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Optimal Design of Non-Regenerative
MIMO Wireless Relays

Xiaojun Tang and Yingbo Hua, Fellow, IEEE

Abstract— Given a multiple-antenna source and a multiple-
antenna destination, a multiple-antenna relay between the source
and the destination is desirable under useful circumstances.
A non-regenerative multiple-antenna relay, also called non-
regenerative MIMO (multi-input multi-output) relay, is designed
to optimize the capacity between the source and the destination.
Without a direct link between the source and the destination,
the optimal canonical coordinates of the relay matrix are first
established, and the optimal power allocations along these co-
ordinates are then found. The system capacity with the optimal
relay matrix is shown to be significantly higher than those with
heuristic relay matrices. When a direct link is present, upper
and lower bounds of the optimal system capacity are discussed.

Index Terms— Multiple-antenna relay, MIMO relay, non-
regenerative relay, capacity analysis, optimal canonical coordi-
nates, optimal power allocation.

I. INTRODUCTION

W IRELESS relaying is essential to provide reliable
transmission, high throughput and broad coverage for

wireless networks in a variety of applications. In a cellular
environment, a relay can be deployed in areas where there
are strong shadowing effects, such as inside buildings and
tunnels. For mobile ad hoc networks, relaying is essential
not only to overcome shadowing due to obstacles but also to
reduce unnecessary transmission power from source and hence
radio frequency interference to neighboring nodes. For tactical
applications, dynamic deployment of manned or unmanned re-
lays are useful to enhance the network’s reliability, throughput
and low probability of detection and/or interception.

A three-terminal relay channel model was studied in 1970’s
as in [1] and [2]. More recent activities on relays are shown
in [3], [4], [5], [6] and [7]. Systems of single-antenna relays
have been a primary focus of prior research.

It is now well known that a multiple-antenna system can
provide higher rate data transmission than a single-antenna
system in a scattered environment. The capacity of single-
user point-to-point multiple-input and multiple-out (MIMO)
channel was well studied in [8] and [9]. Research of MIMO
relays is recently shown in [10] where a regenerative MIMO
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relay is considered. A regenerative relay regenerates the orig-
inal information from the previous node before it retransmits
the information to the next node. In [10], it is also assumed
that the relay receives and transmits signals simultaneously
at a common frequency. While theoretically possible, this
is a practically unstable approach because the power of the
transmitted signal at the relay typically overshadows the power
of the desired signal at the relay. Currently, there is no
technology that allows a relay to work in the above mode.
The relay to be considered in this paper uses two orthogonal
channels for reception and transmission.

While there is a natural need for regenerative relays for
which a decode-and-forward scheme (DF) is needed, there
is also a need for non-regenerative relays for which only an
amplify-and-forward scheme (AF) is required. Comparisons
of the performances of the DF and AF schemes for single-
antenna relay systems are recently shown in [11] and [5].
It has been observed that the AF scheme can achieve a
better diversity order with the same multiplexing gain than the
DF scheme although the two schemes may outperform each
other in terms of the ergodic capacity depending on channel
realizations.

In this paper, we study a non-regenerative MIMO relay
system where the information data are not regenerated at the
relay except that the baseband symbols are reproduced. We
believe that a non-regenerative MIMO relay has the following
potential advantages over a regenerative MIMO relay. First, a
non-regenerative relay can relay signals faster than a regener-
ative relay if two frequency channels are used for the relay’s
input and output, respectively. Second, deployment of a non-
regenerative relay could have little effect on the operations at
the source and the destination as there is no handshaking re-
quirement for each packet going through the non-regenerative
relay using two frequency channels. Third, a non-regenerative
relay contains virtually no information for decoding the source
and hence exposes no security information even if it is stolen
by enemy. These potential advantages could make (especially,
two-hop) non-regenerative relays readily useful within a given
wireless infrastructure and/or mobile ad hoc networks.

Our main contribution in this paper is the development
of the optimal non-regenerative MIMO relay matrix that
maximizes the capacity between the source and the destination
when a direct link is not considered or is negligible. It is shown
that the weighting matrix applied at the optimal MIMO relay
obeys an optimal set of canonical coordinates governed by the
channel matrices in the system. The optimal set of canonical
coordinates decompose the MIMO relay channel into several
parallel single-input and single-output (SISO) sub-channels.

1536-1276/07$25.00 c© 2007 IEEE
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(We use the term “relay channel” more broadly than some
people are accustomed to.) It is also shown that a water-filling
like algorithm can be used to optimize the power allocation
along these coordinates (or sub-channels). The result in this
paper extends our earlier work in [12] to the case where there
could be unequal numbers of antennas, the channel matrices
could be singular, and signal to noise ratio at the destination
node could be arbitrary. We also give an upper bound and
two lower bounds on the optimal capacity of the MIMO
relay channel when a direct link between the source and the
destination is present.

It is clear that a relay is much more important when the
direct link is weak than when the direct link is strong. In
the former case, the contribution by the direct link can be
negligible (as supported by results shown later in Figure 8).

We acknowledge an independent work shown in [13] where
a similar result is reported. Comparing to the development
given in [13], our proof of the optimal coordinates is much
more rigorous.

Throughout this paper, we will use the following con-
ventions. † denotes the conjugate transpose. E denotes the
expectation operator with subscripts specifying related random
variables. IM denotes an M ×M identity matrix. O is an all-
zero matrix with the dimension identified by the context. A
circularly symmetric complex Gaussian vector with mean μ
and covariance matrix Σ will be denoted as CN (μ, Σ).

The rest of the paper is organized as follows. In Section II,
we introduce the system model of orthogonal MIMO relay
channel and then formulate the problem of optimal non-
regenerative MIMO relay. The optimal canonical coordinates
of the optimal MIMO relay matrix, when the direct link is not
considered, are given and proved in section III. The optimal
power allocation along the optimal coordinates is developed
in section IV. Numerical illustrations of the optimal capacity
of the MIMO relay system without a direct link are presented
in section V. In Section VI, we study the case where there
is a direct link, and we show an upper bound and two lower
bounds on the optimal capacity. Section VII concludes the
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a three-terminal orthogonal MIMO relay channel
as shown in Figure 1, where a relay is used to assist the
transmission from source to destination. All terminals in the
relay model are equipped with multiple antennas.

The source transmits (broadcasts) to the relay and destina-
tion in channel 1 (solid line), and the relay transmits to the
destination in channel 2 (dashed line). Channels 1 and 2 are or-
thogonal to each other. In practice, the two channels should be
further divided in time or frequency as a relay cannot receive
and transmit at the same time in the same frequency band. For
fast data transmission and convenient implementation, division
in frequency appears more advantageous than division in time.

As long as the channel coherence time is larger than the
reciprocal of the channel coherence bandwidth, all fading
channels may be modelled as if they were frequency flat,
through use of multiple narrow-band carriers (such as or-
thogonal frequency division multiplexing). This is the case

Fig. 1. A three-terminal orthogonal MIMO relay channel model, channel 1
(broadcast channel, solid lines) is orthogonal to channel 2 (relay-destination
channel, dashed lines). At the destination, the signal r may contain compo-
nents from channel 1 and channel 2.

for most practical environments. Therefore, we will assume
that the MIMO channel responses between the source and
the relay, the relay and the destination, and the source and
the destination, are represented, respectively, by constant (as
opposed to polynomial) matrices H1, H2, and H0. The
transfer function of a non-regenerative relay is equivalent
to a memoryless weighting matrix F that transforms the
(baseband) waveform received at the relay to the (baseband)
waveform transmitted from the relay. Furthermore, we assume
that during the transmission of each packet of data, H0, H1,
H2 and F remain constant (as opposed to time varying). The
numbers of antennas equipped at the source, destination and
relay are denoted as M , N and L, respectively, and thus we
can write H0 ∈ CN×M , H1 ∈ CL×M , H2 ∈ CN×L and
F ∈ CL×L. There is little need to consider a non-square F
since all L antennas at the relay can be used for both receiving
and transmitting.

There are three basic modes for the three-terminal MIMO
relay system:

(A) Direct Link Without Relay: The signal received at the
destination is

r = H0s + n0 (1)

where s is assumed to be a M × 1 zero mean circularly
symmetric complex Gaussian signal transmitted by the source
terminal. Also assume that the source works in spatial mul-
tiplexing mode, i.e., the source transmits independent data
streams from different antennas and over different sub-carriers.
So, we have E{ss†} = P1

M IM , where P1 is the transmis-
sion power used by the source. The superscript † denotes
complex conjugation. We can write s ∼ CN (0, P1

M IM ). The
noise is also complex circular white Gaussian, i.e., n0 ∼
CN (0, σ2

0IN ). Assume that the source does not know or
use the channel state information (CSI) but the destination
knows and uses the CSI. Then, the “instantaneous” (i.e.,
corresponding to a packet duration) capacity between the
source and the destination is given by [8],

CI,A = log2

∣∣∣IM + ρ0H
†
0H0

∣∣∣ (2)

where | · | represents the determinant of a matrix; and ρ0 =
P1

Mσ2
0

is the (normalized) signal to noise ratio (SNR) at the
destination terminal in channel 1.
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(B) Relay Without Direct Link: The signal received at the
destination is

r = H2FH1s + H2Fn1 + n2 (3)

where n1 ∼ CN (0, σ2
1IL) and n2 ∼ CN (0, σ2

2IN ). Let R
denote the covariance matrix of the (total) noise term in (3).
We have

R = σ2
2(IN +

σ2
1

σ2
2

H2FF †H†
2) (4)

As shown in Appendix I, the instantaneous capacity between
the source and the destination in this case is

CI,B = log2

∣∣∣IL + ρ1H1H
†
1 − ρ1H1H

†
1S−1

∣∣∣ (5)

with ρ1 = P1
Mσ2

1
which is the (normalized) SNR at the relay,

and

S = IL +
σ2

1

σ2
2

F †H†
2H2F. (6)

(C) Relay With Direct Link: The signals received at the
destination in two orthogonal channels can be expressed as
the following vector:

r =
[

r1

r2

]
=
[

H0

H2FH1

]
s +

[
n0

H2Fn1 + n2

]
(7)

The instantaneous capacity between the source and the desti-
nation is now given by (see Appendix II)

CI,C = log2

∣∣∣IM + ρ0H
†
0H0 + ρ1H

†
1H1 − ρ1H

†
1S−1H1

∣∣∣
(8)

or equivalently,

CI,C = log2

∣∣∣IM + ρ0H
†
0H0

∣∣∣+ log2

∣∣∣IL + ρ1H3H
†
3

− ρ1H3H
†
3S−1

∣∣∣ (9)

where

H3 = H1

(
IM + ρ0H

†
0H0

)−1/2

(10)

Comparing (9) with (2) and (5), we can see that the system
working in mode C can be decomposed into two virtually
parallel systems working in modes A and B respectively.

We will establish the optimal relay matrix F that maximizes
CI,B in the next two sections. The optimal F that maximizes
CI,C is still unknown. But we will discuss upper and lower
bounds on the optimal CI,C in a later section.

We will assume that the average power used by the source
is upper bounded by P1, and the average power used by the
relay is upper bounded by P2. Since the transmitted signal
from the relay is FH1s + Fn1, the power constraint on the
relay leads to the following constraint on F :

σ2
1tr{F (IL + ρ1H1H

†
1)F †} ≤ P2 (11)

where tr{·} represents the trace of a matrix. For convenience,
we will use

G =
σ1

σ2
F. (12)

Using (12) in (5), (6) and (11), we have the following
optimization problem for the MIMO relaying system working
in mode B:

max CI,B = log2

∣∣∣IL + ρ1H1H
†
1 − ρ1H1H

†
1S−1

∣∣∣ (13)

s.t. tr{G(IL + ρ1H1H
†
1)G†} ≤ ρ2L (14)

where S = IL + G†H†
2H2G, and ρ2 = P2

Lσ2
2

which is the
(normalized) SNR at the destination in channel 2.

If the relay does not know the CSI (i.e., H1 and H2),
the relay matrix F (or G) may be chosen by maximizing
the ergodic capacity Ce,B = EH1,H2{CI,B} with the average
power constraint EH1{tr{G(IL + ρ1H1H

†
1)G†}} ≤ ρ2L. It is

easy to show that the maximal ergodic capacity with unknown
CSI at the relay can be achieved by using a diagonal weighting
matrix. Suppose that G is optimal and has the singular value
decomposition G = UGΣGVG where UG and VG are unitary
and ΣG is diagonal. We now form an equivalent system by
replacing H1 by H̃1 = VGH1, H2 by H̃2 = H2UG, and G by
G̃ = ΣG. Under the assumption that all elements of H1 and
H2 are i.i.d. Gaussian, H̃1 and H̃2 have the same statistical
distributions as H1 and H2 respectively. Hence, the maximum
ergodic capacity of the system is not changed if H̃1 and H̃2

are changed back to H1 and H2 and ΣG remains the same.
Namely, G and ΣG are equally optimal.

In the rest of this paper, we assume that the relay knows
both H1 and H2 in mode B and, in addition, H0 in mode
C. We will find the optimal F to maximize the instantaneous
capacity CI,B .

III. OPTIMAL CANONICAL COORDINATES

Let the eigenvalue decompositions of H1H
†
1 and H†

2H2 be

H1H
†
1 = U1Σ1U

†
1 (15)

H†
2H2 = V2Σ2V

†
2 (16)

where U1 and V2 are unitary matrices, Σ1 =
diag{α1, α2, . . . , αL} with αl ≥ 0, and Σ2 =
diag{β1, β2, . . . , βL} with βl ≥ 0. Our convention is
that all eigenvalues are arranged in the descending order.

We will show that the optimal relay matrix is given by

F = V2ΛF U †
1 (17)

where ΛF is a diagonal matrix. Hence, F can be considered
as a matched filter along the singular vectors of the channel
matrices. The result of (17) was previously given in [12]
assuming nonsingular H1 and H2 and a large enough ρ2. In
the following, we prove that the structure of (17) is actually
optimal for any H1 and H2 and any ρ2 > 0.

Referring to (13), we first write∣∣∣IL + ρ1H1H
†
1 − ρ1H1H

†
1Q−1

∣∣∣
= |I+(I+ρ1H1H†

1 )G†H†
2H2G|

|I+G†H†
2H2G| (18)

Without loss of any generality, let

G = V2X(I + ρ1Σ1)−1/2U †
1 (19)

where X may be any matrix. Using (19) in (13) and (18), the
channel capacity expression becomes

CI,B = log2 |I + ρ1Σ1| + log2

∣∣I + X†Σ2X
∣∣

|I + ρ1Σ1 + X†Σ2X | (20)

which is easy to verify by using |I + AB| = |I + BA|. It is
interesting to note that the first term on the right hand side of
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(20) is the capacity of the channel from the source to the relay.
We can think of the second term as a capacity loss (since it is
always non-positive) due to the second hop. Our objective is to
design a weighting matrix F to minimize this capacity loss.
Since the first term is a constant, the optimization problem
(13) is equivalent to the following problem:

max J(X) =

∣∣I + X†Σ2X
∣∣

|I + ρ1Σ1 + X†Σ2X | (21)

s.t. tr{XX†} ≤ ρ2L

We will need the following two matrix inequalities [14]:
Given two N × N positive semidefinite Hermitian matrices
A and B with eigenvalues λk(A) and λk(B) arranged in the
descending order respectively, then

N�
k=1

(λk(A) + λk(B)) ≤ |A + B| ≤
N�

k=1

(λk(A) + λN+1−k(B))

(22)

N∑
k=1

λk(A)λN+1−k(B) ≤ tr(AB) ≤
N∑

k=1

λk(A)λk(B) (23)

Now, we prove that a diagonal matrix X can maximize
J(X). Given any matrix X , T := X†Σ2X is positive
semidefinite. Let the eigenvalue decomposition of T be

T := X†Σ2X = UT ΣT U †
T (24)

For any matrix X , we can always find another matrix X̃ =
XUT , such that X̃†Σ2X̃ = ΣT and

J(X̃) =
|I + ΣT |

|I + ρ1Σ1 + ΣT | ≥

���I + UT ΣT U†
T

������I + ρ1Σ1 + UT ΣT U†
T

��� = J(X)

tr{XX†} = tr{X̃X̃†}
where we applied (22), i.e.

|I + ΣT | =
∣∣∣I + UT ΣT U †

T

∣∣∣
|I + ρ1Σ1 + ΣT | ≤

∣∣∣I + ρ1Σ1 + UT ΣT U †
T

∣∣∣ (25)

The equality in (25) is achieved when UT = I .
We can see that the optimum X must diagonalize X†Σ2X ,

i.e., the optimal X can be written as

X†Σ2X = ΣT (26)

where ΣT is a diagonal matrix with nonnegative diagonal
entries, and rank(ΣT ) ≤ rank(Σ2) = l ≤ min(L, N). We
can partition Σ2, X and ΣT properly so that (26) becomes(

X†
1 X†

2

)( Σ̃2 O
O O

)(
X1

X2

)
=
(

Σ̃T O
O O

)
(27)

where Σ̃2 and Σ̃T are both l × l diagonal matrices, Σ̃2 is of
full rank, but Σ̃T is not yet necessarily of full rank.

From (27), we have

X =
(

X1

X2

)
=
(

Σ̃−1/2
2 QΣ1/2

T

X2

)
(28)

Fig. 2. The optimal canonical coordinates decompose the original MIMO
channel into parallel SISO subchannels

where Q is an l × l orthogonal matrix, and Σ1/2
T is an l × L

matrix with
Σ1/2

T =
(

Σ̃1/2
T O

)
We now examine the power constraint on X . The optimal

X should not only satisfy (27) but also minimizes the power
tr{XX†}. Under (28), we have

tr{XX†} = tr{X†X} = tr{X†
1X1} + tr{X†

2X2} (29)

where tr{X†
2X2} ≥ 0 with equality when X2 = O, and

tr{X†
1X1} = tr{Σ†/2

T Q†Σ̃−1
2 QΣ1/2

T } = tr{Σ̃T Q†Σ̃−1
2 Q}

By (23), we have

tr{Σ̃T Q†Σ̃−1
2 Q} ≥ tr{Σ̃T Σ̃−1

2 }
where the equality holds when Q = I . Therefore, the optimal
X should be in the form of

X =
(

Σ̃−1/2
2 Σ̃1/2

T O
O O

)
. (30)

In summary, given an arbitrary matrix X , we can always
find a new X in the form given by (30), which yields better
performance with the average power constraint satisfied. Since
the new X is always a diagonal matrix, we conclude that the
optimal structure of X should be diagonal. Combining (30),
(12) and (19), we can see that (17) indeed gives the optimal
canonical coordinates for the weighting matrix F .

IV. POWER ALLOCATION ALONG CANONICAL

COORDINATES

When the weighting matrix F obeys a set of canonical coor-
dinates given by (17), the MIMO relay channel is decomposed
into several parallel SISO channels as shown in Figure 2. For
example, if we substitute (17) into (3), then the signal received
at the destination is

r̃ = Λ2ΛF Λ1s̃ + Λ2ΛF ñ1 + ñ2 (31)

where we used the singular value decompositions (SVD):
H1 = U1Λ1V

†
1 and H2 = U2Λ2V

†
2 . Also, s̃ = U †

1s, r̃ = U †
2r,

ñ1 = U †
1n2, ñ2 = U †

2n2. Note that the unitary matrices U1

and U2 do not change the statistics of s, r, n1 or n2 under
the white Gaussian assumption.

Since the MIMO channel is decomposed into (orthogonal)
parallel SISO sub-channels, the problem now is how to
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allocate the total power to those sub-channels. Without loss
of generality, we let

ΛF =
σ2

σ1
ΛX (IL + ρ1Σ1)

−1/2 (32)

where ΛX is a diagonal matrix that we need to optimize.
Denote ΣX = Λ2

X = diag{x1, x2, . . . , xL}. The average
power constraint of (14) becomes

L∑
k=1

xk ≤ ρ2L (33)

The instantaneous channel capacity CI,B under the optimal
coordinates is now rewritten as

f(x) =
L∑

k=1

log2(1 + ρ1αk) +
L∑

k=1

log2

(
1 + βkxk

1 + ρ1αk + βkxk

)
(34)

where {αk} and {βk} are eigenvalues of H1H
†
1 and H†

2H2

arranged in the descending order. The first term is a constant
and hence we only need to maximize the second term.
Although f(x) is nonlinear, it is easy to check that ∇2f(x),
the Hessian of f(x), is negative definite, i.e. ∇2f(x) ≺ 0.
In other words, f(x) is concave. Because the constraint is
convex, the problem is easily transformed into a standard
convex optimization problem:

min J0 = −
L∑

k=1

log2

(
1 + βkxk

1 + ρ1αk + βkxk

)
(35)

s.t.

L∑
k=1

xk − ρ2L ≤ 0 and − xk ≤ 0

The associated Lagrangian is

J = J0 + ν

(
L∑

k=1

xk − ρ2L

)
−

L∑
k=1

λkxk (36)

with the following Karush-Kuhn-Tucker (KKT) conditions
[15]:

L∑
k=1

xk − ρ2L ≤ 0 (37)

−xk ≤ 0 (38)

ν ≥ 0 (39)

λk ≥ 0 (40)

ν

(
L∑

k=1

xk − ρ2L

)
= 0 (41)

λkxk = 0 (42)

−
(

βk

1 + βkxk
− βk

1 + ρ1αkβkxk

)
+ ν − λk = 0 (43)

Combining (40) and (43) gives

ν ≥
ρ1αk

βk

(xk + 1
βk

)(xk + 1+ρ1αk

βk
)

(44)

Substituting (43) into (42) yields

xk

(
ν −

(
ρ1αk

βk

(xk + 1
βk

)(xk + 1+ρ1αk

βk
)

))
= 0 (45)

In order to satisfy (45), it is easy to prove that (a) if ν ≥
ρ1αkβk

1+ρ1αk
, then xk = 0; and (b) if ν < ρ1αkβk

1+ρ1αk
, then xk > 0

and ν =
ρ1αk

βk

(xk+ 1
βk

)(xk+
1+ρ1αk

βk
)
. In the case (b), ν �= 0 and

x2
k +

1
βk

(ρ1αk +2)xk +
1
βk

(
1 + ρ1αk

βk
− ρ1αk

ν

)
= 0 (46)

The solution to (46) under (38) is unique:

xk =
1

2βk

(√
ρ2
1α

2
k +

4ρ1αkβk

ν
− ρ1αk − 2

)
(47)

Since the power allocation given by (47) will be positive if
and only if ν < ρ1αkβk

1+ρ1αk
, we have the following unified result

for xk:

xk =
1

2βk

[√
ρ2
1α

2
k + 4ρ1αkβkμ − ρ1αk − 2

]+
(48)

where [y]+ = max(0, y) and μ = 1
ν should be chosen to meet

(41).
The allocation scheme given by (48) is similar to the well-

known water-filling method. The water-filling method is used
to optimally allocate power to parallel orthogonal gaussian
channels [16]. In MIMO relaying, since the optimal weighting
matrix decomposes the MIMO channel into several parallel
orthogonal channels, it is natural that the power allocation
scheme is similar to the water-filling method.

Since ν �= 0, from (41), there exists a unique μ to meet∑L
k=1 xk = ρ2L. We define a function g(μ),

g(μ) =
1
2

L∑
k=1

1
βk

[√
ρ2
1α

2
k + 4ρ1αkβkμ − ρ1αk − 2

]+
−ρ2L

(49)
We can see that g(μ) is a piece-wise uniformly square-

rooted increasing function of μ, with breakpoints at μ =
1+ρ1αk

ρ1αkβk
. Meanwhile, we know that g(0) = −ρ2L < 0 and

g(+∞) = +∞, so g(μ) = 0 has a unique positive root u∗,
which can be solved by many root-finding algorithms, such as
Bisection etc. Note that the Newton’s method may fail due to
those L breakpoints.

In summary, the optimal weighting matrix of the MIMO
relay in mode B is given by F = V2ΛF U †

1 , where ΛF =
diag{f1, f2, . . . , fL}, and for all 1 ≤ k ≤ L,

fk =
σ2

σ1

�
1

2βk(1 + ρ1αk)

��
ρ2
1α

2
k + 4ρ1αkβkμ∗ − ρ1αk − 2

�+

(50)

In addition, μ∗ is a unique root of (49), which can be solved
by using a numerical root-finding algorithm.

As for the complexity of the algorithm, computations are
mainly consumed in the singular value decompositions of
channel matrices. The complexity of root-finding is quite low.
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Fig. 3. Ergodic capacity E{CI,B} as a function of ρ1 (labelled as SNR1
- the SNR at the relay). M = N = L = 4. ρ2 = 10dB.

V. CAPACITY OF

MIMO RELAY CHANNEL WITHOUT DIRECT LINK

In this section, we compare the optimal relaying (OR)
scheme shown in the previous sections, with a few other
alternative non-regenerative relaying schemes in terms of the
ergodic capacity and Cumulative Distribution Function (CDF)
of instantaneous capacity of the MIMO relaying channel.
These alternative schemes are:

(1) Naive Amplify-and-Forward (NAF): One relaying
scheme could simply normalize the received signal to meet the
power constraint and then forward the signal to the destination.
In this case, the weighting matrix at the relay is

Fnaf = η1IL (51)

The power constraint is given by (11), and hence

η1 =
σ2

σ1

√
ρ2L

tr{IL + ρ1H1H
†
1}

(52)

(2) Pseudo Match-and-Forward (PMF): Another simple
choice of the weighting matrix at the relay as used in [17]
is

Fpmf = η2H
†
2H†

1 (53)

To meet the power constraint, η2 is given by

η2 =
σ2

σ1

√
ρ2L

tr{H†
1H1(IL + ρ1H

†
1H1)H2H

†
2}

(54)

This scheme was shown to be asymptotically optimal when
the number of relay nodes in the MIMO parallel relay channel
approaches infinity [17]. When the number of relays are
sufficiently large, the signals received by the destination will
combine coherently, which yields a nice scaling law for the
two-hop relay networks. However, the performance of this
scheme was not shown in [17] when there exists a single relay,
and thus we include this scheme for our comparison.

(3) Suboptimal Relaying (SOR): This scheme was proposed
in [12]. The relay uses a weighting matrix:

Fsor = V2ΛF,sorU
†
1 (55)
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Fig. 4. Ergodic capacity E{CI,B} as a function of ρ2 (labelled as SNR2
- the SNR at the destination). M = N = L = 4, ρ1 = 10dB.
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Fig. 5. Ergodic capacity E{CI,B} as a function of L (the number of
antennas at each terminal). ρ1 = 10dB. ρ2 = 10dB.

where ΛF,sor = diag{f1,sor, f2,sor, . . . , fL,sor} with

fk,sor =

√√√√ ρ2L

1 + ρ1αk

| (ρ2+φ2)αk−φ1
φ1βk

|∑L
l=1 | (ρ2+φ2)αl−φ1

φ1βl
|2

, (56)

and φ1 = 1
L

∑L
j=1 αjβ

−1
j and φ2 = 1

L

∑L
j=1 β−1

j . This
scheme was proved to be optimal when ρ2, the signal to noise
ratio at the destination, exceeds a (nonzero) threshold which
depends on the eigenvalues of the channel matrices.

In the simulation, all channel matrices have i.i.d. CN (0, 1)
entries. In order to include the suboptimal relaying scheme
(which requires all channel matrices to be nonsingular) into
the comparison, we also assume that all terminals are equipped
with the same number of antennas L, i.e. M = N = L,
although this is not required by other schemes.

Figure 3 shows the ergodic capacity of the relay channel
as a function of ρ1. Figure 4 shows the ergodic capacity of
the relaying channel as a function of ρ2. Figure 5 shows the
ergodic capacity of the relay channel as a function of L, the
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Fig. 6. Cumulative Distribution Functions (CDF) of the capacity CI,B for
different ρ1. ρ2 = 10dB. M = N = L = 4.

number of antennas at each terminal. It is clear that the Naive
Amplify-and-Forward is far from the optimum. The Pseudo
Match-and-Forward method is even worse than the Naive
Amplify-and-Forward method, and therefore the weighting
matrix given by (53) actually does not really “match” the
channels.

Figure 6 shows the Cumulative Distribution Functions
(CDF) of instantaneous capacity for different ρ1 when ρ2 is
fixed to be 10dB. Figure 7 shows the CDF of instantaneous
capacity for different ρ2 when ρ1 is fixed to be 10dB. It is
clear that the capacity offered by the optimal relaying scheme
is better than the suboptimal relaying. But both of the optimal
and suboptimal schemes outperform the Naive Amplify-and-
Forward and Pseudo Match-and-Forward methods. We can see
that the capacities of the optimal and suboptimal schemes are
very close when the signal to noise ratio at the destination is
high, which is expected.

VI. CAPACITY OF MIMO RELAY CHANNEL WITH

DIRECT LINK

In sections III and IV, we discussed the optimal canonical
coordinates and power allocation for orthogonal relay channel
working in mode B: relaying without the direct link. In this
section, we discuss the MIMO relay channel working in mode
C: relaying with the direct link.

We have shown in section II that the relay channel working
in mode C can be decomposed into two orthogonal channels
working in mode A and mode B, respectively. The instanta-
neous channel capacity given by (9) can be further shown to
be

CI,C = log2

∣∣∣I + ρ0H
†
0H0

∣∣∣+ log2

∣∣∣I + ρ1H3H
†
3

∣∣∣
+ log2

∣∣∣∣(I + ρ1H3H
†
3

)−1

+ G†H†
2H2G

∣∣∣∣∣∣∣I + G†H†
2H2G

∣∣∣
(57)

s.t. tr{G(I + ρ1H1H
†
1)G†} ≤ ρ2L
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Fig. 7. Cumulative Distribution Functions (CDF) of the capacity CI,B for
different ρ2. ρ1 = 10dB. M = N = L = 4.

The first two terms are the combined capacity of the two
(virtually parallel) channels represented by H0 and H3. The
channel H3 can be seen as a “projection” of H1 onto the
channel H0 (see (10)). The third term can be regarded as the
capacity loss (since it is always non-positive) due to the second
hop (from the relay to the destination). We let the eigenvalue
decomposition of H3H

†
3 be

H3H
†
3 = U3Σ3U

†
3

where Σ3 = diag{γ1, γ2, . . . , γL}.
We are unable to find the optimal right canonical coordinate

for the weighting matrix F to optimize CI,C (although the
optimal left canonical coordinate seems still given by V2). It
is easy to verify that U1 achieves the diagonalization of the
power constraint, and U3 achieves the diagonalization of the
cost CI,C . But neither U1 nor U3 can achieve the desired
diagonalization for both the cost function and the power
constraint. Hence, it seems that the optimal right canonical
coordinate U should be somewhere between U1 and U3.
Furthermore, even if we could find the optimal U , the cost
function and the power constraint will not be diagonalized as
that in mode B, and hence the optimal power allocation might
not be tractable.

In order to get an idea of the optimal CI,C , we now show
an upper bound of the optimal CI,C and two lower bounds of
the optimal CI,C .

(1) Upper bound:
Using (10), it follows that

tr{G(I + ρ1H1H
†
1)G†} = tr{G(I + ρ1H3H

†
3)G†}

+ρ0ρ1tr{GH3H
†
0H0H

†
3G†}

≥ tr{G(I + ρ1H3H
†
3)G†} (58)

Hence, an upper bound of CI,C under the original power
constraint is given by the maximum value of CI,C under the
following relaxed power constraint:

tr{G(I + ρ1H3H
†
3)G†} ≤ ρ2L. (59)

Under the new power constraint, the optimization problem is
the same as that in Sections III and IV. Hence, it follows
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Fig. 8. Ergodic capacity E{CI,C} as a function of ρ0. ρ1 = 20dB.
ρ2 = 20dB. M = 4, N = 4 and L = 4.

that the optimal relay matrix of CI,C under (59) is given by
Fc = V2ΛF,cU

†
3 where ΛF,c = diag{f1,c, f2,c, . . . , fL,c} with

fk,c =
σ2

σ1

�
1

2βk(1 + ρ1γk)

��
ρ2
1γ

2
k + 4ρ1γkβkμ∗

c − ρ1γk − 2

�+

(60)

and μ∗
c is the root of the following function

gc(μ) =
1
2

L∑
k=1

1
βk

[√
ρ2
1γ

2
k + 4ρ1γkβkμ − ρ1γk − 2

]+
−ρ2L.

(61)
The expression of CI,C with the relay matrix Fc is an upper
bound of the optimal CI,C under the original power constraint.
(We will omit the detailed expressions of the bounds as they
are easy to construct based on the discussions.)

(2) Lower bound 1:
One lower bound of the optimal CI,C is given by the

expression of CI,C with the relay matrix F derived for mode
B as shown in Sections III and IV.

(3) Lower bound 2:
Another lower bound of the optimal CI,C is given by the

expression of CI,C with the relay matrix F ′
c = ηV2ΛF,cU

†
3

where η is chosen to meet the original power constraint.
We now illustrate numerically the bounds of the opti-

mal CI,C along with the channel capacity using the Naive
Amplify-and-Forward (NAF) relay matrix Fnaf in mode C.
All entries in H0, H1 and H2 were assumed to be i.i.d.
CN (0, 1). The number of antennas at the source, relay and
destination is denoted by M ,L and N , respectively.

Figure 8 shows the ergodic capacity E{CI,C} as a function
of ρ0 where ρ1 = ρ2 = 20dB and (M, L, N) = (4, 4, 4). Both
lower bounds of the optimal capacity are uniformly higher
than the capacity provided by the NAF method. The CDF
curves of CI,C are shown in Figure 9.

VII. CONCLUSIONS

In this paper, we have developed the optimal relay matrix
for a non-regenerative MIMO relay system. This system
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Fig. 9. Cumulative Distribution Functions (CDF) of CI,C . ρ0 = 10dB.
ρ1 = 20dB. ρ2 = 20dB. M = 4, N = 4 and L = 4.

involves two hops: one is between the source and the relay, and
the other is between the relay and the destination. The optimal
relay matrix maximizes the capacity between the source and
the destination in the absence of a direct link between the
source and the destination. The optimal relay matrix obeys
an optimal set of coordinates that transform the MIMO relay
channel into a set of parallel SISO relay sub-channels. The
optimal power allocation among the sub-channels has been
found to follow a water-filling pattern. The optimal relay
matrix yields a significantly larger capacity of the overall
system than several other heuristic choices. We have also
considered the case where there is a direct link between the
source and the destination. But it seems untractable to obtain
the optimal relay matrix in this case, and instead, we have
provided an upper bound and two lower bounds on the optimal
capacity. In this paper, we assumed that all symbols from the
source antennas are independent and identically distributed.
Future research could consider optimal coding at the source
in the presence of a non-regenerative MIMO relay.

APPENDIX I
PROOF OF (5)

By applying the noise whitening matrix R−1/2 to both
sides of (3), we have an equivalent system where the channel
matrix is H̃ = R−1/2H2FH1 and the noise is white Gaussian.
Therefore, the instantaneous capacity between the source and
the destination is

CI,B = log2

∣∣∣∣I +
P1

M
H̃†H̃

∣∣∣∣
= log2

∣∣∣∣I +
P1

M
(R−1/2H2FH1)†(R−1/2H2FH1)

∣∣∣∣
= log2

∣∣∣∣I +
P1

M
H†

1(H2F )†R−1(H2F )H1

∣∣∣∣ .
Note that we have ignored the constant factor 1/2 that accounts
for the two orthogonal channels used between the source and
the destination. Clearly, this constant has no effect on the
optimal choice of the relay matrix F . Such a factor will be
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CI,B = log2

∣∣∣∣∣∣I +
P1

Mσ2
1

H†
1 (

σ1

σ2
H2F )†

(
IN + (

σ1

σ2
H2F )(

σ1

σ2
H2F )†

)−1

(
σ1

σ2
H2F )︸ ︷︷ ︸H1

∣∣∣∣∣∣
= log2

∣∣∣∣∣∣∣I +
P1

Mσ2
1

H†
1

(
IL −

(
IL + (

σ1

σ2
H2F )†(

σ1

σ2
H2F )

)−1
)

︸ ︷︷ ︸H1

∣∣∣∣∣∣∣ (62)

ignored for all other cases. Using (4), we have (62), which
can be seen at the top of the page.

where the underbraced terms are equal, which can be veri-
fied by applying the matrix inverse lemma or a straightforward
proof. We let ρ1 = P1

Mσ2
1

and S = IL + σ2
1

σ2
2
F †H†

2H2F . Then,

CI,B = log2

∣∣∣IL + ρ1H1H
†
1 − ρ1H1H

†
1S−1

∣∣∣
where we applied the property that |I + AB| = |I + BA| if
AB is complex conjugate symmetric.

APPENDIX II
PROOF OF (8) AND (9)

The covariance matrix of the noise term in (7) is

R2 =
(

σ2
0IN O
O R

)
where R is given by (4). Applying the noise whitening
matrix, we have an equivalent system where the noise is white
Gaussian and the channel matrix is

Ĥ =
(

σ−1
0 H0

H̃

)
and H̃ is given in Appendix I. Hence, the instantaneous
capacity between the source and the destination is

CI,C = log2

∣∣∣∣I +
P1

M
Ĥ†Ĥ

∣∣∣∣
= log2

∣∣∣∣I +
P1

M

(
σ−2

0 H†
0H0 + H̃†H̃

)∣∣∣∣
= log2

∣∣∣∣I + ρ0H
†
0H0 +

P1

M
H̃†H̃

∣∣∣∣
= log2

∣∣∣IM + ρ0H
†
0H0 + ρ1H

†
1H1 − ρ1H

†
1S−1H1

∣∣∣
where ρ0 = P1

Mσ2
0

. Define H3 = H1

(
IM + ρ0H

†
0H0

)−1/2

.
Then, CI,C can be further written as

CI,C

= log2

����IM + ρ0H
†
0H0

��
IM + ρ1H

†
3H3 − ρ1H

†
3S−1H3

����
= log2

���IM + ρ0H
†
0H0

���+ log2

���IM + ρ1H
†
3H3 − ρ1H

†
3S−1H3

���
= log2

���IM + ρ0H
†
0H0

���+ log2

���IL + ρ1H3H
†
3 − ρ1H3H

†
3S−1

��� .
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