﬁmumax in a fairly obvious fashioh. A more |
pefplexing prdblemvis whether:the l:‘-matrix may be used
as thé effective'interéction.in the pairing potential,

The HFB equations, inéluding T=0and T =1 pairiné,
are solved for the N = Z even-even nuclei‘in ﬁhe 2s-1d
shell. _T =0 pairiﬁg correlations dominaﬁe_over T=1
pairing correlations in all cases-of physical interest,
hhnyléf'the dis screpancies of HF are resolved, T = O
pairing restores axial symmetry to the equilibrium

shapes of Mgz and 832 and 1ndicates a vibratlonal rather
T _ 36 :

than rotational, structure for Ar
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I. THE HAMILTONIAN
1. Schroedinger's Equation

A fUndamental'tneory of nuclear structure should
explain the properties of nuclei in terms of the inter-
actions between their constituent particleso A bound

nucleon hes a binding energy of 5 to 10 Mev and a
| kinetic eneigy of about 25 Mev. Slnce the nucleon mass -
is about 1000 Mev, and the T - meson mass (lightest
particlelexchanged between nucleons) is 137 Mev, it nay
be assumed that a non-relativistic description is a good:
approximationa 'Inter-nucleon‘interactions may then be
represented by a potentialo The possible existence of
many-body ibrces is neglectedo 'The»Schroedinger
equation with two body interactions is therefore chonen

as the fundamental eqnationo_
‘HI¥>=E1¥%> 7 o (1.12a)

- . N |
H= TtV = ‘%:T‘ + Z: N—‘J o (17,1]))

! s “j" o : §
The techniques developed to solve (1.1) are not

sufficiently refined to determine the validity of our

assumptionso 1



2, Model Spaces and Effective Hamiltonlans

It iS'cnstomary to derive the Hartree-JFock (HF)
g_equations beginning with the Hamiltonian (1. lb) The
HF potential 1s then described in terms of matrix N

elements in a shell-model basis.-

<o) d> cz) I /u’,z{ aﬁkcr) ¢p<?—)>

One then observes that if the interaction Aﬂl has a herd'
core,.the matrix elements diverge, rendering the HF
equations meaningless. Brueckner theory is then. invoked
to Justify the replacement of A by the reactlion matrix
K (which has well defined matrix elements)

When HF is generalized to Hartree~Fbck—Bogoliubov (HBB)
" to include the effects of pairing correlations, we. encounter
a variety of contradictory prescriptions for obtaining the
effective interaction' |
(a) The same K-matrix used in HF‘may be used in both the
HF and pair potentials in HFB. 2
(b) The effective force to use in HFB 1s the K-matrix
rencrmalized to account fbr-the smearing of the Fermi -
surface by pairing correlations, 3 | |
(c) .Theieffective'fbrce to be used in the pair.potential
is not re‘lated to the K-matrix,. 4
¥We follow a procedure which removes these ambiguities. 5

Every nuclear structure calculation begins with a

. truncation of the space of basls states. rhis-requires
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the replacement of H by an effective Hamiltonian Heff
With certain approximations the effective interaction
reduces to the reaction matrix. Depending upon how we
choose the truncated (model) space, Wwe arrive at different
definitlons fbr the reactlon matrix, and different
conclusions concerning the_justifiability of uslng the
reaction natrix‘in the palr renormalized HF potential and
in the pair potential.  For an appropriete choice of the'
model'space, vsrious nuclear structure theories ( HP, BCS,
HFB, RPA)vshould be'considered as successive epproximations
to<the-eigenfunctions,of Heff. After determining HEEf we
shall consider these theories. | ‘
The Schroedinger equation for a many-body system with
two-body interactions was glven 1ﬁ'(1;1),_ A single particle
potential | |

4, - | ' . (1.2)

is introduced. It is chosen to absorb the major effects
‘of the two-body interactions A/, . The Hamiltonlan is
separated'into two parts.

H= Ho t Hl o - _ (1.3)
where Ho contains only single particle operators |

Ho = T+U = 3 (To+Uc) e
R ﬁ: ¢ (1.4)
and H, contains the residual interactions unaccounted for

by u “o



H‘l "'V"U = Z /‘ftj '2U( ) - _ (105)

(<J =1 ¢zl
Of course H is 1ndependent of the choice of oo, However
the wave—function I¥Y  and energy B owill be determined
“through a peftﬁfbetibnbexpansion‘invpowers of Hi .1
Judicious choice for lJ can ensure a fester convergence
of the perturbation series.z

The single particle eigenfunctlons of Ho satisﬁy
j (TL---r U«-)d-m(t')_):' Cpld)? - (1.6)

The set {10>} form a cqmpléte orthonormal basis of single
particle states. Mény-particie,eigepstates of Hs are
A-dimensional Slater detefminants;COnStruetedfrrom

different'combinations of the one particle states.

’§L> s __I,_ @.(,) ¢6(” ¢c(’) . _' ¢z(’)
AT 0. i) Bez) - i)
¢.o. (3) | ‘25(3) CD{ (3) R ¢2(3)

1acn) ) 98) - d>,:~m) (17a)

H. I§c> = ENE (1.7b)

where E; is simply the sum of the single particle energies

of the occupied states.

Z’ é¢ . : “ | (:l_,8).

¢ ocCuyled
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‘The unperturbed ground-state wave function | !iEo h and
ground state energy Eo are obtained by filling the A
lowest energy orbltals.

The set {'l§f>} form a .complete orthbnormal

basis of A—particle states, so that. , _ 12
| |
lq/>“ Za (37 ' _' -_(1.9') ;
Substitute (1 3) and (1 9) into (l la) and form.: tne
scalar product with < & .

LS <EBcEY Q= S<EAEIZD QA (120)
SAEA  +<TAMETLQ; < Eac © (1) -
K . - -
We have simply rewritten the Schroedinger equation as

[Ho'le]_a_ - EQ e (1'12) : ‘

Befbie proceeding we must note two difficulties:

(2) The expansion (1.9) is over an infinite number of
basis states, plearly making our Schroedinger equation
(1.12) somewhat intractable.

(b) The matrix elements <§c'ln"/uf§j7 may be expressed | DR

in terms of the two body matrix elements
D) @) (A ] P () @p(2)D

The'nucleon-nucleon»1nteraction',ujz , which 1s determined ’ o E

from two nucleon scattering data, becomes strongly
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repulsire'at'small particle separations. This short
range repulsion 1s often approximated by a hard core. A_
schematic representation of the Potential is given in'
Figure (1.1). | | |
vy

 Flgure (1.1)

r 1s the separation distance. The'core radius C is
about O 4 fm. The presence of this repulsive core ensures
that nuclei maintain a finite size. .The wave-functions |
P> are commonly expressed as linear'combinations of
harmonic oscillator wave-functions, which may have non-zero
overlap near r~0. ‘ Therefore the hard core also ensures
that the two body matrix elements of ,AQJ' will diverge.
This is unfbrtunate, for it not only renders_the
Schroedinger equation (1.12) useless, but it also threatens
to make a perturbation expansion in terms_of H, meaningless
(since each_term in the expansionvdiverges).

; These are certainly formidable’dlfficulties.‘ Yet they
"may be cireumvented. o
The,concept'of a "model space" is introduced to

alleviate the difficulty of solving.an 1nfinite‘d1mensional

»eigenralue problem;f The states not included in the model



space will'renormalize the interaction so that V 1s
replaced ﬁy an “effective interaction” veff,  Matrix
elements of veff will generally be well-behaved, even
thoughuv_containé singularities. The.eigenvalue of the
effective Hamiltonian, H®IT - 7 , veff 15 E, the true
ground“ététe eﬁérgy 6f the s&stem of inferacting particles.
The elgenvector of;Heff.is'the "model wave-function",
which exactly reproduces the component of 19> inside the
model space. .The component of 1#> outside the model space
can aléo be retrievéd.'_The technlique 1is very powerful, and
its resuits are 1mplicit in all nuclear étructure
calculations. | | . | .
D.eiiclate.by D the space spanned by the set {1,@67}_ .
Select a number hﬂ;f of this set to form a . Aé

dimensiohal model‘sbace d. _The operator P»projects onto d.

g  F>=v:g 18,5 &1

iéd (1-13)
~ The oberator Q projects out of d.
Q=35 135<cal o (1as)
Clearly |
@"'F ‘-"-.I- . | (1015) _
The model wave-function 1is defined by
1Zy>= PI®> =3 a Iy (1.16)

.ced



Define thefGreenifunction o

G- Q@ . 2 135<F[
. 'E"Ho 4&3 E"EL' S

| The wave function 1¥> ,ﬁay be re~expressedo

(U5 = (pr@) ¥ = 18> 8 ac &>
o ' - (¢d
Rewriting (1.11) s

KB = (£ Q-

Solving (1.19) for R; and substituting into (1.18)

i1

¥ >
o £ -Ec

1"

[Es>+ GHIIE D -

Define the effective interactioﬁ Hfff °

eH’%)*‘HI@7

Substitute into (1. 20)°

w?>- /‘I’J>+6H8H1%)

Substitute (1 22) into (1 21)0

| Hf‘“:@n = H'.’?d?f HGHEF 18>

IBi5r 4 18 CEINIE)
#avr g L

(1.17)

(1,18)

(1;19)'

(1.20)

(1.21)

o (1s22)

(L.23)
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The effective interaction Hfff_ is therefore determined by

ff(

H{(t)“ HI+HIGH . (1.24).

where the E dependence of the effective interaction
(through the energy denominator in G) has been explicitly

notedo';The matrix representation of Hfff is

<51H"ff<5u§ v = <$L/H, [F;9 +

4 < EelH] T2 <Fl H(e) 1 Ep>
Kffc) E EK

To obtailn the counterpart of (1 ll) fOr the model space,
substitute (1 21) into (1 19) | '

<3| Hf@”‘f’ﬁ' (e-c0a; s

Expanding‘l594>' as in (1.16) provides the eigenvalue

.equation.fOr the model,spaceo'

2 {t J,‘J+ <§L’H€ff(f),§ >} a Eat (1927)

JéJ
' This equation is valid for all 1' not just'rbr 1e do
Consider ‘the set of equations in (1.27) for which 1 € d.

v They constitute an N4 dimenslional eigenvalue equationo'5

[Hot HF(8)1, @ = Ea

One of the elgenvalues of -

He({<6)— Ho"’H}e{f(E) | . (1929) |

(1.25)

(1.28)
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.is the eiéct'gfound state,energy‘of the eystem of 1nter-.
actlng particlesc The corresponding'eigenvector of geff
exactly reproduces the component of ]Q’) in do (1.25)
and (1. 27) are coupled through the E dependence of Hfff .
One must first guess E, ‘then solve (1 25) for Hgff,
‘ Solving (l 28) determines & new value for E which 1s used
to re-calculate Hfff o vThe proéedure“is;continued.until
the results are the same on:tuo:suCCessiVeviteretions; |
Seiecting‘iéd,‘jed,,(lo25) and (1.27) are'solved for E and
the component of |'¥S in d. Then choosing 1f a, j€ a, (1.25)
and (1;27) may pe solved for the component of |¥Doutside
of d.»sEquations‘(1,25) and (1027) fherefoie constitute
a reStatenent'of the Schroedinger equation (1.11). No
1nformat1on hae‘been lost nor have'any approximations been |
.vmade.'v .
Unfortunately, since H®Tf 1s a function of E, the
elgenvectors of Heff:will'in general not'be or-thogonal°
(Even though the‘various solutions lﬂ?) are orthogonal,
their projections onto the model space might'not be
orthogonals.) ' | |
Choose the model wavevrunction-to'be normalized to’
unity.
(‘g?al §2‘> = |
' : | (1.30)
(i"%)= B (1. 31)
By 1terat1ng (1.24) we obtain an equivalent expression for
.Hfff

Then

H!e{f.(E) = Hi

HY
1Y

(GH')m (1°32)
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Define the effective interaction Veff by
He”(E) T+V°’”(E)~ - - (1.33)
Combining (l 4), (1.29), and (1.33)

yeffe) = Hite)y+u | | (1.34)

Equafion'(l 33) is a natural starting point . for nuclear

structure calculations. If the choice of the model space'_

is such that its dimensionality is too large to permit
exact dlagonalization of Heff, then other methods must be
considered to obtain approximate_eigenfUnctions'of'Heff,

HF,lBOS,:HFB RPA may then be interpreted as successive
eff

approximations to an exact diagonalization of H" ™", There

is an alternative interpretation of these theorieso To'be
more explicit we consider various cholces for the model

" space,

Ao Thefmodcl space d 1s equivalent to.ihe cntire space D,
- From (l 16), ’T‘J?:“P) From (1.17) G = 0 so that

Hfff = Hl (1.24), and (1. 27) is equivalent to the

Schroedinger equation (l.11), B

B. The dimensionality of d is finite but greater than
unityo |

For example,let U be the harmonic oscillator(HO)
potentialo

uz UHO = U(r) 7‘0(‘05 !'é ¥ O(It'fz ‘_ (1035)
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Then H, = ?nf Ugo has eigenfunctiqns |
Holp ymT > = Engj INLJMT L (1.36)
Where N = prinéipal quantum number
1 = orbital angular momentum
'~ total angular momentum

= pfdJéction of J on body-fixed Z axis

J
m
T

isospin projection ( + 3 for proton,
- 1 for neutron). |
Number the orbitals in the order of increasihg energy:
6,)51)...'6,7)--- . Choose an energy

Ev>E€np- " , | (1.37)
Choose the model space to consist of all A dimensional
Slater déterminants where the single particle orbitals

are HO states with £,.¢ €, . -

The HO speétrum is présented in Figﬁre (1.2).

- — 2Py, : " Figure(l.2)
. . £, ' - o
N=3 BT
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For nuclei filling the 2s-1d shell the dashed lines in
Figure (1.2) are two reasonable cholces for €, . Suppose
we choose .CV:"éVI . The number of protonvstates ﬁi_th |
Ec$ €, — 1is 20 + Mg2* has 12 protons. The number of
ways of putting A:indistinguishable particles in N states ic
NL

| (N-A)! A |
'The number of possibilities for 12 protons 1n 20 states is

125 970.' Similarly for the neutrons, so that the total
number of configurations is (125,970)2 . If‘we choose
év._ é}, " the number of neutron or proton states is 40,
giving rise to (4,116, 628 880) configurationso EVen

24 16 core with 8 particles

considering Mg®' as an inert O
in-the'2s¥ld;shell,leaves_4 protons (neutrons) in 12 states,
with (495)2 = 245,025 configurations. Clearly we have
exceeded fhe'bounds of even the most sophisticated compnter;
Methods for obtaining approximate eigenfunctions of Heff
are developed in the following chapters.

The effective interaction must now be determined.._Fbr
a suitahle‘set of epproximations it can be reduced to the

' reactionvmatrix} Expand equation (1.32), recalling that

HH =V-1U .,
HE &) < {vivey FYGVGY + v U+
' . . (1.38)
={l/2 (Gv)” —U}+~- |
meo

The terms outside the‘bracket contain at least one‘U
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Vfactor} ;If_they are.neglected'

eff(g)_, Vz (GV) - U ~ (approximation) (.1.39).

mzo
Combiningi(1.33);(l.39)
' o “ ‘ R ’ .
V"H"(E):'Vﬁ (GV)M» | . (1.40)
‘ mz=o _ ' C
or‘i'

!

V+ve Vv (E) - @)
To. obtain the reactien‘matrix_it is assumed that the
only important intermediate states consist of multiple |

scatterings betweeh two‘particles. More precisely, it is

assumed that -

C?-# 1(?1F7 : I_ . :(appfoximatien) (L.42)
where @, = 5 lf;uzp) )< §kcz,) ' o (1.43)
: v K(zF) ‘

‘The -state ]é‘“zlp,) has two particles in states Lm> , In>
with €,,€,> €, , the remalning particles having €. €€, .
It is also assumed that all partlicles except the pair under
consideration remain inert. _The matrix element

<Eel V,e-H(E) | .f,) ‘then reduces 'to t}hev two' vbcdy"

matrix element
<¢t'(l)_¢,jl<;) ,/\rlzl (DK(') ¢£(2)->'

if particles 3, 4,...A have 1dentical states in configurations
'lic)l I§J7> . Otherwise < & ][/Hfl fJ> o .
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Q2p then reduces to‘

GLF - 2’ mn) < mnl . (approximation) (1.44)
‘ Em, €ndEy ' '

"With these approximations veff becomes the reaction matrix.
K(E)= i+ A @5' K(E) C(1.45)
. ' - tHo :

The reaction matrix is a two#bddy effective 1nteraction.

Even though Q = Qgp, if we. had not required that all

particles remain inert except the pair undergoing

multiple scattering, then the effective interaction would

contailn many~body terms. The two-body interaction ,xr}j

can therefore give rise to many body effective interactions

eff
/\I—CJK Ia‘ . (]

K (E) has the'matrixbrepresentation

<LJH'<(E A7 =<Cpinlhkr>t

3 <y AL mnS < mn [KE)IALD
- Eny, En >ey E-Ho ] - (1.46)

Actually this representation of XK is deceptive. The
energy denominatorvl/(E - Hy )vdepends not only on‘the
~active particle states lm) , 1ﬁ7 .and the passive hole
states 1k , 115 . It also‘depends upon the energies_of
all the passive particles. |

o | )
E- _Ha‘ E - Ee + 6/<+Cp 6»
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where Ei 1s the energy of the state | ;) from which
| 3¢ (1F)) 1s derived. Thverefore K ‘depends not only on
E. It is also a function of the configuration ]i}) .
For each [ 3 there 1s a different K (E). This is a-very
undesi;able feature. If the variation'in'Ei is small
oompared_to typioal.values of (Ext€o=Em -€n)s then K (E)
will b.e. configurati"on i:ndeprvendent.’ (This effect should be
distinguished from the state, or E, dependence of K.)"
In the following example the physlcal processes which

contribute to K will be more thoroughly discussed.

Co. The dimensionality of the model space 1s unity.

The. model space contains a single conﬁguration‘ [ 2

NEIENINERY o (1.47)

’The model space elgenvalue equation (1. 28) is simply
Eet <$,!H"”<¢)l§a> E @
OI; A£=E “-Lo = < é-o,h’,efffg) I Eo) . o (1.,49)

Inserting (1.32)

PE = 5 < BIH, { @ H,}MI}Z) o (.50)
M0 ., é'Ho ’ ) | | : E

where Q= 2 &, S<E - (1.51)

(S ¥ . )

Phis 1s Just the result of Brillouin-Wigner (BW)

‘perturbation theory. As in (1.38) - (1.41), we drop all

eff

terms in Hl whiChvcontain U exoept the term = U. Then

the energy added to the system through.the,interactibns'
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where V&IT 1s defined in (1.41).

As a pafticular example choose'U to be the HF potential,

U= Uur | |
(Tfuﬁf) l¢(t)>= 6¢VIQ>(C)>
”7UHF)I Ene > Egp 1 B> - 02

EHF = Z E‘f
4= :

(EHF has'fhe mééning aésigned in'(198),rather than its
more familiar senée_c) |@4ry 1s an A - dimensional
Slater determinant. Each single particle orbital Iﬁp>‘
is a iineaf combiﬁation of HO orbitais._ The A lowest

energy states are filled-o 3 ‘Define a - Ferml energy.’

€ata
€p41

L e e - St —— o ana— — — —

€6 . . PFgure (1.3)

Replace Q by sz,‘, which now has the form

Gy = 5 Imn><mnl o
o ..émr,én_>6F | (1"53)

/

(Compare with (1.44).) The energy denominator 1/ (E - Hy)
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has the ﬁme ‘/(E—Eﬂk*fk'*f?'é;"fﬁ),' where K> a_nd" 127 are
the hole states. K then has the matrix representetion
<Y TKEE) k2> = <fIMIKY > +
B <L lmn X mn|K(E) | Kad
fmfﬂéf E-Epp t €xtée-€m-€,

(1.54)

Since d consists of only one configuration;the.problem of
‘K(E) being configurationodependent doesvnot.eriseo B

,It_is'nowgappropriete to note .the inconvenience\of
calculating E in terms of an infinite series in which
~each component contaiﬁs Eo Goldstone's linked cluster
theorem:provides a solutlon to this difficulty. If we
1ne1ude contributions to E corresponding to'linked
diagrams only then the perturbation energy 1s

At »,2& <§°{H { H'}vm FE> - s

: 2 | LY

(A linked diagram is one that can not be separated into
tvo parts without cutting any lines ) Comparing with
(1. 50), note that the energy denominator 1/ (E - Ho )
has been replaced by 1/ (E, - Hy,). This feature»is
especially_desirable for large systems, since

! = t———

A

E -Ho ~ NE+(E.-H)  AE

which vehishes es A increases. That 1s, terms‘1n the BW
expansioo past first order yield negligible. contributions
to AE for a large_system. The'Bwlseries converges'
ertremelyvs10w1y, The factor 1/v(Eo - Hy), however, is of
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order one for. all 4.

For our example, E, = E The reaction

HF °
(1.54) then assumes“ 1ts most familiar form.

<L'J'IK ko> = S CfIM Ik +

mgtrix

5 <ljlrimn> <mnlK k2>

ém',én)élf 6;( 1 ép ’ém -Cn

(1.56)

Description of the physical processes contributing

to the r‘_eacti'on"mat‘rix is alded by the following diagrams.

I creation of a particle in

——-  wnere &£, Er

destruction of a Vparticle

‘where & ,,Y€f

[

_ destrucfion of a ;particle

where €,,<€f  (creation

ecreation of a particle in

state | M D

in state Im>

in sfat_e Im?>

of a hole)

state (m?7
where 6m-<- €r (destruction of a'_hole) '

particles in states (D [j>
TT:‘me " scatter into states | K>, 1.0

Consider. the process.whereby.particles in occupled

states <y, 1J> - forward scat't:é'i‘, remaining in (), l,j)- .
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The energy contribution is < (j’[Afl ‘J > . Summing

over distinct pairs |

- ; PR cerimiy |
U 7 e cer (1.57)

Let. particles in occupied states (Y, l{j>~ scatter

into unoccupied states IK'>v 12> . (Thereby
creating holes in 1(Y, i\j7 . .At a later time the
particles'in [KD, 'I? may scatter back to their original
states”(annihilating the holes). This is a second order

process with intermediate state energy

| Eo.- Ho (sum of hole energies) - (sum of particle

energies)

0; ——"9_94' = %_ 5 < ELIa KEY CKOIN] C [

————— | e-ékéf.é”éfkaveku
€k ¢, >€r : 259
The third order process 1s
m . Il 2<c‘ﬁ/\rlmn><nm/,~rl/<?> CkOlarlefd
——— g YJ = (€t €, -Ey 6J(€L+€f Ex~€p)
Ko 2R ' 61,5}<5F , 0 (1.59)
g T ' éfy éﬁ)éﬁnaéﬂ :’6?

~and so on.
Returning to our expression for the reaction matrix

(1 56), let £ =k, J =1, and iterate.

J
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CogIK ILJ> <(_\///U‘/(J)+2<<[I,\f'//<j></<l Iari >

Es év Cik -Cp
€k, €02€F

=" g < ylarlmn 8 malar KD D K1 A1y

(1.60)
(Ecte, - 6,,,-6,,)(6L+CJ -Ci- élo)
éKjé.Per,q 6,) >6F )
It is therefore clear that '
G—’”"" ,(17'.'6'1)'
LS eIk G |
éLlé_l(eF
Similarly the exchange termsvmay be evaluated.
>t *
= -4 2<(JIKIJL> | -.”.-__(1'62)
= GL/CJ <6F

The total interaction energy obtained from this class of

intermediate states is

'/?-ZI{<¢JIK“J>"<LJIK'JL>} e
E€y<€r | |
This constitutes the Brueckner ladder approximation.

A palr of particles are permitted to. scatter against

each other_any number of times. The two holes and all'

other particles remain 1nert during this process.
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Actually this interpretation is strictly true only
if U = O', By choosing U = UHF” we use 5L:; (T + Ugply -
U?F includes‘interactions between the particle in'state
ey andxall other.particles in states |J<) R K < f}
Including U?F‘ in the energy denominator means that the
pair of particles undergoing multiple scattering are still
bound in the effective potential created by their inter-
‘actions with all other particles. FUrthermore, choosing.
U_s UHF ensures that in the Goldstone expansion (l 55)
the terms past first order with U interactions cancel the
-corresponding terms containing interactions with passive
unexcited states (lollipops and bubbles). This explains
the approximation maoe in (1.39). |

Even though (¢ J I~ [KED  diverges i“or_an interaction
with a hard core;<zfj{}{|j<p) may be well-behaved.
This remarkable feature may be easily demonstrated.
Consider.the matrii'elementv<<fZ/Aflj}>, where the bar

‘denotes time-reversal. Assume a separate potential.

CTUwl gy s A"A)’c/\fj? }‘ (1.64)

(A11 other matrix elements are assumed to be zero.)

Substituting into (1.56)

CCTIKIGIY = Aw. Af,

. 2 (€ -6E,) - (1.65)
€mI €L : ' '
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since 61— 2L, e Thefefore’

<LZ'KlJI> = AN—L Kj' _ (1.66) -
where | o

Kiz= ~vpt & A Ko |
2 (€€ : - (1.67)
e, PG ,
Solving for Ky o
KJ4':‘ | ‘/\fl' o i , _
A N | (1.68)
ra :

v o Em?€F (EM" éJ)
Substituting into (1.66)

CCUIKIGIY = Moy

L+l & A .
} z o (fm'éj) o ("1~69)
Em?Er 3

As the strength of the interaction ' become infinite, the

' matrix elements of K remain well-defined.

The last two chpicés for the model space'v'may ‘be:
compared: | |
B. The‘model space contalins all configurations ‘formed
from HO states with energy below €, - The effective
force may be approximated by the reaction matrix (1.46).
The intermediate states have HO energiés 6,,,/ En? €y .

e

K is calcualted in a HO basis with HO energies in the .*

P
N
s
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: energy denominator. ‘Thevnumber Ofdconfiguratione.in the
model space will generally be tco:large to permiﬁ exact
diagonalization of H®*L, HP, BCS, HFB,RPA should be
considered.as successlve approximations to exact diagonal-
izatlon. The same reaction matrix is to be used in all
these“cheo‘ries° }In»particular, it 4s to be used in HFB

to calculate the pair-renormalized HF potential and the

pair potential.

C- The model space contains one configuration {§ )

If l§§ 1s | &ued , the effective interaction may be’ | o
approximated by the reaction matxix (1 56) The 1nter-
mediate states have HF‘energies fi (h> 6F .  K 1s )
calculated in a HF basis with HF single particle energies
‘in the energy denominator. The effective 1nteraction
contains the projection operator

Q- s l§‘><§.‘{— ,_,§°><§5..1-  - (.70)

. L#‘O .
1f | 8715 altered from /§II-F>- to [Pecsy ’§I/F&> , or‘
'I_§%75> s the operator Q obviously-changes, so that ve¥f must
_be altered. In'particular, the form of the reaction matrix
changes when pairing'correlations‘are included. And 1t
‘may not be poesible'to Justify using any form of the

reaction natrix in the palr potential.
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3. Wick's Theorem and Quasiparticle Hamiltonians

The original Hamiltonian (i.l) contailning kinetic
energy andvtwo-body interactions has been feplaced by
an effective Hamiltonian (1.34) containing kinetic
energy and“efféctive}n~body interactions (n = 2,3,000)0
The effective Haﬁfltonian operates in é model space d,
which is obtained'bj an appropriate truncation of the
entire space., If the effective n-bod& interéctions for .
n Y. 2 can be neglected, the reduced.Schroedinger

equation 1s

HETE) 1> = E 180 e
where

H""QE) T+v"ff<5) gTrzj ,\f"“(*

PR S ((J—I

v(lo72)

Thé_supérscript "eff"7and tﬁe‘E debendeﬁcé ﬁill‘no longér
be explicitly iﬁdicatédo Unless otherwlse mentionéd
H, V,/Uij,.should be understood,tb mean'Hgff(E), |
veri(m), afit (B). |

It is assumed that exact diagonalization of the
effective Hamiltonlan in the model space 1is iﬁpractical.
‘We now conslder methods for obtaining approximate
eigenfUnctionso

A description of the ground state and low-lying
excited states of the system is required. Although the
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' effectiveﬁinteraction'is not singular, asvisithe true
1nteraction, it still resdlts in strong interactions-
between the particleso It is ofpen possible to find a
canonical transformation of particle co-ordinates such that
the particles in the new co-ordinates are approximately
non-interactingo These transfbrmed particles are called

quasiparticleso | | o |

'v The ground state of the interacting system is
described as a quasiparticle Vacuumov Low lying )
excitations‘are described by quasiparticle 'excitationso
whén maﬁy'“quasiparticles" are present their interaotions
may not be neglected, and the independent quaSipariicleﬁ"T_v
description breaks downe B :

In HF the quasinarticles are:parficles whose
properties are renormalized by forwarad and exchange
scatterings withw_all other particles, In BCS and _
HFB the "quasiparticles"are Bogoliuoov quasiparticles;
which are linear combinatioﬁs of'particles‘and holes
(or to be more precise, HF'"quasiparﬁicles“:and“
"Quasiholes")o' In RPA the "quasiparticles"are |
’phonons, which are”deScribed in terms of EF particles
'and holes or Bogoliubov quasiparticles° |

The goal, therefore, is to express the: effective

Hamiltonian as

H *'Eé*'H??f{* H‘?'F"_* inf. | (1.73) |
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where Eo is the grdund state energy of<the'system of

1ﬂteracting particles,f{Z‘F. describes the elementary
excitations ("quasiparticles") and F{Tf"fﬂr is

the (hopefully) weak interactlon between the "quasiparticles,"”

The Hamiltonian may be expressed in the notation of _

second quantlzétion
H = 2<cITrJ>a a;t% 2<(//N’//<P700 ) (1.74)
J . » ik
where {](} form & complete orthonormal single particle

" basls and*

<CJ%”1KQ>A= CCFINTREY = <CLINTRRY g ooy

'aI creaﬁes  and ay annlhilates a particle in state _"(>. °
Since they are Fermion operators they satlsfy the

anticommutation relationso

[a£;a ]+ = [a 'a ]

; (1.76)
-[Q.F,aj]+‘= ifj .
where . L
[ABIl: = AR * BA. .
[, /B_]t - AB 5‘/9‘ aan
A éystem with particles in states K> , [}<£> y oo

| Kp> is represented by

TE D= Ak Qe @ 1O gy
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' where Ic)) signifies the vacuum.stateo The wave
function 1s anti-symmetrized, s0 that 1t may also be
represented by the Slater determinant

B, B (1) @)

&= L0 0) &) | -
i - (1.79)
@K‘ m) CP,‘ (ﬁ) _<P,$n )

"_With'the aid of'Wick's»theorem Wwe are able to
express‘the Hamiltooian (L.74) in the form of.eqoation
(1073)Q prhis will be very useful in deriving the varlous
' self?cdnsistent iield.formalismsa. o

v.We 1ntroduce a reference state, the choice of
which is arbitraryq A convenient choice is the ground state
of the systemg Define new‘operators bt, b Such that 1f

anstate{ik(>;1s unoccupled in the reference state then

bi = a} : creates a "particle" _ 1iK_
b, = ak o _annihilates a particle | 4:;7""
and 1f the state | K> 1s occupied then |
b;"zxak S creates a hole o | {ji___
b = ar ‘annihilates a hole ST

The hormallproduct of a number of creation
operators bk and annihilation operators bk.is'defined-as-

the product of these operators rearranged'so that the
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creation operators are to the left of the onnihilation
opefatorsq ‘A minus sign 1is 1nc1uded if an odd number
of operator,perﬁutatipns io‘required to achievé this
ordering. Denote the normal product Of'ABCooo by
N[ABC...]; (A;B;C.;; are linear combinations of b¥,b.)

For exémple
N L beb, ]——L,* Le
N [b: UL’LA b A’ beby -

The reference staté expectation value of & normal

'productwis.zefo,
<& IN[ABC---T1&.>~0 (1.80)

The annihilation operators are at the right and act directly
on &5 o b annihilates a "particle"or a hole,
since, by definition, 13& contains no "particles" or

- holes, AL f§§> o

The contraction of two operators 1s defined by

—

AB= <AB> = <§J/‘)B/—"f°>",' T (1.81)
In particulér
<éf‘.é\/> - <é7 é > <é‘.é/>v0" (1.82)
<éL A > cf,(d _‘ |
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A normal product may contain pairs of contracted
~operators,' The contracted pair may be removed from the
normal product by permuting operators so that the contracted

operators are side by side, 1ntroduc1ng a change of sign

if the number of permutations is odd., For example

NLﬁBCD] ~ﬁ'c /\/[517]
N[ABCDLF]——ﬁc BD A/[EF]

-Wiok's theoremfstates that thefproductaof operators
ABCoo;‘is equal to:thevnormalﬁpro&uct’of'the operators,'
pius the'sum of all normal products with one pair'contraCted»
plus the sum of'all normal products with two pairs contracted,

. and so one Fbr example

.ﬁa':, N(AB1 AB

HBCV N[/)gcpjfﬁs/\/[cﬁ] /?C /\/[BP]
+,99 N[BT +BC /\/[/917] Bp /\/[/96]

/Y o

+cp N[A5]+ ABCD- AC BD+ AD BC -

'These two examples of Wick s theorem enable us to

rewrite the Hamiltonlan (1.74) as

’7H=ﬁHo+Hi+F“‘

| (1.83)
where Hn 1s the sum of all terms with n uncontracted |

operatorso
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Hox= éf <ATI><catcay+

| '/2 2<cJ1Aru<p> <a’ a,<><a >t

KD

M 5 <Ry, <aLQ 2<le 8k
ks | (2. 84)

HL; Z: <('/T!f‘> N[ O;f(- Q ]t

 .2<(\/ /<p><£2 ﬂ)/\/[& Qk]*

K
g,’<<J/Arl/<p>,, <cz 4 7/\/[0;(&] +
T,
i 2 <LJ/N(/<Q>,, Qo> v [0 Yl
ks : | (1 85) '
He=4 3 <¢qu<p> N[a* Q% a,0x7
S uke |

(1.86)
it.has been assumed that

| <cJIN#K£>-<K£/M#LJ>‘=<J</N’IK%

Define a density matrix F e o

| FJ‘ = <a QY (1.87a)

P is clearly Hermitiano

ﬁf

(1,87




41
Define a. paifiﬁg" ténfsof B A
J e SQeky2 (1.88a)
C |

X catatS
Lo <aye L.>.._.. (2.880)

 Recalling the anti-commutation relation (1.76) 1t 4s

apparént- ‘that '.'[, _1's i antli-symmetric,
E Z F - [ : S (1 0880 ) _

- De‘fj.'ne a"HF potential_ .

- Ke

2<LK{MIJ1> ﬁ}K (1;89,&),

Using the Hermiticity oflpit is easy to demonstrate that

'r‘ is Hermitian.
(o - o - (1.89p)
‘De."‘fi'ne' a IIHF Ham.iltonian H. | o
N(J = Tc‘/ t [7¢J | g v ~ (1.90a)

His Hermitian. |
77[1* =2 . (1.90b)

Défine:_'a pair potential A e

1"

Dy 4 %_-5’ <(J//\f/[<_p> [U- C(1.91a)
| s’ S .

2’<z<zur/c;> C,q S (1)

]

ok




-
'»Since <LJ.(AJ"[I<IO>0 .;-,;—(J'L' I/\IIK‘QZ‘) :s A is

anti-symmetric. -

7\
Ho and' 'H2 may be more simply expressed.

‘J

Hm—ZHLJI\/[a a]+ 50<J [at a’]
Zﬂu N[Qo‘?J'] _(1,93)

stwoe <z N[ JIES o

!
Qo

CEAHIEY < SEMUy 1By -0,

and <f,/ //[ F,> = Hq . If the reference state
| 2.) 1is chosen to be the ground state, then Hj 1s E,

the ground sta_te energy of the system. ‘Then for the

HF,BCS, and HFB theories H, is H , the independent

. 2 Q.Po.
"quasiparticle” terms, and Hy is H;

q.po - into,
the '1nteractions between the- "quasiparticles."”
| The physical significance of the quantities

involved in this representation of H will become

evident as we use this formulation to derive the

varions self-consistent field theories..

A =-4 e (1.91c)

S{T(j'fzr’c“}/“'l’zgﬂc]‘vu ..:"(1.92)_
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II. HARTREE - FOCK THEORY
1. Introduction

Hartree - Fock (HFO theory 1'is the first order
»approximation in a many - body theory of nuclel, It
-determines a one -~ particle self - consistent potential
and therefore supports an independent particle description
of finite nucleio It is instructive to present the HF
formalism, since pairing theory in 1ts most'satisfactory

. form (Hfh) may be derived as a.generalization of HF.

o Fbr a given nucleus the HF equations typically havev'
many solutions° The usual criter‘onfbr selecting one of
them as the ground state solution is to choose the wave
function which provides maximum binding energy. This
seems to us to be not altOgether satisfactory. The
various minima often vary in < H:>HF‘ by only a few Mev.
Corrections to the binding energy from higher order
diagrams, for rotational energy, and for zero-point
fluctuation energy are considerably greater than these
variations ing H>HF Furthermore,the wave function which
does minimize<H5 HF generally has a large gap between
the last filled orbital and the first empty orbital. It
is therefore fairly stable agalnst particle -vhcle.
vadmixtures and palring correlations. The other wave
functions often have small gaps,'so.that introducing-

pairing correlations might be expected to lover the



energy”of-these statess: These correlatiOns wiil'also
:1ncrease the energy of the lowest elementary excitations,
thereby stabilizing these wave functions. |

~ For these reasons we do nchonsider ‘the minimum
‘<II> criterion to be’reliableo Instead the HF
}:wave functions are here regarded as single particle
bases which»are useful for introducing additional
correlations, suoh as pairing. .The selection of the
ground}state wave function can be made only.afterv
correlations have been;included and the energy is -
calculated to 211 significant orders. 'Alternativeiy.
onermay.consider_the experimental’déta‘toichoose'the
wave function which‘is most physically meaniﬁgful.

We shall demonstrate that, with the exceptlon of

20

Ne“", HF theory fails to explain the properties of

N = Z even-even nuclei in the 2s41dmshe11.
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2. Derivation of the HF Equations

The HF approximation restricts the wave function

to a single Slater determinant.

B> = Qy 0y Qg Te> e

Each slngle particle state 1s a linear cémbination_ of

Vbasis‘stétes;

a‘* ',5 Pr Q' (2.2a)
or ]o(> - 2: Dz 1 k> | o | (2.2b)
Kk S '

The transforma.tion coefficieiitS' are chosen to be real_;,
For a system with tiine - .reversai degeneracy, no

generality is lost with this phase convention. The

_1nirer$é .h_“transformati"on ( D-' = D ) is
ot oA e At - o -
Ak = Zf De Qo * v (2.3)
« | , I
Thg unitérityvconditions~are
) ~ &, dl.; r | o | . .
é' Dk”pk ' J‘q'.o(x o - - (204a)

o o o - .
gilykl E7KF T Jllk;‘
(2:4) may also be derlved by requiring that

L%, 00Tl
|

- (2.4Db)
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- The. density matrix has a simple form in the lq’)I

representation,‘

_ o . o V'J‘qd_' ,_'{ JA’.) is occCupied
P = <@:(, 0«,_> = o

(2.5)
d"d'” o A\ O i "f /Q/> IS ungccaf/ed
v /9“°< "~ 4is simply the probability that the state IQ’>

is occupied in 1-4307 '. _ _ ‘
' The HP potential (1. 89a) and Hamiltonian (1 90a) are

U

2 <¢o( IN'IJ “’7/) | | o (2.6) |

0( afcuf'ed

. r'(.'J

Wegs Tegt T e

They are symmetric. :

The operator a .aj has non-zero matrix elements
- only when the final and initial states differ by two
particles._' I ‘ ' R '
<A'1Qcaj]Av:o miess A'= A-2.

Since the HF wave function is a single A particle
determinant ‘the pairing ‘tensor (l 88) vanishes.
| Consequently the pair potential (l 91) is zero.
Alternatively,-we may say the HF approximation consists
4in ignoring the;abnormal contraefions. |

The'ground Stete energy '(1}84) is

g <et | T /°(>'l"/2. 2<o(/31/tr/o(,6> - (2.8)
o(occ o . A occ- : ,
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It contains the kiﬁefic energy of each partiéle and

the interaction energy from'ihe férﬁard and eichange

5cattering of éach pair of particles. ( The factor % N?
compensates'for the double éounfing‘of.each pair in'thé

summation. ) | '

H2 (1 93) has the simple form

zch/\/[a a ] (é.g)
The HF equatlions may be derived from abvariational |
priﬁciple or by the equation of motion method. Wé>présent o ?
both techniques. I | | :
| The Vériafiohallprinciple consists in choosing the
occupled orbitals [« ) such that:the ground state
energy.is_an extremum. The haﬁrix elements of T and

v in thef ')q'> - basls may be expanded.,

<°(; /T oy 2 D :l; < k.ITI'l(z> : '(‘2.101")_
th . : ' :

<a/0(7. IN‘I°(3>°!’7> 2: Dk. Dk; _Dk_., DK~,<K'KLIN'IK3‘< (2 11)
KiKyKzKy '

Substituting into (2.8)

217“17"‘<</7/J>+,_ 5ol o 0l ) <<J1Aru<ﬂ>
o occ ap occ (2.12)
¢y , ' Cylke .

Alternatively the density matrix may be evaluated in the
II<) basis. Using (2.3) _ P o
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catcqpy = 500l <aleg
' vp o
Noting:(2.5) we obtain

| _ v
o .
ﬁ <a Q> f D Dd. o ~ (2.13)
. . . ¥ ecc. ' ‘ ‘
Substituting (2.13) into (1.84), we arrive at (2.12).

Fo |
in each coefficlent [7{- . A constraint is that the

should be statlionary with respect to arbitrary variations

 wave functions f d'7 remain normalized.

~-

<o(lq'> 2 'Dqll z

(2.14) |
‘The variational principle is _ » ‘
7171. J | | : o :

€, 1is a Lagrange'multiplier; Substituting (2 12) into

(2. 15) provides the HF equations.'
ol A : . o«
é}_{<uﬂ,>+ 2<L/§_IN’_IJ/32,}-DJ?E::D,' (2.16)
J ‘ CBecc R , ~
or 2-2!";,"‘170{- =& D% . | | | (2.178)
The HF equat'ioné. __preéeri't: an: eigeh?alue problem.
,74,9* = é’,,f_D__"‘ | A - (2.7Db)

or Wiy Euldy S (2t




The elgenvectors 24 'proVide the orbitals (x>  for
whichlthe binding energy is an extremum. In this basis
H is diagonal with elements Cg . |
€u = <x|TlaY+ 3 <aplarlepy
, B ecc: ' (2.18)
6}¥':, the single particle energy, contains the kinetic
energy and the energy acquired through forward and |
exchange ‘scattering of a particle in state k() with
particles in all occupled states lﬁ>
| The HF‘Hamiltonian is a function of the occupied
orbitals ld‘) . These orbitals, in turn, are
determined by H»I'This is the source of the self -
consistency feature of the HF potential. Tne HP éQUations
must be solved by an-iterative-procedure. “An initial
gueqs is made for the oroitalsv %ﬁj may then be
calculated. Diagonalizing}+yﬁe1ds a new set of orbits.'
They are used to re-Calculate ’Hij This procedure is
continued until successive 1nterations produce identical
orbits. o |

Since % is a function of the set {IO()}.ocCafie_J

there may be different solutions corresponding'to different

HF Hamiltonians. Therefore, the various solutions | Z.>
.are, in general, not orthogonal. _ | ».
The HF equations may also be derlved by the equation
of motion'methoda We want to reduce the effective
Hamiltonian, which contains strong interactions between

pérticles, to an independent particle Hamiltonian, for

‘1
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which the eigenmodes of the system are appraxlmately

non-interacting° H. has been expressed as

m = Hy + H2 _»4_}14 |
If there is a. _iaeis in which H, has the forn
ve 8 € N LaWa] C (2.19)
then o 5 |
'. H=Ea+§ ExN[at ag]+Hy -
‘The HF ground v

'state has oﬁe-perticlevin;eaeﬁﬂof the A
lowest_eﬂergy states. | '

\ ~€pra
€ﬂ+|€
T = = = £ e
§2 ¢, F Fernu nerqy
o €p-y : L o
» S ‘ L o ~ Figure (2.1)

The ground stete-contains'no’"particles”'or holes. -

Therefore

N[a 0 ] Q' da‘ | foﬁfF Q% 'crea.fes a particle ")
| (2.20)

NLAh 0T e -0 @) G <ér (O creaTes o hole )
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and

H = Eo,‘l‘ 2640—1{ Qo ~ 2; Cao (lq atz-

édv>éf' . 'Ea<€F.
(2. 21)
4 /¢/ 2: <d,dolar /0(30’17N[a ar 00/ a«]
‘(1‘{1.«3({1

H, hés”Zérohmatrix elements between states with zero or
one pérticle or holé. It represents the residualvinter- '
actionvbétweeh "particles," between holes , and‘betwéeen.
"particles" and-holes. If Hy is neglected, H assumes the

- form of an 1ndependent particle Hamiltonian.

H E +Z{'6 affxa& - 2’ 5«&«@_

6, ep &<CF (2,22)'
To determine the orbitals |¢%  comslder the
c'ommut‘étbbr‘ [H-.,_) at(.]‘-' . S.ub‘st‘ituting (2.19)
[Hz)at(]_ = 6« 0’; (2.23)
'[HUQ*«_]— = €, 2 DT a,;_-__. . .
LA

The commutator may also be evaluated using (2.9).

[Hi)'a’; 1. =5 ( Z W 'p‘*J’, )a*‘  (2.25)
. SRS - :
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| o
Equating coefficlents of ai in the last two equations
N _ o
5 M D% = €D
which are the HF equations. Of course, this result is
obtained more directly by simply noting that‘diagonalizing
7{puts'H2 (2.9) in the desiréd'form., The equation of

motion method is presented, however, as 1t.Wi11-provide'

a natural generalizaﬁioﬁ of the HF equatlons to include
pairing (HFB). |
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3. Symmetries of thenHF'Solutions

The nucleon -«nucleon'inte_ractionN'ij is invariant
under time -.reversal and parity and is a scalar under ~
rotations. Since the HF‘Hamiltonian does not equal the'
true Hamiltonian 'H-may not have the same symmetry
properties as Ho
_ ‘For each symmetry type s there corresponds an-
operator S, If s is a symmetry of the Hamiltonian H

then : _ .
if tne"set of occupled orbitais remains 1nvariant under

one of these symmetry operations

s{lmm. N 'of>}m o (2427a)
o Lpslce @
then the HF Hamiltonian also oommﬁtes with S

[ %,57.=0 . (2.28)
and s is termed a "self-consistent symmetry."
Consider the definition of M.
Mz <CUTIj> # KZ; < t‘K(’N‘IIJ»]Z, Frx o
If a self-consistent symmetry 1s introduced into the | -
density matrix, then H will reflect that symmetry.
Consequently P of the'following 1teration will

possess it° Therefbre, if the trial density matrix

contains a self-consistent symmetry, then so will the
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density matrlx of the final self—consistent solution,
Harmon1c~ oscxllator wave - functlons are chosen

as the bas is states.
(2,29)

Ju = ’;z’.Di"lNﬁJmﬂk

For the present we choose [o¢> to have a definite

isospin,

'_lo(> =. 2 D: | NAJIm Te >K' B | (2.30).’
“Then ”‘5 _N B o
| Tz { )o/) }m fla>toce . (2.312)
or Tl &ye (> @)

(except for a constant of normalization ) and ibOopln '
projection provided a self-consiotent symmetry. /9 has

the block form

Frr © I
o _ . 3 (2.32a)

Since the two'- body 1nteraCtioh conserves isospin
projection, if)< and 1l have the same value of T N

then so do i and j. Thererore 7/ a@lso has the forn
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o “Han

By the same vaifgument, if we choose o> to have
a defih_ite parity, then .
Flg.>= 3. L (2.33)

and /D and  have the form

For nuclei with even numbers of neutrons and protons,

the orbltals can be ensured to occur in time - reversed, :
degenefat_e’ pairs: o> o (Z(.)- . The time-reversal j
operator acting on a harmonic _osc‘ill'ato'r state gives B

- R 4-m+} | ' . o
JINLIM> E [NPIM> = (1) ANLI-m>(2,35)

(Wwe choose - ¢ r [‘jm!‘)- = ); . For the

m
. . Jom
cholce <—f:/,pﬂ7p>= (-I }‘/pmpb» , J/Jﬂ‘l) :.(“15) 1J-m).) C ‘
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If _lvo(.) i1s glven by' (2.30), then o > 1s

- Py | __;_____,b R Jmﬁ&_' : .
19> = 3 Dz INpImTa >, = 500 INII-mT, - (2.36)
R R K _ _ .

. X « '
Phases are chosen so that‘DE' = Do o Since

TIa> 0Ty g Jd> a0
,_ we .h?ve‘... - B | B
J/'éb = ../L)" | ‘('2.38):
‘so,that |
-[74; J]-' 0 S ‘ - RCESE

~and 'tim’e - reversal is a self - consistent symmetry.

_ Since ’thle r,o.té_ttion operator Ry (77 ) is equivalent
| to J P - (within a phase)
R, (M &> = B> (2.40)
and _ _ _ -
L™, Ry.(”)]_- =0 - (2.41)

so that rotation by T about the y axis 1s a self-

consistent symmetry.
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The “‘oody - flxed axes may be chosen to be the
principal axes. That 1s, the wave function may be
chosen to have ellipsoldal symmetry with respect tov
the body fixed aiés (reflection symmetry through
Xy, X2z, y2 ?laneS)o  This'will'be-a¢h1eved if the
compbneﬁt; of-v ot ,Hare required to»have m - 3 =
" even 1nt:eg.er,' and  those of - lo > there fore .have
m - % = odd Ainteger;_. Mbi‘e spec_ifically, le¢> -con‘t;a.‘i'nsv |

the }sét of sta‘t‘es. { | Im 7‘},' : with
- m = - 7/1) ‘;/zj '/7./ 5/1) | (IA’?) - (2+.422)

and - .o D 1s composed of the set {IJm>},_=<7'{/J,m>}" .
| of 2 has components with - o -

mos =S, 3, M, C1Ey)

| _ | (2.42b)

This c_hoice dlagonalizes the inertia tensor.2 |

Consider the rotation operator R,(0).

Re(0)lum>=e " |y

ce)lim>= mr e

so that .;
. R - 1Im> : (m-Y2) even - f

Rz r)lim> = A (2.44) N

' - + CLIm> m-h) edd

Noting the restriction‘(2.42)
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| RZ'(U)'.{o()' = - Io(>‘ S ) v(2°45a)
R,z'iﬂ.).l?o SrcuE . ey
Therefore | B N -
Rz (1) I‘f;>"= | &, o (2.46)
| [H,Rz (M. =0 o N

Rotatlon by T about the z axls ie a se1f~cons1stent'
symmefry: | |

For all nucleii(not Just e?en~even ones), if the
orbitals are divided into two sets in accordance with
(2 42), then /9 connects states with m - % even,‘c and

1t connects states with m - % odd.

m-a m-'ly
even . odd

o ‘/9 o - m-h . ' :
D mer :
e f Modd (2.48)

[

Where D = Dem e Since the two=-bod interéction'
szt Lf} Y ‘
conserves angular momentum projection (M = Mﬁ +rn

ng wihl),74_has the same form.
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m-% m-Yy

even odd _ ‘ o _ t

)—( - O m-t : 4 "

= bres. By o
e, Kl men 0 (2.49) |

where ﬁl; =My - be eﬁenaeveﬁ puclei vithljime—
reversal degeneracy 'P =f and )’-‘( = ){ N | |
By requiring the occupled orbitals to have good -
- isotopic spin projection and parity,énd"tbvbe:time - re#érsa;!

1nvariant,_f9 and 4 have been reduced to the block form:

Par”v{ -~ .
P < m-% edd
, o
periTy| (2.50)
r " —— - |
| | - 0 o |
0
n | . /
. 5
(o) £ i
\ o

The dimension of>thg required matrix diagonalizétion is
therefore considerably reduced. |

Axial symmetry about the z axis requires ”

Ra | ' | (2.51)
_. RE(Q)! §o> :"§o> )(Of‘ Q” e D
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1f K, (6)11”0( > z oL for alj_ ' 9 . .,vt__'o'h'eh (2.43)
indicates that all 'cdmponents‘ of [o> must have the same
imy L | S

 Then

. [ﬂ/RZ(@)]—:O o vi“OI‘ all 9 » L (2.53)
‘nd exial symmetry is a self-consistent symmetry. [° and
4 will c"o\nnlvec‘t }only states with the same _‘m.’ \

Sbhe‘r_iéal symmetry requires that /«> be an eigenstate

of i2 and_’ I, Then only radial mixing is permitted.
] ‘ .- q ‘ B . . ! o ] ’ .
1d>= 8 Dn INL S Ta> |
A K o N (2.54)

‘_c_T_f (o>} 'Q‘cc.; { 1«> Joce. 1s satisfied only if all
m states"i‘ofr a given J are equvally occﬁpied_ (but not

ﬁecessariiy full). Then /0 and ‘4 conﬁect states with
all quantum numbers'identical except N, and spherical'

symmetry is a self - consis"tent s‘ymme’ti"y.
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4, Sepafation of Core and Valence Particles

Choose the model space to consist of alil
configurations with A, particles .fil‘ling.a closed core -
and the remaining Ay particles ( A A, + Ay )
distributed in the valence shell, Then the ground state

wave function is

Let (k% represent a HO state (/K> = IMP.{mT))ro, Then the

core component""of | §0> - is .

125 =04,Q%, - Q% 165 (2.56)

_ < |
For nuclei in'the' 25'.- 14 shell, / £ xnay be vcnosen as
the .s_pherical 016 ‘
.occupied)',"'and | §V'> mayv be restricted’ lvtov have |
components within the 2s ~ 1d shell, ‘Deviations of the
true core wave function from (2.56) (radial mixing, core
deformation, correlations) ‘and interactions between the
core and valence particles (other than those contained _
in the HPF potential) should properly be . accounted for Ain-
the - effective interaction. |
| The separation of core and valence particlesié

attained _bj choosing [§c> as the reference state
in the.-Hamiltonian_(I.BB - 1,86). ( The selection of .

wave function ( 1s and 1p orbitals fully
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re Iference'st:ate is quite a‘rvbivtra‘ryo' It need 'nbt'be: the
. ground State'of the A particle system, nor need it have
" A particles.) H, 5_.‘s_, then given by ,(208)0 It may be

'rei‘erred to as the core energyo

2<1</Tl/<>+;_ 2<k,1< (ArlKiKa D, (2057)
K€ core _ »K;é Sere -
1f thé'COre consists of filled. .'( N2 J) orbitals, then

the core energy is

Ec Z7_<2J+:)<(WJ)m/T/<A/,PJ)"7>+
(NIJ)é core : - :

o 52 TH)(2T 1)< <Auu), (wf)Jr/Ar/ww (N0IIT
IT. - .

), (N/PJ)'LC core (2058)

H, is given by (2.19).
7 = 2e{< N[ark QK] | ‘  (2.59)
ko B . »

.The normal_orderihg is with respect to - l§<). 9 80 that

Hz- zfekak 0 - S e« 0, al - (2.60)
K€ velence : vkéecor‘e o

 The -'single particle' energy 1s glven by_'-(_2.18)°-

€= <KITIKY + 5 <kk' I Ar 1K K! > . (2.61)

K’ € Core



or__» Engys <NpI)m I TIANEI) m> +

;—-—Q’L,)g (LT HOCZTHO(MOL) (N2 0) TTINT (NPI)NY' 39 T 724
yT - (2.62)
(N7]') € core

Hy, is given‘by (1086j;: The Hamiltonian then‘has ‘the form

H Ec+2 elga 2 ekaKaK

ke valence . K€ core

-+ 1/‘7’2' <K Kz v 1Ka K‘[Z]'N[a/ﬂ Q.Kz 01‘_7_0/(5]
KiK+ K; k‘f “ , - (2.63)

This represenﬁétidn has the advanfage of réducing the
dimenslonallty of'the eigenvalue'problem; furthermore, , |
experimentél values ma& be used for the single particle %
energies eN1J o - The early self-consistent fiel@
calculations used a central interaction;'which can not
produce a spin - orbit spliting between the ds /p and
ds /o orbitéls. Using the experimental single particle. |
energles corrected this defect, v  E f ‘ -

We have arrived at this representation by choosing |
[ &> (2.56) as the reference state. _If the wave function
| $,> 1is then-réstricted to the form (2.55), there
can be no holes, and the Hamlltonlan is simplified,




65

He Ec_' 4 e«axczk

Keé I/a/en(e
//‘-/ Z <KIKL[Af'“<3l<‘!7 01< akl@K? 0/(3 (2 64)
lk). K; kt{ ]
Restricting the model wave function in this fashion 1s
not, of course, an approximation, as all configurations
outside the model space are to be accounted for in the
effective interactiono | _
|  Wick's theorem may ‘be applied & second timeo _ The
_neferenoe state'is | 2.5 o The Hamiltonian (2;64) has
the representation | . o S
H Ec'f‘Ey‘f’Hl'f'H? '» o S (2'.6}5) '
whe:;'e ‘Ev',j'_ H2, and H4>are -glven by '(1084 - '1_086,)', the :
summationsfbeing restricted-to states in the valence
'she_ll__ y- and the,_.expecta.tion, values and nor‘mai products
are now[_vi;i-th respect to K P o |
In the HP epproximation the ground sta'te._wave function
_ + . + : o 4
[&.>=0Q, @, ~~ Qy &> (2.66)
| N T Yy T o -
with

o = 2 DK ’ K> - (2.67)
' (3 Va/tn(é S
The ground.state_enefgy'is

Egp = Eo + By

ll
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where Ey is'given by (2.8), the summations being
restricted to the valence particles.‘
A, | Ay -
= 5 lTla>+ 2 <xpinlap?,
g1 | ¥)p= -
 with | | |

< J_h{v;TvlCl.J_'m"/' =€ l

| The HF Hamiltonianﬁis
‘ s
oy = <</ZIJ>+ ) <<aLv1Jd>

d !

The elgenvalue equation

AN E?‘*'é €, é?q’

is restricted to the space of valence orbitals.

JJ' M/n' ’/""

(2.68)

© (2.69)

(2.70)

(2.71)

%
|
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- 5. NuclearﬁDeformationsv

- The various self-consistent field formalisms
prOvide'a microscbpic'description of nuclear deformationsa'
. The many particle wave functions may be characterized by

‘their muhdpoln moments.

In second quantized notation - .. | | |
Qs et

so that o

<@LM >."‘ 2 < I@LH 1 J?f“

(2.74)
In HF t‘heory
<@uny = & <A Gunle>  as)
ST o oCCulyl'eJ L

If the wave function displays time-reversal degeneracy,
(QLM> Q> and(QLM>-_: 0 ror odd M due to -
reflection symmetry.  We caléulate“(QLﬁ> for L = 2
end 4 and M € L. The units are fm” , |

_Tho deformation par‘\a}mcter ﬂ . 1is related to {on') by
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a7 . i | 2.76
5 <rt> - (, ) |
where _
<re> =1 ST i >p. - (2.77) |
A A [ic (@1

e L= e rt o T _ o
RRMs | <re | , (2.78)
The moment of inertia is calculated from'thé
micrOSCopic7wave function by the cranking method.. DetaiIS'
of the derivation are avallable elsewhere.3 The result

for the HF wave function is

P el P S o i
Jx =2 3 <Yl T lp>1 - i
& ece. 6 _ éq c ‘ . (2079) . |
B unocc. T | o
with simlilar relations for opy .and 9/3 B
axial symmetry, ‘[x = gfy_ -and C[Z'= e
If a nucleus 1s a good axial rotator its energy

levels follow_

(h'/2d) 1 (T+1) - o (2.80)
The experimental spectrum may’be characterized by'the

energy ratios
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Re = (Ez ~EJ/(E-E) -+ (e

For a good rotator
_ 31/, o
The experimentél valuevof the 1nertia1 parameter

A =(ﬁl/1,f) (Mev) may be obtaiﬁed.from the spacing

between any two rotational levels.

- (2.82)
T Tyt ) =T, (Litt)

A 'I-;_"II:
In particqlar

AL-;O_-‘: (.EZ" Eo)/é an'd ﬁq-1 = (E‘I-Ez)//‘f .
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6. Effective Nucleon =- Nucleon Interactions

To determine the dependence'on the choice of force
of the results in this and succeedihg chapters, all

calculations are performed'with three different forces.

a) Rosenfeld : interactlion: This effective force has
been widely used to study the nuclei in the 2s - 1d shell.

It is a central interaction with a Yukawa radial dependence.

V= ke T -TL(0.3+0.77, - 0)
' r/a : o C |
Vo = 50 Mev Q=1.35f,
The oscillator parameter 1s b = 1.657£m, (The radial |

| N . Caged2 -
wave function 1s Rp; ~ e 3 (xib) , where p2 o h/vw,

Mso V = 1/p2 . )
016 1s,assumed to form an inert core, so_that the éiﬁgle
particleTOPQratdr in the,Hamiltonian’beéomés

(i/[fj>= etJ}f
where u:}/ fj > | gre HO orbitals.v A realistic force
contains a L.S component. Therefore different nuclel
within the same sheli should have different spacings
between {1l J + %> and |1 } 4v% > . The absence of the
L.S coﬁponent.in-the Rosenfeld: force may be compensatéd
by altering the single particle energiles ey for the various

nuclel. Also the core polarizatlion changes for each ‘ o
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nucleus, eo that'it is proper to cﬁooseidifférent ei for
diffErent;nuclei.' Two sets of single particle energles
haveibéen used. |

VRosenfeld‘l.: erlson,and-Barf- Touv single particle

- energles. .
,.éidS/é;  = e750:Mey | egs% 4 2 Mev'f e?ds/é = Olegej_
Rosenfeld 2 : l017 s1ﬁgle.pa?§iele energies;:
= =4,142 Mev e' :_—»-v3,.‘172._Mev- eldl.' | =+ 0.94 Mev

2 8165/2 . | 28% d5 /o
b) Yale t - matrii, The Yale potential was determined by
fitting-hucleen-nucleon scattering data;& It contains
central, tensor, spin---orbit,-andvquadratic spin -,orbit
eomponehtsp Since a hard core_is;iﬁcluded, one;musﬁ use

the t_-ematrix elements of the potential in nuclear structure
calculatiens. > As is customery, the depehdehce of‘the

t - matrix on the single part1c1e‘yave functions and
energles (double self - consistency) is ignored. The

single particle basis 1ncludes_thevis, lp, 2s, and 1d

2 2

orbitals. TheioSCillator_parameterr 1s b™ = 3.1 fm".

c) Nestor-Davies—Krieger-Baranger (NDKB) effective' '
potential° This potential was designed for HF |
calculations. Accordingly, in fitting the force

parameters primary emphasis was given to reproducing
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the binding.energy and density of nuclear matter. Less
emphasls was glven to fitting the scattering data. There
1é no hard core, and second order contributions to the
binding energy of nuclear matter are small. It contains
central, tensor, spln - orbit, and repulsive velocity -
dependent components. 'Explicitiy; the interaction used
is _ _
Ly , < 2 L , ' '
Uy o= BYm) (Vo [P W ) + wpn) (pY5Y) ]
FyTm S, + V¥ r) Les ]
» VJ' e BV S =t2
where m is the nucleon mass. The tensor operator 1is
S.=[2(0-c)Cq.r)-r*ca,.c0)1/r*,
the orbital and spin angular momentum operators are
L= cxp)/h

5 =3(q +0),

r and p are the relative co-ordinate and relative

momentum

[ = [ﬁ ’!jl J

-

p=ip-p)=-chY,.

i
!




e -

The subscript j denotes tne components of the inter-

 action._ singlet - even (SE),’singlet ~ odd’ (SO),
ntrlplet-even (TE),_and triplet~odd (TO) f The functions';

(r) and QJj(r) have a Gaussian shape.f_ c"

v()/,v ex,m ;)

Ty

. ;”‘ )

LU <« B exf( ‘/ﬁj

with the exception of the tensor part VT(r)'

& 1 3 . :

V<f) "ﬁJ(zF/o()ch zr/o()_g_ r

'_fbr attractlve V (r),‘A._j ) O and for repulsiveCU tr), ie
. i

Bj> 0. ‘Aj has unice or rm 2, vhile Bj 1s dlmensionless.v -

2

”vﬁg/h -”41*47Hev';~fm o We choose the set of paraneters

denoted by NDKB as mixture 2.‘ (See table 2, 1)

,The oocillator parameter is b= 1. 70fm.. To study the effects“'-'
"of space truncation, all calculations with the NDKB - force »,

were perfbrmed for two different single particle bases.‘

NDKBl. B 1s 1p,2s ld

'-;-.-;_.;Nmme.. s 1p.2s 12 2p,1r S
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" T. HF in the 2s - 14 Shell

‘We confine our attention to N = Z even - even
nuclei. Then time - reversal and (if.tne Coulomb.force
1s neglected) proton - neutron eiohange.'are sel f-
consistent symmetries. The calculation and 1nterf
pretation of wave functions are thereby“simplified;
 Parity has been assumed to be a good‘symmetry. No
ettemptthas been made to obtain trieiial.solutions
with the NDKB force.

The experimental and calculated binding energies of -
these nuclel are presented in Table 2. 2° Fbr the |
spherical'nuclei, 016 ang Ca40, addition of the p - f
shell resulted in a smell increment in binding.ﬂﬂThis‘is
caused by radial mixing of-the 1p and ép orbitals. For
the strongly deformed nuclel the increment in binding o !
is greater, as an increase in defbrmation energy i " '
contributes to the increment as well as the radial
mixing. w1thout the p - f shell, the 12 particles
in the'lp‘orbital must naintain spherical symmetry .

Admixtures of the 2p - 1f states into the 1p states

permits these perticies to have a oeformation. Inclusion

ofithe p-f shell generally increases the deformation » “-%
parameter 4  of the nucleus by about 50%. > The HF

gap 1s also considerably increased. -

The observed spectra are in PFlgures 2.3 -~ 2.7. The




i ’

s

'solutions to the HF equations are. listed 1n

Table 2.15.
016

The ground state is spherlcal. Only radial

-mixing is permittedo The experimental and calculated

-single particle energies are in Table 2.3. The

experimental single partick:energies are obtained1

from the mass differences

'Q16 +n - 017 _ 4.142 Mev
o’ 4 n - 0 = 5.669 Mev
and the eyperimental spectra of 015 and 017

oy &-16
,ur;,l) e 3 -
Yot -

5p) XUy R
(M) UPy) @ " -

o" 0"

Figure 2. 2 The 1owest positive parity levels in 017,'

and the lowest negative parity levels in 015

Whereas the experimenta1~Va1ue of the gap between 1lp
and 2s~ldfshells is 11.5 Mev, the'calculated value is
~ 16'Me#'for both the Yale and the NDKB.forces°

PP UIPI
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Ne20
The "rotational" levels have energy ratios

R1+ = 2-61 . R6 = 50450

Since a rotator should have Ry =3 /3 and Rg = 7,

Ne20 is not a good example of a rotatoro (The rare

earth nuclei fit the model considerably better. 31172,

for 1nstance,‘has R4 3 26 and Ré 6 63 ) The

inertial parameters are

A= 0.272 Mev A, Lo

= 00187 MGVo
Their average will be considered as the experimental
value'of Ao

Aexp; = 0.230 Mev

For all forces, the lowest HF minimum 1s prolate with
an _n = %+ occupled orbital. The properties of this

state are falrly insensitive to the choice of force,

(See Table 2;4.) Angulaf momentumvprojéction on this

intrinsic state yilelds an energy spectrum in very good

agreement with the experimehtal'valueso7 "HF theory

therefore provides an adequate explanation for the

Ne20'energy spectrum.
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Mg24.
The o+, 2+ and 4* levels have fhe,energy ratio
| 4 = 3. OO. N
The average of the inertial parameters ’
A = 0.228Mev A . = 0,196 Mev
a0 | ° o Tp -2 7
iiS'taken as the experimental value.
. A = 0,212 Mev
exp o :
' The 1arge number of HF 901utions‘should be noted.,
~The1r variation in binding energy is smallo 'As“the asymmetric
"solution is the lowest minimum and has a large gap, 1t has
been considered as the intrinsic wave function corresponding
' to the ground stateo This 1nterpretation is no longer
tenableo | R | | |
| vGiraud and Sauer O have performed the engular momentum
projectiondcalculation on the asymmetric wave functlon,
(The fbrce:was a Rosenfeld mixture with Gaussian - |

oscillator length b = 1,65 fm,'strength
17 |

radial dependence)

=-53°2 Mev; and 0 single particle energiesa The

Yo
calculated excitation energies are (experimental'velues
in parentheses) D 36 (1. 37) Mev for the first 2* state,
| 2,48 (4.12) Mev and 2,54 (4.23) Mev for the 4* - 2t
doublet and 3.85 (5 22) Mev for the 3* state, The‘

agreement is not very satisfactoryo Except for the
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first 2* Sféte,-the remainder of the spectrum is much too
lcempfessedo Variation of the strength V from 40 to 60 |
Mev and 1ncreasing the 1.8 splittings by a factor of

two dld not achleve better agreement,
9

Experimental data on stripping spectroscopic factors

25

_and the X ~branching ratio 10 of Mg favor an axially

symmetric rather than an asymmetric shape for the Mg24
even-even core., Parikh 1T concludes that the "prolate
1 solutien (Rosenféld 1, sd) is 1n best agreement with

experiments. The . triaxial solution is unable to

account for the structure of the wave functions in spite V

vof the fact that it 1s the 1owest in energy."
'Clearly the asymmetric HF solutlion can.nO'longer
be considered as the intrinsic wave functioﬁ_corresponding
1o the ground state and low lying excited states. }v
_-The;static.quadrupble.moment of the f:l::‘stv.2'+ state
has been measufed through the reorientationveffect in

Coulomb excltation.

Qo4 -0,?6 t 0.08v (Ref; 12)
Qyp = =0.243 T 0,035b (Ref. 13)
A negative sfatic quadrupole moment implies a prolate
deformatien in the intrinsic state.
~ Parikh's findings and the measurement of Q¢ lead us
" to a re-consideration of-the prolate HF solution with
-3, 3/2 occupled orbitals. (See tables 2.5 - 2.9.)

The. various forces produce similar wave functions for

k!
I
|
|
1




| this.statet They eXhibit severalldeficiencies; The

HF gap is small (0. 463 Mev for the Yale force), s0

that this HF wave function is not stable against o
'péh admiktores. The'binding energy is 3 - 4.Mev less
than that obtained with the asymmetric wave function.'
-The inertial parameter is considerably smaller than the’

| experimental value. Introducing pairing correlations may
‘eliminate these objections. The small HF gap is
desirable for obtaining strong pairing with little loss

" of HF‘energy. The'pairincr will create a gap for
elementary excitations thereby stabilizing the ane
function.' The gain in pairing energy will more than
compensate for loss of HF energy,'so that total bindinCr
may increase by several Mev. Finally, pairing may alter ,.

the inertial parameter by'as_much_as an order of magnitude.
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5128
Bar - Touv aﬁd‘Goswami 14 nave suggested that the

fifst excited ot sﬁate'corre pond° to a spherical
_intrinsié stété; The ground state o* is lowered to
its'obsérvéd pbﬁition by_interacblon with the excited
o* staﬁe;:-The-experimental_value of.A should therefore
be determined from the 2% - 4* spacing. |

= 2.59

~
N
|

Ay _ o = 0.299 Mev

0.202 Mev

i

Aexp, = 0.202 Hev
Coulomb excitation of the first 27 state yielded a

static Quadrupélé'moment of
e |
Q4 =0,177 © 0,070 b (Ref. 15)

thereby confirming,the oblate dequmation of the‘intrinsic
wave function, TEWari'aﬁd-Griilot 16 héve pro jected stétés
of good J- fron the oblate and prolate Yale wave functions.
The calculated spectrum is in poor agreenent with
experiment. Unfortunately all low 1ying oblate HF
solutions have large HF gaps. One Wbuld nbt‘expect to

be able to introduce pairing correlations into these

wave functions.
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4832;_

Thevs32 spectrﬁm‘does'not seem to have a.Feady
explanatioﬁ;ebeing‘neither a good rotatioﬁai ﬂor
vibraﬁional'spectrum;- The 0% state at 3,78 Mev might
correcoond to the spherical 1ntrin51c state.“l_4 It
v7will,then‘interact,withlthe groundfstate O+, so that
the experimental value of A should be takeﬁ fron: the

2% - 4f‘spacing.»

Ryp = 0.374 Mev
Ay, = 0,161 Mev
Aoy = 0.161 Mev

The loweot HF mlnimum is aoynmetrlc w;th a large gap.

”hc Rosenfeld force favors oblate shapes, while the

 NDKB and Yale forces prefer prolate. Several of the

_axially oymmetric solutions have small HF gaps, and are

good pases in which to include pairing. The lowest |

prolate ana oblate_sﬁates are preéented in‘fables 2,10, 2,11,

vA?36 

‘The‘energyoSpeetrumois'chafecteristio of.ah

anﬁarmonic vibrator; The lowest HF maximum is oblate

_with_deformation ,:;3 = ~0,10 to -O.iseahd inertial_

- parameter A = 0,20 to 0,28 Mev. These values are

representative of a strongly deformed nucleus.,. All
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other HF solutions have sméll gaps. HF theéry;

. therefofe; canvnot expiain’the vibrational nature of
Ar3®, It might be expected that introducing pairing into
the prolate HF wave function'Wili yield a stable and only
slightly deformed wave function. If the resulting “
inertial parameter isvlarge,vthen the excitation
energyiof the rotational states will bé gréater than

that of the vibrational states, Characteristic wave

functionsfor the prolate solution are in Tables 2,12,

2,13. The other forces yi€ld somewhat different wave

functions, but the level orderings are similar, the femptyﬂ

orbital always having le = 3/2,

Ca40
- The ground state is spherical. Single particle

energies are in Table 2,11,

We may conclude that, with the exception of Nezo;

HF theory fails to explain the prbperties of N =2

even - even nuclei in the 2s = 14 shell,
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6+ —— 8.7

- - _" _ 7.03

O OF . | 6.72

1- . —— 5785
- ' 5.623

B S - ot
e s

TR ' 1.63

Nezo

~ Fig. 2.3 NP energy level diagram (Ref. 18)
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,(2)+v - »I A_ V Te35

O+ o o 6.4k

6,00

§+ L — — : : 5.22

2+ S el k.23 .
)‘}’I‘ " * ; - : l“"n_ 122 5

24— e 1,36853

2l

Fig. 2.4 MQZh_energy level diagram (Ref. 18)
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T  6.887

-3 — 6.878

o+ : — . 6.69

* _ 6.27
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2+ o 1. _7787
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| Fig. 2.5 Sizaenergy level di'agré.m (Ref. 19)
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(0+) — — 5,19
5 ———— 5.7
- 2+) —— — Lo

as) T o
b — ki
(0+) —— o b33
3- — ka8

36

' Fige 2.7 Ar36'eﬁergy level diagram _(Réf. 19) |



IA'a.'b‘le 2.1 NDKB Force Pé.ra.me'bers

B e

Ac Otc O(T otLS
o 7.227 . 0.575 1.0 0.575 0.490  1.20
SE 2.127 0,903 - 0.6 0.903
O 0.219  1.40 0.128 .50 - -0.35 1.0 1.40 0.8
%0 - -0.128 1.40 0.307 Lo

88
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Table 2.2: Binding Energy per Particle (Mev)

Expt. vale NDKBiiY . NDKB 2
ot __ L 8.2 508 475 e A-..83-'
_Ne.zo.“ S 8.96 s.07 | 4.37 o h.e
et o 9.36 - 5,55 hs1 478
528" Cem 635 511 535
g2 g B A5 | ss8 g 567
== 00 "a.o_s 628 6.35
baho oower 8.87 : 6.97 - 6.97

' The "experimental binding energies” are obtained by sdbtfacting the
Coulomb energy fromvthevobserved binding energies. (Ref. 17).
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(Mev) |

. Table 2.3: Single Particle Energies in Ol

. Expt. Yale NDKB 1 Nﬁks'z
isi/é- ~-35 -46.3h ~47.81  .50.61
Ips /5 -21.83 -20. 40 -20.85 -21.89
1) /s -15.669 - -16.23 -1L.86 L -15.41
ld5/2 -k.1k2 ‘ -Of39 ‘ ‘,0'61 0.60
251/2 -3.27L 0.09 3.49 3.5%
14, +0.9k b.78 8.23 8.80
2p3/2 17.58
lf7/2 . 16;56-. |
1f5/2 19.16

UV P UUNUIUPSN S
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' B S 20
Table 2.4 : Occupied = 1/2 + ILevel in Prolate Ne

14

. -0.803

1s; /o ‘.1d5/2‘ R , 251/2.:‘. 32
| . RQsenfeldv1 - 0.821  -0.k28 -0.378
‘1R§Senféid 2l‘ - 0,715 0.581 _'-0;389:
nYale' ' _' 6.038 ' : r‘vo.73é “-0.567 ;0.375
NDKB 1 0.015 . -0.83L " _0.431‘, ~.0.353
| NDKB 2 0.016 . 0Tk _.0.362 ,




Teble 2.5: Prolate Mgo@ (Prolate 1, Rosenfeld 1)

92

A, My 28172

14

éa 3/2
-19.382 1/2 .851 - 46l -.247
-15.054 3/2 9T 0 .225
~11.991 1/2 -463 k39 .TT70
-10.156 5/2 1.000 0 -0
- 6.169 1/2 .2h9 JT70 - -.588
- h.osh 3/2 . -.225 o 9Tk
Table 2.6: Prolate Mgzu (Prolate 2, Rosenfeld 2)
' 1q 25 —Ta
2 1/2 | 2
€, A, 5/ / 3/
-17.974 1/2 .78 -.626 -.303.
-12.216 3/2 .96k 0 267
-10.735 1/ .610 - .358 . .T06
- 6.901 5/2 ~1.000 0 o
- 5.030 1/2 ' <334 - .692 -.640
- 2.624% 3/2 -.267 o 96k
Table 2.7: Prolate Mgz4 (Yale)
€y My 18y fp - ',ld5/2t"'A 28 /2 | ld3/2
-14.982 1/2 .021 .13 -.595 -.370
- 9.505 3/2 0 | .951 o .310
- 9.042 1/2 .036 -.612 -.271 - Th2
- k.970 5/2 0 1.000 0 0 |
- h,2Lh7 1/2 .143 -.337 - ThS <557
- 1.835 3/2 0 -.310 0 .951

Energies are in Mev.
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b

| Table 2.8: Prolate Mg'@  (NDKB 1)

Ex My 18y /5 N s /o 281 /2 15/

-11.619° 2 K .036 o -.826 W69 . L310
- T7.415 - 3/2 o o .9%5 o .261
-5.t80. 1z L0l =505 3719 -.TT5
- 3.852 5/2 0 1,000 0. . o
-0.546 . 1f2 .096 -2k =795 .548
1650 32 o =261 . 0 965
' | | 2k |
Tsble 2.9: Prolate Mg~ (NDKB 2)

Ex 2, iz sz %%1/2 I3/2
3.543 /2 o83 -9 .s8 .32
- 8.031  3/2 o - .958 0 | .288
- 5.920 1/2 - 013 - .527 -3k -.788
- 2.457 5/z2 -0 . 1.000 0 0

0.753 1)z .123 - -.289 -.780  .5k0
3,484  3/2 0 . -.288 0. ~.958

Energies are in Mev. -
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Table 2,10: Prolate S-¢ (NDKB 2)

-7.595

€x Ny | 1812 1d5/2 ,_ 2s1/2' _ ld3K2
-19.683 vl/z | .031 2,90k k20 .08
-17.738 3/2 0 N A 277
-13.121° 1/2  .010 .251 373 .893
-11.622 5/2. - o 11.000 o . 0
-T.421 3/2 o -. 277 o U961 -
- -6.727 1/2 ©.052 0 -.3bk o827 Lk
Table 2.11 : Oblate S°2 (NDKB 2)
€y Sy o1/ ts/z i My
-16.633 " 5/2 0 1.000 0 0
-15.937 1/2 .00 -.827 -.h23 .370
. -13.646 3/2 0 | .836 0 -.549
-11.317 /2 .091 ko8 -.900 . -.120°
-9.803 3/2 0 . 549 o . .836
1/2 .015 - =.386 -.051 o -.921

Energies are in Mev.
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Table 2.12: Prolate Ar> (Rosenfeld 2)

14

-12.402

€q Lo Y5 2'51/2 3/z
-23.648 172 30 616 -. 10k

-22.008 3/z 980 . 0 4199
-21.54k9 /2 .683 S .m5 L1500
518.352 ! 5/2 ~1.000 o o
-17.530 /2 -.027 -.180 . .983
-14.802  3/2 =199 0 0 - .980

Table 2.13: Prolate ArSC (NDKB 2)

&y £, 180 . Mg - 28y Y
521,&77" IV .010 -.943 328 053
-20.085 . 3/2 o .98k 0 .180

-16.960  5/2 o 100 0 .0

-1k.982 1/20 o -.301 -.7718 -.550

A13.hk2 0 T 1/2 .050 . -.138 -+533 .833
3/2 o -.180 ) o8k

Energies are in Mev,
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Table 2.14k: Single Particle Energies in Ca 0

(Mev)

: Rosenfeld 1 Rosenfeld 2  Yale NDKB 1 NDKB. 2- 
1s) -79.874  -B3.118  -B83.1hk
1_103 /2 __52'443 -51.641 -5;.468

B 1Py /5 o | 48,181 -45.13% 5,18

. 1c15‘/2 o =BT.TTL -24,913 -27.791 -24.868 -24.835
25, /5  .25.278° -2h.3k9  -2h.307 © -18.016 -18.059"
RLAYA C -20.77L ~ -19.831 -21.181 -15.108 _}15;16_1+'
1, | ’ - 1.9%0
203 /5 5.355
lf5/2 R 9.738
?Pl/zl_- . | 0.4z -




Teble 2,15: HF in the 2s - 1d Shell

| VhNuc»leus Force o Shape EHF \_ HF Gap | QEM | Q7+M o A o 8 : ers_
Nézo _ Rosenfeld 1 Prolate 1  -46.049 - 8.325 12.7 _ 82.6 0.27 -
) ' ‘ Asymmetric -43.044 = 6,055 = . -6.6 . 16.2 0.48
' - o S .0 0 - 0.48
A ' -68.8- - 0.15
Oblate -39.439 1,995 -6.9 18.8 0.11
Spherical - -39.237 647 0 _ o . -
Prolate 2 -37.989 = 0.743 2.6 -67.5 0.02
Rosenfeld 2 Prolate 1  =37.714 9.390 °  13.5 70.5 0.34
: Spherical = -35.521 8.3716 0 o . o
Asymmetric -32.989  6.335 6.7 17.3 0.52 .
: o .0 0 0.52
: . , -73.0 0.16°
Oblate - -28,007 1.609 6.9 18.8 0.10 _ o
Prolate 2  -26.839 0.529 2.8 -69.6 0.02 ©
Yale Prolate = -101.482 5.810 . 16.3 . 92.2 0.22 0.269 2.756
. Asymmetric -96.006 2.945 : 4,0 ~-87.3 0.30 0.067 2,756
' _ L.9  69.5 0.08 '
_ S 0.k4 0.30 . S
Spherical — -94.337 2.365 0 0 0 0 - 2.784
NDKB 1 Prolate -87.523 . L.hyik  13.9 90.6 - 0.15. 0.246 2.666
"NDKB .2 . Prolate = -92.305 = 6,212 18.8 - 107.8. ¢ 0.21

For ra.xia.l. shapes: QZM = on and Qo = 0. Q= Yo and Qo = Gy = 0. A= A = Ay end A = oo
For asymmetric sha.pe‘s_: AUy = (QZO’ sz). ' Yy -=.(Q407’ 942, le)- .. A= (Ax’ A, A).

Enérgies are in Mev.e R, o tas units of fm. Q, has units of ful



Teble 2,15 (continued)

.Nucleus Force Shape E}IF N HF Gap Q‘ZM QLLM A - B | ers-
MgB)+ . Rosenfeld 1 Asymmetric -97.586 7.324 15.6- . =5.5 0.23
_ ‘ _ -4,0 -66.8 0.21
S _ \ - 3.9 0. 54
- Prolate 1  -9%,105 3.063 15.2° ~4,1 0.15.
Prolate 2 -93.505 5433k 7.6 ~-118.4 0.16
Oblate 1 -92.181 2.795 -13.3 62.7 0.12.
- Oblate 2 -91.248 2.308 -2.1 116.2 0.07
Prolate 3  -90.224 4,856 6.8 97.8 0.18 .
Oblate 3 -89.588 2.070 -10.8 10.9 0.09 -
Rosenfeld 2  Asymmetric -80,661 8.339 15.2 -23.2 . 0.21
. ' ' -4.8 -68.2 0.26 -
a - . 3.2 0. 54
Prolate 1 -T76.427 6.035 6.8 104.2 0.19
Oblate 1 =-75.085 2.031 -13.3 43.0 0.13 -
Prolate 2  -T4.605 1.480 16.2 S -12.3° 0.10
Prolate 3 -73.467 © 6,28k 7.1 -135.7 0.1k
Oblate 2 -69. 798 2.643 -12.8 28.8. 0.17 - ,
Yale Asymmetric ~133.14k4 5.376 19.8 -11.6 0.18 . 0.254 2.855
- : 4.8 7.9 - 0.17 '
_ ‘ 1.2 0.4%0 o
Prolate -129, 568 0.463 20.0 -6.3 0.05. . 0.257 2.853.
Oblate 1  -126.307 0.102 -16.6 - 63.2 - 0.01 -0.211 - 2.864
 Oblate 2 = -124,828 0.915 -15.4 38.1 0.10 -0.197 - 2.858
NDKB 1 '~ Prolate -108.615 1.635 17.3 2.3 0.10 0.237 2. 760
~ Oblate -104,821 0.770 - 13.0 19.2 0.05 -0.178 2.771
NDKB 2 " Prolate -114.810 2.110 - 23.2 -1.6 0.14 0.327 2.727
_ 0

~ Oblate .  -108.876 1.2k - 17.5 . 27.0 .09 -0.2k2 2.751

86




Teble 2.15. (continued)

- HF Gé.p

.

, Ngc leus Force - Shape EHF sz ers
s128.  Rosenfeld 1 = Oblate 1 = -154.7L7 - - 7.659 -18.7 6.0 © 0.2
' ‘ Prolate -153.244  ~ 5,701 -19.0 -88.9 . 0.20
Asymmetric -151.723 7.000- 7.0 29.2 0.242
, S © =301 - =67.1 0.235
- - , : . =57.3 0.19
Oblate 2  -149.930 = - 5.290 -0.5 - =95.4 0:25
Spherical -148.600 = 5.719 -0 0: - o0
Oblate 3 -146.242 - 2,147 -0.3 117. 0.07
Rosenfeld 2 Oblate 1 -129,798 '8.310 . -20.0 69.8. - 0.23
Prolate - -128.927 7.515 18.6. . . =100.9 . 0.19
Oblate 2  -121.053  1.757 -0.2 123.5 - - 0.07
Oblate 3 -118.095  3.395 =00k -113.9 0.17
Spherical -11k4.30k 3.801 0 -0 oo .
Yale ‘Oblate  -177.9%1 7.170 -23.8 88.9 0.19 -0.249 2.927 s
_ Prolate  -174.925  L.0kO - 23.7 - 114 0.15 0.248  2.923
Spherical =-154.723 - o 0 . - o . - 2.922
NDKB 1 Oblate 1 -143,007 '6.553 -20.3 . - 82.1 0.17 -0.228 2.827
Prolate -138.220 © 0.916 21.6  -87.6 ¢ 0.15 0.243 2.826
Oblate 2 ~ -136.110 2.093 - 0.3 -119.5 0.12 -0, 00k - 2.834
Spherical -133.166  0.762 o . 0 - o0 0 2.832
NDKB 2 - ~ Oblate 1  -149.805 8.504 -25.9  -:92.9 0.22
Prolate ~146. 411 3.413 . 28.7  =109.6 0.20 .
.Oblate 2 -138.111 2.615 -0.3 . -1k0.7 0.1k <0, 00k 2.800
Spherical -~134.582 1.38% o .. .. 0 oo 0 2.785
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Teble 2.15 (continued)
- . Nucleus Force Shape B HF Gep Ly Yy A B Roms
532 Rosenfeld 1 Asymmetric -214.883  6.584 Skl 3.4 0.21
' ' L . o ‘ -4.2 -72.0 0.25
, _ -6.6 0.40
Oblate 1 -212.850 5.316 -1.5 -95.3 0.25
Oblate 2 -212.608 5.279 b7 :109,3 0.19
Spherical  -211.500 5.719 0 0 00
Oblate 3~ -207.552 ~ 3.145 6.9 - 83.2 0.20
Rosenfeld 2  Asymmetric -182.220  7.520 -15.4 - -5.8 0.19
‘ ' A o -3.8 -Th.7 0.27
. : -4.3 0.47
Oblate 1 -179.248 6.357 -6.3 134.8 - 0.1k
Oblate 2 -177.293 3.409 -1.2 -113.6 0.17
Prolate -173.852 2.428 ©13.5 -35.3 0.25
Sphericel . -173.488 3.801L 0 .0 .
- Oblate 3 -171.612 3.644 -6.9 -99.1 . 0.20 _
Yale Asymmetric -227.T737  k.487 15.7 -71.5 0.16 0.139 2.977
o 9.3 ~42.1 0.29 :
‘ : . 54,1 0.21 :
Prolate -222.,485  1.775 16.1 -78.4 0.15 - 0.143 2.97% .
NDKB 1 Prolate © ~178.658 3.807 1%.0 -47.2 0.19 0.133 . 2.878
- Oblate -172.666  1.222 -4.6 119.2 0.11 -0, Ok 2.882
Spherical  -170.287 0.329 0 0 co o - 2.882
NDKB 2. ° Prolste  -~181.933 4.200 18.1 -63.2 0.24% 0.174 2.864
Oblate -174,698 1.5k -6.4 147.6 0.12 -0.061 2.865
-171.520 0 0. - os 0 2.852

00T




Teble 2.15 (continued)

Sucleu§ Force Shape EHF HF Gep QZM o _QMM : A ers
Ar36 Rosenfeld 1  Oblate -280.582 T.392 -12,0 =79.7 0.28
: . Asymmetric -278.189 - L4.605 - - 3.2 57.3 0.h41
: : . =139 -45.3 0.23
. R ‘ : 0.03 0.41
Prolate -276.817 2.442 5.9 -10.2 0.20
Spherical  -271.988 - 4.739 o . . 0- L%
_Rosenfeld 2 Oblate -240,955 8.348 -12.1 -90. 1 0.26
: Asymmetric -238.606 5.858 -3.3 4 67.0 0.49
- . el -52.9 0.18
: ' ' ’ 7.8 0.49
Prolate -235.284 - 2.638 6.2 -12.4 0.22
Spherical -230.172  4.728 0 0. . _
~ Yale  Oblate - -291.071 5.721 -15.3 ' ~100.6 0.20 -0.117 3,017 -
Prolate -285.959 1.459 ' 7.3 -18.7 0.1k 0.056 - 3.021
Spherical  -281.901 1.150 - 0 -0 oo 0 3,016
NDKB 1 Oblate . -225.964 - L4.508 =13.6 -70.8 0.21 -0.112 2.91k
- Prolate -222.270 0.647 - 6.3 -11.8 - 0.06 0.052 2.917 -
Spherical -221.833  2.795 0. 0 - o 0 2.927
NDKB 2 Oblate --- ~ -228.610 6.350 . -17.0 -86.7 0.26- o R
Prolate -223.192 1.070 - 8.1 -15.6 0.11 0,067 2.909
Spherical -222.078 3 0 0" o0 0 .

171

Energies are

in Mev. R has units of fm. ...
, rms . .

has units of me

10T
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III. THE SPECIAL QUASIPARTICLE TRANSFORMATION
l., Pairing in Nuclei

The HF potential does not account for all effects
of the effective Haniltonian.'rResidual components of the
effective forces maydintroduce correlations into the
presently uncorrelated (except for Pauli correlations")
HF wave function. We shall now consider 1n detail pairing
correlations"o Pairs of nucleons in time - reversed

degenerate orbitals may have correlated wave functions,

resulting in an 1ncrement in binding energyo‘ It is energeti-~

cally faVQrable for. two like nucleons to pair to J =0
since this configuration provides maximum spatial overlapo
The ground state angular momentum of an odd nucleus is
determined by the J of the odd unpaired nucleono' _

A The HF potential accounts for forward and exchange
s0atter1ng5'between all palrs of_particleso .The relevant

matrix elements are

<‘o('(l) /5(2) R ASP /3.(2) _‘>ﬂ _

For energies well below the Ferml surface, all orbitals
are occupiled, The exclusion principle therefore ensures

that the HF potential accounts for all important scatteringsv

below the surface of_the»nucleus; Near the surface, however,i

orbitals are avallable for other than forward and exchange
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'ééattering, | |
Palfing theory accounts for thé'scattering.ofvbéirs'»
of particles between different pairs of;time §'feversed
' dégenerate 6fbitélép The corresponding matrix elements_

are ‘ | |
<o) Tez) Il g B(2)7, -

The shérp Fermi surface of the HF'théory is rep1aced by a

diffuse Fermi surfacés(in particle space).

R e N N
| & |
. l.. — l'> ._"".7"5r‘j “ N
: o . I ] s .
R i . o Drebabilll :
o - ffroﬁgcbailplyﬂon » ) : ’ | of occufa.TJl'6'7
No PAIRING o WITH PAIRING

Figure (3.1)

Although this pair: ' scattering produces
rearrangemgﬁts only}in_the»neighbourhood of the surface,
resulting in only a sméll increment in total binding emergy,
we sha11 see that macroscopic nuclear.properties such as |
defdrmatiohs'and moménts'of inertia may be drastically.alteredo
The,spectrum»of low:— ljing excitations 1s fundamentally

changed. Even the underlying single particle basis may be
significantly modified by the pairing correlations.



106

2. Bogoliubov Quasiparticles

Althouég the exlstence of pairing_in nuclei has long
been recognized, é systemétic,theory was not»develdped until
the BCS theory of superconductivity (1957) wes applied
to nuclei (1959); 1f2 The Bogoliubo& quasiparticle
method is equivalent to the BCS formulation, :

Thé propefties of the special Bogoliubov quasiparticle
transformation will be worked out in cdﬁsidereable deﬁail.
This is desiraBlé because : o
a) The essential features of pairing theory are most
eésily~demoﬂstrated by the'spéCial.ﬁrénsformation. |
b) | Tz| = 1 paifingrcan be éirectly\studied with‘thé
épécial transformation. | | |
¢) Familiarity with the spec¢ial transforméﬁion will
enable.us tb géneralize the pairing theory to include
T=0and T =1 pairing. |
d) The most desirablé form of the pairing theory (HFB)
is derived'from the general Bogoliubov quaéiparticle
transformation. The general transformation may always be
described in terms of the special transformation in ah'
appropriate single parficle basié. This is true even if
T=0 and T = 1 pairing co-exist. The ground state wéve'
function may alwéys be given in the form of the familiar

BCS wave function,
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In I.3 we introduced the notion of “guasiparticles”
as the elémentary excitations of the system. The ground
state 'is therefore a “guasiparticle” vacuum, In the HF

vdescriptio‘h _thé "‘quasiparticl_es" are a"‘pa»rtidles"
+ R ,
L', = a. (€ Ef) .
or holes.,

R | : | : _ . _
by = Qu (€a <€r) (3.1b)

If the state [47 4s paired with the time reversed
deg'enera'té state [&7 | . the gppropriate generalization

is the spécial Bogoliubov quasiparticle ‘transformation.

b U 8% -Ne Qs | (3.2a)
Ac( = Uy 0«:(i - Nu az 7 . v (3.:2:0)‘
L"& = Ua 0% ~N Oo( o o -»(‘3.2c);
bz =uUs s '/\r&f o’ | - (3.2d)

We shall see that l/\f}{"is the probability that the oi‘bits, .

l«> , I«> are occupied.
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The quasiparticles are Fermions and must satisfy

t+he anti-comnmutation relations,

v'['bt;b;]+ = [éd)gk]¢'=_o | o (3.33)
[-!"t",L’PL = Ofo,p (3.30)
In particular
[ L% bals <1

[ AK)£>&]1-£C>".

~ These commutatdrs may be evaluated with (1.76) and. (3.2).

UL gt S ‘ '_:-(3.§a)
U N3 + Uz My =0 L (3uap)

It is therefore required that

TUt= sl B E - (3.52)
SN VP B DY | (3;5b).l

We choose the pairing parameters to be real, with the phase

convention
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G
'Rew?éfi?g_§3f2?_-
Qz=.uéﬁm'An'd§
"-e:.;,':‘;v U, a. - Ar&_-’d"’«?'
».Bﬁ = Uy 0;'+Af&'0¢1

bz Ul b5+ Ay

",(5,6a)

(3.6b)

(3.7a)
(3.7b)
. (3.7&)

(3.7d)

The conditiohs-(3.4) may alsd be ébtained by requiring

the transformation

" to be unitary (Ut U = I) and real so that

1 2 ]l
| bo.(— ' /\):( ’ U a&

The inverse of this'orthogonal transformaﬁion (o

-1

(3.8)

(3.9) |

.
= 0) is



s
B = T (UstAw @ty a) 10>+ (3.14)
A d).q . S » -

This wave function has the unfortunate proberty of not
' being an éigenstate_of the particle number operator,
x

NeFoeha e

We require that the average number of particles in the "

grdund st;te eqﬁals the true.particlé number;Nb;._ 
('le l §;> N . L ;,‘,3-.#6)
The Haﬁiltpniaﬁ é is‘;eplaced 5y H- A ﬁ
H-—> H"-=- H-AN |  <3.1‘7)
‘whefe ix is‘a ;égrange.multiplier which is'adjusted,so that

the constraint (3,16) is satisfied, H' is obtained from H

simply be replacing T with T - ) .

=)
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4. The Hamil;p‘nian

With the aid of (3.11) f;hé density matrix (1.87a)

may be evaluated, o
= <0f e
/00(/3’ ‘ /3 : (3. 8)
< Ll(u,ébﬁ e A,a )<uabu %o bs ) | E>

. S . t + :
Utilizing (3.12) and (ﬁé]é/o{ £5,§°> _ =_o _

P,,,;g, Ny N < 2ol A a/
vstng 19,3 bi =Ly bl A; and (3.12)

The occupaii.{von probability is M?- o

' The number conservation constraint (3.17) is simply

Trf = No I (3“.20)_’

or 2.3 /Q';“=A/,. | o " C(3.21)

oo

The pairing tensor (1.88a) may be similarly determined. |

t.oc/& = <aﬁ Qo7 o | ' (3.22)
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let o, g >o and use (3.11b,d).

Lag = Qg Qv =Us N dop

E&p = < G/} a& > :—UA(/U—NJ:\»p
The adjoint of the pairing tensor (1.88b)
" .
Lup = <0207

may be obtained directly from (3.23). For

X LS
Lup = Lag =0
o
Lag =<QURZD = wati duyp

»* .
Z&P = <a*&' aﬂ> f'UuM J‘qﬁ

The HF potential in the -/«  basis is

& = 2 <°('/3’{,/U—’qllg7ﬂ /V/;l.

°(| q/l ﬂ e

(3.23a)
(3.23b)

(3.23¢c)

.(3.24)v
c(,,él_)_.o-

(3.2§a)

(3.25b)

" (3.25¢)

. (3.26)

It should be noted that this potential differs from the one

used in HF theory (2.6) through the occupation probability
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N,JI-  since pinligy, T <Tp Il p,

F is symmetric.

S & - (3,27)
.r;!dt l “d, S ( |

The HF Hamiltonian is

R R A S

e | L  (3.28

xfﬁﬁqt .7;W¥ T flﬂdt : ; o ( _ )
It is also symmetrice

' Nd,q’-‘_ = 77[0{1’(. ._ . .‘ | : ' R (3.29).

For any system with time - reversal symmétﬁry the

expression for the pair potential (l 9la)

ALJ = 1 ém_ﬂmu)ﬂ L.,

may be simplified. Assume tkl = 0 for k,1 > O or

k,1 < 0,
iy Z’ujl/\flk,e)Z: Z<(JIN’//<,V>[-
" kﬂ7a C » Kp)o

Since t is anti-—syrmnetric and ¢ ¢ j IAI‘//(_Q >/9 - JIAF/ | % ’

the second sum equals the flrot sum, and

bei7 <CflrlkE Y Gy

Kﬁ)o
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For i, J > Oor i, j<¢ 0, the matrix element < L'J'IMH(})A

vanishes (by angular momentum projection conservation),

so thét non-vanishing elements ofb A .have. Yo , J.< I}
or L <O , J'70 . |
Aew= 3 <cT ik > Lig (3.30)
J Ky K .
o

This result is not restricted to the special transformation.

The pair potential for the special transformation is

C\’.O(L‘ g’<o/o(,_//u’//s/g © (3.31)

AlthoughA is antisymmetric, so that.

Az, 7 Paa - (3.32)

it is not true that 4, 5 = AN . Since
k3 !

<<\/.:(,_I/\f'/ﬂ—> = <o(,°(kl/\f =<°(1;, ]/J"/ﬁ’) )
A A/" £ g

the correct symmetry relatlorx is

.Aq’.o?L = Qo( @ N (3.33)

"The Hamiltonian

CH' HSHHL+Hy

(3.34)
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- is now cémpletely determined, (See’l.86;"lg92; 1.93,3.17.)
Before eXplicitly-writinq H', we préseht siﬁplifications
in the form of H' and Hz'_whiéh'are vélid*ﬁhenever the
: systém has time-reversal symmetry, Considér.the pairing
energy in the grognd staﬁe.' |

o _vub - ( . | x o '.‘ S
Epere =1 & Acp Loy (3.35)
v ¢y . _

* .
Assume  A ij = tijs =0 for i,j>0 or i,j {-_r 0.

CFO.I‘/’": Z ALJ LLI+L 5 d(J ['('\[

r ) ,J)o 4 Gf<o
B _
since A and t are both anti—symmetrlc, the second sum -
equals the first sum, and | |
é?F&ar Z: Z3 LJ _ LJ . o (3.36)

(J)o
Similarly |
Zl)q/\/[a (Z] SALJN[Q d ](337)

(J)o

For a system,With'time-reversal symmetry H' has the representa-

tion

" HJ E'lNo Z’(T )("’LF)UPJ(*’Z'L\ EcJ

(J)o . ‘30383.)

oxr
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Hol =£01AN0 2 <L/7-—A _{>/JL
-y o |
72 & <l k P /ﬁ,ﬂ (3.38b)

‘J"D

2: <(\j/AfIKJ72h ff Z}<§

Llkeyo

He' = 2 (WA N Ia%ai] + 24( wia’a’]

Ly ¢J%
r 8 8k Nla; ] BRRNEREY

(j;o

Hi = Yy (2I<C1Arll<17 vt Gt g, 4] (3240)
. JK : )

For the special quasiparticle transformation (that is,

when (3,14) is the reference state) H' has the representa-

tion
Hol_-v:_fo"A/\/o Z (T lf‘f'),xq Afot |
(h‘o' (3.41a)
2? éldci C(alAf& ,
or X?o
Ho'=fo-)\rl\/a = 2 <°<I-T—)(lo(>,\r°<2 +
, ' & 20
h 2 <aplalpd ML
_ dﬁ7c>
< Al « N U a
Z i ﬂfg?ﬂ Ut ﬂ/v’—g (3.41b)

q&5>o
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PR | . ' o
HL_ ’ 45'7‘0(74 ‘>\)dlg /V[ Qfof ap] t
 F deg(nlel 2] laz . ]) .

» vqfﬁ)o

(3.41¢)
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5. Bcs Eqﬁations

' The occupation probabilities V% are as yet undetermined.
The equation which provides their values may be obtained
by a variatiohal pripciplé_or by thé equation of motion |
method, o - | o o
The variational prihcipie-conéists in choosing_tﬁef§3
such that the ground state energy is‘minimized. The orbitals
'{d’> o are cbhsidered‘aé given;N The ndfmaliéaﬁioﬁ | ‘

condition : . ‘ o

U AT =

e e U AL R
OT U L 2He e o (342
N«  TNu Uy JUa

Substituting (3.41b) into (3.42b) leads to the BCS equations.

restricts the variation of Vk « The variational principle is ,
SR _y (3.422)
J‘HD :QHO -/—2”09(/(0( = O ‘

|
!

(W ow "X Ua Aot 3 Aug (US AT =0 (Baz)
°F (EamA) UsSu 1O (UE-Na) =0 (3.43p) |

where _éﬁx.  denotes ;¥aa and A« is Doz

60( ."

2

4

< ) : . &.. »
w(’qu(?+l§>Lé<o<,5/M/°(/,7ﬂ M v f3 44) |
<X e (Al ga D - (3.45)

,ﬂz-;o_’u--’g’é%u/g’/%v | L

 4~
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The single particle energy €y differs from its HF
counterpart (2.18) through the ddcupatioh probabilities,

The BCS equations have the solution

Udl :—/_<l + éo{’} v ) |
. 2\ - /gga,;\?zv+ Qf’ | N : (_3.46a)
- o2 |
'/\J’o:ly-,""'(l-— =k ~ ‘.v)', L
. ra /(fﬂ_A)yifAlq | - (3.46b)

‘Just as the HF potential was determined self-consistently ,

8o isvthé péir pbteﬁtial. The‘pair fiéld‘(3.45) determihes

ithe pairing degrees of ffeedom (3;46),-yeﬁ it is élsd‘determihéd
by them, The solution ié obtainédvby’ iteration. An '
1nitiai guess'ié-made fér the set(X“, ANy and x".
(consistent withtnumbérﬁconservation). | Ea and .Ziqvare
calculated (3.44,‘3.45).> A new set Of‘parameters (J“”'.Afk-
is calculated with (3.46). )\ is varied so that the
ﬁﬁmber éoﬁservation constraint (3.,21) is'satisfied. The
potentials ére then reéalculated.b The procedure is continued
until the parameters remain unchahgéd on successive iterations,
An alternative approach is to combine the equatiOn‘for the
pair'poten£i§l (3.45) and the BCS equations (3.46), For an
attractive force AR and [:‘ have opposite signs,

U,Vy is therefore given by

._‘_ Ao{ .
2 SNt BT

a"‘"‘,}—“ T (3.47)
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If A, 1s negative, U, and V, may be chosen positive,

"Substituting (3.47) into (3.45)

A=~

5 & | 2
z P ~ J(E-2)* +0
’ A A
The solution-is obtained by iteration,
The BCS equations may also be derived by the equation of
motion method. The quasiparticles are to represent the
approximately independent,modes of excitation, It is

therefore required that

o

Hs B Eblbes s

Then H' has the form

H, :50'AN4‘+ %IEO( é;é“ + HG/I . 3 » . >(3.5A0)_ |
- o - | .

- XIf H;, the quasiparticle interactions, is small, then H'

_the desired form of an’independent,quasiparticle’Hamiltdnian.

Assume that

<o x! ,/\,—‘/gﬁ>b[<< I(a(o’(l,\;'l,ﬁﬁ),,]. | v(3'_.5.1a).
: : o ‘ (2 '#a)
Then [Awg ]l €< | Dus |- ~ (3.51b)

" It should be stressed that this is a crucial approximation

in the BCS theory. We shall later give examples for which it

has

= rger. .
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1s.not justified.
It is also éssumed’that

] Hawr s I HNaal (¢Fa')  (3,52)
Thié“assﬁmp:ion.is éatiSfiéd; of course, itf M 1Sg'
~ aiagonal in the )0(7 basis. That is, -(d7' could:‘
be chosen as the eigenvectors df'the pair-modified HF
‘_Hamiltonian (3.26,‘3.28). ?hése modified-HF wave‘functigns
may differ frémbthose of thevoriginal-HF'potential (2{6;'2,7).'
We shall later demohstfate'thatJthe’original HF $asis is |
mo:v:'e'dési-__ra.blle than the modified HF basis. The 'ghmodifiéd
basis is therefore used;“and it is assumed»tﬂaﬁ'offediagonal
»matrix élément3'0f>the pairFmodified'HF Hamiltonian in this.
basis are small, The justificationvfor this seemingly

inconsistent choice will later become apparent,

with assumptions (3.51, 3.52), H} (3.41lc) has the form

Ha' = & (€a-IN[ah @] + |
o0 : _ ' '
2 AL (N[aY atJ+N[Cz0.,]) (3.5
QQnSideruggg,commdtatbrv[[{zz -ZJ’. Using(3.49)

[Hll(é“ I = Ea by  (3.54)
Substituﬁing'(3.7é) into (3.54)

. [H{/étj;_‘ Eulla A% ~Na 05. ) - (3.55)
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The commutator may also be evalué;ed ﬁith (3.53).
[Ho', b4 = { (&N lUa - Buru by ¢
{ Dota + (Ex-A)pru} Qg (420)(3.56)

*and az in (3.55,3.56).

Equéte coefficients of ay

(Eu-N)Us - Da N, = Ex U, - (3.57a)
Doty + (Ex-XINe = Lule (3.57b)
For timeereverSal degenéracy' €z = é@ e -Rewrite»(é.57)

in matrix form,

{(éq N Ax [ud _ E. [uq ] A
: AR -(€x-A) N« v Na _ :
Multipig}in‘g (3.57a) by v, and (3.57b) by u, " and adding’
we arrive at the BCS equation. ' o
b(éa("A)u«/\rqf :Ll Ao((a: "/U’c(l)v’v'O

.The quaéiparticlevenergy E, is determined by

‘(éu-A)'—Eo( Ao" = 0 * ’ (3‘59) .

4 « (Ex-A)-Ex

Solving for E«

Eou=J/(E -0 +08 - (380

The quasiparticie ehergy'displays thé:energy gap in the
excitation spectrum. In the absence of paifing, the7éner§y
required to 1lift a particle froh a level below the

Fermi surface to an unoccupied level (creation of a

“particle’~ hHole pair)‘is
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'gex. : éo( I." 6‘( (6 >€f 760{ ) | (‘3-‘61)

Eex MY be very small if the levels in the neighbourhood
' of the Ferml surface are closely spaced,’ When'pairing is
: present the analog of the “pgrtlcle" - hole state is a two

quasiparticle state with exc1tation energy

lfexj= £5N|+-E&L ,
(3.62)
=g, ) +Ac, + /(6,(-}\) +0a, |
‘ .
Even if(é%*}) and <64L'A) vanish, there is still an excitation
aneray . _ .
“Eoy o= le(‘lﬂ‘ IO«L"‘ - ~ (3.63)

The pairing correlations therefore create an energy gap

between the ground state and low-lying excitations.'
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6., Hartree - Bogoliubov Equations

There are formalisms for which no approximations are .

required to en°ure that

i Ll«.é Ak

More cafeful.consideratiOn must be given>to the choice of

the single'particle basis, & criterion for the '"best® basis
must be formﬁlated. Tt will bé demonstratéd:that simply
choosing the eigenvéct&rs of.the pair modifiedrHF Hamiltonian
as the slngle particle basis is not a cons i°tent method for
including the effects of palring correlatlons on the HF
degrees»of freedom. Furthermore, the eigenvectors of the
'pair-modified Hf Hmailtonian are éVeﬁ iess.desirable than are
those of the original HF Hamiltonian. There is a third basis,
,termed the "canonical basis," which is most satisfactory;

It is deterﬁined by either the Harﬁree - Bégoliubov 3 (uB)

or the Hartrée-Fock-Bogoliubov'(HFB) equations, |

The first derivation of the HB equations is by a 4

variational principle. Choose the basis [«? ‘so that the.
ground state enercgy (with'a BCS wave function) is mininized.

- Since . : _ |
€y = 2 D% IK> © (3.64)
p | .

the matrix elements of T and V may be rotated .

<c\/,/T (Y = 3, PK'D,(L <k ITIKS (3.65)
Klkg

(>
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a3 -«
(o(‘a(.L’/U’l 0(30{‘,) Z o Kipk’ k(/(z_l/\f'”(s Ky
I((KI/(;_K:{ v ) ' v . (3 66)

wheré_thebD coefficients are assumed to be real, For time-
reversal degéneracy the phases may be chosen so that |

.,D/Z=.l7/< . o (3.67)
Substitutina (3 65 - 3 67) into (3 dlb)

/ c AN, = f, DK.DKLA& </< /r 2!1<1>+

o 2.0
. K, K'L ) -
3 20/« 7 pk; Dk,,/\f /\fo( <k Ka //\f//<3l<'/> +(3,.68)
°( °(1>(.o )
K klkgkq

BRI ST A@ e, N, </<,/<._wu< /<q>,,

4: avo
zka}Ky .
Alternatively, the density matrix and the pairlng tensor - ‘may
be evaluated in the [K> basis. Invert (3.64) (DF = D).
H<7 2 l71< lo¢> 1 5 (3.69)

_ .
';‘hen. <al<| QK > fﬁk, P, < 0««,‘-qu>'

) q""(z _ ' »
Inoerting (3 19)

to | : 9 a 3 vz o A

. a v ! (3.70)
ﬁ(i kl <a/<l OKL > 5 pkl Dkz Aro( S
Similarly ) - ‘ :

| « o
Lk =<0%,0, 77 2 Dk, Dy Ug N - (3.71)
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(3.68) is obtained by substituﬁing (3.70, 3.71) into (3,38b),
The pairing degrees of freedom have been varied (3.42)
to minimize the ground state energy. This variational
principle resulted in the BCS equations (3.43).
The variational princ1p1e for the HF degrees of freedom

includes a normallzatlon constraint.

(3.72)

2 {H - €a(SIpt -1)] =0
2103

D%
Substituting (3,68) into (3.72) leads to
S , : SR o
SV Vo 7 Dy, Us M3 D E=Dx (g oy

Ky
where 7/ 4s defined by (3.26, 3.28) and A by (3.31).
This is one form of the #3 equations. The quantity in

brackets is the HB Hamiltonian

HE L Lt " 1y - (3.74)
H i, = (H ;\)ktkl/\r"‘ ? Okrkzu_“,"n‘
so that

H5 o A ' -
5 Mk, (0 Dk, = o Uk, - (3.75a)
K- < N
The HB equations present an eigenvalue problem.

A B (a Qd‘ = €w P°< | (3.75b) |

-

or

WP () 1w = Exlod>  (3.75¢)
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It sﬁeuid.be mentioned that Ecp-is not the single particle
energy. | | ' '
. HB S ey o)yt \ .

: Aé iﬁlfﬁe'HF tﬁeory, the H3 equations provide a self-
cehsistencyicondition. The potentials afe,determined;vin
pertf by the HF degrees of'freeddﬁ; and vice-versa. -
SOIutlon is obtained by iteration. ‘.

Since the HF and pair potentiale each depend upon both
HF and palr degrees of freedOm, the BCS and HB equations are
coupled to each-dther. .dﬁe mest iterate betveen them to |
achieVe self;consisteney in both HF and pair degrees of
freedon, o | ‘ ‘ | |

Unfoxtundtely 74 HB is a functional of & - ;‘Sinée
it is a state dependent Operator xts eigenvectors can not
be obtained in the usual way. This ‘state dependence should
be’dietinguished from the'stateedepeﬁdence-bf the HF
 Hamiltonian 7} . Although the operator 4 is a function
of the occupied orBits, for a given A particie wave
' funetion;,there is a unique matrix'fep:esentation <tf’$!li>f
The HB'Hamiltonian,”however, Bés a'diffe?ent representation

Lf#HB(lX)lJ) for each 1017 e |

‘%#H dlffers from the palr—renormalized HF Hamiltonian
through the inclu81on of the pair potential The important
conclusion, therefore, is that changing the original HF

Hamiltonian to its pair-modified form is not a consistent
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methcd of accounting for the effects of pairing on tﬁe HF
degrees of freedcm. One-might have hoped that‘iterating
between the pair-modified HE equation and the BCS equation
until consistency is achievéd in HF and pairing degrées of
fféedcmvwcﬁld»be a consiétent method, or at leastbmoré
desirablé thah‘simply solving the BCS equations with the
original'H? baéic; Although thisvprocedure may have
considerable intuitive appeal, we have demonstrated that

it is not derivable from a variational principle.

Furthermore, we shall numerically demonstrate that:itérating

between the BC3 eguations and the modified HF equations
generally'resultsvin a wave function which has less in

common with the exact (H3) wave function than does the

wave function obtained merely by solving the BCS equations 

with the originél HF basis;

The HB equations have an alternative form, Utilizing

(3.75¢c) : ‘ v o
L HE HB )
Heap () = <a |[H " (g g>=0 - («#8).
Since 7‘{13. = Hj'i and Aij _ = AJI e M
is symmetric. '
' ~ HB - HB, |
o ) = A () o (3.76)

| N 2} HF
In particular, #:,7]/3 (a) = Z/,éa! () = 0 (« ¢/5) .
Therefore Huiz () - HIE (B)z0 . mmat is |

(H-2as (W -A0) + Dag (Ua g U M) =0.03.77)
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- These are also referred to as the HB equations.
nFurther,insight may be gained by expressingvﬁé in terms .
of the quasiparticle operators, Since the reference state

is chosen as a quasiparticle vacuum.

P T AR (a.782)
N[éqbﬂ] babp (e
NLbabh)=-blbe. (e

'vSubstituting the inverse transformation (3.11) into Hé (3,4lc);.

and using (3.78), we may express Hé'as
Ho = Hu H“’ °r o (3.79)

‘where Hﬁngicontains térms with m quasiparticle creation

operators and 'n annihilation operators, and

HHI ’41 2{(7‘/"l)dﬁ (U« C(/g"/lro(/\]:é) .
‘ “\’570 ' v (3.80)

- lep Wenp Ml ) (bl ba t b b))
Hao +'H°,1 = Z: { (H"q)«ﬁ (a-oe/\/:s"f/‘fu‘u/g) |
dﬂ)O: : (3081)
+Dup Uelyatp)} (bu bz + bz by )
We have used time—revefsélvdegene#acy |
74«*;"? Hapg = 0 v(or,,g.m').
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(these relations are true even if (&> , l./g) are not

eigenstates of - ), and the symmetry relations.
Heup = ﬂﬁeq
Oa('é = 4/5&

in deriving (3.80,'3.81),

In order that H have the form

2
L - L+
H2 = é 'x‘kbkbk .
Héo +.H62 clearly must vanish, It is therefore required
that

N ap (Ua ATy + M U )+ B (Ualls M nfz)=0 - (3.82) |
For o{.:/év , (3.82) réduées‘ to ihe BCS equati"ons.
(Hua N Uan + 7 Jag (Ua “AL) =0

Consider o{#:/g e If the BCS equations are solved

without’:»‘special attention to the choice of singie particle

: . . :
basis, then B0 + HQZ vanishes only 1if
' %Z«A = dq;é = O.' <d¢/6) ‘ » (3083)

These are the assumptions we encounteréd (3'.511, 3.52) in the
derivation of the BCS equations by the equation of motion method.
For a non-trivial force, however, (3.83) cannot be satisfied.

If ot is vc‘chosen so that A, =0 (x+#2) 'then Ao(/g #O

CE Y-S
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Rather than make the assumption (3.83), we will
determine the single - particle basis for which (3.82) is
- exactly satisfied, Nultiply (3.82) by (UeAfu ~Us ny e
Rearranging the terms ' |

{(H_A)%&(/\fq z)f‘dqﬁ (aq/\ra (X/g )}(U«L(/s /(f.‘x

In é'e'neral the term in brackets m\mt Vaﬁish
(74 ;\)a’ﬁ (Afa"/\rz)'/'aqﬁ (U /U'o( L(ﬂ/l&é) =0

'I‘he..»e are Simoly the HB equations.
Satisfying the BCS and HB- equatlons therefore ensures _

at’ o+ H' = O,
-th 20 02

Finally let us consider Hll .

W5 ey <e* Le v 614 e

| A8 Yo
_v}he‘re‘
q,g < (N /\)a(,s (C(o.ﬁ(,g, /U;A/;é) Aq,e(utx */V—U)(3 85)

In particular |

(Nqa ;\)<u.‘ )-zowau/u;

*,Substitgting (3.46, 3.47)

- -1)% Lt ,
/(HN_ )+ A.“ (3.86)

T ,'I"h:l.s 1s thé Bog result. So1§ing (3.82) for Deg and |

subatitutinq into (3, 85)

Edé 2 _(74"2)«,6 [/ { U UA;‘-M&NA ). (3.87)

ay)=o



Alternatively (3.82) rﬁay be solved for 74«@ , yielding

Eo(p'-‘ fAO(B /( L{q/U;g _1“/\/—41,(;) ’ : N '(3;88)

Even after the BCS and HB equations .a..re solved Eo(,s R
and therefore H;.l Will'gener’ally not be diagonal, It
should be emvp'ha.sized that the canonical basis diagonalizes
neither A nor A. .- A further transformation -

a rotation in quasipart’icle space = is required to put

H! 1in the desired form, A rotation R

2 .
S R . S
: EV'Z'RQ'A“ | (3.89)
_ . | |
is chosen to diagonalize the enerqgy matrix E,,}# .
4 y Z v |
2 Lop R',s = £y K« | (3.90a) .
s . . :
i ER”Y - Euij | - | (3.90)
o -, - )
"‘Ihnen ) .H'Ll = 2 Y éyéy . . ) (3'91)
) y | _ .

If R# I, then 3‘, # E,, = E, |
Three transformations have been regquired to _obtain a

“¥guasiparticle” Hamil'ﬁonian.
U;: Rotation in pa‘rticle space

at.= Zo%a' . O (3.92)
K .
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Bsp: Spécial Bogoliubov quasiparticle trahsformation:

. ) ’ : B o |
L« Ua 0% -~ N Qi o (3.93)
U2:' Rotation in quasipafticle,space

, A*y = ZRZ é‘ro{.

(3.94)
The final‘Bogoliubov quasiparticle co-ordinates are'
given by the product of these trénsformations.- |
o B = [/1;E;Sﬁ'bbh 

(3.95)
The third transformation, U,, does not, however, |
affect the ground state properties of-thejsystem° After

_the'firSt two transformations the density matrix_is'
o , 1 S - 1 op
ﬂ(ﬂ—<a/gas>‘\/\fu (fo(ﬁ

' and the pairing tensor is

[qu = <a/§, ae<> = U«Aro{ _OPO(,S’ 3
 Substitute (3.93) into (3.94).
b, « SRS UL -RoNulls)
o« o o
inverting this transformation, and recalling that the
ground state is a quasiparticle vacuun, /9 “ana L may

be evaluated after the three transformatiqns have been

performed,



i36
<ahae> = 5 (RA AN REN) SRR INaty
| _ v | 7 ;
since R is an orthogonal transformation |

RR-T % RERE = Lop

so that /O

<Q’/5 [ /‘f"‘ (fo{,é -

Similarly

and Z.ioi _ ‘
<<(225‘2d D= Uy N <rqp
Since the density matrix and pairing tensor are not

altered by_thé third transformatioﬁ, the ground state

properties remain unaffected.
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7. IT; l‘né'ltPairiné

Tne'consentional:psiring theory'permits'correlations
.to exist only between like nucleons, that is, it accounts
for p - p and n =-n pairing. The appropriate formalism
is obtalned if, ‘in our preceding derivations, Id) is
restricted to states of good isospin prOJection.. So far
T has been treated on’ the same footing as the other '
quantum numbers. . We now explic1tly label,isospin
'projection;3so that single particle states are represented
by [oTd - | |

The quasiparticle transformation is
v = U b "Ny O ey
w7 = Uar @ ur "Nyp UgT - o (3.96)

' The ground state wave function is

l§o> T ( °‘P+M ar, a*&|,.,)

L Kide e (3.97)
-XT'CO(Uw,an/Z(naq,, a" )’0>"

Neutrons and protons need not have ident1cal orbitals.
~ Since the number of neutrons and the number of protons

are each'to be conserved, the Hamiltonian is replaced-by

H' — H'= H';\-FNF -2, N, (3.98)
whers | | o

Np= & @hpdap N 2 @y Qup (2.99)

X720 - - Ao

and ;\r) and An are adjusted so that
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<N/9>=Z <A/n>:ﬁ—_z : ‘ - (3.100)
This approach has the disadvantage that H' can not be
obtained from H by replacing T with T——}_\F' A, . A more

satisfactory method is to replace H by

where  N= 5 aly dur - (3.102)
and Fr is a projection operator

Pr= 10971 | - (3.103)
so thét.,

Priteys lT?(T’IT y J}w l T> - (3.104)

H' is obtalned from H by reolacing T Wlth.TiAPF}’XnF

Note that
N=NptWNs- - (3.105)
The density matrix is

| _ o | | |
/Oﬁ’c’l’., oy Th /U:(m fq'% fﬂ?’z | (3.106)

so that the number conservation conditions are

7’2 /‘er z 7—2’ ,\rq,,, zA«z.' | - (3.107)

x 20 : W )o

The-pairlng tensor is

U L { . (3.1;08)

A/IT?} _5('1_7’1 « T &, LI T«T;_
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The'HFbpotentiaivis"

| 2 . (3.109)
ot aun g,r T ﬂTlArloaTz,ﬁT> Ny oo
.Note that rL(ﬂ,MLTk.'O unless T =Ty . -ngtrons

.contribute to. the proton HF potential and viceversa,
The palr potential is
4, - = I <7, g T INIBT 3 | .(3.110)
ATy @ T ,5270 1T, 4T lM/ﬂEﬂT%%'f’%’f - -
The pairing matrix elements vanish unless T=TaxT o

The only non - vanishing elements of A are

A 2 <A T, o(,_T MﬂﬁT,ﬁT} /g -_(3.1'11')

l37o

0T, o4 T
, ﬁote that only'protons (neutrons) contribute to the proton’

(neutfdn) pair potential. This is a conseguence of
restricting the correlations'to "“le==] pairing.

The resulting BCa equations are |
| [(fu'r 3r) "Aa‘r' ][er‘r]=5o<‘r [Uo(‘r] |
.b AO(T' (6«1';\7’) ’ _Afa‘r . “NaT ‘ (3.112)
where E€x7 = 7‘4«7}»&7"

€ yp <l TINS + 2 <T, g AR T BT YA s (3.113)

AT
and Auﬂ"@a‘ra"rw o
Doy = 3 <o<T,o<T I,\r{ﬁT,éT> Wy 31240

ﬁ)o

~ The neutron and proton degrees of freedom are decoupled



except for their interdependence  in

© 140

€Eyr + Note

that,the single particle energies of the neutrons and

protons are measured from their respective1Eérmiﬁenergies.

A

€ur

= ,6047 *17

The solutions to (3.112) are

11

E ar

3

ur

4}

T
2

./%r«7f=

The sets of eguations (3.107, 3,113 -

At. 1 L4

’/Z(I"’ gar/EuT)i '

Yo (1= Eur[Ext)

(3.115)

(3.116)
(3117a)
(3.1i7b)

3.117) are

coupled to each other and are solved by itératidn to obtain

self -~ consistent potentials,

U
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'8, |T,| =1 Pairing in the 2s-1d Shell
The ITZ] = l-pairing'equétions'were solved fot the
N =:Z‘even—even nuciei in the the 2s-1d shell, All HF

_ soiutionsvréported in table 2,15 were tried as singlé

particle bases, Since N = Z there are the symmetry relations

6;(,9:»6«#-‘
Usp = Uan o |
Af:f '/V&n o . . ' '
3.118
Iﬂqpl‘fﬂoml ' ' ‘ -( _ )
Cq? E@n .
Ab = Ao

The 1sotopic spin subscrlpt will be daleted for the ‘

remalnder of this sectlon.w
The moments of inertla are aiven by

R AL IR A Ik waw; u,gwdz)

all o é;d.fé;s ) I (3. 119)
»16>0- -

wiﬁh similar relations'for‘cfy . and °[2  . The

multiple moments are

| < QLM > = §<°(, QLM ‘I°z> /V:xz- (3;155)

’Nezo

The loweSt prolate‘single'particle basis‘has a large
HF gap. Cbnsequently, the BCS equations give the triViai

solution (no pairing).
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Y

Similarly the asyhmetric'wave function is stable.
against ITZI =1 pairing. The Rosenfeld fgrce -
yields no'pairipg. Although the Yale force results in a
small HF gap (2,945 Mev), the pairing admixtures are small
(a dispersion to .. orbital 6 of V.* = 0,053 with |
EPAiR = -0,860 Mev and a net gain in Eoopag, ©OF only
-6 Kev). |

ISeveral.ofvthe higher lying HF wave functions with sméller

HF gaps admit = 1 pairing, most notably‘the Yale

Tz|

spherical wave function (EBAIR = -5,488 iev,

Epgrar, = —95.518 Mev), But these are not thought

to have any physical significance,

Mg24 |

The asymmetric wave functlon has a large HF gap, and the
BCS result is the triv1al one, |

The prolate HF state with-2 = %+ §§+ oCéupied_orbitals
is of special concern (see tables 3.1 - 3.6)., (All other
prolate HF wave functions permit no pairing'admixtures.)
The Rosenfeld 1 and_NDKB forces show very weék pairing
with neglible changeS'in the properﬁies of the wave
function, The Rosenfeld 2 and Yaié forces result in
moderate pairing. .The deformation parameters are only
‘slightly altered, but the inertial parameter is
conéiderably increased (0.10 to 0,19 Mev.fo: Rosenfeld 2

and 0,05 to 0,17 Mev for Yale). The eneruy for
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elementaryvekcitétions (K = 2) is substantialiy»inCreased

(1.48 to 3.16 tev and 0,46 to 2,93 Mev). Since ITZ|

pairing in thlS prolate state is force dependent, andg
since for those forces which do permit pairing the K =2

two quasiparticle state is too low, we conclude that
24
‘Tz[' =1 palring is not 31gn1ficant in prolate Mg

wave functions, _
All oblate states show ITzl =1 pairing,-most

notably with the Yale force. (EP\IR =

ETOTXL ‘=:~128 317 Mew for'oblate 1 and EP\IR_=~94,743 Mev,

ETOTEL = —127 391 Mev for oblate 2), However, since

4
Mgz : is prolate in the intrinsic frame, these solutions

: 4' 364 A"“ev,: "

are.notiphysically relevant,.

Sizav
The‘loﬁeeﬁ oblate state has a iarge EF gao,'eo that no
pairing occurs., B ..
Similarly the lowest.prolate stéte admits'no.pairing,
except for the NDKB (s - p - sd)rforce,'where the HF
- gap is.only 0.9516 Mev, However, even with such a small
gap onlyneghqﬂﬂe pairing results (EPXIR --0 255 Mev with

a gain in E of =14 Kev),

TOTAL
For the Rosenfeld 1 force only the oblate 3 state
contains pairing (Bpagr = =1.569, Epomap = ~146.399), The

'COrresponding state with the Rosenfeld 2 parameters is
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oblate 2 (Epyyp = -2.187, Epqpm . = -121.489).

Of the remaining solutions only the spherical states
have |T,| = 1 pairing. (See table 3.8) These may be
of some interest, as the spherical intrinsic state has been
useful in describing the experimental spectrum.v4 The

. . : P A - . 1

HF ordering of levels :L,vds/2 , d3/2 ) Sy . (The Yale
force presents an exception, where the unoccupied d3/
lies below the filled d NS The pairing calculation

was not performed with this state,) The dispersion to-

the d3,, -orbital is V 33/ ~ 0.1,

S32
The-asymmetric'wave function admits no pairing
admi#tures. Nor do any of the Rosenfeld 1 wave functions,
For the prolate state the Rosenfeld 2 and the Yale forces

vield non - trivial solutions (ERAIR = «4,425 Mev,

ETOTAL = ~174,091 Mev apd ERAIR = =3,106 Mev, | |
E = -223,226 Mev), whereas the NDKB force does not.
TOTAL

In the oblate state with positive Q4o'only the NDXB

force results in a small HF gap (E = -2,882 HMev,

PAIR
Eromr = ~173.277 Mev for s-p-sd and Epyip = -2.444 tev,
E_____ = -=174,950 M ~p-sd-pf).

TOTAL 174 ev for s-p-sd-pf) Of the remaining
oblate states (Rosenfeld 2) oblate 2 is at the pairing

cutoff (EPAIR = ~0,021 Mev), and oblate 3 pairs

(E

PATR ~173.876 Mev).

= ~2,212 MEV( E TOTAL
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‘The oblate weve functions do not.edmit'péiring
correlationq;"Neither-do the asymmetric states.

For the prolate state ( see table 3 7) the Rosenfeld
force ylelos no pairing, while the NDKB force ohOWS
negﬁgible_pairingg Although the Rosenreld 2 force
produces iitcie admixtures of pairlng (Vﬁ = 0,106)
the inerﬁial parameter ie increaeea by-S %;$ The &éie

lO

force creates a larae dispersion ( = 0.329) and
increases Ax four—fold. Since these results are so

force dependent, they do not warrant much confidence in

their being physically relevant,

The sPherical state (see tablev3=lO)”contains pairing

correlations‘only for the Rosenfeld 2 and.Yale-forces,
although for these the dispersion is so great as to

re~order the levels, The occupation probablilities are

2 2 2
Vv == « 994 = . V.-, = S

s = 0-994, Vai, = 0.974, Vgy, = 0.543(Rosenfeld 2)
and V42 = 0.956, V2 = 0.964, vd; = 0.585(vale),

ds/2
For the Rosenfeld 2 force the s% single particle enerqgy

is altered from its HF positlon of és%- = =13 Mev
(unoccupied) to its BCS location of 6', = =22 Mev
(most occupied level). Clearly using fixed single»
particle‘energies;'i.e. (2.18) rather then (3.44), as is

often done, would provide very different results,

1
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The spherical wave functions are of interesﬁ, as they
have been used té explain the S3zrspectrum. 4 (See.tablé
3.9.) :The Rosenfeld 1 force gives no paifiﬁg.v The
Rosenfeld 2 parameters show pair correlations, although
the dispersion is not very great ( 23/é - 0;100)"and
the gain in ET OTAL 1s small Although the NPKB force

shows about the same palrlng energy, the dispersion is

considerably greater. With the pf shell the OCCUpatlon

probabllitie, are v2 as, = 0,971, v2 . =0, 509,
. 2. Z .
V§3/ = 0,288, Wlthout the pf shell, a re—orderlnc of
2

levels occurs. The original HF and final BCS single

patticle'energies are considerably'different.

€ = -13,340 —» =15,099 Mev, V2_ = 0,972
€ S o = 272 _
s = 12,377 ~10,470 Mev, V = 0,351
X , S1
€a,, = =-12,048 > -10,755 Mev, V>_ = 0,367 |
/2 : : - 'd3 : .
/2
Note that for no shape do'sz[ = 1 pairing correlations ‘

exist for more than three of the five force mixtures,
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| We may conclude fhat_ szl: = 1 pairing,
as:déscribed by the special transformation, does not
play a significant role in N = 2 éveﬁ - even nuclei in the
2s = 1ld shell, 1In particular; iﬁvéan‘nét rectify the

failure of HF theory in describing these'nuclei.



Teble 3.1l:

L

0.1k

| TZ[ =1 Pairing in Prolate Mg2
Force Shape EppatR - Frorar 20 Yo A M
Rosenfeld 1  Prolate ~ -0.063 -94,105 1:5.2 -4.0 0;16 -13.492
Rosenfeld 2 Prolate 2,456 -75.325  16.0 -10.5 0.19 -11.360
Yale  Prolate  -2.463  -130.697  19.8 4,9 0.17 -9.176
| NDKB 1 Prolate  -0.457  -108.668  17T.3 2.9 0.12 -6.458
NDKB 2 Prolate - -0, 12k -114,814 23.2. -5

-6.860

Energles are in Mev,

QU hes units of .

8vT
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-

| Table 3.2: Prolate Mgz (Prolate 1, Rosenfeld 1)
€x -19.385  -15.05% -11.987 -10.156 -6.173 -4,052 |
Nd 1.000 0.99%6  0.00k . 0.000 0,000  0.000
Do -0.155  -0.206  -0.194%  :0.107 -0.114  -0.125
E. 5.896  1.576 1.518 3.337 . 7.320 9.440

Téblé 3.3: Prolate M'gzlL " (Prolate 2, Rosenfeld 2)
€y  -18.008 -12.273 -10.467 -6.94%  -5.205  -2.588
N 0.996 0.783 0.211 0,005 0.003 0.002
i -0.820.  -1.333  -1.262 -0.651  -0.669  -0.723
Ey 6.698 1.616 1.546 b L6k 6.192  8.802

-
~Table 3.k:" .Prolate Mg (Yale)

€y -14.911  -9.982  -8.398 -5.331L  -h.206  -1.568
NSE 0.997 0.769  0.228.  0.00k 0.003 0.002
JAYS -0.650 -1.265  -1.198  -0.487 = -0.514  -0.67k
5.770  1.500 1.428  3.876 5.000 7.638

All energies are in Mev.
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Table 3.5: Prolate et (KB 1)
é. -11.638  -7.536  -5.583  -3.923  -0.531  1.728
Ny 1.000 0,950 0.049 0.00L . 0.000  0.000
A -0.196  -0.522  -0.k20  -0.138 = -0.183  -0.245
E« 5.184  1.198 . 0.97L  2.539  5.930  8.190

| 2k

Teble 3.6: Prolate Mg = (NDKB 2)
€« . -13.547 -8.063 -5.871 -2.475  0.757 3.50k
| Na 1.000  0.987 0.013 0.000  0.000 0.000
BEAL -0.096  -0.277  -0.227  -0.062 -0.072  -0.108
l:u 6.688 1.235 1.014 L.385 T.617 . 10.36k

. ALl energies are in Mev.



Teble 3.7: |T,{ = 1 Pairing in Prolate Ar?é‘

Force “parR Fromar, %20 %o A M
Rosenfeld 2 - -1.535 = -235.373 5.7 -11.8 0.32 -16.17h
Yale - -3.667 -286.819 6.0  -19.8. 0.54 -18.008
NDKB1  -0.322  -222.277 6.0  -lL.6 0.08 . -13.239
NDKB 2 -0.05 -223.192 8.1 -15.6 0.1z - -12.811

Energies are in Mev.. QLM has units of me’

18t



152

Table 3.8: | TZI =1 Pairing in Spherical s128_ '

quce EPAIR , ETOTAL A
Rosenfeld 2 -h.h62 . -114.808 ° -12.720
NDKB 1 ' -3.016 , -13k.272 . -9.206

* NDKB 2 R -135.473  -9.046

» B R » 32

Table 3.9: | Tzlv= 1 Pairing in Spherical 8
Force EpAtR Brorar A
Rosenfeld 2 -3.586 \ ) -173.875 -14. 64k
NDKB 1 - =3.750 -172.876 -10.881
NDKB 2 B Lo -173.487 -10.83k4
Table 3.10: | T;l -1 Pairing in Spherical Ar®
Force Eparr - From >
Rosenfeld 2 4,077 . . _235.065 -16.309

Yale -h . 4hs - -286.324 . -18.371

"All energies are in Mev.
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IV. GENERALIZATION TO T = O AND T = 1 PAIRING
1. Keutron - Proton Pairing

' Pairing correlations are commonly considerad to.
exist between oairs of like nucleons (two protohs or two
neutrons). The faiiure‘of tﬁe:coevehtiOnai’theof§'to.
aeéouht for the possibilitY'ofvneutron - ptotobgpairiﬁg'
has long been recognlzed. ) - | -

: For heavy nuclei it is oLten argued that since
neutrons and protons are filling'different shells n—p
pairing correlatlons can not arise. Tﬂis'hay, hoﬁever, be

erroneocus, There are two determlnlno factors. a) The

magnitude of matrix elements connecting orbitals in different

shells compafed’to'those with all orbitals within one

sheli For reasonable forces these two . sets of matrix

elements have similar magnltudes. ‘Therefore one may not

argue that orbitals in different shells result in small
overlap'integrals.. | b) Single particle energies.” The
relevaht energies are not absolute»energies, which may
differ for neutrons and protons, but energies relative to
their respective Fermi energies, thch are_likely to be
similar. Even for heavy nuclei, therefore, one may not -
be justified in neglecting the possibility of n-p pairing,
For light nuclei such neglect is certainly

unjuqtifled since neutrons’ and protons are filling the same
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vshellg Furﬁhérmore, for N = 2 huciei ﬁeutfqns and
protoﬁs have identical single pafticle orbitalérand
relatiVe:enérgies (neglecting the smail‘pefturbation of
the Coulomb force), In light nuclei reasonable forceslhave
the T = O'qupoﬁentIStrongef'than the T =1 cbmponent.
This:isJaeansﬁraﬁea,by the observation that all N = 2
0dd-odd nuclei with A < 40 (exéépt c13?) nave a T =FO
groﬁhdfététe.-’Any atéempt_to generaiize'the pairiﬁg
thébfy gy inéiudihg n-p (T = 1) correlations'ﬁhiie
stiil‘hé§iecting n - p (T = 0) correlatiohs.is therefore
highly unééﬁisfactory. Rather one might ex@ect'T = 0
pairing to Eé more importénf than 7T = 1.pairin§ for light
N =2 nuéléi. o S |

" We may anticipate a common criticism of n-p paifiﬁg
theorieé;"Sincé the quasipartiéle vacuum ﬁééé'ﬁot conserve
the'ﬁﬁmber of pairs df>particles, the gréﬁnd staﬁe wéve
function for én éQen-evén nucleus cohtaiﬁs’cdmponents with
odd numbérs of neutrons and protons, The objection is
that even-éven and odd-odd nuclei have intrinsically
different wave functions, whereas thé n-p pairing theory
appears'td mix them, However, eveﬁ;eVen-and odd~odd
‘nﬁclei’have.different'intrinsic structure primarily because
their HF fields are essentially different, Invparticular,
the HF field for even-even nuclei is time reversal
invariant, whereas for odd-odd nuclei this is not so,

But the odd-odd components of the even-even ground state
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wave function are based upon the éVan-evcn.HF ficld and
therefore'containvall'the symmeﬁfies‘ofveven-even wave
functions, The odd-odd admixtures are actually hypo- -
theticai'oda_—odd nuclei which display the essential
symmetries of éven-éven rather then of odd-édd nuclei.,
Some students have concluded that charce~ind pendent
pairing can not be deocribod by the llﬁear tran"‘ornatlon

(au331particle) method. Flowers and vajicic /

comment:

“It will ' bc recallcd thut Bloch and Umco#éh ?avedproved_

that the mnost general type of BOgollubov{Véldtin linear

' canonical'tranéformation:is alwayé eqﬁival;nﬁttb an exact

and unidﬁe pairihq‘ofvparéicles; Bﬁé whenvforceS-are

charge—~independent it is imwovsfblé to séncifv uniouﬁTy

for each pnrtlcle 1te pairing parthor,‘and thlo 1noeoendently'

provp° that l*n@ar transLormation mntnods mu Nbé abandoned.‘

ThiS'objéction arises from a fundameﬂtal'misunderstanding

of thn Bloch Messiah theoren (reference 5.4). 'Fbr

isospln generalized pairing there are uniquely defined paired

orbitals. However, in general, theae orbitalu will be

1inear'combinations of proton and neutron basis otates._ Thﬁ

derivation of the canonlcal representatlon is presented in IV.6.
- The BCS theory mixes components w1th different numbers

of particles, The number non-conservatién'will not be

serious if the ene:gy,is a linear function of the‘masé‘numbér.

It is theréfore reQuired ﬁhat

~

Ey+2 - By ® By - Ey_.2 .
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Since"the experimental bindihg energies arekdiscontinuous
at N = 2 even-even nuclei, it might appear that this
'reqﬁirement is violated. Consider the triplet Mg~ -
Mg24~:Mg22. v fhe experimental bindiﬁg energies provide

(EMq26 - EMg24) ~-(EMg24 EMg22)' = 11.25 Mev.

”hls 1° not, however, tne rclevant quantlty.' The BCS
theory nixes COWDOnGntu of dl!fﬂrbnu paltlcle numbexr, but |
all components are basad upon the seme HF fieid.rtfhe |

'(A + 2) érd (A.Q 2) cohoonents-arefobtained by £illing up
the A partlclo HF fleld, w1thout permittlng this field to

be renormallzed Now palrlnn correlatlons are szgnlflcant
only when the single particle levels in the v1c1nity of the -
- Permi lQVP1 are closely apacﬂd. In this cas: Jt is reas on-
able to cxpnct that addwng oxr subtrac 1ﬁg two partlcles from

' :thls leOL HF field would result in similar’ energy increments,
For |T§\ 1 pairlng the relevant quantlty is

(E g26 Mg24) (mMg24 - Emgzz) = —0;976 lev,

For T, 0 palring the relevant quantity is

(9A126 - mg24"- (nw@24 a22) = =3.750 Mev.

(The fixed HF fleld is chooen as mg24 axially'symmetfic
prolate, Yale force.) ”heSe energies are con31derably
smaller than the experimental value of 11.25 Hev.
Althouch there are many who have attemptea to
1

generalize the pairing theory,” we are especially

indebted to A, Goswami for a T = 1 (p-p,n-n,n-p)
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pairing theory (1964)2,‘ A, Goswami and L.S.Kisslinger
for a T = 0 pairing theory (1965)3'; and H.T. Chen and
A;vGoéwami for a completely genefalized T=0and T = 1
pairing theory (1967)%. The latter was first:derived with
fhé‘Green's function formalisn, The continuity of our
argument will be served by presenting an alternative

derivation employing the quasiparticle formalisn,
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2". Quampartlcle ‘Transfor mation :

'1*he essential idea is to allow the follow:mg palrs

of particles to be correlated- [o(F,o(F)r . ) [o//) o n‘)

'“P)OL”>T’IA }0(/) °<F>T P,o(ﬁ) o
10117/ o’~[7> . o The conventional

2y /

palring theory permits only the first two modes. The
famil:.ar quas:Lparticle is a“llnear combination of proton - 3

(neutron)i'barticle" and proton (neutron)*hole.

Gl b wllal e

Our ‘gene'ra'limtion congsists in having the quasiparticle be
a linear cohbinatidn of proton and neutron “particles" and

holes, vTh:é extension is na’.‘tural'._!.y obtained by lef:ting
+ ’

bz and ay becone two dimensiohal vectors _
o+ 3 : e oAt , o
.EBd = [ dl} ' f)d = I(Q ap ] '
' + t v
' ar 4 . _ ' L A an v _ (4'-2_)

and by letting u_ and v, become two dimensional matrices.

Uoe (i U] s [ nen ]
B T RO LS BT

The counterpart of (4,1) is

IB:‘(}'V« -V H
E%&i H - be; L/; -

At«}, - (4,4)_
As |
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If U, and Ve are_diagonél, the standard transformation

(4.1 )‘ié recovered.' The form of our transformation
: assumés'that neutrons and protons have an identical set-'

of single particle orbitals { UX>} « Consequently

for N # Z nuclei, one may not use a HF wave function for

single particlé states, Noting that
PV T S + , +
__[”1 ﬂz] = r‘l B
.. S B + +
the inverse trénsfornation is

PN CA
: A.&: 'Vo* .U&' B’,’,’L : o (4.5)

The unitérity_conditions-are (115Z(T = I)
UgUg + Vol = 1 | (4.62)
_Uo;_ Vs + Vo Usz =0 | |  (4.6b)
and (U'U =1)
Uy U + ¢ Vg l_/;) = T o (4.6c)
.Uquo{\ # (V;fU;)*‘ 0. - - (4.6q)

Some care must be taken with the choice of phases, The

usuval convention

UJ='U°< ’ V;;—%
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st be- reJected (for reasons which Wlll later become

apparent ) and replaced by

Us=ul o Ve - AN o (4.7)
Wé ‘.5_‘dopt'.'itﬁ_is ph.a._se‘ convention for the remainder of'our |
diécu’ési’on. " (We could have chosen
Uz =U, _V;='V°_f
with equivalent reoults )

. The unitarltv CO"!QltiO“lS (4.6) beco*ne

UaU:}V:Vd _.‘

: I _‘ ,_ (4.82)
CUs Vol -VoUf=0 RS (4.80)
,_ L/JU« t Y Vi =0 -  (4.80)
U Ve - VUi so N
More. e_xprlic_i‘tl'y
2((1 ur + | P f | - (4.9%a)
Z “C,T U, T N;C,”'/\ra[,_f) oz Z:"' :
o .
z(udZT/lfo(CTq‘Aj’ Z,T - thlT) _ .(4'9?3)
2(6(“[1’ (/(O(Z‘Tl'f' N_O(T:T' A)"qz,rl)::;;r‘zrz. (4.9C)
\ | | o
E’(U«cﬁmcn~/u§m—, Ut ) =0 - (4.9d)

The q‘uas'iparticle tra'r'\sformati’on simplifies .

B&’" [V&U“ [ﬁ&] _ |
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That is-
¢ 7 ‘F' P
o Uan Uaiz ~AMai
] = Uxzr Uaxzz - Nax
bai | . .k/\rotll _/U:""- Uaui)
s | N, Naza Ua el

_ .

Af&l';
“Mwur2
Unir

Us2r

-

as
ay
Gap

L 0«/)—

(4.10b)

It will be useful to list the entire set of transformations.

Her = 3 (leer Q'r -
) T

M«CT’ d&"")

o * N
j:)arl? ""Z;(qu'r 0«1’"/’\/}27 d&’r’)

T

ot Lo ® . ¥ ’
Ea("Z(Uarra%TfA&cT'auT)

E&t'?§(6wfr0&%*A&c1’ﬂiT)

The inverse transformation is

R W A A A R I -2
[ Aaﬁ—{dd"UJ]{ |

EB&' '

The set of all co-ordinates is given below.

[
<
1

(4;11§)

(4.11b)

' (4.11¢)

S * z ,
af "g(uaC'TAZ(C f/‘rafTé&f)

? .
_}
{

9\'-!-

Z{(Uatﬁ’ Aat'+ﬂf;£7 égt)
Z,'(uxur AaZ’MC’r AA’C)V

= Z(Uacr bar _'/U’qu Aaz)

The unitar:.ty conditionc' (4.8) may also be derived from the

(4;115)'

(4.12)

(4.132)
'(4{13b)'
(4.13¢)

covmutation rules, For examole, us:mg (4. lla b) we find

[Afalcl',' bo.t, ]+ 2’ ( {,/

*x
c(‘(_’ra'(T

- r
fUALQZ‘T'/“F
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quuiring‘the commutator #o’equal J};¥1 letx) we.have_v
8 (Uppy Uer + Maest Mbn) = &
T «L,T KclT «C, T a’[;f_ : .z,
which is (4.9a), The set of unitarity conditions (4.8) are

obtained by’requiring

EA «, En.l'Aﬂ"‘_ Ll ']+ ] J,O()q’,_ JZ,CL : | (4'14—1)
Uw,c,, '5.&1 L2 ],« = 0 | | ' (4.-14b_)
oy : ) o E _‘ .o1a
[ a'o(lle abQ/‘LT'L ‘l-f - _J;lo(t I’rl T}." | | ( C)v

v = O . - (4.14a)

| '__[ta,ot.ﬂ PR 3y
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.»3s The Hamiltonian

Recalling that the ground state is a quasipartic‘le
vacuum the density matrix and pairing tensor are easily
evaluated with the aid of the inverse transformations (4. 13).

The density matrix is (o, d, Y0 )

Qg1 a‘m,1 > =

. 2
<5( a(, T, o(t +A&,£,T‘Adf)£(udfﬁédz [le'
igc"rdt'r./‘&1ﬂ<é‘<"£“15’—> |
[ X &% N .
Since <[30( t‘lgd1[1> of ) L the dens:.ty matrlx is
< Q,(,T gq 7> F Z'Afd 11 Mg, £ o (4.15)
b 1 4°(t.
: ' (O('/q,l 20 )
The non-vanishincr elements are
<ad,7 dqu /\fm; /\f&n "'Arecu /\E(u .'(.4.]..v6a)
< Q‘,‘,m Qa'n > 'v/\f:r/z /U?m. *l‘fazz /‘fa{_zz ' (4.16Db)
+ ' * :
<Q°’F acm b :/UP;:TI /U,o(n. *A/szf/‘forzz_ (4.16c)

< adﬂ q«p 7 /\ro(n. Aran'/‘/(fo(zz/\/:(u ‘ v(4'l6d)

It is apparent that
<a«F at’(f?) and . <Q an Qqn) are real (4.17)

and '
* .

<0:'F'd«n>: <Q/°:M 0‘\’F> - | (4.18)

()Y
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' Therefore the density matrix is Hermitian in isospin.

That is, if

p T (o) = /ﬂ“ dTl o N (4.19)
and - v o
,ﬂ(w': {/PF @) /ﬂ,,,,w]  (a.20)
SR "P"“ | /ﬂ,,,,fa/) » .
then I D I - |
'p_”(d) :f("‘) . S (4.21)
The elements of f? for &« <o . are giveniby_ | '

»<_Q-a-7l_ 0 < T > < a“T 0"‘7’~>  (aa22)

reSulting_in.the time reversal symuetry.

L ¥ . - |
P =/a 2), © . (4.23)

The palring tensor nay be 51milarly evaluated let

oda26 ' - |

< ﬂ:f.‘r. Qo1 > - : |
< 27 (a (Tl A& . O(,Z',T, \’t )2( Q, [ T é"( C qu,[sz ;z[z)>:

' 'F
2 ua(r T, /U:( A < é’&',’_t, A,?izz >

c,t,
The pairing tensor is v

<lgq Qo >7 2“«.fﬂ/‘ﬂz,m Fuyan ©  (222)
. t ' . ((\/U Q/l >0)

The non-vanishing elements are (of ¥ 0)
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- ¥ ot N B
K Qgzp OQup? = Ugy MNan ¥ Ugr) Nazr (4.25a)
b ' ’
<Azn Qun > = U:n. Majz +_U°<7-7— MNarr (4.25p)
_ _ o 7 : .
$bap Qun? = Ugy Marn + Uars Aaan o (#.250)

& r » | (4.254d)
<8zn Qap? = Uarz Nau ¥ Uatzz Nazl |
~Unitarity condition (14,94) for ’r 71 - '_ is
S » , A% +
u"”T’U:("lT +_:' Ugrr Nyrr © Marr Ya)r * Mart Uar 17
sothat (g, lyny 2= <lAgy Qup? 30

< Q&F‘ pr > and < Qzn a.om>- are Rea/{ . (4'26) "

I ' s i * : : - 2
Uit Mgin + ua(il/u:('u ’_/u:(/r*uauz 4 (‘IO(U Uuar

so thatv
< a}&fz RQuny = < L&y 0«/7 > - (4.27)

Therefore, the pairing tensor is Hermitian in isospin, If

T T+ (O() i Z-O(Tp ) & Ta | ' (4'28)
and |
. ' t (4) [nr(d} o (4.29)
‘ then _ |
CTed) = (o), (4030
e \
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The adjoint operation réfers only to isospinicoeordinates, i.e.

[T'T_L (0{)'— Ca(T-,_J&Tl # ZdT‘L/.“TI ’

Since the”pairing tensor is anti-symmetric.

< 00(7' GQ’I’1> = - < Q&Tx ao{’f,> ; | _ (4.31)

the time reversal symmetry  is’

T@ectw
where ' T,n(d) [} 'd71 . Tﬁé a@joiﬁﬁ'df £ﬁ§ paéring_
tensor is ' ' \ |

<@°<’r a«7>?<4&m @y, > (4.33)
-Thé:ﬁF potential is
F"(T 0(1.T = B
- (4.34)
ﬂz: <o, B Ts ’/U’lo(sz)ﬁT‘( <ﬂ/sr, 4y 7'_
¢ O
T)T«,

The matrlx elements of v are non-zero only if 7’+7; 75+7ﬁ .

Therefore.the dlagonal - iSO&pln elements of f7 are

P«.T,’o{fr (4351
,vl
§‘0<°((T /B I/\rlo( AT < QAT 0,61 7

There %ﬁy also be off~d1agonﬂ1 -~ isospin elements.

M ran

i T o e
j;<4,}ﬂflﬁd17/37 <a57- /”>

57<0
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The HF }Iamiltonian ,is"
5 = T - -t [7 | : 4.3 v
H.O(' Ti, % T T, T, T, 0T (--'37)-‘
Define

;) = Y o
HTITI' #O(Tu.of_’rm (4.38)

The matrix elements of T and v are real, Since /p (d)
: TT

is real .

H)’F("{) ., and # anl(a) : a}‘e re§1.(4.-39)

Since <0/‘P odon (Nl o(qF> = <0(1/7 (Y‘LF/AI-IG/3FJ 0/1/7>

- ¥
and ppn (o) /ﬂ (a)

an ) = np g : : (4.40)
T‘nerefore'the matrlx

' 7‘/(0/) < [N F(d) 7"f/ n(d)]

14,,,, () Monn (%) (4.41)

is Hermitiah. _
74 ()= Mty  (4.42)
Since /0 (a)= ﬁ (o() , the time reversal symmetry is

7‘11(0()’ 7,/ Coy , | (4.43)
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'_The pair potential is

Ao(’r o(,_T-,_ ,
_ S - (4.44)
g:_‘q/.‘n qq’fll,xrlpﬁ ATitg <z Q57,7
Ty Ty

For non~zero matrlx elements .7'+71 7;+7y » S0 that the

diagonal - isospin elements are

-

Zxd Tl T

s <a(.'r,o(n lAFf/gT ﬂ'r> <z, G gr>
Bre

Only protons (ncutronﬂ ) contribute to the proton (nequon)

(4.45)

‘_pair pOLentlcl A"M’,%T is Jthe /T2]~— - pa_:.‘r,
potential The T, = O pair potential is
Ty oL ”T | | (4.46)
2‘ <, T, A -Tlarlg 1! T < _ -
‘ ,S)o ] i /BT ﬁ 0 ,r} ﬁT
Define T
L -A_”f. 1, )7 Dax,, &ho (4.47)

Since '<q‘/.:.'r,e(;1‘l/xrlq/3 T, Q/,T>,§ =
2f<17 erT 27’7 <q/|o/~. T Ao qu,v.T‘>/9 =
<oz,azlr—(/ z«,o{,r—o | f“r‘:_t'/z',,
tﬁe engil;.' =1 petential is |
23 (d) = | ._" o | '. »i- (4.48)

2<ozo<7~r t/\rll/gﬁ T-I> <czﬁ7 Q,sn
B o
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Since < a - ar q 1‘> is real

App L/ cand  Bgy, () are Real. — (4:49)
The 'I‘Z = 0 potential may be reduced to T=0and T =1
components. . Consider the matrix element -
‘ ' . ! ' PN
'<_0(( T, O(L*TI/U"‘IQ(:& T /q/"/ -T >/7 =
! v A ol 1l L, .
AT i-TIToy AT A T Tor<tehTinrlescty T ) -
The product of the Clebsch-Gordon coefficients is

evaluated in the table below.

T=0o T =
) T'=7" Yy U
. ,rf:.’,r . - '(1_ ‘/'L .

Then the Tz =0 potential may be written as .

A'Ti’lfb'(a():'- |

I ﬁi:)foza T={I/\r!'pﬂ“r‘/’=l>ﬂ{<aﬂf;», 0ﬂ7>'+‘< CiéT Qg.1]

t f<q’o<7 ol/\r{/élg‘f =6 {<0— -4 Qpr 2 - (0,67 Gﬂ 77}'

Since /370 |
-<ap7f1" 0/91'7: <d,é7 0/3—7'>/ | |
Dpoy @)= 8 <«2T=lInlpp 7=0% Re(a,é-r Qpr> e
. 2 v N 5 (4.51)

4 TO,A@&TO I@<0.4@ﬁ>

The pair potential has the remarkable feature that its
real part describes T = 1 pairing while the imaginary

part describes T = 0 pairing. Let ;
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T=l -

AT"T (d) = Z(< .0( Tz //lf'//g/gT () Re < T’aﬁfr>
$r0 (4 52)
AL (a)= 5 <¥d T~owf,s,5r % rm <Qzr Qar¥
Bre | | (4.53)
then
T—' T=0 (4.54)

A ¢(o(J = T 7(o«)+c A?’T () -

: Furthermore, since

RC <d'éf0,sr> Re<a/g,’r a/g.—'T>

we have - , |
AT = 0T e
Afrf; | A’r T ) R ,:(4'5»6)
so_.tha;t_,._ o
'A-';r-,rco() 4.- ’I’T (”U g | _(4.57 )

xnerefore the matrix-

A(o() Doy (d) An(of) R
=0 [[_)F,{’P(d) A,’:n(d) | .(4.58)

is salf—adJoint.
iy ““’A(O’) T (4.59)

The adjoint operation = refers only to the isospin
co-ordinates, i.e. | » o |
, : _ x

ATy, )= G:n,m, *85n, 4T
 Since the paif'potential is anti-éymmetric
A _ =,V_A_’ ‘ _‘(4..60)
.,o(’r'}“ T & T ,&T,
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| the time reversal symmetry is
'A(O‘) = - A(d) - (4.61)

where ATITL(;) = A&’T,jo(‘f-,_.

The explicit expressions for the pair potentials are

' 3
AnP (0() < dP” (of (4.67)

L . (4.62)
AFF»("” - 3;‘7:1“1 l[,\r(,gﬁf 1>ﬂ <aﬁf’ 046? |
A i) = 6§<o(a('f‘l[/\r/ﬂﬂ7' 17, < 0,5n Qpn? (4.63)

T=1 _ - | (4.64) '
Afm () = gjuaT llﬂ_lﬁﬁ,-f 17,9 Re<Qz, Qgp? T
| (4.65) |

Apo @ -3:0(.,47 olwlppTTn - <ag, Q> B
where AFn ) = Apn (d) 4 ¢ é]fn (a) : (4..66)
and |

The derivation of these expreééions depéndsiénlyvupon the
phase choice (4,7) | -
. u& - U:' V_ "-"1/
and the unitarity conditions (4.9). No other information
‘or assumption was required. | |
' Let‘us now consider what would have resulted from the -
conventional pha.se choice. - - ' - -
Ug=le Va=-Vo o

The quasiparticle transformation (4.4) becomes

[leg[uuq/,,nﬁi}, o
Bzl | Z S I s LAz .




173

S | - o
_ The inverse_transformation-(4.5) would be

[ﬁ: = ga - Zo( } [3d ] ¢ .
Y R N R TR
The uni;arityfcdndition (4.6a) is

o o ¢ r

Ua Ve ~(Vale)” =0

' : * P '
g((/(az'rl /\fa/('ft. - /\ra;cf]’,'Uozlfz ) ,:O S
c _ , y
1nstead of (A.Jd).- The palrlng tensor - would be

‘< 0¢y11(?u71 Zf L(at:T}/4f;(C71
so that' _'< d,;F_ Gaon > ,=  < AQan Qo(,y7

The T, = Ovpaif pdtehtial (4.50) reduces to -
Doy (d) = 2'<q'o<T//\rlﬁ/e Q@7 Qur

}Consequentiy; Jfl; the conventional phase choice, the

unitarity conditions alone'forbidvthe possibility of

T.= 0 pairing, This is true even if the pair parameters

_ ére.complex; | |

»The,Hamiltonian is now completely determined.

The ground state energy is given by (3,38a)

Ho' = E.- ;\,,ZZ\MZ)

:;!27'10(')’.7;‘1/] +lr’)q{'r LA T, <ﬂ.x‘r aoc’f:_)
Uifr. T, “r,in, < T "

or by (3.38b)
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Ho' = Eo-2, 220 (A2)
:Z’(d'r/T) Fr ;\P/;/O('T><a¢'rﬁac7‘>
N?(O T
*bﬁiff ,BTL!Mldej/ZTO <md”3><a,37 a,,f,( ‘o)
T’TIT}T" '
+23;7<ao£ g M.TllArlp’r>Jlgr,>ﬂ<am(z&nx @5 aﬁ}j{
T 7T T}T‘l » : ’ S
where PT is a projection operator.,
Pas 1TOCTI | (4.70)
Hz' is given by (3.39) : | | o
' A + |
H-‘" : e(Z’o{ 7 T HA’,T.,Q’,_T«,_ N[a“o'ﬁ aq"'-'r‘-']
) 18y ¢ 0, ‘T'L _ _
* 2 Aa/.T,o(‘r N [a«' 7, d%'h} C (4.71)
Ao 20, T Th
+ Ay N [0 0 ]
4%170,7.7 4Ty T, GTtAT S
. where 74 - N’ AF PF';\"" P, - | (4.72)
Note that _
" _ L . (4.73a)
Hpp () = NFI?' ) - X, b -
Hﬂn(ﬂ’) = 7‘/17/7(“) - An (4.73}3)‘
.
(4.73d)

74:1/9 (dj': 77111/) (@l) !

I . L - o . .
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4, ,Equatioﬁ ef Motion

The pairing parameters may be deﬁermined by the

equatioﬁ=0f motion method. 'It'ié assumed that

l<cm>/1 /U'/ﬁ/B TV, !<<I<°(ad,TIN'/5/?>T>I (o, #d)
: . , (474a)

so that _ - S _ . , o
o ey e (aFdr) (4.74D)
Elements of A connectinquifferent,Spatial-orbitals

are neglected., It is also assumed that

l 74‘(171/47.1'1- l << ! #‘_’[lTi ,a/,r T ( ‘ (o, # ) (4o 75)

Then H,' is umpufied

Y

He = & H oy () /\/l:ﬂwf aun]*‘

' 0’740,7171, _
A Bg,q, () /v[zz - zz”]w,T @WN0gr, der]}
470, T T, | (4.76) |

H has the form of an independent quavlparticle Hamiltonlan

- if H4 may be neglected and if

= 2 Edl:' é):(t éallf © v (4.77)
L 44 _ o _

It is therefore required that

[H, de] %545,4’;;' e

or

[Hlllé‘zt] Edfg(uafi’)’ da"l’ /U:(z'rﬁ 7) .('4f78b)
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The commutator may also ‘be evalx.ated with (4. 76).

[Hz,k c] 2 {7‘*/77("')1/(«::7,_ Ar,ﬁ ("U/’fdcﬁ} ‘

f"

I 1

t g {477(d)U«tT1+ 7‘7[7 Af«c’h} Aaq
7. (4.79)
The time i:eversél symmetry 7L (&) :»H%(a()'and the
Hermiticity of X ~ result in ﬁ () =H(d) « Also A (o)
is self-—adjoiﬂt. Therefore - |

[FL,/D z:]- = 2 [7‘1{77("” u«cT AT. (qj/'fa’t'?'z} d o(T.
TT. (4.80)

+ gl “"W«zn*?‘/ﬁ ‘“’f"&t‘rx}.am,
T o

Com‘:»are (4. 78b) and (4 80) and equate coefflca.ents of
a d"f a.nJ a u-'f . |

2{;,17,, (ot) ua(['rl Ar.'r () w7, } Eqc L{az*r, (4.81a)
To , . -

S{Aﬂﬁ(d)(/(«LTz_fNTT(“()/U’aCT } wCM[r‘ g (4.81b)
Ta A

In matrix form (4.81) is

y”, (a) Z,/F,, o« APF(DU Bpn @) [ Uyz) ] [ Uc

7a/nF (4 #nn (z) 4 np (d) D”" () Uaz| = Eo(c Unz>

4 e () ﬂpn (of) ~ ﬁ,,f’l’(d) Z:Ifn(d) i ' Nt (4.82) ‘ ;
_O”P (o(). Dpntd) - ynp(d} “Hon Mj _.‘_/U:(t}- ' _-‘/\EW:J : _ ‘ .

- or more compactly

}3’/\ (6() A(ar)] Uc-‘.;(b():l: Ef (a) [U‘c(a{)} -
Ao -/ ) -7 (@) A |
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where o _Ec(d)‘? Eve o o | ('4.84)
Uc(a)?[uc«w} W )= [/V—«C' ] (4.85)
B ‘ U«CZ o /U’“Cz |

The result is a four dime_ris_ional eigenvalue eguation. The
. eicjenvalues are fEa,,') t Ear . ' The eigenvectors
vcorrespo‘ndi-nc_‘;,to the positive eigenvalues provide the

‘pairing parameters, The normalization condition is

'U«cll +/U¢£z‘ t M«C), qutzl =[ (4.86)
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5. Gap Byuations for N = Z RKuclei

For N = 2 nuclei the eigenvalue problem is
considerably siﬁplified. We are able to obtain a
generalized.set of gaé equations. Since‘boﬁh T=0
and T =1 pairing aré‘included, the wave function:
violates isospin cdnserVatién,:'This is:énalégous to the
‘mixing of different J ofbitals in HF instrinsic wavel]‘
functioﬁs, thereby violating ahgular moﬁentum conservation,
Both vidlations ére performed in the same spirit., If thé
binding energy may 5e increased by forsaking a symmetry of
H, theh the intrinsic state shéll be permitted'to forgo
that symmetry; States of good symmetry are later obtained

by appopriate projections upon the intrinsic state. Just

as the J deformed. HF state still satisfies <_J‘>,;° Y so

do we require our T deformed’ state to satisfy

KT>-=o0 | S (4.87)
where . T = Tx _L_ _+ TY :7( + T2 [5 . ' N (-4.88)
All components of . T arefto'have‘vanishing ground state
expectation values. o g

Y

®

< Txd = (T,>A=V<Tz>z'o | o -» (4.89)
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T%is'constraint will simplify oureigenvalue. equations.,
Since T = % Z , the iSOSpih‘operator has'fhe second

quantized form

T-h 3% <T > A%y, Qur, - (4.90)
L HT T P R o _
where ’_C_ = Ty ¢ + ’(Y J’ F ZZ K . (4.91)
and T, are represented by the Pauli spin matrices,

- O Ly = (@ - ¢ Zz = 1 0 (4,92)
. zx - ( ’ O) Zy ( -‘, O) | (O \-I) .

e <T,IZ,,ITL> are

easily evaluated the bra and ket being represented by

The expectation valué~“<’f

Pauli spinors.

(L) (o)

<pl~ (1 o) <nl~ (o 1) (493
The values.of' (22;>1_1’ are in the tables below.
. : » . ! R .
_ r ‘
N R <Z >'r.7,_ <ta?. .
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The isospin projection conservation requirement is
_ I - r =
<Tz> "'/2- 2:[<aqF adF> <aq’n Qd/; > } —6'

It is therefore required that

+

< a*qp Qq»p 7 = <a«n an.7 .

Consequently

Y (a) -, (4
#ff ?T/’” ’
The other components of the constraint are

<Tx5= % 5{( Qlp Qun > + <%y Q%)}' =0

< 7,)- = e¢/L'Z;y{<aZ(F Qun >~ <afm Q“F 7}:() -

&
Since. each brackét must vanish
Y t oy a
'<d"?’[7ﬁ£¥r7> = < a-an @v,c) =0
U Hpatas= Hoaptd) =0 -

Constraints (4.96, 4.100)1are.satisfied by

Va = [/U:rn -./u".:u,z].-
_ /'J—a’lt "/Wé’;l
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That 18 Mg S~ Mail
| *

N ar) = Nagiz -

Then the matrix V,  has the property

\

where T = (0 1).

Neutron - proton symmetry ensures that

. :,_mw(e()t 2 (‘_A,,,,‘,(o()]'.

(4.103a)

(44103b).

(4.104)

It has been demonstrated that ;1371;(d) s real, Therefore

The relaﬁive.phasegis as yet - -~ ‘undetermined.

which Willlater becomne épparent, we choose

}rZﬁﬁF(d) =~ Dy a) -

The matrix /\ (&) " then has the property

For reasons

(4.105)

A‘(«)'A’“_(ar) = | ZeT 6¢H| T = {A;F (af/+-IAP;,(a(}}’}I, (4.106)

The eiqenvaluelequation'(4.83)

ZZ? Z;l/ ] 1—/&&} & [/\fz }
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is simplified since

SN

;%z[yf ;>} - A.f[AF Apn},
. OF HH, S AF§ '4” v

(The of dependence is implicit.) ;To.determine the eigen-
- . A~ . . )
value Et.ﬁmgltiply (4.83) byv { yi A } .

o -F

8 4 2 1)
g V.S . Rk ' RS U N A S

~

2L anc.:'t. /A commute | :
[#,a]-=0

, - ' ! - :
and the two dimensional matrix A +A* - is -diagonal,

A A 1 - ) .
1 S _ 1 1
The 4 x'4_matrixlis therefore diagonal, so that the

eigenvalues are

Fll ) = EXCa) = 2. () + DL @) F10p,0d) [ |
.' : | ' 'z'/.f’f ” “ (4.107).

The positive square roots correspond to the desired eigen-
vectors., The two quasiparticles’ L,“, and é)al . are

degenerate in energy. Let

N . A A : o i

é (q,) - ;'[Ff(q/ - ﬂ”n (a{) . : ) ) (4.108)
The second eqguality assunes

Aosde 0w
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The_set’of;linéar equations

- :
- =

|(e-€) © Ap’f' VIA,rm' | Ui | |

:‘O (é-—E)'_ ,AP" -—'AFFf U£1 - 0
| Qpp A -tere) 0 e |
L Dpr A 0 -ErEN] | An]

can not be solved by the usuzl method since all cofactors
of the energy matrix vanish, Instead the eigenvectors

may be found by;inspecﬁion.

u, | Jere]l  Juu ] 1,21
Uiz | = K o | Urz = /< E +E
Nu | APZ-- Wz | B | (4110

K is a constant of"n.ot"majlization;._ﬂie two vectors are

.orthogonai; Notice that

U, = U  Real

Lhz = U 20O : R
Ay = -Niy Real |
Az ® Afir . Complex

The expresSions-for‘the dénsity_matrix and the pairing

tensor aré considerably'simplified. Let
Wt = Aagt TINa [ o (4.112)

<ya_fa[7 Qup > = <at, Q an? =A/u’d? - (4.113)
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LA%p Bun> = < ar, Qap ? =0 - (4.114)
< a&—F 'Oa’,> ==< aén Qan ? = Uapy Nan S (4.115)
< ﬂ&F Qan Y = < aa—m 04F> x < Uan Afgn, a (_4.116)

all of our :phasé conventions are self-consistent. That is,

if the set (4.11'1.) is assumé.d in constructing t‘hev ii:otenﬁials,

then .t'he eigenvectoré of tﬁe e‘nérqy mattix' will. reproduce | |

- (4.111). Therefore n6 artificial constraints have }Seen |

imposed, ,.'If the t»:r:'ia‘l.wave. furi’ciiion conﬁa.i‘ns the .s.ymmetri-es

in. ('4.-111"),_ then they will propagate t‘riro_i.igh :td the final

self'fconsistent-. wave fu‘n'cti-'on., | | R | e
| HadAwe choée‘n 'AFF(OU: +Dan 4) . wé §7duld find

that the isospin degeneracy is lost (Ej(*) # Ey(«) )

and thét the density matrix is not diagonal in isospin

co-ordinates: (Fpn( «) # 0). Since thé-coh'strain.{:_

T = 0 ,reqruires that Fp;l( x) = o, the ’choice

A (& )-=Ann(.°( ) is unacceptable,

To recapitulate, the quasiparticle tr'a'n'svformation

-, 1 - — oo - + N
b w, Uait ©  ~MNan Nan a a’,t?7
¥ o U A ‘ to
ar | = ait “Waiz Ml an -
ba Mew Norn a0 | | Aap|  (4,117)
Lb;-_z_ _/\f;z’;. Ay © Ua i Qzn 3

is obtained from (4.4) with the aid of the unitarity

conditions_ and by choosing

&:UN_, V&:—-l/a’
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The_follo&ing matrices are all self—adjoiht in isospin

co~-ordinates. n ‘
Lo = [Uuu -0 R 7 [Aﬂu /\foul"x
Ce o Uail J o : Natr Now |
/D(o() = 1/’70‘) o ’X -_-.[‘(o():[f P(,,{) %,,(d)&
ﬁf(d) e (,,,,uu pp (d)

| S (4a118)
H(d/-. [;/ ) © ] A () = [A 4) Dy nW}'
T a ) R dpa)

. The normalized wave function is .
i .

U = (14 'é_t«) /Ea))
_ ’64«.1.='t5””1 ~ |
o /7_< [ - é(d) /g(or)) (ZJF/;M)/A(«J )
(Rc/\&n)‘* I/z(!‘C(Of//E(as))(ﬁn/;(”U/d(d))
| (Im/u;(,l)l”'/; ("Cld)/f(d))(ﬁn/p (Of//ﬁ(ou)l

with correSponding expressions for the second eigenvector. -

The quasiparticle energy is

Ett) = /&%) £ A°H)

(4.120)
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For (4,119, 4,120) A () is regarded as a one, rather

than two, dimensional-matrix,
A a) = A/’/’ v {ﬁ (ﬂ)fl +{ Onp MJf C (4.121)

The final cxpreo51ono for the. potentials are

Ela)yz <ol Tlad+ 5 {<«p, pplarlep, ,g,o) #

‘Bro. (4.122)

<°(/7}/gn//\r o()?,/gn }/v’
AFF(O‘Y}:"‘Anﬂ (a) = -Z' <o T-=I/Af/ﬁ,éT=l> uﬂ,,Af,, (4;'-.1.23>

A/IID @ = A ) (@) = 2 <HaTE ’/Ar (BT 10 Upt Re Ay
] pre .
é),,}, (ot) “0;7,, “a) = 5 <ad T ’5’//'-/'//}/67’ 2} (//3,, Im ’é,l
,A)a

' : T2/ - T=e, < (4,124)
D ) = 0,1/; ) e Onp (“) R
e : ) (4,125)

Algn (o() 011,0 (4) - ' |

The number conservation cons;raint_is'

where

Z=A-2= .2,2' ,u’“l - (4.126)
: : «So S v .
There are three sets of gap equations, Thevdifferent.
modes of pairing have Been éeparated, so that the physical
interpretationvof the wave‘function is enhanced, . Thé
) potehtials are self-consistently determined, An initial

guess is made for thé'pairing.parameters.' The potentialsv

may then be
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éaiduiated, ané'a new set of pairiparametersv(consistent
Qitﬁ'nﬁmber’cbﬁsérvaéion) ié ééﬁﬁutéd. The pfocedure is
continued‘until.convefgéncé is échieved; iTﬁe existenéé
oxr absenée of a paftidular pairing mode represents a self-
consistent synmetry, If the occupation probebilities

'corre pondincr to one mode {N:m (Re/\f ”_) , (Im ,2_) }
[-°4

- are non-zero (zero), hnn the palr potenulals correSponalng

to that mode {Al’f(d) A 17 (q) [)nFO (a) }  are non-zero
(zero), and vice-versa. If the trial wave function
excludoo a partiCular mode of pairin » then so will the
flnal qelf-consiatent wave functlon.

The palrlnc parameterO may be ellninated from the gap :

equatlons. From(4.110), we f£ind

Uozu v/\r«u = - APP @) /2 E(,d-) |

,» | L T= e S T
"C{a“' RC /u;ll - ‘-Anf (o) /Z E (o) . (4.127)

(/au Im NMNarn © ’ﬂz;o(o(/ /'ZE'(o(),

Substitute these expressions into (4,123).
' - - ‘1

AFV () = /zgz?o{ogo( T= I/N'I/g/g,r Pf(ﬂ)/[(/g)

o ’_’

DBap F )=t ,9Z>50(0\.T . (mlppT=0 4 ”/’ <p)/E(/6) (4.128)

T 0 s
Onp” @) --’hﬂé}'uuT OIN‘(ﬂﬁT =), 0,,,; ") /£B)
The PP andvnp (T = 1) gap equations are.formally

identical. ’Conséquently if the trilal Qavé-funétion is such

3 r=l : :
that AF?(d)AﬂnFau=r~ ¢+ then the final wave-function will
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‘have the same p:roperty. Choosing . AFF énd A,LP “in
any ratio such that (ér=4) 2 (APF) +(A”P) is constant
leaves the quasibafticle energies, the density matrix,
tﬁe HF siﬁgle'particleeyergies“ and the binding enercgy
invariant, ¥For N = 2 nuclei, therefore, generalized
T=1 pairing is not really a generalization;

Othér works<have_approximated»the pairinq matrix

elements by . a constant,

o T éz[Ml/g/é'fél%_ = -Gy

- &,

L«x Tzola g A T:b_?,y

The gap equations are then considerably simplified.

-AZ;(d) - z 4,,,, (ﬁ)/zL(ﬂ)

ﬂ?o_ )
T CATE
Oy @ = G, Zz.ﬂﬂ,,' /2 eip)

If G, # G;, it is energetically favorable to disperse the
particles entirely'into the pairing mode with the larger G.
The pairlpotential for the mode with the smaller G is |
identically z@rp.‘ If_éo = Gy, the pair potentials may be
chosen in arbitrary r;tios without affecting E,/D, é , Or
Eo’
The expressions for the ground state energy (4.68, 4,69)

may be simplified, Since 'lﬁff(d) = [, (a) and

CBlap Qup? = <@Ly Qur>
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3 F«'f jar K Qlr Quy > = 2y () <l Bap ? -

‘ pp (4 :-4,»,; (a)  ana <CZ,‘;/_,£Z 2,,7‘

—<at, 0%, so that o
Zﬂx-,dr <0—urﬂur>

rlnally Apn <) = A”F | o and < Q ap Q & n > =

<a,,ﬂ CZ:,I,7 and

2 Zka'r»g,«f.<a:(Ta&"T>
T 4

Similaﬁly‘ A

ZA,DFW <@hap ¢ A'zp?:

n

‘2 P\f {A:.ﬂp(d)< a :/) 74 :TF >f =

Z [A'IP’(*/Rf <at"‘laz’lp> - A/)P<d) I/n <a:(n a t’clp >f ‘
Collectlna terms we have -

He'= EondA = 2 { T. <ou—;\+/l <«})
“ZZO( o PF SR (4 129)

2' (APP(“) ['(aul/V;(H "’An[; “) udl/Rﬁ'Aﬁu'L *d/u (0() Ud,} If”/w;’lz. )}

or “,'7"

H“EO A= z{z <xlT ,wma

2% B |
53 ff"‘”ﬂf””"*ﬂﬁﬁ s, ﬂnw«m@m%u |
«gmwa Tl BA T, Usu Nay (’{/su M t |
dé:fo(ds T= //Af‘/ﬂﬁ r /)/7 .Udl/Re/u;,L U,g,, Re /(\3:;1123?
| 57,:0(07 T:OIMI/QF T=oy Ueu _Im e Ugit Ln, /U/;/z- }
where DA |
A ;"1:1’: An - (4.131)

The energy correspondlnu to the various modes of pairing

is readily identiflable.
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6. Canonical Representation

The representation for which

and , ~ ' o ' '
' (4.132b)

t«ﬁ = Ca&"tf&/g}
is termed tﬁe canonical representétion. Cur geﬁeralized
pairing formalism results in a diagonal density matrix, but
the paifing tensor is a two dimensional matrix in isospin

co-ordinates,

/%‘ﬂ/.dl 7; ] .°<IT| 2 o Tl

q,’LT; . _ _ O(,_T . . _ _
o7, Ap _an P AN ERAN KP an.__Xp 440
dr’, /ﬂp,a(d)' ‘o o - © : | . a‘F ) o El’("” CF”(O()
«n O @ © ) : dh o © KP/) (0() —CP (d}
-nle o o /aﬁ,m) - &n | F"(“) [ﬁ,(d}o | °©
where |

2 ) . '
/F(’ (0(/ = Aj;” '!’ I/‘r¢n__{ - CFF (d) = c{dll Mﬁll

: ¥«
ZF” («) = 'UO(” /t);(ll
The cénonical representation is obtained by‘finding a basis

in which the matrix _
(:(o(} = IKPF(J) Clyn(d)]
Lon a) ~Cppia)

is diagona2l, The elcenvalue equation is

Ca) Cta)aLe ) C i) -, (4.133a)
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S @ L, (a)][ ] Z(o«)[C} |
v : PP ’ (4.133Db)
- [C,,,, () —C/,/,(o() Cq L Car | 3}_)

The eicenvalue are glven by

\(C F(d)’[c(d)) | C’ (’() I-;_O  (4°134).
L [,/,,, (a) »([,,/,(a}+l“c(d)) o -

80 tmt "Z («) ZF/, (a) # /5 ,,m)l ' (4.135)
Dafine L{ L(““ . o - -, _’ (4.1.36).

[ﬂfdl; f”(Afom_'l-]

e % A
The.eigenvgctors_are._ o - | | : :
{(Zc”‘}= [ﬁC«: Con }K.a'“F 1 Vv o S
BN .,J; Ckx_ R _,‘?fl?az
where X Cul N K [ZFP("” F Le(a) } O (aame)

) Cun b (a) '
The_normaiizea vector is
Cor = [E G mararn 1™ |
. ‘v(“ : [ ! (_m;-’, /) —J’h_ ‘ -_L‘_G . “ (_4.140_). _
whére e = Tan (Im v 12 / Re vqlz)
et Z'é,',.("‘_) = ““’U—et o aa

then [ 13 and Jw2> correspond respectively to the

eigenvalues + t (x)  and =-t_ (%), The eigenvalue .
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equation for the time reversed space is

Since t(@) = -t~ (a) , the solution is’'

g'(;(_). = _C_v* (d) | | (4.143)

| Zc(o?) . - Lela) (4.144)

o [Q’}_, ]2 {Cm C; 'Ha,}?] - (4.1'45)
2% Co{?_."cdll a_fofn_ .‘ N

where | /.}07 > l’an'd .)& ’L) correspond reséectngly to the

eigenvalues —tc'(,o() and +té («) . 1In this new single.

particle basis t («) is real and has the form

1)

L ) [ ¢ (o) ’X o (4.‘-‘;’146)_

o ~Ldat)
L x) = _f(t(a(_)f | .' o g | (4.147)
Since tij(a()- =t i, 21 (seec 4.28) {:he components of

the rotated matrix t(a) have the meaning

A [c.('a(): {Cn () ::'Eo‘.lla—"'

[zz(o() = "[az,o’c 2

Also tij .(g) =tz i, o3 (see 4.32 ff) so that
Leca) = {— Lu(x) = ~Calur .
[7.'7__(-55)' = [071/«7-
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COnsequﬁﬁtly‘the pairihg tersor has the canonical form.
[‘(,_Cn ; %2 Ca '

OS] Al Ri- A2 X2

ol | e Lia) © o |
) o o O -Liw

a2 | e e Lw o

Since fp(d)"is diagonal and doubly degenerate the density
matrix remains diagonal in the rotated basis with the

: v s S
‘same representation, ' '

/(d)«. Nat o - (4.149)
o o N ' o

fherefore the new basis does indeed furnish the canonical

representation,* Cénsider‘theHVarious limiting cases.
a‘) ' ’TZ , = , P'Q:ir)'nj ( Mql?;. :O,)- (40150)
Cu( =f g '
'Cai =0
' :‘CQI B J’/L o
JO’ e
(4.152)

.C) E T"l | a.lf: I(/U:xrl 4‘/15_«:1 = Ke“‘l)
_Czn = [ z (177 ) ] ' o
Car = [ 3 (l-f|/'?f ) ] A
| 4,153)

</u:cu ‘R( '/‘rou‘L": O). ( =
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The density matrix and pairing tensor may be reproduced

by a new set of quasiparticle operators,

.1::: = Ua Q:nv‘/tf« dz:
Lha < 'L,(a Qo + Ny Qa2
vbzltlﬁ 0t,+A& /"

Maa~ ~Ne /.

Therefore in the canovical rgpreuentatlon the ground stdte

(4.154)

wave functlon

‘§o> T éon_ bal é)o(( éa’l o> _ (4-.,15.5)'

oo
assumes the faniliar BCS form.
— (4.156)
(225 = 7y, Nqazzaaz)wﬁma L ek )e>

d’?o

- Bvenif T = 0 and T = 1 pairing co-ekist, so that the
6ri§iha1 pair parameﬁers are éomplex nﬁmbers, thevarouﬁd
‘state wave functlon my be exoressed in terms of a special
quasipartlcle transformatlon with real pairlng parameters.
The single partlcle basis, however, may contain complex

coefficients.

With the aid of (4.138, 4.145), [ $,5 may be expressed

in terms of proton and neutron states, Notiné that
2 “ _ '
Cc(; “lxvr T Aan //‘I;t
z(dt Cu’l_ = Motz / MNa

and using a’; 'af;‘ 109 =0 ¢ We £ind



| ’§o>$ 7T {(/(ou( ( Uuu 1"/1}_({ ﬂ vp raf
Af:xn ﬂazn ﬂ’an f/lfécll &qu'on *Af:zﬂom d/off)

o+ (*/U;fr HNainl®) a:p 8 an dfr,: adalio- (4.157)

([_§,>3 is nofﬁélﬁZed,) Note ﬁhatbthe'waﬁe'function contains
ailbpaifs of‘pdrticlee for which we wiéh tolﬁefmit
correietions. In addition tnere 1s an o - partlcle tern.
This should not however, be regarded as a genulne 4
particle correlation. The-coeffic1ent of th;s term,is not
an'independént parameter, Even if there iscnovneutron -
proton pairing (‘NIZ = 0) the o« - pérticievterm. |
remajns}; That is;.the:conventional [T>K = 1 pairing
theory contains the same conoonent in its wave functlon.
Flnally our conclusion Lhat our wave functlon may be |
expressed in the usual BCS rorm demonctr teg tnat the
"4 partlcle correlat;ons“ are fictitious. l |

In conclusion we recall that elements*of>74 and A
connecting different spatial orbifals have been neglected
(4.74,'4;75). This is the same approximation encountered
in the familiar écs_theoﬁy (3.51, 3;52). The discussion
following (3.52) appliesvhere as well, Since we:have
expressed the generalized-wove functionvin the BCS form,
section 3 6 concerning the Hartree - Bogollubov equatlons
is dlrectly applicable. Thereln the reader will flnd a -

,formalism_for'which approxirations (.° 4, .;75) are not
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required, as well as some reflections concerning the

choice of the "best” single particle basis.
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7. Generalized Pairing in the 2s-1d Shell
The cenerallzed palrlng equations were solved for the
N = g even-even nuclei 1n tne 25-ld shell, For experlmental
data on theoe nucleil the reader is referred to IX.7. All
.4F soluuxona rbvorted in Table 2, 15 were r;ed as oingle
partche-oases. The solutions to thb pai rlng equatlops
are lloted in Tab’e 4;1. The energy gap for elementary
excn.tatlons, E(l}() fE(/_J,) o, J.L:-i calculated with « and

ﬁ% -beiné'ﬁhéitwo le?elé éajaééhélto.the Fermivenergy.
1f thére’is no.re%drdering of levals, in the'limit of
- weak pairinc E(«) +—E (/6) then ecuals the t“‘gap. The

moments of 1ngrL1a and ”dhnﬁoTe moments are glven bv

(3.119, 3-.120)-
NeZO

For all forces the lowo st prolate state has a.large
HF qgap, thereby excluding pairing correlations, |

| The,asymmetric state permits pairing (T = 0) only
for the.Yale force,

The other higher lying states do not.have physical.
relevahCe; although éome numerical oddities may'be.of
interéét. . 8ince the single particle energieé €(x) are
dispersion dependent».an inveréioh of the HF level
ordering may occur (oblcte,b&osenfeld 2, sée Table 4.,1).

Since the pzir potential is Qlfferent for each oroital
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it may happen that the smallest quasiparticle energy
does not correspond to either of the orbitals adjacent
to the Fermi energy (asymmetric, Yale, see Table 4.1),

The. result for.Nezo

. therefore, is that the physically
relevant HF wave function is stable against both T = 0 and
T = 1 pairing admixtures,

Mgz 4

The a«ymmntric HF state does not admlt palring
correlationq for any force. .'v o _

The.prolate HF state with Jz'é'%, 3/2 occupied
orbitals favofs-le.d éairing”fér all forces, The solutions
ﬁo the pairiﬁabeauaﬁiOnw are in:"ab1és'4‘?~ 4, 6. The HF
wave functions dlsplayea smnll HF gaps, wvhereas tne
correSpondlng two quas;uart:cle energies are substantlally
larger (Rosenfeld 1, 3,06 and 5,42 Mev; Rogenfeld 2, 1.48
and 5.73 Mev: Yale, 0.46 and 4.99 Mevs KDKB 1, 1.64 and
5.15 Mev; NDKB 2, 2,11 and 5,08 Mev). Although the
.deformation parameteré.are‘not significantly altered, the
inertial parameterf'is considerably larger (0.0S to‘o;26
Mev'forb-Yéle) ang is force indépendentv(O.ZS to 0,29 Mev).
Since the cranking formula is expected to overesﬁimate
%‘71“n we are invréasonable~ag£eement with experiment,
The binding energy‘of-the prolate state is now comparable
ﬁo that of the asymmetric state (=132,333 vs. -133.144 Hev

for Yale). 'The energy differvence between these two states



iSnegliéiBlegxm@ared to neglected correctioné to'the‘
binding energyv. T = 0 pairing corfelatlon= Have )
therefore_eiimineted all of the deficiencies of this
Prolate HE vave fonction. The reeubﬁs.of this calculation
have been‘reoorted 6, the one diLference oelng tnat the
publiéhed alculation 4id not use OCCLDRtlon deoendent
single ?artlcle enercies; o |

All oblate states contaln T = 0 palrlnq...HOQe§ef;.
.tneae are not pny81cally re|evant °1nce s < is prolate
in the i vrin51c frawe. bpso-:emarkable, neVertneleae, are
the two oolate solutlons for the Yale force. The pairing
energles are —l*.012 and ~i3.866lﬁe§. ‘Theainertial pafameters
are”considerablv ihcreésed'(0.0lkto”O 47 iev and 0.10 to
O'SS'EeV)) So is the enevoy Lor'c1ewent3ry ex cctationo
(o, lO to 5,54 Tev and 0. 92 to 6.05 Lev). Although HE
preowcts theee oblate states to be 3 3 and 4.7'Mev above
the pro’ato ctate, the paired oblate states are only l.4
and 1.5 iev aoove the paired prolate state,
| '3128

Tne lowest oblate state is stable against pairing

RS AT

admixture~ for all forcbs. ' Since the intrinsic state
is. oblate, and the lowest HF oblate state fails to
explair “he energy spectrum, we may reconsider the highef
1vme oblate States,‘.Most of them ehow reasonable>enefgy_

cap: induced by T = 0 pairing,
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'The_low lying prolate state displays paifing
(T = 0) only for the NDK3 1 force. | | |

The spherical states contain bbﬁh' T=0and T = 1
correlaéions. The small deformations arise because pairs
of nucleons can not be ina T = O, d = 0 stéte‘ The
‘T = 0 pairing force has the effect that v m F va ,b
Ejm # €jng (m # m' ). Therefore a fully self-consistent
calculatibh in which pairing and HF degrees ofvfreedom
are allowed to V¢ry simultansously can not reSth 1n a
T % 0 paired herical state. It may be of interesk,
nevertﬁeless, to preqent one of these cou01ned T f 0 and
- = 1 pairing solutions (”able 4.7). Note that for some
orbltals T %'O palrlng is more dominant than T = 1 |
pairing, ﬁ%il_ for other orbitals t%c roQbrsc'1°“true.
Yet bOth ﬁQde< contrlbuce in all orowtals. Also notlce
that Vall = Re lez. and A,pp(o( ) = A T 1 (o )e

53‘2

The asymmetric state does not admit pairing correlations.

The two oblate states with Q,,< O (Rosenfeld) ' ——

contain T = 0 pairing admixtures.

‘The oblate state with Qs ? O shows strong T =0
pairing with the NDKB force. In the HF approxiﬁation,
this state is well above the prolate state (6.0 Mev,
NDKBAl;'7.2 Mev, NDKB 2), whereas the paired wave functions

lie nearer to.one another (2.6 Mev, NDKB 1l; 4.2 Hev,
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NDKB 2). For the Rosenteld forCL, however, this oolate |
state doos not admit palrinu. o | | |
; The prolate state is etatlliyed by T = ‘ 0 pairihg'
for all forceu. . |
If the HF asymmetrlcvwave function can not exnlaln
the 832 spectrum, then several oblate and pro]ate 9tates,
‘stabilized- by T = 0>pa1f1ng,.may now be consxaered as
candldates.' - | | | |
| Ap38
rNeithervtﬁe oblete netltﬁe ééynwetrié-etéte eoetaiﬁs-
pelrlna correlatlono;' Since the e state" have a.small .

1nert1a1 parameter they do not corfesoonn to the pnysically -

relevant 1ntr1nolc qtate.

T = O pairing correlatlons alter the properties of the
prolate sLate."For all Lorceu the 1nert1al parane cer is
con51derably 1ncreased (0,20 . Lo O. 85 rev, Rosen;ela 1 |
0,22 to 0,69 Mev, Rosenfeld 2; 0,14 to 0,39 vev, Yale:'v
0,06 to 0,77 Mev, NDKB 1' 0, li to 0.56 ”ev; NDX B 2). Since
Ayldis so large the exc1tatlon energy of the rotatlonal
states might be greater than that of the vibrational states,
The prolate statetwith.T = 0 pair correlations may
therefore_expléin»the vibrational character of the Ar36
spectrum. | | |

The’binding energy of the spherical state is

'substahtially increasednby T=0 pairinq,'so'that the

prolate and spherical states have nearly the samz energy.
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Even if T = O correlations are rejectéd for a spherical
state, recéll that [T, | =1 correlations lower‘the_
spherical state by 5 lMev for the Rosenfeid 2 and Yele
forces (see Table 3.10), For the N'KBIforce:thé
spﬁericai andvprolate'HF states are only an:Mev or less
apart.i The conclusion remains that the spherical and

prolate states are nearly degenerate. Perhaps they are

admixed in the physically relevant intrinsic wave function,

We conclude that T = 0 pairing correlations are

significant in the 2g -~ 1d chell, In particular, axial

24 32

symmetry is restored to Mg and 8§ , an

0,

an explanation

. g . . . ’ : 36
is provided for the vibrational nature of Ar~ .,
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Teble 4.1: Generalized Pairing in 2s - 1d Shell (BCS)
(Muclews  Force  Shepe . Mode  Epp o Epgmy o %o %o A + By
‘ Ne20 Rosenfeid_.l Oblate T=20 ,-5,_032 -40.857 . '-1;.7 - k.0 0.95 4,34
o o 7 L. Prolate2 T =0 -5.500  =41.297 3.1 . -47.5 0.37 . 4.91.
Rosenfeld 2 Oblate T =0 ~6.737- -30.898 '-5,3 N 19.4 0.75 3.8%
: Prolate 2 : L ' - . .
- Yale ) . Asymmetric T =0 -4,963 -97.210 . 3.7 | '-hs.o : 0.52 L6l
. . oo , ' o o (k.s) 243.4) éo.zl; :
_ S : , . ' _ { 6.0) 0.52 ’
Spherical T =1 -6.490 -95.518 - © } 0. o 3.45

€0z -

For the a;ymmetric wave funct;on (sz),»(guz, th):agd_(Ay, AZ) are given in parentheses.under,on,,Quo,_and,Ax;i



Teble 4.1 (continued)

Nucleus

Force

Shape

Mode -  E_ . E

PATR TOTAL %0 0 X o " By
M'gZLF Rosenfeld 1 . Prolate 1 | T=0 -3.985 -95,027 15.1 -0.9 10.25 5.42
Oblate 1 T=0 -5.545 -93.480 -12.5 51.9" 0.30 5.59
Oblate 2 T =0 ~3.511 -92.037 -1.8 104.1. 0.17 4.20
Oblate 3 T =0 -5.513 -91.696 = -9.2 28.2 0.46 L.57
Rosenfeld 2 Oblate .l T=0 ;-5.083 : -76.855 = -12.9 38.4 0.38 5.39
Prolate 2 T =0 -6,024 ~77.392  15.7 -9.k 0.29 5.73
Oblate 2 T =0 -T.478 0 -7k, 168 -11.6 52.9 0.30 6.01 e
Yale " Prolate T=0 -6.308 -132.333  19.1 -6.4 0.26 4.99. f
Oblate 1 T =0 -11.012 -130.904 =~ -1k.5 43,7 0.k7 5.54 . g
‘Oblate 2 T=0 -13.866 -130.79L . - -13.0 Lo.2 0.58 6.05 h
NDKB 1 Prolate T=0 -6.226 -110.133 . 16.1 110.0 0.27 5.15
| ' Oblate T=0 -6.404 »107.585  -11.8 30.4 0.39 k.25
ﬁﬁiﬁ 2 Prolate T =0 | -4, 763 -115.883 '22.9 1.1 0.26 5.08
Oblate T.=0 =T7.485 -16.7 38.0 . 0.41 L, 74

~111.540

0z



 Table 4.1° (continued)

Nuclé\is Force ~ Shape © Mode' = E

| patR - Pforan - 20 . %o o A
61%°  Rosenfeld 1 Oblate 2 T.= O . -1.90% -150,019 - -0.5 “4.3 - 0.26
SN ' o Oblate 3 T =0 -3.661  ~147.091 - 0.2 105.5- - 0.17
Rosenfeld 2 Oblate 2 T = O Lo=b.870  -122.752 . 0.2 114.0 | 0.18
' Oblate 3 : , o . _ : .
Spherical T=0+T=1 -5.011  -11%.900 = 0.1 : 0.5 31
" NDKB 1 _ Prolate . T =0 : - =5.431  -139.625 T17.00 - -58.4 0.26 -
~Oblate 2 T =0 -11.426  -138.327 . - 0.03 -87.4 0.35 J
Spherical T=0+T=1, -2.982  -134.395 0.k - 1.0 9.9 d
NDKB 2 - - .Oblate2 T =0 ~[ﬁ;7.904 . =139.361 ,'-0.3 . =123.0 0.26
o Spherical T = O -2.581  -135.621 - 0.3 . =L.0- - 8.2

502



Teble 4.1 (continued)

Nucleus  Force Shepe - Mbd¢  ;‘. EoaTR | ETOTAL on, QAO
832 Rosenfeld 1  Oblate 1 T =0 -1.009  -212.882 -1.5 k.5 5.
: Oblate 3 T =0 6,148 -209.457 ~7.5 -61.7 5.
Rosenfeld 2 Oblate 2 T =0 -5.481 -178.331 1.4 "-108.0 6. |
Prolate T =0 -5.743 . -175.347 9.7 - 40.9 3. k
Spherical T=0+T=1 -3.818 -173.943 0.1 . 0.7 L, 1
Oblate 3 T =0 -7.498  -175.353 “9.5 - - -64.8 k.
Yale Prolate T =0 =h.753 0 -223.764 15.5 - -68.5. . L,
"NDKB. 1 Prolate T =0 -2.TLT -178.880 - 13.3 -43,8 L,
. Oblate T=0 -7.392 - -176.238 ~8.3 3.2 b,
Spherical T = O -2.975 -173.78% - 0.3 -0.2 2.
NDKB 2 Prolate T =0 S -2.164 -182.091 17.9 -61.6 5.
. Oblate T=0 . -7.862 -177.852 -10.1 101.0- L,
Spherical T = O -3.545 -174.096 O.k - -0.2. 2.




Table 4.1 (continued)i
' Shape Mode EDAIR Foma ’:'AJ'C'
Rosenfeld 1 Prolate T =0 -3.108  -277.243 1.0 0.85
Spherical - T =0 -3.562 = -277.3L4 0.4 23 -
Rosenfeld 2 Prolate T =0 . 73.732.‘ -236.@36 _ 4.8 0.69
Spherical T=0 -4.003  -235.783 . .0.8 7.9
Prolate = T =0 .3.392 -287.096 . 6.1 09 %
Spherical T.= O+T=l -3.931 —2867h57w' 0.1 285--: u
Prolate T =0 - -2.663  -223.562 b1 C0.77
Spherical T =0 - -2.023  -223.343 0.1 2
. Prolate T=0 . =3.556 -224,540 7.1 '07.56_ o
Spherical o o -

ALl energies are in Mev. QLM

‘ T
has' units of fm .

L0z
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(a1l level numberings are with respect to level ordering within sd shell.)
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Levels 2 and 3 exchange position, .

vh = l .

E3< E ; E,. In parentheses are (sz), (th’
300+ 1terat10ns.

Levels 2 and 3 exchange, b and 5 exchange.
HF gap 1ncreaoes toVZ Mev, ’
Levels lvand-z exchange position.

Levels 2 and 3 exehange position,
2 2 2

Ea + EB = E)+ + E5 °
284 iterations.
251/2 below ld3/2 Eh + EB = Eh + ES.

At pairing cutoff,

Quh)’ (Ay; A

vy = vz = 5 = 1. .
All sd levels contrlbute equally to EPAlR
o twice as la.rge as when F:;P(v ).
298 iterations. : .
Level order is 2, 15346 , Ed+EB' = E-3+Eu.
LevelSZS and 6 exchange. Ea + EB = E, + E6.
VJ+ > 'V'3
Ievels 4 and 5 exchange.
ld3/2 bealow 2s1/2
ld3/2 200 kev below 251/2’ equally occupled

No pairing for s (v . 251/2 lowvered by 9 Mev.
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Table 4,2: Prolate.Mga;* (Prolate 1, Rosenfeld 1)

() -19.500  -15.045 211.738. -10.184  -6.343 4,011

(ImAJ;.;)t(-)o.993 (+)0.798 (+)0.189 (-)0.013 (-)0.002 (-) 0.005
T=0 ,
A np 4) 0 0,987 -1.930 -2.363 0.793 . 0.618 1.357

Ed)  5.970 2.403 3.016 3.519  T7.295 9.697

Table 4.3 Prolate'Mgzu (Prolate 2, Rosenfeldi2)'

€&) a7.9%0 -12.28% -10.303  -7.02k  -5.318  -2.625
(l;"_':fv'l)?(:-)o‘.988 (‘+)O’.'66'5" -(+)o.3'21’. (-)o.015 '(-')o..'oo5 (-v)o.‘008
Bap () 192 -2.551  -2.832  1.087  0.83L  1.538
E td) 6.716 2.703 . 3.03% . Lk.,501 6.130 8.900

Table 4.4 Prolaté Mgzu (Yale)

& (a) _-1&._646 -10.103 -8.171 = -5.536 | -h.273 0 -1.611

Impanid (-)0.968  (+)0.693 (+)0.306 (-)0.02k (-)0.009 (=)0.007

AI‘” tx) 2.087  -2.317  -2.288  1.166 0.956 1.225
f | L _

E(A) - 5.895 2.512 2.482 3.782 L.9sk 7.622

' T2
)4'; /\ro(ll = Re/\/""l‘l-:al’[’(q} -.:v anff(o():o ]

The sign Of»;T,n /(ﬁ;(i is given in.parentheses before (I, Naig)t.

For prolate'Mg2

: ud'll 2o
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Table ¥.5: Prolate Mgz“ (NDKB 1)
€cd) . -11.373 .40 -h.822  Lh.286  -0.685 1.638
(I_’:f"“)  (-)0.975 (+)o.76 (+)0.185 (-)0.079 (-)0.011 (-)0. 0Lk
Dnp ¢4 1,589  -2.061  -2.160 1.1465 1.236 1.998
gLa) - 5,051 2.366 2.78k4 2.720 6.021 - 8.455
Table 4.6 Prolate Mgzl" (NDKB 2)
5““)/0_ Co. C13.h77 0 -8.b1T 0 45,186 -2.756 0.739 3.65k4
(IT': “f‘) ~ (-)0.990 (+)0.810 (+)0.173 (-)0.022 (-)0.00k (-)0.005
Oap (&) 1386 -1.930  -1.98k  1.258 1.013  1.558
£ (%) ‘ 6.716 2.457 2.620 k.327 7.702  10.665
. " l -
For prolate .Mg A/:m x Re qu,,l < AFI’ d,, (a) = O
The sign of T, irs - is given in parentheses before (Im /u',“z)

(/(atl ) 0



Table h.7: Spherical S12° (Rosenfeld 2)

Im 5/2 -3/2 . 5/e1fz  s/zsfe-  3fz21/e  3/z-32 0 jzife
E (&) - 1h91k - 14,928 - 14.926 - 10.911 -10.835 - 9.630
MNat, | 0.251 0.402 0.167 . v0.025 0.018 - 10.007
(Re Ay} 0251 o.koz . 0.167 - .0.025 10.018 ~ 0.007
(Tmpan)* () od0  (#)0.133 . (#) 0.557 () 0.035 = - (+)0.093 (+)0.035
Myt : 0.912 0.936 0.890 . 0.085 -~ 0.129 . 0.0L8
APT'P(O() - 0.7L5 - 0.728" - 0.689 - 0.736 -0.707 - 0.575
,l)nr;l (o) - 0.715 - 0.728 ~-0.689. - 0.736 -0.707 = 0.575 ,-
_ nrf;.o(d) 0.915 =~ 0.420 .-_j' - 1.259 N 0.870 -1.617 --1.335

E (&) 2.402 - 2.280 - 2.547 - 2.k38 2.834 3.658"
The sign of Im Alwiz. 18 glven in parentheses before (:Im A i) 1. rus R’en;/t/*m"z/» Uay 2 O .

. T12
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820

“f

X ( Uy - Aau,aqm a «n#yU;,z ?, Ef)/o>,
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V. THE GENERAL QUASIPARTICLE TRANSFORMATION
1. >Intréddction

A‘satiéfaétory theory of self-consistent fields

should allow the Hartree~Fock (HF) and pairing degrees of

freedom tQ interact with.ona another. = There are twd'methods
byzwhicﬁ‘ﬁﬁiﬁ may be accdmplished..} -

The pairing theory has'beenvdescribed,by the special
quasipartiéle transformation, Unless Special.careﬁisAtaken
in thé,éhoice of the single particle orbitals [« , the
fOrmulatién is equivalent to- neglecting elements.of the HF
and pair §otentials which cdnnect.differént spatial

orbitals, It is assumad that_.

_ < — L | |
I<apT I/‘vf!o(plz,_,l << (<o(/6T/Arlo(/§ 721

-. ,v<o(;‘."rlzxr/ﬁ~ﬁ T, [ ¢« [ aTinlpp ) ’

where 4 + 4’ » For reasonable forces there is no a priori

,feason to-expect that these assumptions are jUstified.

However if the single particle bésis is judicilously
seiected, these"apbro#imations need not be‘made..‘The
appropriéte formalism éonsists of coupled Hartree-
Bogoliubov (HB) and BCS equatioﬁs. It may bg derivedﬁbY'
eliminating the»térms in the Hamiltonian which create or
anniﬁi;ate two quasiparticles, A further rotation in’

quasiparticle space is required to diagonalize the terms -
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containing one quésiparticle creation operator and one
quasiparticle annihilation operator. The HB eqﬁations
have the disadvantage that the HB Hamiltonian is a
functional of the orbital [ o2 . Hence they can not
be solved in the-usual wéy.{‘

Tne general Gua81p1ru1cle transformation prov1dos‘an
alternatlve, but equlvalent deucrlotion: Instead of |
féStfiét{nq'the transformation to a linear combinétioﬁ

of a+ and a_
o o

A o = Uy ﬂ "N Q5 - . . | (special)

we permit each quasiparticle tolbe a linear combination_f

of all particlé'éreatidn and annihilation operators.
b g ‘ e
Z:(ngf Q f.+'V25_a,) N s - (general)

Although the sinplic1ty of the’ soecial transformatlon
appears to be dlocarded thereby renderlng the 1nterpre;atlon
of the wave function more difficult, we shall see that the
general transformation may be described in terms of the
special, so that in fact, no.ease 6f interpretation is
lost., The resulting Hartree-Fock-Bogoliubov (HFB)
eQuations are a natural.generalizaﬁion’of the HF eQuations.
The HFB equations are easier to solve than the HB .
equations, Also no additional rotationrih quasiparticle
space is required, The generél transformation provides
the more elegant of the two‘fdrmulations of the pairing

theory.
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2. Quasiparticle Transformation

The general Bogollubov quasznartlcle is given by the

most general llnear transformation

"

.B+L',"= 2 (ULJ 0,*- i‘“ VLJ Q ) o | (S.Ia)
L,L'j‘ 2 (ULJ f‘ VLI a ) L : (5.1b)
: J ’ .

or b .X.\ X v X [ *] | Aﬁ - ‘(5{2)'
| { é | ' T 2 i; 'v. . e

where - a and b are N dimensional vectors and U and V are
N x N dimensional matrices. Since the transfcrmatiOn is

required to be unit?ry, the inverse: trans sformation 1is

{@*’_[D”‘ vngl | s

'QX? violiel y

or 22( L/L, o VQJ be ) S (5.4%)
2: (LJLj t bﬁg Le). | (5.4b)

The unitarity conditions are( Xx¥ = 1 )

IJU*+VV*=I.' o (5.5a)

U’l}’ +H|/1_A]/, = 0 : | ' (5.5b)
and (x*' x =1 ) - | -

utu+w*tdt -1 | | (5.5¢)

(5.54d)

UV )t =0
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That is | | |
?-(UL.I-LJ‘:J' + Ve ka) ; gt.k' o (5.§a)
%::('L/"J"V"J': ’L_Vc‘j' UKJ) o - | (5.6b)
Z (Upe Ujie +Vye Vi) B su60)
Zw“ VpctVoe Uje) =0 - e

These reTations may also be obtained by requiring the .
particle and quasiparticle operators to satisfy the

 Fermion dommﬁﬁétion rules. Substituting (5.1) into
[Ef*", ék]*r = o(L‘K ' - (5.7a)
.= . L ) v | |
[bt}ék]+'*'[AC,AK]f fO (5.7b)

results. in (5.6a,b), Substituting (5.,4) into

4

[a*u, a»k‘-L ’-_‘;. 0CL‘k» | ' (5.83)
[[Z’;-) 2" Jo= 1 Q ., Ax l, =0 | (5.8b)

ults in (5. 6c, d).

The reference: state I§.7 is defined as a qua31particle

vacuum, Therefore

Le 185 =0 - (ol ¢) (5.9)

since [ bj, _bi'h_ vanishes,, b;b; = 0. Therefore a

solution to (5.9) is

'E)"‘ Cﬂéc[0> , (5.10.)".

where C is a conctant of normalizatlon.
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3., The Hani ltonian
The Hamiltonian is.

‘(5;11)
H - 1»4

ﬂ-

| =2 <LIT ,\|J>a aJH Z’K<<qu<4>>ﬁ &’a,a,
. [4

where . » . _ (5 12a)
N=Z 0 ae -

. 5;12b

)\ )\fF *l P | ( )

Prc IT><TI {8.12¢)

Ab and- A »fafe Lagrunge rultipliers ﬁo Ee‘choseﬁ soithat

the.averagc nunbers of protons and neutrons in thas wave

funiction egual the experimental values,

_<N,v>?2 KMaY EACE (58
where Z a KT Q KT ' o | ‘ (.5.'.1'3b)4l
and '.' Np + m& = o O (s.130)

We have used Wick's theorem (1. 3) to expresg H' as

He e +//L +H, O Gaw

where

%(T'Afzﬁluﬂ 274 - Gdﬂ,

i, ﬁ)(ymt Nlata, ]+15A(,N[d ) o

14 00 wlae]
: (5.17)

1"

Hi' = 4 & <Lqu<,fz> /\/[alafJa ak]

LJKO
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’p. is ‘t'}"xe density mati:ix.r
., t -
_ f < ac GJ>
Jd

YA

-t is the pairing tensor. .

1

"

Lyoe <.aLaJ>:
T caha
T =T

[ is the HF potential.

1

[i_f;:{#

4 is the HF Hamiltonian..

2

st
Hf=d

/\ is the pair potential,

"A;, = Z‘<qwu<o> Cyy

4

Afl =3 5 <(<,0(Ar/<j>ﬁ Lo

K
A

£ - -2

Z<(KlArlJ,€> ﬂ?k

(5.18)

(5.19)

3(5.20)

(5521)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)
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The expectation values and normal orderings are with respect

‘to a reference state, vhich 1s chosen to be the quasiparticle

vacuum. Tt follows that |
<bWbhy = <Sbrbyy = (Afklbp) =0 (5.30)
{bkbe ¥ = 9(1<,o | 3 . (5.31)

vﬁer_e the last equallty uses (5.7a). .

.The dens"ity ‘matri;\:_ may be evaiuated i-n_,._terms‘ -"Qf U L
v_‘and V. Use the inverse transformation (5.4) B | |
* B g kgt , - 3
<@L‘QJ'> = £ 2 (UKL ék H/K:./:K )2 (UIJ Aj t %J* L,? )>

~and (5,30 - 5,31). |
T | ' ‘
. Plk - Z: VKL l/KJ ~ (5.32a)
» K : . -
= P o=V T (s

Similarly the pairing tensor is

<aiq;= < ;‘_(umh LB 5 (Upy bt 1Y b% )
so that. ¢ ' _
- Y , ~ (5.33a)
- 5 Uy Vi, - (5,33

T,
’o,.: 3 C :':- vty . _ (5.33b)

e AT, e e 8 e <t g g e+ % e s e ]



4, "Hartre-e - Fock - Bogoliubov Bjuations |

- The Hamiltonian will acquire the desired form of an
independent quasiparticle Hamiltonian if H4' (the quasi-

particle interactions ) may be neglected and if
: t + o | :

o Hp:»g.EK'b-K-LK.'i - . (5.34)
o K ' L '

‘The problem therefore is to choose U and vV so. that (54 34)
is satisfied, The co*rmutator [Hz , b "’ ] may |

be evaluated wit'h (5. 34)

R B o
o [ bk Ead (Uped'e #Vie e s (5.36)

Alternatlvely, (5. 16) may be used.

[41 m 2{<yfA)‘,u,<J+ALJz/K,}
+ Z{ 0%, Uiy +(A-H)q, VK,}aL,

Muate the coefficients of at i and a in (5 36) and (5.37).

(5.37)

'Z‘{(y'/‘\_)nl UKJ 'f"Aq VKJ} :EK ‘UK( ' - (5.38a) -
24 A% Uky +(A-#) Vg PEG Vi ~ (5.38b)
J . _

Ue = [Ual ° we- [ (5.39)
L?"‘ Via |
5 UKM: | L - VKN_J
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then (5,38) isf
(74"__;_\') U + 4 .l_/K = Ex Uy ” _. " | | {5.402)

| E/« .’(K o (5.40Db)

b

Af Uy +(l*7~{) Vi
Equatiéhév(5.40) form an ‘eigenvalue equation.

‘[(H“M : é X[L—JK}=EK[U‘K} (5.41)
| AT  (As$¢) _,yk. Vi .i o

a-—

K= WM) B ] i s
| | : .Af . (A"H) - T
and = - o o N : o
A 1 % X R T (5.43)

then’(ﬁ,@l) istoré compactly représentéd by
K Xk= Bk X o

K is self adjoint. Therefore its eigenvalues are real,

(5.44)

KT =K E«= Keal (5.45)

guations (5.44) are called the HFB equations. The

eigenvectors provide the quasiparticle'coefficieﬁts'U and -

'V for which (5.34) is satisfied. The eigéhvaluelek-are

the corresponding quasiparticle energies,
 The HFB equations'are a natural genefalization of the

HF equations (2.,17). ,The'eigénvalue problem is of the same

'nature;vexcepﬁ:that-'thé'generalized potential H  Thas

twice the dimension 6f the HF potential, The HF and
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pair potentials are tfeéted'simuitaﬁeeusiyvaﬁd on.an
equal bauls. HF and puir degrees of freedom interact
with one another during each iteration of the calculatlon.
The potentials 1+ 'A are determined by the wave
function f7) ~ and vice-versa, Therefore the potentials
are self-cong;stent; An ibiﬁiai éuess isihade for /% r
Then %B[l are calculated (5,22, 5.25, 5.,27), The HF3
equations (5.44) are soﬁved, providing the coefficients
u, v fron which a new /7 t: , may be calcuiated (5.32,
5.33). AF))V1 ‘are adjusted so that the ndmbernconservation
constraints (5.13) ‘are satisfied.,3Theepro¢edure is |
repeated-until'/7lﬁf are thelsame on successive iterations,
In the limi€~of zero pairing ( A = 0), the HFB
-equatioﬁs are equivalehﬁuto the HF equations,

Consider the 2N x 2N dimens1onal matrix A.

Lt o} -
The product AKA is [ (}ﬁ-ij) [1f X :
s (H-A)

Since }{ is Hermitian and. /) is antisymmetric

AKA~-x*. (5.47)
Complex conjugate (5.44),

YL IRV , o

KT Xk = £y ).(k

Substitute (5.47).-

& .

~ARKAX . =Ex Xk

]
i
\
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Since
nultlplying through by A glveg

- (5.49)

;7<"ﬂ K}gA= "éfk AJXK
 Therefore if Zk_is anbeigenvectoerf K associated with
the.eigenQalue Eg, it follows that Agé - is an eigeni
'vector‘of57('.corresponding tokthe eigenvalue =-Ege Since
H," is Hermitian, the adjoint of (5.35) is. |
L Hz-,‘_bk,]— = - Ex E_K’ . - (5.50)
Therefofevit‘is‘clear'why the eigenVeéﬁors and eigenvalues
come iﬁ;péirs: 'gk, Ek “and Agk*; =Zge ’If_b; is given
x R : . ‘ . . & - B . C
by»ék f_xﬂg[k_ ., then bK ;s»glven:byv AER = ‘\k&('] |
(see(5. 1)). In constructlng /9 and (5 32,5,33), the
sunmations are over elgenvectors “with pos itive energy. |
It is desirable to know whether the HFB equations
may be_dérived_from.a variaﬁional'principle. One might
hope to succeed with the principle | | |
,..za - = 9_..,0{ a0
gU'rs QVFS . ,
where ,_'_ : B - | (5.51)

L= h - 56 (2 (Ul e 4y td=1)
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and

f(T;\)(l VmC‘mej t

(Jm 3 _
-7‘: 2 /U,L_/KI Vrn( VMK I/nj l/”ﬁ‘ t ' (5.52)
.(Jkﬂmn '

(Jkpmn \ '

UnfortunateVV the resnltlng eneray matrix is

L'_HA* sz l .

vhich is not 7K . The lack of symmetry in this _enefgy
matrix arises because H, is not symmetrical in U and V.

Furthermore U and V are not independent parameters, but

are coupled to each other through the unitarity condit’ioris.

The correct mriational prlncz_ole is

oLZ = aj + 90( 9Urs =0 . - (5.53)
ers QVrs QUrs ?Vr5 o o
However Jl/rs /3Vr is not readily obtainable.
& more elegant approach is to proceed with the aid.
of the generalized density matrix., In the dlscuss:.on

which fbllows' we use the notation,

[ < Clj’kfz'oh)F §
[ <$m,nrs,q¢2N

C = L+N elc-

Let ﬁf»; {gf},‘ ' ,L)' = {g_ l (5.54)
| a4 R ar o
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‘i’hen tﬁé genei‘a-li.zed partlcledensn.ty fnatrix is
Roa = <AhA - s
It may be verified that. .',} : | v | |
e sl e
Foi‘ examole RZI = </);.f}-,:>= <GJ_QZ.> =
< J’LJ -. a t Q > = ,,/5’) L.J. S Alternatiy'elfy" one

—

may define ; _ ' .
| = : [ g;.} - ['£+] . (5.57)A

The. generalized ciuasiparti_cleaéenfsi;ty ratrix is v
Con = <BLEmY e

Noting (5.30 ~5,31)

{ 3* | V*X ) ' | . (5.60) |
viewotyooo oo |

“Then the quasiparticle tra'nsfbrmation (5.2) is
ST S v 4t - .+ v
XA . Bm T Z'anﬁﬂ -~ - (5.61)
R ” |

and the ih’x}erse transformation is

/’f:»xf‘,@% i _’qnf: 5 X;:,«:B; ) .(5°62)

[}}

_.£; 

et X

S ) I

-
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Then R is easily evaluated.

<Ay ho> = 3 Xsn Xem < 8BS B,

Substitute G,

: '3 v v : v
R mn_ " g Xlin Xam (5"63_)
R is symmetrical in U and V, |

R=1{\V'v Viy | '_ (5.64)
Cluv owuta) I
This form»of. R is equival'.ent to. (5.56), For example,

+~YU = l .'... (v, +V)s‘: = ] - F/‘ = 1 -~ F . "i‘he

U
program is to express Hj' in terms of R and then vary H '

with respect to X, Hj' (5.15) may be written as

Ho = Te[(Tarirlpednti]l. (o9

Define N T - T © ] . A - [ A (o] /\ - (5,.66)
: . o “';[; . - : o ‘;\ o :
- Since Hb' is real; 'T,-H//a ar.e Hernmitian; A, L  are

antisymmetric; it may be shown that ‘_
He= 3 Tr [(T-A¢M)R+2(T-2)+" ]

X may be expressed in terms of R with the aid of a

A
generalized potential [

" A o o
; Fon = é/‘rmr:nﬁ Rsr , (5.67)

_ A _
where v remains to be defined, Choose

i
.




P
—
~
L3
1))
)
Ny
S
o
S
.

W
1
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S
X .
L
o

where I/(J’:,é'/\rclql<

and = J

“then }('—“— ;f-}'[‘

Substitute into H '

He=4Tr (2 T+ -1 VIR +2(T-2) 1]
’Fortuxna'te.ly | -%_'& R P»] = Tr [ ]

so that all dependence on fl & is eliminated,

f{ z Tr [(

or H 2 JmniRﬂm £ /\rn-mr: RSn Rf‘m

f’x«fk

91(!

%F>R+%V+wﬂf]

'hn rs.

Z’- (T-) ) ki

'(5.68)

(5.69)

(5.70)
(5.71)
(5.72)

(5.73)

(5;54a)

(5.74b)

This e\'pression is similar in form to that obtained in

e theory.
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Ho‘?j To Pyt i 1 5 ke oy Puc

K2
The variational principle is B
IxL | | - -

were Lol £ Ly (5 Ky K ) 50

and RS
H 2 Imn ka XKn’L‘lZ: /\rmnrs chn XKSXmegr
S Km,, Kemnrs- v ]
-, (5.77) |
+§,ka: Aiero * 15 (TN -
Performing the variation we find %
R ) .: "_ - : ' IIIV:(5.78a>) | : |
| 2 Kop Xpn = E5 Xpg
Kxp=EXp
vhere ﬁ[f, :l ¢ _ ;‘ B .”v - ) - (5.79) S i
o zg,, | o - »
By the argument following (5 46) we find |
- ‘ (5.80 |
KX p=EpXp (5.20)

where EEP = aé?ﬁ, f | . (5.81)

The HFB theory has been derived by a variational principle
applied dlrectly to the quasipartlcle co-ordinates.
The generalized density matrix R has oLher 1nteresting

properties, (5.63) may be written as . . -

F{nnn = 2? ><5t7-6;rs )(r;n
. s . :
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so that R = (X*)TLG (Xx*) . (5.82)
Since R is obtained from G by a unitary transformation, it
has 'the_same eigenvaluesas G, that is, N eigenvalizes equal
to © and N equal to 1. It follows that
R‘\: R e . - (5.83)
and o T O (5.80)
- TrR=N. (5.84)
Inspectibn of (5.56) shows that (5.84') is automatically
satisfied, (5.83)' impiies | |
_/9 -/91 =_[jz+ ; . ‘ (5.85)
/ L f . | | ' (5.86)
For zero palring (5.85) reduces to the HF relation /ﬂ /7 .
If / and L are given, ‘one may ask whether it is’
possible to determine the co-ord:.nates of the quas::.partlcle
transformatlon. The adjoint of (5,9) is
gt | | N
< §°“AI< 2o - (5.87)
Consequently ; S v
LTl -
LA = <bhatdso

Subsﬁit_uting (5.1a)
Uk € @7 0> + Vi €0:0;>) =
T | v

,éi(ug;<aﬁla}>+fb;¢<4caf>)=o
(O . g
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we find.
& (prelhe v LjcVie) =0 |
Z; ( ZI‘C Ulm' f(“‘F)jz'ch) 20 - - '

The matrix equation is
R Xc=0 - N
5% is an eigenvector of the.generalized density mAtrix R
corresponding to eigenvalue O as well as being ah-eigen~
vector bf the generalized energy ﬁatrix K cOrreSpondingu:
to the eigenvalue Ek; To determine the eigenvectors of
R corresponding to eigenvalues éf'l, consider the relationv.
(see 5.48, 5.82) | |
_ 5 g .
ARA =AX*)TAAG AN (XT)A.

It may be verified that : : v o

CAX*Aex  AKNTARXY AGA =l-¢-
Consequently ﬁf{f} :_Xf(l-é))(',

Since X+X =1
n=1-K - - ' (5.89) .
"Complex conjugate (5.88).

$
K X =0

Substitute (5.89)..

ARA .Xl: =).§l:
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Since A2’='i
- R . : :
K ﬁ"_XK = A .XK- o (5.90)

AZ% are the eigenvectors of R correspon ling to eigen-
values‘o+ 1. Recall that Axk are also the eigenvectors
of K %s.,sociéted with_ the eigenval,t.iés =Epe . o
v‘ S It miéht appear thatethe éuasiparticle co-ordinates
are determlned by the elgenvectors of R, However because
of the high degeneracy (of order_N), theeigenvectors of R |
| are not'uniquely-determined If the qua 1Dartlcle
co-ordlnates are Xk then any set of llnear combinations of.
ék are also ewgenvectors of R w1th eloenvalue 0, we_ |
conclude tth deflnlnq the reference Qtace (thdt is, giving.f-
R) def;neo“the quasipurtlcle co—ordlnatea up to an arbitrary -
”'ﬁniﬁafyeﬁfansformatiohi' ThisAresﬁitnfollowé,aireCtly frqﬁwe;
the.definition‘of the'refereﬁee'etafe. | | |

| bkl £ 30
If_ o 2 Uke 19,0
where 11.13 an arbltrary unitary tranoformatzon, then

AK (io = .

This iS :eminiscent of our conclusion in III;6 that
a rotation in particle spabe.folldwed'by.e»special quasi-
perticle transformation are'sufficient to define the BCS -

wave function'(that is;idetermine_/a and U ), whereas

_a fprthe:;unitary~transfofmation~of~quasiparticle co-ordinates - R
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is required to make'Hé diagonal in quasiparticle co~ordinates;

The analogous situation in HF theory is given by the

relation : ?
/91 . /9 _ : :

so that f9 has eigenvalues of 0 or 1., The eigenvalue : S

gt

equation is
pPuCuli €0 or

The -eigenvalues of.lycorrespond)torhole states, andvthe-
eigenvalues of O correépond to Yparticle” states. .. . . ,
bes{ G ee

The reference state is defined by

.bo( IE&) =20 .
- Any unitary'traﬁsformation'gf hole states (occupied - "f
orbitéls)_‘léayes éhe’wave;function(/a) iﬁvariant,
: The'derivation of the HFB equations by the equation
of motion ﬁethod is more transpafeht with the generalized

co~ordinates, Hé (5.16) mey be written as

H'LI' T ﬁ 7< mn N [ H ”m An ] : (5.91) Lo

, mn - ' '
Substitute the inverse transformation (5.62). : - i%
L * . ot : i

Hz.l= 1 Z: K"‘“"'er XSn N[Br 85] _ . o
mnrs ) ) i

ox

.H"l;“%— 2 [(X’)K('X‘)T]rs N[Bfrst . (5.92)

rs
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H2F acquires the desired form if X is'chqsenvso that

(x*) K OX) is diagonal. It is therefore reguired that

('X’)'7<'(X"')+V=E - (5;‘93)

where E is ‘diagonal,” The components of this equation are

K Xr=Er Xr
vhich is the HFB,equation. Then ‘
ta r ot
H'L = 7_.2Er N[BrBr]'
. . r o o . .
SincevEEf = -E ' '

and -N [ ‘bkb‘*k ] *

N_[bf*kbk] = b, b

k™ x
we arrive at

B3 2 B -
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5. Symmetries of the HFB Solutions

If S is a symmetry of the Hamiltonian H, then

[H;s1.=0. (5.94)

We have partitioned H as

H = Ho+»H,,+ Hy -

It may not bé-true:that o

or equivalentiy' S . .
- [7(,5]”=o. - | ~ (5.95b)
If S commutes with H (5;94) and‘léaves'the réfereﬁée Sfate
invariant o -

SI §°>= l ‘v§°>- : | L | . (5‘966‘)
or. . [R 5] =0 | ._ (5.96b)

then S commutes with K (5.95), and S is termed a
“self~consistent symmetry.,” If a self-consistent symmétry
is introduced into R, then .R(=_will reflect»that-éymmet:y,
and therefore so will R of the following iteration.,
Consequently if the trial generdlized aensity matrix contains
a self~con$is£ent stmetry, it will propagate through to |
the final self~con5istent R. |

Harmonic oscillator (HO) wave functions are chosen

as the bagis states.
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!K) 2 /N,pj'm-'r_) | | (5.97)
Parity is a self~consistent symmetry._ Restrict the

quasipartlcle transformation SO that all components have

the same parity. Since

| -0 +q o ,
-F{ } PooLt { ay } _— (5.98a)
it follows that _
PLJ ~| ‘ -{- é | ' ' ‘. . (5,981’)).
The ground state wave funct:on isy
> WAJ10> |
i since /71()\7 2109 "5 ' ' 4(5._.98.c).
we' havo.“ , oo :
P/gza 77/94, F“'/o> t T b, lo>
SN A
so that /_¢,> iS»parity'irvariant,
P/:?q)“ 1. o | v'(5,99)_

Therefore”pafitY“ié’a"Self-con istent symmetry. The -

density matrlx and pairlng tensor will connect only states

of the same parity.v- . ‘ N . ,-.‘ ’ o -
FR._. /‘f’f' ©c L " [-f'f' o - (5,100a)

' Since the two nucleon interaction conserves the parity of
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the two particle state, yu and JA ~have the sane

structure,

_ o  H.-
The energyrmétrix has the form

k [~ ;:,[.,.‘. ‘X o . - >A+* O ‘ .. i ) .
K = 1 o .- o - Q- . (5.100¢)
| AL o 0.,. | .A:‘f:/’hy ."O,,,' | |
1 @ AL e A f%{—~?

The eigenvalue equations for positivé and negative parity -

sﬁatés are therefore de-coupled‘ Conﬂequently the néw set

of elgenvectorg 1s also parJLy 1nvar1ant, thereby confwrming

tha self-conaigtont nature oFf tne parlty synmetry. “ |
We shall consider in some detall the time-reversal

symﬁeéry,"gr-, operating on a HO state gives

: — (5 101)
| lem ™Y 2 I NgamTy = 1) //WJ ey |
(We ChOO..:e r (/mﬁ VIMI . For the choice |

<riemy = Yom, , Tlamy =) (i-m> - )

Divide the basis states into two sets: the first coﬁtaining

states with m - % = even integer, the second'cbntaining

states with m - % = odd.integer;_'Denote the sets respectively

by {1ky} and {(R‘)} . vMi.:Sre specifically {lk?}' is

composed of states'with

ma a3, Y, %, UK (5.102a)

Pl 4 s e




237

and {(&>} 1s composed of the states

C{ik>E = J kot o .' - (5.102p)
so that
")’l"‘ : -7 5/2'[.— f/r) 3/?7 7/‘z./ TR | IRy - .'(5.102c)

In the following discussion we use the notation

¢ | (5.102a)

ana  [R>=F [ky-
| o res;‘ﬁrict jt::he pairing td’.’}_’;airs ovf.‘states, ‘one of :

which is _c;ompoé'ed. of { lK)} the other vhaving components

in‘ {IR?} _,' the a_pprop'riat,e‘ choice for the :tri'al quasi~»

particle transformation is

u: u 0 . V: O 1/ . v | (50103) |
where ,
U U *f-,Vij Ve (s5.100)
_UJ,(-U,—,; | | VJK:VJK_' o -
T‘nén X}'has the form - : l
U o o ¥ |
o U i o (5.105)
o y* U o

e ety
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therefore s_eparatihg, into two subspaces:

Ej 2 5(1(“ dt( * Vik la_,z ) - (5.106§)
laj'*-g(’lj{& art VJI.: ay ) (5.‘1oeb) )

and \

e e = o . -
= i (qu i t VIK' dk ) I (5.106e) y

< i

* ¥+ - | Ly

A‘J“Z} (Uye e + Vig ag) . (5.1064)

The densitf matrix (5.32) and theipairing tensor  (5.33) %

a;é_also partitioned, . _' ,‘ _ . , |
/pnl‘f 2 ]F ’Vf'l'/ e 1 ~ (5.107)

T =0 Ti. K% 7tu |  (5.108) |

T o) |v'u o p o

where L : = - |

(5.109)

 Lucpa Ty

Since the two nucleon interaction conserves angular momentum

:
(\\
\

pfojeétion ( m‘.'_,. mJ 2 mk"‘;m,e for /\]:“d), the HF

Hamiltonian a'nc_i the pai'r poténtia_l follow the partitioning .
of /9 ana C . o ‘ - -
#=(% o1 Q= fo ,o\ | (5.110)" .

‘ (@ )( _ dﬁ o } - 'ﬁ
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Whez_‘e _ AL]‘ ' (5.111)

HL_vaz -Hc;
}?(‘

D=

"

.Hz‘ . OQL-J ’-‘-_‘AZ]-'-
‘ 'I“ne elements of the HF Pamiltom.an (5.23,5.25) are

HLJ z TL/;__+ Z {_<U<1Arlu> J) FRarlI g 3 fer S

g (5. 112)
HL 2T+ 5 <u<ur1u7 +<L/</mu T
J J <o f,?[( ,’f
where wa }w’xve used T,_J —TLJ and . <¢“N-|,u> = <(11N'H<£) The

' exprmsslon for the palr notcntial (5 27) simplifies,

Doy = 2<mn//u'11<,0> (k;., +’22<n’m//xkll<'f>” 7
» ke , - v '
Since t is antl—symmetrlc and <Mn[M[,<p>

"(I)’Ii‘l{N‘/!lE)H P
the second qum equals the first sum. A | :

Dopn Z’(mnlvlk!) [k,.

so that the HFB equations (5

«41l) decouple into two

sets,

(5.113)
ke | |
The non-vanishlnglcorrqponen'ts' of N o are A'L J_ and A . o
‘ S Ry
2<(qu<,y> Tis -
,QH ,Z:<chAr“<£> Zk!‘ |
ke . '
~The K  matrix (5 42) . has the form
W o e A |
o H-x A o (5.-115)
o Bt oa-f e
A e o A-H |




(5.116)

S
+ >—-'
>..»
::32>‘
E—
‘- A )
<
R
1
7
)
P————
g <
. x
[—— |

Cohsm;ueﬁtly- the new set of guasiparticle co-ordinates
has the forﬁ of (5.103). :'iﬂieréfore; c“nc‘)os.in'g» the quasi-
particle t"r‘ansforréétiori Eo be & vlvine'"arv combina:tioﬁ: of the
set {d’;(} and the oet {a k§ i° a solf—con31stu1t
representation which will p:opagate through at each iteration,
‘Note that the argument so far does not require time-
reversal symmetry, nor clogs it require the mass numnber A |
to be .even, We have deri\}ed simplified expressiohs for
Hy' and H, v'_ which are.:vali‘.d whepever, [” :_C‘._.f :ALJ = V4] zj:o
(see equatidnq-3 35 -\3'4o>. : ’

We now restrlct our attentlon to uystem., with time~

reversal degenoracy. This is achleved by relatlng U to U

and'?lf to Y . The usual convention is’
U=~y Vaov.

Instead we determine the phases by

j = J bJ J A . » o ) (5,117&) , | .
Since | J dfk J-' =4 a’-‘,;. '
| Qx Qi (5.117b)
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‘and since_gf_ is anti~linear, we find
~pF -l _”A _'g v o o .
4,/,. - ﬁ(umak Vi ax) (5.117¢)
Compare to (5. lOoc). The phases are
s U* T (5.1174)
y'uuc*' o VT T Vi .
It then follows that

7 { i} }J N

1)

Therefore

Jé b ”“ (JLJJ )JAJJ")ﬁ_A AJ = Lj(5.1171")

. (5§li7e)

. ) n

SR S
AP _

. ) —— .
w g* “-\k,-,.. o
..' ' -

The ground state wave functlon is o

IEEo) =T AJ /;v]'lo) , (5.117g)

dro ;
_Since . J(6Y = (o> (5.117h)

wé have -
TUEY = T Jhybsd ey = T bybjley

50 that"(§o> is ihvariant under-time-reversal
JIES = [ 2> | o (5.117i)

Therefore time-reversal is a self-consistent symmetry,

The quasiparticlé transformations(5.106) beconpe
1 .
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v 5 ( Uy al kT VJK 4« ) | | ~ (5.118a)
Ej' é' (U Ak~ Vk a’;') :  (5.118b)

and | | |
b;f? (_ij.a; - V/: 0/{)‘*" - gs.llsc)
AJ 2 12( 'VJ: A t Vi 'Q,E ). '(5;.118d)

The unitarity conditions (5.5) are

Uu + vyt =1 (5.110a)
uUYt- vu - o (5.119b)
wu + vty =T | (5.119¢)
u'v -viu o (s5.1104)
The density matrix (5.,107) is
vttt = 5 vl Vi |
\j? | )_ or Jﬁ%t 4 Ve YKy (5.120)

with the time-reversal symmetry

f —f - E (5.121)
Clearly ‘/7.; is self-adjoint. | |

Fep | | . (5.122)

The pairing tensor (5.,108) is

* o~ _ I_' 3 '
T=-(vtu) .or (je ) é U V‘“ (5.123)

‘with the time-reversal symmetry

_ . .
C=-T" - (5.124)

Also, since [ is antisymmetric (see 5.109)

rT=-7. - (52
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"Cbmbihing the last two relations; we find that the reduced

pairing tensor iZ - is Hesrmitian,

L I , : . _
=1 | A (5. 126)

The unitarity condition (5.119d) also provides (5.126).

The constraints (5.85, 5.86) reduce to

. .
f__/ =
Lp,11.-

>The HF Hamlltonlan (5 112) is

M., = TLJ ¥ z’{gkwun f +<L,</Arru> fk 1 (5.129)

with the time«rever«al vymmetry

=M . (54130)
4Siﬁ¢e 1¥.,i5 Hermltian' ~ S : . e
Ht =H . '- ) | (5.131)

The pair potential is given in (5 114). The time-reversal

symmetry is _ . o ' _ '

% o '
JS 2 -0 (5.132)
~ Since 13.' is anti-symmetric (see 5.111)

-

The last two.relationsvcombine to show that the reduced’

pair potential is self-adjoint.

AT, 48 R  (5.134)

- (5.127)

(5.128)

. . | (5.133)

[ro—
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The HFB equations (5,116) become

[)_%)\ 4 X{yk}—;gklgkl‘ (5.135)
A AH L Ve Vel

The equations are reduced in dimension by a factor of
two., ' Note that the form of this energy matrix is some-
what different'than'that_ofAﬁhe_complete X matrix (5.42).

The second set of equatiohs in (5.116) are

QU AR}
-0 A’H#, lfk ‘7,/1< :

Rewriting =

T 0t ][ L’{“}
OO*-- ;\."}(aﬁ "?k ’1:/"

and complex conjugating: 

| | . .‘ - -, _
[}(-—x A Hu,l Ee (e )
L ANIbve) s
and comparing to (5.135) we £ind
R _ _ -
U= u* V=-7
so that our.phase choice is self-consistent. Also

__E?E ==Eﬁ:
so that the quasiparticles possess time-reversal degeneracy,

‘Since the rotation operator f?y (1) is

R,(‘IT) . KPJ L | (5.136a)

j#_._??;;.?..«_.r Dt e e e
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where 'K = complex conjﬁgation: L _f . (5.136b)

it follows that hlf _ -
R (7r) KD /<l§.,> | - [5.136c)
Congider ‘the .rotation operator RZ(Q).
o S -<mé | , 2
Re(8) lym> = € “”’ tamy (5.1372)
The partlclﬁ ooerators tranoform as

Rz(G) { a Jm. } Rz (6) = *‘mef {dﬁm }

a i (5'.13.7}3)‘

' -l . *(ms -
Rz(@){am}z(@) = e [aJ,,,}.
since the states {Iky} have (n-%) = even integer and the
states{12>}havé (m%%)‘= Oddvinteger, fhey transfotm under
RZ(F) s | - »}: _ S
Rz(ﬁ){ak } Rz (T) = - {d'
o | ¢

aiZ“ §’

Kz“f) { }Rz (1) = {a*; } .
‘ | d« /- a K v

The quasiparticle operators (5.118) therefore transform as

Kz () lb

x &t

(5.137¢c)

VRS = (8]
| by
m) {A* }R;'_;mm- ; L' ; }

) J J

-

! (5.1374)
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Conseguently
Rz(—“)b‘, bj Ri‘(”): . | (5.137e)
{ Reem b, Re' W }{Rem b3 R (M) } = A 1 b7

The. refererence state wavef‘unction is (5.117g).
Since - R%‘(a) [6Y = [0 . (5.1371)
we have | | | .. | | |
Ratu) &5 = J‘Zf\z(“)é;bjRi' (7r)lo§ 2 }T),AJLI oY
so that [F,S° i.é i.nvz.lriari’t'.under’ Ré '(7{ Yy . |

Rz QTT,) 1»5‘59'7 = EX A . | (5.138)

, ’I"'ler’m.orr3 rotation by ‘[r about the Z ax:Ls is a selfb-
con51otent symmetry, ' |
| AXial fymmetry is introduced by.restricting the_
quas ipartlcle transformatlon (5.118) to states [k with the

same value of m, The quaelpartlclc operators then

-em 6 t
e o ,
, [ ; . (5.13%)

é d
b;
efcmef'éf_}
é,J
J .
Therefore

Re(@) b, b+ Rg'(@) o  (5.139)
(R2(8)b6, R:' @} Ru@) b7 R2(@)] = 4, b;

transfornm as:

Rz(e){ ' }Ki'_ca)

1}

/> y
b7 )
Rz(é) [ i*d-} R;'ce)
J

[P
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The ground otatP transforws as

Rz(6) 3= T Re8)b, by Re (e)/m T byb '—/o>
: DY) . » J?e

so,thatj,/j§;>* is invariant under.Rz(G).', E
Rz (6) )ﬁzo = --.,§io> | (:_{;,- wll &) (5.13%)

ThereLore ax1al symmetry is a self—conswstent syﬁnetry. The

comoonents of R and. 7< have the tructLre

¥/9(f ?'YT )(LJ d5LJ . | _ - (5.140)

.unless_-m(-_— _]

The %(n@tfiktthereforé vooarates into bloc <s like (5.135)‘
for each'm,- | |

Spherical symmetry is introduced by restricting the
quasiparticle.traﬁsformation»(5 118) to states IKY» Mdth '
the same - valun of 1ljm," with degeneracy in m for each 1j
and ¥

(that 13 Uu are independent of m).-

Nler- Nljm”r

‘Then.jg and T will not connect states with differing
lj. Only radial and isospin mixingare permitted.

The isospin symﬁetries are of special importance to
us. The istpin-§uantum number will now be explicitlyv"

denoteqd, with'the_notation
('_M'r.'r1 )C_Jf : M T, i (5.141)
where P4ﬂ71 is a sub-matrix of M. The quasiparticle

co-ordinates are
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Uop uf"]‘ Ve [ P TP ]
[ Un,; Unn : ‘ Vn/; Van

- The unitarity conditions (5.119) are

]

Jljz;

é ("L(E‘T u Tt VE:-T L'f;.'r )

5 Ueyt Vor = Ve Ugy) = 0
§ (Mo Yer ¢ el ver) = fam

g (uETx VZT , V MCT-)_) T 0 .-

The reduced density matrlx and palrlnc tensor are

flff;ﬁ,ﬂ L)

Since F and T are self-adjoint

LPer=fer Tep=Tep
ot . | et
VR _,.»Z»/’" = Tap
t _ ' - : t . '
J/an_ 1-/6;n Z'ﬂn B Z}n :

The density matrix is evaluated with (5.120) -

A= (VinYen)®

(Tk

)

The various components are |
P = (VopVop + Vip Vap)'
Prn = (Vi Yoot Vilp Yan)*
Prp = W pn W Y W)t
Pan 2 AV Voo + Van Via)”

"

(5.142)

(5.142a)

(5.143b)

 (5.143c)

(5.143d)

(5.144)

(5.145)

(5.146)

(5.147)
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o Simiiar]}.if: :t'he'pait.‘ring tensor is given by (5.123)

i

‘Z"r,»'rt‘: - EZ (V'Vc_‘r‘ Uz:n-); S (5.148)
so that | _ : : S :
' a./ .'... _ v Foo ' ’. E 3 [
:.L PP ( _VFP PP F V”/’ Z{”F) o |

ZF = (Y fn Upp # 3 u”f’)
‘ Tnn- ""_ ( '1/]7,1 ?’{Fn t Vnn uﬂﬂ ) ‘@
The reduced HF Hamiltonian and pair potential arc

R sl s [ﬁzf; f,f’: oo

Since ).( and oQ are self-adjon.m,
A | N
Hipp = Hep ‘QPF ”QF/’ | .
» )(Pn'f - }T/nf' v OQ pn - OG"(D ' (5.151)
) f‘t'l..': )'(nt)' ' OQ-ﬂﬂ-",'n.vDan .
The HF Hamiltonian (5.129) has matrix evlem'ent.s‘ | |
| (}(’r.fn ‘);,‘ = T”-;J'Ti_* 5 {<et, kr (Al T, #7747 S, )4
R , e . . ,

+ <,L l< Ts [Arl J £y /P T‘1> (fT * ) (5.1.52)“
| ¥

7, 22k

. Matrix eiements of v are non-zero Aonly if 7;+T; = To4 Te o

'I’herefbre the diagonal-isospin elements of H are




(HTT)(‘J': t]+2{<LTKT IN,JT 17) (f77)""

KT
(5 153)

t<iT, Kk T T, T T (M/QT,7q )1&

and the off-diagonal ~isospin elements are

(HT‘7)LJ: .5"?{{(»7/.14 (/U—[J T [T> (fT ’r)IK

(5.154)
KT, E-Ti] J~r,z/r>,, ( prrdoc )

, The-pair‘potential (5.114) has elements

(b ey ™ 2<<T, A (MlKT;/g’F,}(Z’Tﬁ)II(S 155)
' 'GTf
The |T, | = 1 pair potential is .. . only protons

(neutrono) may contribute to the proton (neutron) pair

potentiel
((A,m = 5 4TI T N"KT ,gT) (‘ZM)K, (5.156)
k2 _
~ Since

< T, Tk AT F

Gt irIT 2Ty < TINIKET ) °
T : :
<y Tl (a2 T;[)A Cfor TEtVYa

~the_ | T,| = 1 potential is

Tzl | |
(Brp)e) .kzp 7 T=tipl K2 ‘T:'I.)A (?_’TT ).rzes.ifm_

The Ty = 0 pair potential is By oy -

(D7) = 2<‘T j- T//\.FIKT Z-T' >(2}f7) (5.152)

Ker!
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It may be c‘caparated into T = Oiand T = 1 components, Consider
the matrlx elcment |

<LT =T iArl K’T‘ 1 ~T >

2<L'rl Tlro>< 'r T‘IT0><<Jr/Ar1K,0T>

The proﬂuct of the Clebsch—Gordon coefflcients is evaluated

in the table below.

| T:o | T=1_
T=T | Y |
via-1o | Y2 o |t

Therefore the T, = O potential is . _
5 1 - »

<c, {wro(”( ~-T. .
2 .J olwrlkE T=e)y (Taoq = ”25559)

-4
, M-

. _ +
Since Z—’r’r = T'r -

(DAT-T,).L‘J' = {Z'MJ T= lIAr{/<pT l),,(t,r T*er 'r()zu )
. 5,160

+ 71 3¢ TT=0larlis 72000 (Toer ™ Tt Do -
o ke T '
The T = 1 and T = 0 components of the T, = 0 pair pOthtial'
are
T‘-'-l)

(AT - Z'<< J TaUar[KE T=0) (ZT’r*TTT)'\P(S 1e1)

m{:T e 1L2<<JT oWk T2 (Tar T ea(s.en)
‘ ke
so that
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v | T=1 T=0 :
’G’I’—T = "Q’r-'r t A T-7. , (5.163)
Since (Z‘r-‘r + t+7-7 ) } are Hermitian

ana CC] TINIRETY, = < 0T 1Lk T,

the T = 1 and T = O potentials are Hermitian.

o =\t T=1 ' . : 7
(AL = 0 17 | o (5.264)
(OTZ2) = T - |  (5.165)

' From (5.159) we note that
o T =1 . ‘ . . .
06:; = '00»77 ‘ ' _ (5.166)
T=0 , ' : .
Da-r = 00,77 o . . (5.167)

which verifies that

Orir = Dogr - S (5.168)

I OQT,,,’:,;' is’ anti-Hermitian, If the quasiparticle
transformation is restricted to real parameters, it follows

that

(ATT kk =0 . | (5.169)
The Unitarity conditions would cause the diagonal elements

of the T = 0 pair potential to vanish, This is cértainly

|
|
H
!
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unsatisfacﬁory; gince the.diagonél elements are usually

| ceneidered:ﬁo be the most important ones;e In the BCS
theory only the diagonalfelements of A are ineluded,
in which case there w1ll be no T 6iéaifing. ‘(The phaees
may be'altered so that T = 1 pairing vanishesvinstead_of
T=0 pairing:) “We eohcluée tﬁat forxgeneralized pairing
to exist, the-uniterityeconditions alone require ﬁhat the__
quasipaiticletrahsfermationfbe complex.

The same reagoning accounts for choosing

-

uu”. v 1/

rather than

u :ﬂv . V :"V.»
Had we selected the. latter ph1 se, unitarlty conaitlon (5 5d)

would reduce to

ut 1/~(1/ u)*
The-redueed pairing_tenser.(s,los) ﬁecomes_J
T=-viy |
so that zj' is symmet?ic.
» 2f ='z: | v

.Therefofe
- = an |
“The TZ -0 potentials would be (see 5.159)

oQT“' ;, =i L 5 < T Tollarlkd TR0, (Z,r T t Toir Vo

kKe -

. T:b -
(_OO,M, ep s ‘21((.‘] *o//\rIMT O?ﬂ(zr'r Zr'r)kp

fcp
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since (L v-1 - ZT-T)KI . is antisymmetric

. ¥ TRO _ AT=D
drg = ~077
so that :
' T=zo0 . _
(Qr-rlkk =0
even if the quasiparticle co-ordinates are complex. For
the reasons give_nabov_é, this phase choice is therefore
unacceptable for generalized pairing..
The v}fwe function is rotationally invariant if
e T TN = 1S
then 1 %) will be an’eigenstate of J with J = 0,
Similarly the wave function 1s rotationally invariant in

isospin space if

CCIQ,§°> = ’§¢§f

‘Then [ %,y will be an eigenstate of I with T = 0, If
T = 1 pairing is present the éeveral T =1 vvec.tors (one
from each pair) can .couple to different resultants, so
that | 2.5 will proﬁably' be a linear cdmbina'tion of states
with various T values, States of good T may"be obtained by" ;
isospin projection'. In general,. therefore, [ %5 is

not rotationally ihvarilant in isospin space. For T =0
pairing, however, the resultant isospin vector is enéured

. L.Ie;_e_ v
to be T = 0, so that | £s> is invariant under € ’
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6. Generalized Pairing . in N = Z-Ev%n - Even Nucleil

For ¥ = Z even - even nuclei the time-reversal and
isospin Syﬁmetries may be used to:Simplify the form of the
HFS équations. Gu1ded by our experience w1th the generalized

gap equltions (Chapter v, ) we choose the follow1nc

sy*metrleu and shall dCﬂongtrate that they may be self—»

consistent, = : o S . .
T = [Z > L ] - o
f fPP | ] P P7 (5.170a)
[ fpr ' Zi:,, "Zf:yl; ‘ | :
fﬁé ). Zkr’“ are Real o - (5.170b)
Z,;,, : F,, ol o (sam)

The unltarlty conditions (5, 127 s, 128) reguire that
R T 5.172)
a) are symmetric

“b)  commute with onevanother.'

and that

R \% v (s
‘= ot (TR L (5.173_)
The HF Haulltonian (5. 152 - 5.,154) and the palr potentlal

(5.155 = 5 5.,168) have the representatlon -

)(:1}( - ol A = [ B o (5.174)
I B 1 A::,,] ,
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where
,zn"aé,, + ¢ "6/’” - (5.175)
and o |  '_ - “
o . T T= : -
HFFJ DA.FF, ‘Arnl) °A,Vﬂo are (5.176)
a) real |
b) symmetric,
dﬁpﬁxis also "vwmeéric. The componeﬂts of )( and'gﬁ are
(HFF)LJ‘ /c]""ﬁ {<LF I<7 AFIJF /T) (5..:'17‘7‘)

<p kT ArlJF ,pT> }(fpp)m

N | (5.178)
((,_Q‘:,F)k-J é <CjT=1 [arlk] T=1% (Tpplee
(Do 2<LJT (] Arlfu T= 2 ¢ 7 Yoo (5+179)
(b )CJ.:E{(L jT:é,[,\r[K,Q_T:'o?ﬂ (ZFI" Yo - (5.180)
~ P |
The reducéd_HFB eqﬁétioné'(S.ISS) héve the form
Hep-2 © Bpp &, ][ Urp)n] [ (Urpd]
)z , P
O )—(PF A oépf —DQFF (yrn)K = E’I‘K (y?h)k
OQPP Qpn A )'(FP o 1| (Vrplx AV rplk
_"06,9?; "’QI’I’ o )- )'(FP (1/7,,),(& . | (Vrnlk]
where ' M (5.181)
(Urr )i | (5.182)

A Ugr e = U )k

(U1, )k N

-l
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If |
PR - 1 o
UFF . : Rea , ’ | ) . (5.183)
Upn 1 = | o
Vep | |Real
R "Vf") B L_COMF I_e-)(_

are a set of eigenvectors with eigenvalues E;, then

-

YJnP | .‘ —.24 ” ] o s . (5.;84a)
‘u””' = u%o

Vop | | Ven |
—1an o lf Ffva_

are a set of elgenvectors with eigenvalues

(5.184b)
s ‘rhay be seen by writing out the Cornponents of the

eigenvalue equation K X = XE , where K is cgiven in

- (5.181), U

and V are given by (5.142), and E is

E, o o o
E, o o
o -E, o}
o o -fa

o
o
L.O

-

The unitarity conditionvsv (5.143c) may then be applied to

show that the new Jﬁ ana T have the form (5.,170),

The symmetries;(5.170) have been introduced to ensure
that |

<.I >=0 . (5.185a)
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This constraint is satisfied if
Tr._/DPn = Trfn‘P =0
TrfPP = Tr'/nn ‘

The implications of (5.185a) and the derivation of (5.185b)

(5.185b)

are given in IV,5,
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7. Canonical Representation

For a syqtem w1th tlme~reversal symmn ry the unltarity

"coﬁdition« are (5 122, 5,126-5. 128).

f f | [f,Z]
'(+ | 4 f(l*f)

Sinnejoland Z are Hermitian and commute tney may ‘be

dlaqonalized by the same unltary trans fornation ; L
f”’ ’M/U .  (5.186)

| In the rotated single particle ba51s‘j9 and T are

diagonal and real. Since _
pelp ol t=fe 7 -
A 'of* N E <A - (5.187)

the density matrix andipairiﬁg tensor in the rotated basis

have the form

Fc(u. o O | |
© fue
F= o Fgﬁ @ - \
Lee — - (5.188)
a 4
i 0 Zd:( | O . . -
t ’"C,(“. o » (5.189)
= o (&) .Z:ﬂ'" .
Lep o |
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The time~reversal symmetries are

(5.190a)

Lax = -laz - | - (5.190b)

From the last unitarity cohdition we have _.

[ .

[ Jaﬂdu‘" o ud) R (5.191)
f> is real and dwagonal T is real and.has non-véﬁishing
elements only bhetween time—févefsed states, This
repreoentation of /9 and Z ‘is tefmedﬂthe canonical
1 regresentwtlon, and tne single particle qtates,ld)',l/g) e
are termed the canonlcal 31ngle particle basis,

Theucahonical répreSentation'was first détermined.
by Bchh and Messiah.4t They did not assume time~reversal
symmetry, in which case Zfd¢ may be complex, Since they
work with [' (whlch is antisymmetric and does not
transform in the usval way) rather than 7; (which is
Hermitiaﬁ and transforms in-the usual way) their prdof
is considerably more complicated than ours,

T%at’JO and T  transform in the same manner also

-follows from their definitions.,
1 . : -
f‘,‘ = (a ‘a.‘ > -~ ZJL "'< aL aJ>

4
If a 5 “transforms as

s v
K

o




thenvai transforms as
' *
- «
o Z Dk- a
+ I

and a iaj  transformsfas

Ke T

oince f f
- %
ol o
e DK
50 thatwai transforms as
' o a{.,b Co
0; ‘ 2 DK QR
§ K .
*and>a§aj transforms as

o B % ;
Qs aﬁ = 5 p“’: Qi d, Dp (5.,192b)
, A

Similar’y from the definitions of - H and 43'(5.112,

5.114), 1t f0710ws that the HF damlltonldn and the pair

potential transform in the same manner as pr‘ and I: ;
.,Hdﬁ‘—?gf.pk ){Kp 91 | . | (5.192c)
N o - A * :
'oAd/& - 2 D Ak.p D s _ ‘ v (5.1924)
’ K

The generalized density matrix R (5.56) séparates

into blocks.

. vllpo(o( o o , .Z:o('&-1
R(«) = | ZN» ~Cug o ~ (5.193)
o . o(d - .
Las © F /—ﬂm

The quasipartlcle co~ordinates are eigenvectors of R with

eigenvaers_of 0 (5.88).




X;«xu ZQ;X&“«X; [,ﬂw - «JHU;*:O(SJ%} |
o I“/Oda( : /\rO'_ . 0(0( Iﬁdd . ) |

where . , ' - , (5.195)
Us = Uax ' 'u& = uo(o( -
N« -:"%(o( : Ne = Vaa o \

The co-ordinates may be chosen real with the phase

Us = Ua = Reol R . | (5.196)
N =N Real . = | |

The quasiparticle tranvfornatlons are

oo - - |
b IUM 0’_0( /U':x apz (50197)

o=y T ;.
bt RUL AY E A, Oy
This is simply the special quasiparticle.transformation.
We may concluﬂe that the ground state wave funchion (fJ L)
m2y always be glven ‘by the voecial tran Lormatwon in the

canonical hasis, |$,) may always be given in thetform»

l§§> T CUst Vuat @' )|o> | (5.198)

{70
The density matrix and pairing tensor are

fua =N Taa > Ua Ao  (5.199)
We have shown that the wave function_ié invariant
under an arbitrary dﬁitafy transformation of quasi- 5 j
particle co~ordinates, (See discussion following 3.95 ‘
and 5,90.) Therefore the most_geheral set of quasi-
: partiéle co-ordinates is given by the'product of three

transfomntions:




| o 2e3
_Bjen = Ur 85F UI' co o : (5.200)
vhere - - » , . -

~Ups . Rotation in particlejspgce_ :

= §pY ot - _
'Z‘V a k | | (5.201)
Bsp: opeCl?l Bogoliubov quauipartlcle transformation
L,wua-@«*/% a5 ' o  (5.202)

Uz: Rotation.-in quasizﬁar’ticle space . _ B
2 Ro( Lb( | | o ~ (5.203)
If U, ‘i necrlected the HF3 equations Ulth time-
reversal syrmnetry reduce to the HB-3CS equatlons. We

restrict ourselves to real co-ordinates. . Then

DK‘.D« R o (5.204)

and |
Uﬂk‘aﬁpk 'V‘g,g—-/l/;épk" (5.

The components of (5.135) are |

é (MU f@k.ktﬁﬁ)pﬁz - -:E/s Up D‘ﬁ: o ('5°é§6a>

5}1 ('}'(1;‘,(1 Nt Aklkluﬁ) sz == LaNg D,f' | | (§.zosb)

where Y'=H—l A (5.207)
M’ultipiy | (5. 206a.) by Afu V:, - and sum on K. |

Mep Up Mo - oéq,é Noay = EgUgny Fan
Multiply (5. 206b) by U« Dk and sum on Kl.

}(aﬁu«/\rﬁ'f'védﬁ(luu,& = Eﬁau o(‘a'ﬂ
Add the last two equatlons. '

}(dﬂ (C(u/\)j,e,+u/,»/\f°, + Aqﬁ(ud uléf/\f;/‘f/a,) o (5. 208)
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Wé have shown that these equatipns correspond to the

elimination of Hdé f,H;O « The diagqnal elements (& = A )

give fhe BCS eguations, while the_off-diagonal‘elements

(X # £ ) may be rearranged to givebtﬁefHB equations, -
(See equation 3,82 ff_;)"I‘he HB'equations may be obtained

more directly by. multiblying (5.205b) by DK and

sumning :on Kj.
H«p AR uﬁ,\rﬁ = ~Ep /e " Jap

Exchange the inch.ces o and I& ’ recallln*r tnat )( and. )
are-symmetric. o | |
)(;p,Af&i 4fd347§[1u”5§=.’éi%/02f J;ﬂ
By subtracting,, we arrive at the HB equations,
Mip (N - W )+ Dap (Uala-tppg)= o o0
The relationship between the HFS and HB-8CS formalisms
ié néw transﬁarent; ‘Both proVidéfthé'grouhd state wave-
'fuﬁcfioﬁ_which héS'Ehe sim?le‘BCS,fbrh.' Eoth.minimize the
energy of the ground state and eliminate Héz + HSO .
However, ﬂBeBCS dogs not-provide the third transformation,
Uy, which'diagonalizes Hil . |
If and only if QQ is diagonal in. the canonical | .
~basis then Uy will be unity and theH3 equations reduce to |
the pair-modified HF equationé. For a non-trivial force
‘there is né reason to expect that dﬁ . will be diagonal;
¥ie " have . found  .no. cases of phyéiéal interest for ..

which these simplifications are justified,




our generalized " isospin-—pairing wave function
‘has the form (5,170)., The basis which diagonalizes p
" doubly degéncraté in iSOSpin_. '
D 'D 0 X C , (5.210a)
. . o o ) v : ; S .
where 'DK A )
S‘in'ce-ﬁﬁb"'is i:eal and symmzstric

P is real and orthogonal . (5,210¢)

The denolty matrix is

) = o o
L/O ‘) [JF?F(“) ” ) - (5.211a)
- Srr e
Any :rol.at:.on in isospin co-o dinates leaves f(ol) invaria nt.
"L‘hcrefore thc basis {'00} 'must reduce €  to two-
dimensional matrices in iaOS in space. (We assume : ‘ '
| P P o ﬁp ("‘)#JOFF(/é)
for o ¢15 . ' ‘
= * | (5.211b)
Tey= [Tppta) gf,,uu] e
| an""?‘) ~Lppla)
ﬂ and Z bhave therefore been reduced to the Form
encountersd in the isdspin'generalization of the special
transforxﬁations (4.118), The éa‘rioni'cal répresentation is
obtained by diagonalizing Tw) « (See IV.6.), and is:
therefore a linear. combination of ¥ P> and lo¢ny

P
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lte>= €5 Jer p) + Cnlany | (5.212)
where ld> 2"DK IKS »

This dbiagonalization has not been performed, since the
interpretation of_.the {v'éve fu:n'cticsn is enhanced with the
form (5.210-5.211). Nevertheless, knowing that.‘the
canonicziiirépres_entation (5.212) does e_-}_:ist, the argument

for our choice of phases may be strengthened, - Since f=~_z*
—' : . di‘.‘ ,. o '.q,»ﬁ" _ S o
I&e = C [o F>+ Cyoleny S (5.213)
whe ' : : . -
SR FORE 2’ DR IR -

Because{lo('c> form a complete orthonormal set, 06 may

bf\ expr essed as

(OAT"]’.L)K_Q Z‘< 1<T ,(JTz Inl o ac%‘_tu‘v&;._ B _y_‘(5.21_4)

Q¢ -

wvhere td 3. is real.' Substltute i .;'(,5.,212; 5.213) and couple

the isospin co~ordinates to T. The - pn pair potential

becomes
(Qpnlke * é<kf7~ll/\rl o 7% (C +C e )T, 2
£ 18RIt e R T =00, (CHCE - CF (H) Ty g,
Ac20 S (5.215)

If the quasiparticie tranformation is restricted to.'real
co~oxrdinates, C; and C: - are i'eal, so that all elementé
of the T = 'O pair potential vanish. Similarly, if the
_"co—ordinate are comoley, but the phase choice u ‘l,f) V'—!’“V

is retmned, then ’[ =-7 (see 5,108), and
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daey = CHiwpy + Chland> .

ConSé&pently'_ '
‘(°.QF'n)kP ﬁ<l<,eT-lIArlo(ocT*l> C Ca Zu

2o
and all elements of the T = 0 potentlal vanlsh IhpTiCit

in these proofshis.the'fact that I)K is independent. of
isospin, _ , " | |

-igjﬁ and T are given by (5.,211) then the
'__eigenvectdrs of R are given by (4,117)
TR I s 9 4 1
Edl . Uany o 'Aﬂﬁ‘ “Nuaiz -(ZqF v
ot’L é o) ual! "‘/V;H’L ‘ /U:;(” afo()y (_5_.216)

ba: | Nan Nz Ugn O | Qzp
L_boll ' .L_/\-f;l'z. /U:(” O ‘ue((lv_ L dan_

plus the tlme~revorsed sete
S -,L(oul) /U’e(tl_'f“ Rﬁa.] N (5.217)

The density matrix and pairing tensor are (see 4,112 =

4,116, 5,147)

Frp 0= A E A st | (5.218)
4 cac.); u - R | (5.219)
PP att Nt

Z’.pn(of):‘(,(d” Ar&,'; c - _ (5.229)

7 *(«) is diagonal,

Ty = (Uaw)® T | - | (5.221)

3}

where L(& = Ustl * ‘ _ B ' : (5.222)
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Uy is givén by

IUQl _:I"/'zl(@/f(d)“ | | - (5.223a)

or by | R | |
| : ['Wl ]/ ffp | | (5.?23}3)
We chooAse' Lﬁﬁo . | | B ~ (5.224)

Then Afuil and Ay, are determined by (5.219, 5.220).
The third transfoérmation, Uz. , is determined as .
follbws, . First express the genéral tranformation in -

terms of tm, cano'ucal baolu.

2 (Upe A% +V,, Az ) |  (5.225)
Inverting  (5.201) and substituting, into (5.118) we find

* O *
Ly = 2<,UV/<D:'~ a * Vou P _}d«;)'

ok

Comparing the last two eguations we obtain

o R

U ="£f' Upk Vi Viu = %’Vyk D™ - (5.226)

Combining (5.2€2, 5,203), we have a third expression for

‘ b+v in term.: of the canonical basis,
- 5 (R% u.al -R¥ans )
o :

Comparing with (5,225), the natrix R may be evaluated.

R Z 2 UYypu / Us o - (5.227)




For generaliéed isoSpin pairing R has a simple _
structura;i'By comparing (5.216) And (5:183,-5;184) it ray
be seen that the quasiparticles are divided into two

groups according to : : o ‘
ot + ' .
b Vi3 25 F?_ ' bui o . (5.228)
+ uz o
LVL 2/ R b“l. ‘
That is p Yl . vy . - 5;229-
'Fﬁrtherﬁoré the two sets transform by the same rotation,

so that R has the form

iy

o .R (5.230)
whera Y AT | . (5.231)
. 7?¢x s = Xy o ' :
Comparing<(5.183) and (5.216)‘TQ may be evaluated,
K ‘-(_UPF‘ Yo/ Un S (5.232)
Since R is unitary and»ijPF- and U, are real
7ﬁ2 is real and orthogonal . o - (5,233)

To recapitulate, for generalized isospin pairing the
general transformation may bé'expréssed as the product of

three transformations,:
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1, Rotation in partiéle space

er:p- (D o o o |] kapj

Q:(ﬂ = op o o 4*[(,7 -
Qa'p o 0 D 0 2 (5.234)

| 2:n] |00 0P| ag

where 1D is real and orthogonal

2, A "generalized” special quas’iparticle transformation
L o : o o |
bal [Ua © % -V| | a4, -

_151‘ o Uu ¥ Vi Qlan | (5.235)

1’

s 2
L ‘béld L %‘z. .".1/11 e u}l_ : l_ q&n
where U ) 'V,,} ._'Vc‘z are diagonal

(Uu)gq = Uit dap |
(Vi ),90( _=‘/\f.orll fu,é

('Vn.)p«': /\fq:z.Jaﬁv“ -
and Uau)_/\f’«u_ : REa/
3. A rotation in quasiparticle space
- ,f- - o= . -y - +— -
by | Reee b gl (5.237)
.éfyl - O R O o —_+ﬂ1' N
e Epl— L— 0 . O O 72& — ’béz—

where K is real and orthogonal,

The general transformation it therefore determined by

.R) Uu, ’Vu, 1/111 @ .

’Vll .“Vn._uu o a&f_ - i

N ST
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8. HFB in the 2s - 1d Shell

The HFB equatlons wlth generallzed 1sosp1n palrlnj
have been olvpd for th; N = 7 even-even nuclel in the
23 - ld'Qnell. .The nucleon>- nucleon interactions used
are'thébesenfeld force (sd), the Yale~bnak1n t matrix
(s~p~sd) and the Nestovaav1es-Kr1eoer-3aranner (NDKB)
force (s—p—ﬂd and s—p—sd~pf). These‘vlnteractiéns are
'described in II.6. The wave =~ functlons (/9 . tj )
obtained from the qeneralizod gap equdtlons (4. 123) have
been usod as HF3 trial wave~funct10ns « The non—tr1v1al
solutions to the HFB equatiOﬂs are llsted in Table 5 1.
The energv for elementury e*c1tatlong, El + EZ' is the
sum of the two smallest d1 tlnct qua 1part1cle energies.
In the llmxt of small pairina, thiq energy equalﬂ' he
HF gap.  The multipole moments QLM and the deformatlon
paraméfer ﬁB are given by (2 74) and (2 76). The
solutiohé to the HF equations (TableIZ;lS) are also
trivial solutions to the HfB‘equaﬁions.

A consistent feature of the generalized‘pairing
solutions is the'muéual_exCluéion df T =0 and.T =1
pairing, .All HEFB wave;fﬁnctioné encountered here display
6nly T=0 paifing‘correiations; |

Most'remérkéble is the Qniformity of the qu331~
'partic1e gap.,.AithOUgh thé HF baées employed as trialﬁ

wave-functions have HF gaps ranging from 0.1 to 5.3 Mev,



272 o »

the COrresponding two quasiparticle exéitatioﬁ energieé'
range ffom 4,7 to 6,0 Me&? There are very few exceptions.
All HF solutions with smaill éxcitationvenergies have been
stabilized by T = 0 pairing.

BEyuvally remarkable is the magnitude of the pairing : o
'energy, Physiéally relevant solutions display pairing -
energies of 5 to 17 Mev., With such.lérge contributions
to the binding energy, the HF relatiyé ordering of
intrinsic states is often drastically'altered. Most

notable are Mg24‘and 332. ' The results for the Yale force

are depicted below, 5__ (Energies are in HMev,)

2.3 ,' oblaTe
4.9 - _ oblale
3.4 | —prolaTe
L1 oblaTe
o _ - 0.6 : Ti
o — a.symmeTr:‘c o - : ero)!:; ,i, eTric ,
_HF Mq _ HFB
i J
7.0 - ob laTe
5.3 » : Fl'o_/a.Te
32 — — prolaTe
o ' asymmelric c as)’mmerr"c'

o ¥ SNE——Y S

We - o B




2'7:3.'-'
P

Very often BCS wave - functions based on different
HF intrinsic stateo converge to the same HFB limit.

”he HWB equatlons therefore alleviate a major difficulty
of the HF theoryt having too many intrin31c states from :
‘wﬁiohito choose the physically relevant one, Also
discreééhoieeketween'tﬁe differeﬁt.foftes in HF'theory
concerning the relative orde*ing of prolate and oblate

. states are eliminated in HFL.

"he NDK 13 calculatioos were performed with and without_
~tﬁe pf shell to tes t th effect of core nolarization,
'vInclusion of the pf shell generally increases the
deformation 5 by 40 - 50"'9: and res ults in a substantial
}ﬂincrease in pairing energv (Table 5. 22) and in the ouas:-
particle gap (I‘dble 5.24). :

Although the.inertial paraﬁnter ﬁ /1=ﬂ aptears to
be nuch 1ncreased by T ' 0 pairing (see iv.7), the o
multipole moments are not s:oniflcantly altered

Most encouraging is our finding that physically
relevant results are’reproduced by all forces used.

Having obtained:thevexact>solutions to the HFB -
equations we may now eveluate the justifiability ofv
~ various approximations., . | |

_The'ECS approximation is to neglect'off-diagoeal
elements of ){ff and ‘. .Equivalently, it.is assumed
that the H? basis is very_similar to the HFBIcanonical

basis and that the third transformation, Uy, is near
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unity, 'If these asSﬁﬁptions'aferélid then HF-3CS and

HFB result in the same ground state wave function and
'quasiparticle eécitations. Our calculatlons show that

these upprox1ﬂations are not jUSulfled 1n the 23 - la shell
We have found no case of physic¢al interest for which

U, is near unity. The canonical basis is sometimes

similar té thévHF basis; but often they bear no
resemblance. ZEven in thé canonical basis the palr potentlal
uoually hns ldrge off-diagonal elenents.

The HFB formallsm conoistently reSults in stronger
palrlngvcorrelationg-than does.HF_~nCa, This is rerlected
in tﬁe ihcrease'qf the pairing_energy (often by a factor
of 2 or:3); and in'the'diSpersion of the océuﬁaﬁion
probabilities Na « (see Table 5.21 .) ‘That this
should occurbappéars.féavonablé; The HF ba51o is chosen
only to'maximize Eyp, With no regard for EPAIR' The
HFB canonical basis is chosen to maximize the sum
ar * Bpatr
changes very little between HF ~BCS and HFB; although

The excitation energy E; + E, usually

in a few significnat cases where BCS gives a small gap,
‘HFB considerably iﬁcreases the gap. (See Table 5.23,)

The HB = Bcs‘formalism will give the same ground
state wéve function as HFB, .HoﬁeVer; since U, is not
near unity, the.qﬁasiparticle ﬁave functions and energies |
‘would be gravély'in errér (unless, of course, thé quasi-
particle energy matrix resulting from HB-BCS is

diagonalized).»'
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vAn’aobrbximation which has en joyed some pooularity
is to neglect the pair potent1a1 in the HB equatlons.
Thls is jus tlrled if off - diagonal elements OL JS in
the canonical basis are negllqlble. The HB equsvlons
then *educe to tho ur equatWOﬂs, where the HF potentlal
accounts for the dlsme*sion of the OCCchtlon pro%ublllty;

One then iterateo between tHe nF and the BCS eouatlons

until self»con31seency is achieved in botﬁ HE and pair

degrees'of freedom, It hﬁs been thouohttnat this procodure

would be an irprovemene upon the 'BCS calculatlon with the

»origlnal HF ba31s. We have rade a thorouoh stuav of this

apprexiﬁation, usingiall HF solutions fenbrted in Téble
2,15 as otﬂfulng points. e conclu81on 1s that aoorox1-
mate Ha—B‘S is most remarkaolo for 1ts con31stency ‘~-

1t is always a worse appro:mnatlon to QFB than the sxmpler
methed (Hr-BCb) upon which it is intended to improve.

Nb:e preciselyé-'itvhas never been adventageous te i£efate

between the HF and the BCS aquations. The specific

>fai1ures of the method are as follovs-

1, 1t usuéllylresults in a small decrease in pairing
cofrelationsa(compared to BCS),vwhereas-HFB almost always
considerably increases pairing correlatiohs. »

2.; It sometlmes decreases the total binding eneagy from
Egcge Whereas HFB always increases binding energy. ,?hls
should not be surpr;sing, since the approximate HB |

egquations can not be derived from a variational principle.
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3., The single particle basis obtained is always:very
similar te the original HF basis., HFB efteh7produces'
large changeo in the single partlcle (canoqical) basis,
Furthermore, the changes induced by 1terat1ng between

HF and BCS are usually in tne wrong direction -~ avay from
“atne“ than towara the :"B oanonical bESlS.

Some p0531blo reoattal are: '
1. 1In some cases [ ray be.diagenal in the:cahehiéal

basis, so that approximate HB-BCS will be reliable,

This ie-true. In fact, for this case HF-BCS, approximate
HB-BCS, and HFB will all giveevefy similar reSulté,
Nevexrtheless, appfoximate H3-BCS will still differ from
HAB mdre‘than_does HF-BCS,

2, Because this approximation gives wave functions.
draStically different.from HFBvdoes not render»its results
meaningless. The wave functions might simply correspond

to different Ywells, " i.e. different HF3 solutions,

This pooltion is not defensible since the pair potential

in the EF or approximate - HB basis is generally not

diagonal, If the wave function approximated a HFB solution(

D would be diagonal. The example of prolate Ar36 is

presented in Tablev5.20; Thz BCS pair potential in the
HF basis 1s presented. 1(The_appr9§imate ~ HB result is
nearly identical.) Note that in the sz%T = 9%7 +
subspace | ./ -;’3 [ = 2.3 | Az,Z‘ .

;
i
|
!
i
i
i
i
|
|
i
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We hope thééé cémﬁentsfwill‘bé héeded,'so that

_ futuféfétudéﬁts will not be nisled into imaQining that

something is to'be'gainedlby itérating Eétween ﬁhe HF and

thé.BCS equations. Most likely only disadvantage will

result - and- most telling perhapsé one can nevéi know

whethér the apéroximation' iéljustifiable unless one cal-

culates offﬁaiagonal elements of thevpair potential - but

thén_one might as well do HF3 and obtain the éxact.resuit,
We méy now proceed to diseuss the HF3 solutions

for the Various nuc1éi.' For éxperimental details

- and angular momentum projectioh célculations'concerning

these nuclei the reader is referred to I.7,.
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The state with maximﬁm bindingvis.aXially ' o !
symmetric and prolate,‘ The solution is-a tr1v1al one
(no pairing) and corre;pondﬂ to the- Hr solutlon giver
in Table 2.4, The properties of this state do not | L '-LZ
depend upon the choicé of forée. ﬁngularvmomentumv
projection on this intrinsic state adequatély explains
the low-lying 11220 enc*gy obectrum.'

Although the prola HF state obtalned wltn the “
Yéle forcé has a gap large'enouqh; to'prevent éairiﬁg,_
the spherical HF state does admit T = 0 pairing. The
: 0 pair force then deforms the underlying nF field,
so that the final denolty dlstrloutlon is prolate, The
binding energy of this paired prolate staté is slightly
agreater than that bf.thé trivial prolaﬁe'StaEe. _Their
canonical.sihgle pafticle bases are vefy similar.. _

Thére‘are several otﬁér'higher-lying trivial (Tabie_

lS)vand non-trivial (Table 5.1) solutions of asSortedv
Shapés, but these are not thought to have any physical

significance.

124

vHF theory predicts only one stablé solutions tﬁe
vasymmetric.one. This state fails tobagree with experiment,
a) The predicted spacing between the K = 0 and K = 2 bands

is 1,18 ¥ev, whereas the experimental value is 2.86 iev. o
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_ b) ‘An axially symmetricbproléte T = 0 paired state with

279
b) Ahgular momentum projectibn fails to reproduce the

apprOXimate I (I + 1) spectra for the K = 0 and K = 2

’bénas;’

c).»Expefimental datd on stripoina spectroscopic factors

23

and the - ¥ ~branch1nq ratlo of g ‘can'not'be

explained in terms of the asymmetr1C'state.

It is clear that the HF prediction must be rejected,

The other HF intrinsic states have the following

_defects;

a) The'biﬁding enefgy is éevéral &ev above ﬁﬁé asymmetric.
staté.v o -

b) The inertiai paraﬂeter LL/Q_gj , '”iq too small,

c)l "hn gap for elewent<ry exc1tatlons is very suall |

(O 5 Mev for Yale prolate) so that these hlghor lylno

statp@ are not StaDlﬁ.GUaln“t partlcle-Hole adwlxture

Introduc;ng palring correlatlons should eliminate these

'defjcienc1eu.

The HFB equations have three almost degenerate

‘solutions with the Yale-Shakin 1 matrix elements,

a) The trivial (A = 0) asymmetric state with
(HS = £133,144 Mev, | |
CHY = 5132.527 Mev, Epayp = =7.802 Mev, -
c) An axiallyfsymmetric oblate T = 0 paired state with.

{HD>= ~132,049 tev, By,pp = =17.205 rev,
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The correspoﬁding HF states are separated in energy
by 8.3 Mev, Also, introducing pairing into each of -%
ﬁhe two Qistinct oblate HF states leads to the same
HFB solution., The energy fof elementary excitations
is increased from 0.46 lev to 4.81 bbv'(prélate) andi_.
0.10, 0,92 Mev to 6.05 Mev (oblate), .
Since the measurédVQﬁadfupole mdméht of»the>first
2% state is negative, the intrihSic’state must be'prolaﬁe,
Futhermdre, the stripping specﬁroscopicidata‘féVbrs a

prolate intrinsic state,

The axiaily 3ymmetric'prolate T=20 péiréd.state is o
therefore chosen as the physicaliy relevant intrinéic ‘
state. The predicted ene?gy of the lowest K = 27 two
quasiparticle state; 4,81 Mev,.ié in reasonable agreemént 
with the experiméﬁtal'vaiué of 4,23 Mev, §ince réSiduai”
quésipéfticle ihteractions nay bé”éxpectéd to lower the
energy of tﬁié state; | - | o

The”NDKB.fbrce.yields prolate and obléte'paired.statesb - o
which are almost identical to the Yale solutions. Addition |
of the pf shell increases the.pairing enérgy and quasi-
particle gap somewhat, but the structure of the prolate
state is essentially unchanged., The HF energy is increased
by ~ S:Mev, and the deformation J=: is incréésednby‘ "i“ ‘;' ‘:f
~ 503, as is expected fron HF'célculations. vAgain the - 7
oblate and.prolate states are nearly degenerate;i T

The Rosenfeld force also yields nearly'degenérate'

asymmetric, paired prolate, and paired oblate states.
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All three distinct oblate HF states lead to the same

HFB limit, The structu re of the prolate state is'very

similar to that obtained with the other forces.v
Since the T = 0 paired axially symmetric prolate
state'has been stabilized and lowered in energy, and has

a *trucLu*o whlch is 1nv1r1ont under chnnge of forcey,

24

we suggest that m=0 palrlnh correlatwons reotor axial

s_{'metry to Mg

The vuve functlon and palr ootentlﬁl fo the prolate.

.s;ate are pre sented in Dablo 5.2 - 5 6 5 11 - 5, 15

,Neither %z nor gﬁ ‘may be apo”o“ y aiagonal

matrices. hevereheleoa, the canonlc al bang is very

\similar‘to the HF basis (Tables 2.5 - 2.9).

o

Siz‘

theory predlcte OthOGondl prolate and ealaee_
state w1LH similar blndlnd energy. AnguTar momentum
projeCulon fron theue two stdtes LallS to reproduce the
energy spectrume Experlmentally there is only one low-
lying K = O band. Since the‘matrix_element of the
Hamiitoﬁian coﬁnectihg theee'two states ( or rather, the

J projected states) has been shown to be small, the two

~ HF bands could not be separated by rmixing.

The rotational spectrun cdrrespondjhg to t’e ground,

1

K = 0 band deviates cong 1derably from the I (I + l)

Spectrum characteristic of axially symmetric shapes,
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Howevcr, the 1#£0 members of the band do sael°fy the
I(I+l) rule. Only the ground state I = O seems to

be depre sed from its predicted p031t10n. This deofeséibn
may be underﬂcood as a result of mixing w1th a ooexlsblng
spherlcal fLate at 4.9u lev,

Lne coez*Stence pioture assumes the existence of a
soherlcnl and O“e defor1ed low~lvinn intrinsic state_.
HF pr .d cts two lon—Tyinq deLormed scates and a upheLwcal
sﬁéte some 15 Hev hlgﬁe | | :

The enevcy of tﬁe soherical wtate i hoﬁ iowered
very much by ]Tzl =1 pairing (”able 3. 8). Aigc |
the Rooenxeld‘and'Yale forces fall to give any low-lying
non~trivial solutioné'ﬁo the HFB equétions. This is
because tve flrue oblate and prol Lo HE states Jpo<

large s1nrle oartlcle oaps.

With the hDKo force, however, a flnd a T=20 pairedj

ax1111y symwetrlc prolate state almost degenerate with
the prolate and oblate HF states., Mbreoyer this paifed
state is not orthogonal to either of the HF.states. For
all forces the oblate state has‘Jz1r = 5/2 4, 1/2+%, e3/2+
occuoled orbltals- and the trivial prolate state has
NI e o= 1/2 + 3/2+ 1/2 + occupied orbltals, Qith.
5/2+ being the first unoccupied orbital, In tﬁe'paired
prolate state the 5/2+ orbital. becomes partially’oecupied;
Consegquently, the overlap of this state with the oblate

state becomes-sigﬁificahtr
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With realistic-férééswthe §rolate HF'state'has a
smali.enefgy gap, SO that_the only physically relevant
states are the tfivial obléteraﬁd thé paired prolate
states, However, experiments indicate that the intrinsic
state is oblate, so that the prolaté oaired staﬁe may also
ba disregavded'A We have already noted that anqu’ar
-momemﬂn+Uﬁ progectwon on the oblate sLaLe fails to
predlct tne oxperlwentﬁW ens rvy ~pectruno

Ve mus t conclude that a satlsfactory uelf-—cm;s:utnnt.
-field de crlptlon OL‘alz has not yet:been achieved,.

532

.'Thé experimental spécttum_is not éBarécteris£ic of
a fotﬂtof;_ However; ir tﬁe ground 0% State'iS'loverod
to- its observed pooltion by 1nteract1ng w1tn the fwrst
excited c* otate at.3,78 lev, then the unocrturbed ground
state bénd‘exhibité an I(I + 1) dépendence.

HF theory predicts an asymmetric shaée'for 332, It
has recently been demonstrated that.2p—2hvadmixtures
to this state result in a spherical grouﬁd s;ate; 6
The'asymmétric HF state is theféforé not reliable, There
is a cdﬁsiderable oveflap between-2p~2h_and'ﬁairing.admixe
tures. -

HF élso prediéts low-lying oblate and prolate states
'with siall energy gaps aﬁd large moments of inertia; The

relative ordering of these two states is force dependent,




284 .

and they are sepafated‘by'é to‘7 Mev.‘ Since theSe HF
states are unstable against oarticie-hole.admixtures '
and 1iezsévera1.nev above the- asynmetrlc statc, they are
not suitable intr1n31c ground states.

The HF3 eguations have three close-lying solutions: N .
trivial ésymmetric and T = 0 paired axially aywmetrlc
prblétetahd oblate. For éll forces the oblate state
lies lownr than the prolate state. ~ For the Rosenf eld
and NDXB forces tnc two state é' are nearlv degenerate.

For the Yale force the oolate state is trenendouslj
lowered in enerwy by T = 0 pairing. nltnougn the
trivial obldte state lies 9 Mev above the

.gymmetrlc state, the paired-oblate state is 2 Mev beloﬁ'
the asvunetric state. ‘The &3 Blndlpc enercles for the
Yale force are ; , _

a) T=0 paifed axially Sﬁﬁﬁetrié oblate, {H> = -229,658 Mev; ;
E,QAIR = -13.233 Mev. . |
b) trivial asymmetrlc <HD =-227,.737 lav. ;

c) T=0 paired axially uynmetric prolate, (ff? =-224,531 Mev,

Although the asymmetric solution can be disregarded, no
choice can be made at present between the prolate and oblate f
T = 0 paired states. & determination of the quadrupole = :

_ 2
moment of the 2.23 Mev 2% state of S3 can lead to a

choice between these two sclutions.




The'wﬁﬁe functioné énd_pair potentialé'for the
pairéd States are preéented in_Tableé 5.7-8, .«0-17

For th péifed oblatehétaﬁe éll forces result in f?
and A 7ith large off-diagonal élements .. The |

canOniCal basis is Verv Aifs erent from the HF basis

'(Table 2.11) For the Yﬁle and NDKB forccs,_but‘for the

Rosenfeld force the two bases are very similar, Addition
of the ’pf 'sheli does not alter 12w = or 'Rb . The
Yale and NDHB fo*ceu provide 31m11ar wvave functvon
but these dljfer Lron the Rﬂsenfeld vave runcnlono,

For the paired prclate state as well, all forces

yield large of f~diagonal ‘elements in f? cJﬁi 45 ..Also_

ey

the canonical basis is very different from the‘nF basis.
Including the pf shell does not chinge the ground state
wave function l?o)\, but the guasiparticle transformation

K is altered, The various forces cive states with

‘similar properties, but the wave function. is somewhat

force dependent,

The spherical intrinsic state usually contains
IESE
8% Mev above the ground state, depending upon the choice

1 pairing correlations (Table 3.9) and is 3% to

of force,
Since the T = 0 paired axially synmetric states are
stabilized and lowered in energy, and have properties

which are relatively independent of the choice of force,

we sugoest th?t T = 0 pairing correlations restore a:ial
. , , v

symmetry to 532,



The low-lying spectrum is characteristic of a - : ‘

vibrator., iowvever, HF cives & well deformed oblate

cround. state with a sm2ll inertial parameter. This, 2

of course, predicts a low-lying rotational spectrua,

in obviocus disagreenéent with evperiment .

The HF eqguations als

o
o
&
o
9]
o]
H
O
bt
o
ot
)
19
o}
o
=
1
8]
]
0
Q
5

5 Mew abhove the obhlate state. It has a2 small energy ¢ap

o

and is therefore unstable. Also the moment of inertia
is larce, ' : o N o |

ons lowversa

;.Jn

Introduction of T = 0 pairinag correlat

]

the enefgy of the prolate state so that it is nearl?
degenef@té with the trivial oblate State; The éxéité@ion
enér@?.is conéiderably‘incr;ased, tberéb? stabiliﬁing

the wave function, FPai |
ihe?tiai péréﬁéter wgt/‘L . With t
generali?ed gap eguations (Chapter 1IV) we found that
AN for prolate ar’® ams increased ~ from the

HF value of 0,06 - 0,22 iMev to the T = 0 paired value

of 0.4% -0,85 Mev. Since the HFB quasiparticle gap is

{

even larger than the BCS gap (see Table 5,23), it is
reasonable to expect an unusually large inertial parameter .
from the HFB prolate paired state, This suggests that

the rotational sgtates should appear at energies comparable.

with or above the two cuasivarticle states., The resulting spectrun

4%
|
»
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may thén tend to look Qibrational.

Forﬂthe Yale force the. yaﬁred qtatc lies below the

P;l

. .
(_n.

trivial ool_ ate

e

U)

“uther more,‘the pairving

correlations are so stronc as to dréstically alter the

uwnderlying sinagle p 3rt1clo (canonwcal) h"sis, so that the

feéulﬁihg self-c consist ent, shape is o>7"£@ “This serves
é; 2 dr matic confirmation of the noc.USitV'bf alioﬁing
tha 4 ana pdlr‘d@grceo of freedom to interact with one
another. o

For all forces the canonical kasis bears no

resenmblance to the corresponding prolate HE basise

e

The transformation K s exceedingly ncnediagonal.

h

v
o

e
Al
[

The T = 0 pair potent substantial off- ﬂwﬁval 1

elemenu,; The wave function is very fOLLP de nendent,

although it is not altered vary mnuch by including the

pf shell, Some cxamples of wave functions and pair
potentials are presented in ablng.Q ~-10, 5.,18-19,
The spherical,intrinsic state is substantially

lowered by | T, ;1 = 1 pairing correlatlona (see III.7).

If the barrier between the paired spherical state and the

paired deformed state iz small, they may be admisxed in.

the physically relevant intrinsic wave function,
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We conclude that T = 0 pairing correlations are
significant in the 2s-1d shell., They rectify noct of the
failures of the HFrtheory in explaining the properties
of N = 7 even=even nuclei in this shell, Axial symmetry

. 3 24 2 .
is restored to Mg and S3 , and an explanation is

provided for the vibrational nature of hr35. 7. 8
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Tables for Chapter V-

Table 5.1. ,Noﬁ.-trivial»soluti'ons to the HFB equations.

“The sﬁape of the trial waye.function is given in parentheses.

0 = Oblate.'v, P = Prélate, S = Spherical. The prc;pe‘rtie.s. of the
trial ané function are given in Tables 2;i5,ih.l.ﬁ A1 énefgies
are in uhitﬁ of Mev. QLM has units of me.
Tables 5.2 - 5.10. HFB wave functions.

The.genéral‘gﬁasiparticle tfansformation is_éxpressed as the product
;of three.tréﬁsformations. See ééuations 5.23&—5;237. For each |

subspace - the fOIldwing quantities are given (read tables from left

tO'right):

L. .00,
2.\j§_y: ; the column vector of4Quasiparticle energies (Mev).

3. 12: » & square matrix.

. o _ .

k, (Im Xdlz) , @a column vector. In parentheses is given
the sign of Im Vyip ¢ Since there is no T = 1 pairing,
Vo = Be Vo = Og‘ u,,q is real a;@ positive; it is
o . 2 1/2
glven by u ,; = [ 2- (Im‘vdlz) ]v .

5.0 @ a square matrix.

k ?

The Fermi enérgy; A, is also given. (Mev).

Tables 5.11 - 5,19, HFB T = O pair potentials, &) §n= O | in canonical

. . . T:l .
o ° = = . i i "I Ve
“basis &Y . L op A pn .O Energ;es‘are in Mev
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Table 5.20. BCS T = O pair potential,oA;l;;l, in HF basis.

Energies are in Mev.

Table 5021. Reiative magnitudes of pairing eneréy resulting

from BCS and HFB.

Table 5.22. Effect of pf shell on pairing energy. NDKB 2 (s—p—sd—pf),

NDKB 1 (s-p-sd).

Tsble 5.23. Relative magnitﬁdes of quasiparticlévgap, B

1 + Ez’,
" resulting from BCS and HFB.
Table 5.2%, Effect of pf shell on quasiparticle gap, El + Ez.

NDKB 2 (s-p-sd-pf), NDKB 1 (s-p-sd).



Table 5.1: Generalizead Pairing in 2s-1d Shell (HFB)-
Nucleus - Force Shape._ Mode S EPAIR, ) » ETOTAL“_ Q‘ZO Ql.LQ )5 E_l + K
Ne2®  Rosenfeld 1 Oblate (0) T=0 . -7.625 -41.697 © -5.9 25.9 5,02
o Prolate (P2) T =0 -6.587 ~41, 4Ll 2.7 - 53.5 k.86
Rosenfeld 2 Oblate -(0)
Yale Prolate (S) T=0  -2.32F -10L.505 15.4. 80.0. 0.255 5.7h

(continued)

| 162



Teble 5.1 (continued)

Nucleus Force Shape'. "lTMbdé_' EPAIR. ETOfAL~,Aﬁ - QEO | J'VQAO_ f3 ‘ + Ej
Mgzu Rosenfeld 1 Prolate (PL) T =0 -k, 576 -95.170 | 15.6 -0.5 5.5
- Oblate (01,02,03) T =0 -6.857 -93.865 ~12.4 58.1 | 5.99
. Rosenfeld 2 Prolate (P2) = T =0 -6.438 ~77.526 15.6  -1k.9 5.7k
Oblate (01, 02) T=0 -6.551 -77.238 -13.0 40.8 | 5.80
Yale Prolate (P) T=0 -7.802 -132.527 ©19.0 -12.1 - 0.2k4k 4,81
Oblate (01, 02) T=0 -17.205 - -132.049 -12.1 31.4 -0.155 6.05
 NDKB 1 Prolete (P) T=0 . =8.121 ~110.388 15,9 13;4 0.218 5.01
Oblate (0O) T=0 ~-11..802  -109.301 -12.5 hr.5 -0.17L L,72
NDKB 2 Prolate (P) T =0 - =9.637 ~116.651 22.5 6.0 0.31k 5.90
: T=0 -15.887 . -114.131 . -16.6 52.8 -0.232 5.83

Oblate (0)

(continued)



Table 5.1 (continued)

Nucleus Force = Shape Mode PATR ' :ET'OATAL' » o ﬁ B S
428 FRosenfeld 1 Oblate (02) Ta -2.207 . ..=150.0L1 0.5 965 6.13
| Prolate (03) T = -6.050 -147.808 - 0.1h 110.5. L.ol
Rosenfeld z"aProlatev(oz) T = ~T7.234 -123.420 0.13 116.0. 5.43
- ~ Spherical (%) ‘ : ' '
NDKB 1 Prolate (p,S) T = -9.933 -140.610 15.1 - 20.9 0.169 4,09
I Prolate (02) T = -14.375 -138.733 . 3.1 -84.0 0.035. b7k
1DKB 2 Prolate (02,S) T = -8.359 -146.853 - 2h.9 -72.0 0.282 -

b1

(continued)
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Teble 5.1 (continued)

. NuCI?uS Force Shapev" ' aMbdel' o EfAIR | .i‘ETQTAL f '_Q2b 'Qué Fg: E, +E
s32  Rosenfeld 1 Oblate (01, 03) T =0 -1.385  -212.901  -1.5 -95.8 - s.89
Rosenfeld 2  Oblate (02,03) T=0 - -5.835. . -178.385 = -1.3 ~110,0 6.16
Prolate (P) T=0 -  -7.276 -178.179 6.5 -9k, 5 - 6.23 .
Prolate (S) T=0 SR12.720h 4,‘-176,173 3.k 37.9 Lot
 Yale Oblate (NDKB1-0) T =0 -13.233 . 4229.658 . =17.0 2.5 -0.151 - 6.17
: Prolate (P) T =0 -9.208 - -22k.531  13.6 - 66.3 - 0.121 4,68
© NDKB'1 ~ oblate (0) T =0 -6.988 S -179.696  -15.5 5.9 -0, 147 -3.68
| | Prolate (P;S) T=0 . -6.03L  -179.266  12.8 -38.2 0.12r = . k.69
NDKB 2  Oblate (0) T=0  -9.977 -183.910  -20.k4 0.9 -0. 194 4. 54
© Prolate (P,S) T =0 -10.953  -183.153 16.8 -52.6 0.160 = 6.k

vez

" (continued)




‘Table 5.1 (continued)
Nucleus  Force Shepe - Mode - By B Gy %, | /5 Ej + B,
. Ai'36 Rosenfeld 1 Prolate (1?,8) T= 0 =5.079 - -277-,“826 3.9 -21.5 3,-75
Rosenfeld 2 Prolate (Pz,»S) T=0 -7.722 . =237.234 4,9 -'26.3 4,69
Yale Oblate (p,8) T=0 '-9.523 . -291.765 ~1l.3 -37.0 ~0.086 © 5.2k
NDKB 1 Prolate (P,S) T =0 -5.904 224,66k 6.0 -17.7 0.049 2.82
IDKB 2 Prolate (P) T =0 -11.260 -226.519 7.5 -19.9 0.061 4.05

g6z
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EoATR peaks at -9,30 Mev, then wave functidn»falls to

spherical HF solution.

100+ * iterations.

EPAIR peaks at -13.9 Mev, then wave function falls to

prolate HF solution.




Teble 5.2 : Prolate Mg  (Prolate 1, Rosenfeld 1)

L

o 15/2

_f  5/2, + 1. 3.566 - 1.000 l'(+).017 1.000

o o Mse My

-3/2, 4+ Lo . 2,598 0 .035  .999  (+).006 - .231  -.973

: 2.0 -9.7k0 999 =035 (=).779 = 973 -.231

1. 2.911 163 .977-  .138  (#).003 .30k .78k -.5k2
2. 6.433  -.047 -.132 .990 (-).203 . 501 .352 . T9L
3.

T.354 986 =167 o LO02k (+).991 .80 -.512 - -.286

A = =13.535

© 162



Teble 5.3 : Prolate Mgau (Prolate 2, Rosenfeld 2)

14

. , 5/
'5m,4 1.1 - 4.612 ‘lﬁa>_(+xmj 1.000
| | 1d5/2- ;ds/z
1. 2,841 .039 - .999 (+).008  .278 961 |
2. 9.005 ~ .999 - -.039 (-).658  .961 - .278 S
- » . , ST — - @
| 185 /5 231/2 1d3/21
1. 2,903 - .212  .973 . .092  (+).007 .405 - 68l  -.610
2. 6.333 ° .969 = ~.197 -.1k7 (-).325  .625 = .280 . 729
3

. _ 6.788 ".125 -.120 .985 ' (+).985 - .667 -.676 -.312

A = -1L.425




fe

23/2, +

1/2, +

23/2, =

.1/2, -

= .
. -

._ 2
. »

-

32

.990  (+).998  .821.

.= -9’-15é

Table 5.4 -Prolate.Mgzu (Yale)
. Yssz
3,777 1,000 (+).03+  1.000
| - gy 145/,
2.651 167 .986 . _€+).008 37 -.938
7.982  .986 -.167 =).684 - ,938 347
2.158 247 .923  -.296  .015  (+).0Lk .13 - -.h09  .-.TH7T .50k
5.058 .926 -.13% - .351 0 -,036 . (-).317. 02k - -.617 . -.175 = T6T
6.503 .285 -.361 -.888 - .02L  (+).953 ©  .06T7 672 -.622 . -.396
49,655 .024 -.011 .036 1 .999 (+)1.000 .987 . 029 - .155 -.027
ey
19.33% . 1.000 -(-).997_V' ;.ooo
Ipg /7 Py /2
16.958 .990 ,139 (-).996  .570 821
26.094 -.139 ~.570

662



Table 2.5 : Prola‘te Mg24 (NDKB 1)

00€

, lds/z
5/2, + 1. ©  2.807 1.000 (+).109 1,000
- Ysrp o M3z
-3/2, + 1 2. 49k .151 .989 §+).018- .285  -.959
o 2 8.710 .989  -.15L ')'717, .959 285
1/2, + 1. 2.516 242 .892 -.381 - .016 (+).018 . 092 -.316 -.842 428
: 2. 5.354 . 564 .190 .803 -, 034 S (-).187 . 005 - =.501 -.235 -.833
3. 6.570 . 789 -. 409 -.458 -. 00k (+).962 . 00k .. 805 -.479 -.349
b, 54,353 . .018 -.009 .032 .999 (+)1.000 = .996 | .028 .. 081 -.034
3/2
-3/2, + 1. 22.403 1.000  (=).997  1.000
P3/n 2 /2
/2, - 1. 19 370 .990 S (-).99% . .526 851
: 2. ,126 -1l .990 (+).998 = .851  -.526

A= -6.582




:5/2:’-

-3/2,

/2, +

"7/2:

/e,

AV
L] -

=W DN
v s e o

[NV o .
* . B

+).002  L9LT

=399

" (cont.)

Teble 5.6 Prolate Mg> (IDKB 2)
| 145/,
h,363,' 1.000  (+).053  1.000
| sy, 1y
3,006 .10k .995  (+).011  .308  -,051
10.839 <995 .10k (-). 743 .951 .308
| | REV 1d5/2 28, /o 145,
2.885 .191 JO41 -.280 LOL7 (4).013 - .118 -.352 -.811 sz
7.020 479 .160 861  -.053 (-).205 .003 S -.526 - ~.228 -.820
8.011 .856 -.299 -.h21 .003 (+).974 .013 ST -.528  -.349
55.786 .020  -.007 .052 ©.998  (+)1.000. .993 .033 - .10k - 04T
A
22,513~ 1.000  (-).00L  1.000
Yz sz
19.081 .210 .978 (-).001  .399  .917
29.594 .978 -.210 (4

- 10g



Teble 9.6 : (continued)

| . 2 -
_ | | 3 e Ty Y
-3/2, - 1 16.163 ~,161 - 419 .890 077 (~).000 .091  -.243 -.951 -.166
,v 2 - 21.816 .921 -.284 .0L0 .267 (+).002  .003 - .598 . -.013 -.801
3 122,053 =276 -.005 -. 134 .952 (-).003 - JOTH" -. 760 .301 -.572
L . 26,124 22k 862 o Wh35 <131 (-).995 . .993 L0770 06k . 060
- Lf2, - 1 14,365  -.166 -.165 . L570 . 785 .070 .016
. 2 18.528 .070 ,267  .063 -.061 .953 .085
3 19.722 .223 .861 .361 -.008 -.277  =.050
i 22.811 .632 .068 542 .ha2 .01l -.093 -
5 2%.733  .720 -.386 A8k - -.283 -.006 .138
6 30.659 -,033 - .08k  -,115 - .083 ~.095 981
Ty By M Ty Mg By
(=).000 .050 ©  ,058.  -.,169 -.023 -.255 -.716
+ g o0L .0h2 -.028 ~, 349 -.082 272 . 580
-).003 LOHT 076 -.63k .225 -, 703 .21k
+) .00k 077 -.063 -.606 L2093 . 595 - -.323
(-).992 521 845 . 061 . 030 L 091 . 032
(+).998 846 -.521 .085 .012

-.069 .01

- A= -6.87L.

- z08



L 5/2,

_‘3/2’ '

/2,

'.7/2:'

5/2:’

P
L]

DY
. L]

32

-.45)

Teble 2+7 : Prolate S (NDKB 2) _.
| o l@s/z |
3.501  1.000 ”(-).822' 1.000
:lds/2 ld3/2 ) -
3.85%  LoTh 228 (-).125  .293  -.9056 _
8.193 228 L97h (+).976  .956 293
151/2 ld5/2 ZSI/Z ldj/z
2.969 Lh3 .818 367  .003 (-).153 ..063  -.345  -.817  .k59
- 3.901 .892 -.362 -.27L -. 01k (+).923 ..019 -.609 - 176 -.TT3
© . 9.957 .089 -7 0 .890 -.022 (-).985 . .ok2 - -.7LL - .sho k37
62,893 - .01k -.017 .015  1.000 (-)1.000. - .997 . 06l .032 ~  -.032
| | lﬁvar
18.768  1.000  (+).002  1.000
Y72 s/
15,120 .313 - .950 (+).001  .ks51 .89z
- 25.962 .950 - ~-.313 (-).o00k - .892

€0€



"3/2: -

'.-1/2: -

FWND
* . . ®

AN\ Fw
L R )

Table 5.7 (continued)
| | P32 g Py Mo
13. 404 -.227  .528 818 -.003  (+).001 .08  -.080 5,995  -.029
20.531 .966 .224 .123 -.040 (<),002" -,00L -2 591 . .024 .806
23.078 .113 -.813 <556 . 129 (+).005.. . .081L -.800° . .085 -.589
30. 5hit .053 -.095 . .080 991 (+).998 +996 :'069 L Ob1 .0kg
12,749 172 179 631 735 -.010  -.008 -
18.927 .357 -.895 ¥252 - .08k -.008 -.007 =
21.624 631 158 -.518 - .55k .027 -.039
23.253 658 371 .505  -.373 =187 .023
27.525 109 .059 L1k -.072 .970 . 159
35.056 -.007 = -.0L7 -. 043 .0k9 -.151 . 986
(+).001  .025 027 -.0TL . -.662 -.025  -.ThS
(-).001 .009 -.001 - .096 . 739 -, 045 -.665
(+).003 .046 «056 -.662 .068 = TH2 .031
(=).00k4 047 -.021 -.737 .100 666 . -,0k0
(+).997 . 522 849 . 055 . 015 .. 050 .027
-. 524 . Olly

- =007

=, 026

- .012.

(-).999  .850

A = -9.878

{013



5/2, -

-3/2;,

.h.i/z,

. '7/2: 

5/2,

W
. - -

1.

Oblate S3°

.805

- =.593

Tsble 5.8 (NDKB 2)
ld5/2
9.778  1.000  (-).990  1.000
| 'lds/z ld3/2
2,074 - .938 347 §+).5u2 670 JT43
7.136 34T - =938 . ).97h .T43 -~670'

2,471 .209 2954 -.211 - .037  (-).02h  .083 - .h28 . -,567 -.699
6,554 - .124 .191 .963 - 146 0 (+).b79 .025 .608 -.390 .691
7.25% 970 -.230 -.08L -.010 - (-).988 . .137 -.668 -.709 - .182

63.609 .020 - -.010 .150 .989  (-).999  .987 L0k .155 .016

lf7/z o

11.492 1.000 - (+).002 . 1.000
| - a2 _lfs/z .

14,297 . 768 640 §+).001 593 806

21.680 -.640 768 (-).002

gog



Table 5.8 (continued)

B | | _ lp3/2 . ‘lfT/z 2p3/2 _ ;fs/z
-3/2, - 1. 15.396 . .90L .061 430 0,002 (+).001 038 .548 - .811 .202
R 2. 19,149 -.38 572 728 - .021 (+).002 . 062 543 -.531 .648
” ' 3. 2k,912 .199 81k -.533 . -.116  (-).002 ~ .008 - .633 -.2k6 -. T3k
L 34,668 .029 .083 - -0 .993  (+).998 .997  =.060 .00k -.042
U128, - 1. 16,057 .799  .268 -.521 .27 .05 .0lk
L 2. 20,942 - 457 U476 -.27 - 686 - .133 .012 w
3. 23.021 .367 .231 WT62 . Jh2y -.187 -0122 o
Lk, 24,756 . 107 -.158 .207 . .0T78 .O6 <137 o
© 5. 26.839 -.078 787 - .166 -.559 .131 .132
6. 32.846 .035  ~.065 .055 . .108 -. 177 OTH
p3/2 lp1/2 lf7/2‘ . 2P3/2_  lf5/z zp1/2
.029 .022 479 55k L2588 629
.087 -.065 .623 -.347 C-l.68k 11l
.010 -.005  -.32k . -.599 .128 . .721
. OkO LOuh 520 - -.461 665 -.267
. TH6 -.657 -.068 . 040 L 070 T - 02k

.658 .79 -.053 .02  -.043  -,010

A= 59. 865




v5/2, +

.'.3/2: +

1/2, +

L.

2

Table 5.9

Prolate Ar

1a

.36

7.386

* (Rosenfeld 2)

(-).901 .382

re241

I 5/2
L.676  1.000 (=).876  1.000
| | W, 1a3/2
2,506 .99  .111 o (=).391 .22l --.975
6. 594 -, 111 .99k (+).986 975 - .221
| o Mo 28 1, 1,
- 2.177  .835 528 - .15k §-).773 .86 -. 769 e
- 5,784 .542 - Th3 -.302 (+).982  .786 .59 .176
L0092 = h11 .907

- -.802

N = -15,847

LOE



5/2)'

- '3/2)

o 1/2)

f7/2;'_'

5/2,

‘.NH

36

Table 5,10 Prolate Ar (NDKB 2)
1d5/2
7.006 1.000  (-).950  1.000
) /2 372
'1.973 982 .190 (-).450 .238 -.971
- 9.123 -.190 .982 (+).981 - .971L .238
2.077 .622 .697' .35 .00k (-).675 .052 -;308 -.825 sl
3.623 . 768 -.452 - 454 -.016 - (+).94k .03k - ~.628 -.193 -.753
9.989 155 =555 817 " -.032 (-).979 -.o21 -. 713 .530 459
66.395 .015 -.028_ 017 .99 (-)1.000 .998 .053 .039 -.008
. e
15.685  1.000 (+).00% 1.000
_lf7/2 1f5/2
14,058 .372 928  (+).00L . .k25 .905
, 24.488 .928 = -.372 (-).005 .905 -.425

(cont.)

g80¢



-3/2, -

1/2: -

‘Y1 W
L) . L] L] L]

W N
L] L [ ] -

(continued)

: ,008

- A = -11,968

Teble 5.10 -
o | 3/ My Py Hgp
13.260 - 167 561 811 -.00k  (+),001  .018  .026  -.999  .oOk
19.662 .985 .101 -+ .133 -.030 (-).002 . .002 -. 584 -.011 .812
" 23.247 . 004 -.817 e 565 -.112 (+).005 .038 ~.811. -.023 -.583
33.925  .030  -.087 - 072 .993 (+).998 999 .031 .09 - .020
12.950  -.117 127 657 .73k -.003 -.005
19.013 .550 -.817 123 .119 -.011 +. 005
22.711 .56 .359 -.551 517 - .026 -.0k0
23.372 617 .430 L4992 - 417 -.140 - L OLT
29.891 .079 .0k2 .075 -.056 Oh6 297
35.804 =011 -.009 -.051 051 291 <95k
p3p  Pyp Mgp By Mgp o By
_:;§+).ooo . 009 .00k .05  © -.650  LOMO  -.759
L (=).00L .00k -.005 -.002 . 760 - .033 - -.6h9
(+).003 .021 021 - -.670 -.003 L -.040
-~ (-).00k .02k -.007 - Th2 -.003  ,669 ’ .032 :
(+).998 <ol .869 .023 . 007 .018 L0
(~).999 .869 -.495 024 -.001 -, 011

s0¢.



5/2, +

-3/2, +

1/2, +

T = 0 Pair Potential . (oégn; © ) in Canonical Basis

Prolate Mgzg (Prolate 1, Rosenfeld 1)

Table 5.11
. 922
- 1.483 .210
210  -2.162
.806 .285 ©-.057
.285 -2. 494 -. 406
-.057 1.188

-.406

oic.



Teble 5-12; T =0 Pair Potential () gn= %) in canontcal

- 5/2, + 1.198

Prolate M,gzlL (Prolate 2, Rosenfeld 2)

-3/2, + 1.616 ~  .183
) . .183 . -2,70k
1/2, + 1.00L = .357 -.011
.357 -2.896 - -.269
~.011 -.269 1.635

ITe



5/2,

-3/2,

/2,

v'3/2:

1/2,

1.372

Table 5.13 : T = O Pair Potentisl (oA gn‘= 0 ) in Canonical Basis

Prolate Mgz4 (Yale)

- .022

1.428 . .678
678 -2.604
1.189 .378 -.116 - 1.058
.378 -2.589 .84s =158
-.116 .845 2,547 .367
1.058 -.458 .367 1.656
’ -2 . 178
-2026)4' -0022
2.537

Zi€




5/2,

'3/?:

1/2, A

3/2,

1/z,

Teble 5.14 : T = O Pair Potemtial () §n=

Prolate Mgzu (NDKB 1)

2.497

1,750
2.276 .T13
.713 -2.375
1.601 .311 -.149 .879
.311 -2.576 .943 -.43
-. 149 .43 1.997 +339
,879 - 431 .339 2.154
-2.598
-3.052  -.041
- Okl

0

) in Canonical Basis .

€T



5/2,

73/2)
1/2,
‘7/2:

5/2,

Teble 5,15 ¢ T =0 Pair Potential (/A gn=

‘Prolate Mgzh (NDKB 2)

1.954
2,281 649

6h9  =2.710
1.746 .348  -.087 - .9kO

.348 -2, 78k .965 -.359
-.087 965  2.228 RIS

.940 - =.359 466 2.431
-1.013
21.376 . -.0h0

-0k 1.652
(cont. )

°)

in Canonlical Basis -

P1e



‘3/2; =

1'/2: =

- Table g, ]_5

-.,_~r,._1050 :

(Continued)

=751 .00 . - -,09L - -.134k..

010 © T1.906 -.063 -.662

-.091 -.063  #2.052 .173

-. 134 -.662 <173 -2.965

~-.863 -.011 -.088 .031 -. 022 -.035
-.01L 1.06k .018 .127 .313° L 605
-,088 018 - -2.140 -.035 - .202 -. 797

.031 .127  -.035 2.191 .27k 182
-.022 .313 . .202 27k -3.282 -.050
~.035 605 -.T797 482 "2

S




Table 5.16 : T = 0 Pair Potential (JS ;;= 0 ) in Canonical Basis
' Prolate S5 (NDKB 2) ‘ -

5/2, + . -2.681

-3/2, + -2.695  -.836
- -.836 = 2,460

1/2) + . "2- 72]- -.)4-60 - 327 _.730 .»: . ) . . N ‘ (':)‘
~-.460 2.403 26 W2y R pj
L -.327 426 -2.091 -.106
-.T30 2k -206 -2.537
-7/2, - CLess
- 5/2, - | 1.857 . 083

.083 -2.039

( coﬁt. )




- =3/2, -

/2, -

Teble 5.16 (continued)- -

w90k . <,015 .138 48k

.015 -1.981 -.083 -.663

.138 -.083 . 2.25h .631

L8k -.663 631 - 2.898

937~ -.019 -210T7. -.025 433 =, 025
.019 = -1.315 -. 001 119 . .252 158
.107 ~ra COL 2.163 .022 R Y14 <396
.025 119 - L0220 -2.175 .328 ~.062k
433 .252 L6460 2,328 .976. .02
.025 .158 L3960 -.624% .021 -2.425

- LTE



5/2,

‘3/2:

1/2,

'7/2; .

5/21

‘Teble 5,17 : T = O Pair Potential ( D gn= 0 ) in Canonical Basis

. .‘919

-1.673

(cont.) :

Oblate SO° (NDKB 2 )

-1.937
2.675 . 907

.907. -2.066

~2.177 -.560 -.297  -1.095
- .560 2.876 -.481 490

-.297 - 481 -1.676 -1,184
-1.095 L4900  -1.184 -3.735"
1.220 .035

.035 -

81g



-3/2, -

1/2, -

256

Teble 5.17 (continued)
.T68 .050 Nt 311
.050 1.947 .008 .T36
.06 .008 -1.827 .850
.311 .T736 -.850 .376
.830 .00k -, 019 -.010 . 106
L00hk  -1.263 -.092 . 040 -.012 -.304
-.019  -.092 -1.278 . 006 -.605. .TL6
.00 -,040 . 006 .896 .575 137
- .106 -.012 -.605 .575  -=3.218 -.015
.256 - .76

.30k

737

-.015

3,520

BIE



=0

Teble 5,18 : T = O Pair Potential (A g ) in Canonical Basis

n -
Prolate Ar36 (Rosenfeld 2)
52, +  -3.079
S -3/2,+  -2.495  -.316

-.316 1.523

1/2, + f -2.748  -.585 . 184
, : -.585 1.340 - 0.035
.18k .035 - -1.317

0ocze




5/2;

"_3./2:‘

.1/2:

-7/2,

5/2,

: T = O Pair Potential (0 gn= 0 ) in Canonical Basis

. Teble J-19 -
| “Prolate ArsC (NexB 2) -

‘”-3.'06'5

-2.220  -.859

-.859 - 2,408

-2.991  -.u48  -.327  -.530

- 448 2.240 ~.308 <360

=.327 «308 - -2,196 ©  -.149

-.530 = .360 - 1k9 -2.hh
2.068

1.520 .132

.132 -2,151

(cont.)

1z8



Table 5.19 (continued)
-3/2, - _ .923 -.012 . 085 116
- -.012 -1.809 -.116 -.881
.085 -.116 2.32h .809
416 -.881 .809- 2.976
1/2, - : .763;: -.03k . 056 -.018  .5%0 - L,0hk.
o o ‘ -.034 -1.393 -.006 . 069 2h7 o2k
.056 -.006 - 2.127 .039 = .688 436
-,018 . 069 .039 -2.27h -.505 - =557
. .54%0 . 24T 688 0 -,505  2.529 011l
- Oblr. .02k 436

-.557

011 - 2,482

ioe?

zze



5/2, +

=3/2, +

1/2, +

‘Table 5,20 :

BCS T = O Pair Potential N gn=jg*)'in: HF Basis.

.. Prolate Ar3_6 (Rosenfeld 2)

- .-2.105
-0.181  -.078
-.078 ~L.780
Royet 263 .299 -
.263 -.399 .915
+299 -915 -1l.221

- €2€



Roéehfeld 1
Rosenfeid 2
Yale ‘
«NDKB 1

NDKB 2

Table 2.2l

Epprg  (HFB) Epprg  (BCS)
Epprr . (BCS)
_ Prolate Mg®" Prolate S0 Oblate s3°

0.15 :.,; - 1 0.38

- 0.07 - 0.27 - 0.06
o2k . o9k .
0.30  Lz2 -0.05
1.02 | 406 0.27

* HFB solution is Oblate

Prolate Ar36

0.63
1.07
1.81
1.18

2.16

vee



vE

¥op
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Table 5.22
EpaTR (NDKB 2) - EpaTR (NDKB 1)
RN (NDKB 1) A

Prolate Mgzl* 0.19
Oblate Mgzl+ ' 0.35
Prolate 3128' ' -0.16
Prolat-e.S32 0.52
Oblate 832' 0.43
- Prolate Ar36 - 0.90



Table 5.23

NDKB 2

(By * Bp) ypy = (By + Bp) peg
(B + Ep) peg

Prolate Mg2h  Prolate 832
Rosenfeld 1 - 0,02 -
Rosenfeld 2 '0.00 : 0,60
" Yale -0.0k4 ' _ 0.11
NDKB 1 -0.03 . B 0.06

0.6 . 0.20

* HFB solution is;Oblate

- Oblate S

' 0.02

0.00

-0.16

~0.01

32

Prolate Ar

0.20

.27

0.79 %

0.25

0.36

36

9z€



+

- 327 :

Prolate Ar

‘Table 5.2h

B +E ) ygs 2 (B, + EZ).NDKB‘l

(By + B ) g 1

“Prolate M’gz)+ - 0.18
~Oblate MgZh' 0.24
ProlateLSigg' - 0.15
’ Prolate_s32 . 0.38
Oblate S3° 0.23
36 0.k
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. SUMMARY

v Tﬁe:Schroédingér equation.with nuCleonﬁnﬁcieon
intefaétiéns providés a Startind'point for a many - body
description of nuclear J”Opeft es. FApplication of the
partition method results in an effective interaction
operatiné in a model space..'If'ﬁhelmodel space is
suitably choséﬁ, fhe Saﬁé efféctive'interaction may be
used_in ﬁoth the paif“potential éhd ﬁhe H2 potential,

The self~co sistent field formalisms are then to be inter=-

preted_as approximations to exact diagonalization of the

effective Hamiltonian in the model space. (Ch,I)

HE theory is the first order approzimation to
exact dia;ohalization. It is an 1ndepb dent particle

Jescription and prov1de¢ a one boay self-consistent’

potential, With thevexception of ?ezo, HF theory fails

to ekplain the gfoundfstate'properties of the N = Z even -

éven nuciei in the_2s—1d'shell. (Ch.II)

Com?onénts of ﬁhe effective interaction unaccounted
for by the HF potenhlal give rise to correlatlonﬂ between
pairs of nuclecons in tlme—reversed dewenerate orblualo. |
With these pairing correlations is associated a self-
consistent pair potential. The approximately independent
modes of excit ation are no longer partlcles, but guasi=
particles. They may bevdescribed by the special Bogoliubov

quasiparticle transformation. Unless special care is
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taken in choosing the .single particle basis statés, use.
of the special transformation assumes that the pair
potentiél only éonnects time—révérsed orbitals., For
a non-trivial force, this assumption is not justifiable,
It:is demonétratéd that p-p and nénvpairing correlations
are not significant in W = Z‘éven—éven'nuclei in the
2s-1d shell. (Ch I11) |

The pairingvﬁheory is gene:élized to include p-p,
'nnn; n-p (7 = l);.and'n—é (T =.0),pairing. All modes are
treated on an equél'basis. The-{qﬁasipartiglé cb—ordinates
must bescomplex.  A.géneralized set of gép équations'are
derived for N = 2 nuclei. Salution of the gap equations
indicates that T = 0 pairing correlétioﬁsAplay a'very -
impéftant role, altering the propefties of several of the

nuclei considered, However the generalized gap equations

.

still assume that the pair potential is diagonal in spatial

co—ordinates.'-Théir'utiliﬁy,’therefore, is twofold.

a) The isospin generalized special transformation demonstrates

how to introduce appropriate symmetries into the HF and
pair potentials so as;to pernit boﬁh T=0and T =‘l
pgiriﬁg. b) The 301utions to-theigeneraliZed gap
equationé are natﬁral-starting. poinrts for QFB calculations,
(ch, IV)

- The general'quasiparticle transformation permits.the

HF and pair degrees of freedom to interact with one

another. Thne pair potential is not assumed to be diagonal, -
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Reﬁﬁiring théﬂquasiparticﬂeé tx)be.épptoximateiy non-
interacting resdlts»in the HFB équatiOné,'which brovide
the qhaolparulcle co-ordlnates and energleg._‘The.HFB
eauatloﬂg are also derlved bj a varlatlonal pr1nc1ple.
minim 3tlon of t%e binﬁlng energy with respect to arbitrary
verla ions in quaolpartlcle co-ordlnutea. Thls proof
requvrea the assistance of the generallzed den31ty natrlx,
The self-c0331stenL oymhetric) ‘of the HF3 solutions are
diséuSééd in some detail. It is.démbnstrateo that
édmplex,quaSiparticlé co-drdinates afe required-fof
qéneralized'isospin paifinc,'(ch.v 1<7.)

Unit arwty cond1t10n0 and the aosunbt:on of tlm.
réversal symmetry'quite trivially.orovide'the canonical.:
form oL tha den 1ty}mabﬂ“x aad the pairlna Lensor The
ceneral qh. a rticle tranuformatlon is tnen deccrloej
as the‘product of three transformations: (l) an isospin-
éonservihg rotation in parﬁicie Spéce; (?) an isos pin?'
generalized special quasipartic1e transformation,.

(3) a rbtation in quaéiparticlé space. This represehtation
facilitates an evaluation of the various approximations

to HF3, We find that-ﬁhe'BCS,approximatibn of negiecting
off~-diagonal elements of the pair potential is not Ju atif led.
Furthermore, at tenntlng Lo permit the HF and pair degreeo

of freedom to interact wlth-one another by iterating

between the HF and BCS eguations is an even worse

approximation, The HF3 canonical single particle basis
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6ften bears no resemblance to ﬁhe *corr ondana BF
single partiéle basis, The third transformation_may
not be apbr021maced by the unit transLormatlon, nor is
‘th e pa : potpntlal dlhgonal in the canonlcal ba51s°
(ch, III.5, I"\}".I_s, v.’z_-a)f-

The HFB éﬁuétiohsIViﬁh'generalized isdépin pairiné
have becn solved £or the N= 7 even—QVEﬁ‘nuclei in;the
2s-1a shell, A.vériety:of model spaces and interactidhs,
both realistic and phenomenological, all reproduce
the foliowing cdnclusibns:r T = 0 pairing correlations
dominate.over T = 1 pairing correlatio ons. They play a

very 'signi:

H‘l

icant role, drastically altering the p:opér*ies
of many intrinsic states., Most of the failures of the

HF theory in QXpl ining the properties of these_nuclei
‘are“rectifiéd.'_T-=_O pairiha restores axial symmeiry to
the equilibrium shapes of Mg and § 2 and provides aﬁ

-~

explanation for the vibrational nature of Ar3°. (Ch.V.8)

i
i
i
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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