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Abstract

Integrative data analysis (IDA) involves obtaining multiple datasets, scaling the data to a common 

metric, and jointly analyzing the data. The first step in IDA is to scale the multisample item-

level data to a common metric, which is often done with multiple group item response models 

(MGM). With invariance constraints tested and imposed, the estimated latent variable scores from 

the MGM serve as an observed variable in subsequent analyses. This approach was used with 

empirical multiple group data and different latent variable estimates were obtained for individuals 

with the same response pattern from different studies. A Monte Carlo simulation study was then 

conducted to compare the accuracy of latent variable estimates from the MGM, a single-group 

item response model, and an MGM where group differences are ignored. Results suggest that 

these alternative approaches led to consistent and equally accurate latent variable estimates. 

Implications for IDA are discussed.
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Integrative data analysis (IDA) refers to the practice of obtaining data from multiple studies, 

scaling the data to common scales, combining the data into a single dataset, and analyzing 

the combined data as though they represent a single dataset (Curran & Hussong, 2009; 

Curran, et al., 2008; Hofer & Piccinin, 2010; McArdle, Grimm, Hamagami, Bowles, & 
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Meredith, 2009; McArdle, Hamagami, Meredith, & Bradway, 2000; McArdle, Prescott, 

Hamagami, & Horn, 1998). The analyses are often carried out with a recognition of 

study differences by either including study dummies (dummy coded variables to draw 

comparisons between studies), multi-group, or multilevel models (depending on the number 

of studies combined) to statistically test for the invariance of model parameters. Initially 

IDA was conducted in longitudinal studies given their expense and smaller samples (e.g., 

McArdle, et al., 2009); however, IDA is currently being applied in many disciplines and 

types of studies (e.g., Adams, et al., 2015; Horwood et al., 2012; Luningham, et al., 2019; 

McGrath, Leighton, Ene, DiStefano, & Monrad, in press).

One of the greatest challenges to data integration is the scaling of measurement instruments 

across studies. That is, different studies often use different measurement instruments to 

assess the same construct and the scores from different measurement instruments must 

be scaled to a common metric in order for the data to be jointly analyzed. If the data 

cannot be properly scaled, then data integration is not viable and researchers are limited to 

parallel analyses where the same statistical model is fit to each dataset separately and results 

examined through meta-analytic methods or the general conclusions from the results are 

examined (see Duncan et al., 2007).

Item response modeling linking and equating methods have become the main analytic tools 

to scale different measurement instruments that assess the same construct across studies. 

Item response modeling approaches can be used to scale two (or more) measurement 

instruments to a common metric if (1) the two measurement instruments have items that 

are common (common item equating) and/or (2) participants in at least one study were 

administered the two measures or at least multiple items from the two scales (common 

person equating). For example, McArdle and colleagues (2009) combined cognitive data 

from four studies, which was made possible because certain measurement instruments 

contained common items (Wechsler-Bellevue Intelligence Scale [Wechsler, 1939], Wechsler 

Adult Intelligence Scale [Wechsler, 1955], and Wechsler Adult Intelligence Scale – Revised 

[Wechsler, 1981]; 1916 Stanford-Binet [Terman, 1916], Stanford-Binet Form L, M [Terman 

& Merrill, 1937], and LM [Terman & Merrill, 1960] and because participants from one 

study were administered two measurement instruments that did not share items (Stanford-

Binet Form L and the Wechsler Adult Intelligence Scale). If these conditions do not exist 

for all necessary combinations of the measurement instruments, then the measurement 

instruments may be scaled by collecting new data on a calibration sample where items from 

(or complete forms of) multiple measurement instruments are administered.

Assuming item-level data from multiple studies are available and scalable, there are several 

item response modeling approaches to scale the data to a common unit of measurement. 

One of the most common approaches is the use of multiple group item response models. 

This approach is often considered optimal because the invariance of item parameters across 

studies can be examined, and study differences can be modeled at the latent level (assuming 

item parameters are invariant). Typically, latent variable scores are estimated in IDA and 

then treated as observed scores in subsequent analyses. Thus, the use of item response 

models to scale data is often seen as a first step of IDA (see Curran, et al., 2008).
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Multiple Group Item Response Model

For illustrative purposes, we discuss the multiple group two-parameter logistic model 

(2PLM). However, our discussion generalizes to all multiple group item response models. 

The multiple group 2PLM can be written as

P ypig = 1 = exp αpg ⋅ θig − βpg
1 + exp αpg ⋅ θig − βpg

(1)

where p = 1,…,P items, g = 1,…,G groups (studies), i = 1,…,Ng participants where Ng is 

the number of participants in group g, P(ypig = 1) is the probability of a positive response to 

item p for individual i in group g, αpg is the discrimination parameter for item p in group g, 

βpg is the location parameter for item p in group g, and θig is the latent variable score for 

individual i in group g.

As noted, the multiple group item response model is often utilized to test for the 

measurement invariance of item parameters (Reise, Widaman, & Pugh, 1993; Meade & 

Lautenschlager, 2004). Specifically, the invariance of the discrimination (αpg = αp) and 

location (βpg = βp) parameters across groups is examined. If these parameters are invariant 

across groups, then the latent variable (θig) is scaled in a common metric and can be 

compared across groups (studies). However, latent variable estimates from this model may 

not possess the same properties as the latent variable itself because latent variable estimates 

are indeterminant (Schönemann & Steiger, 1978) and rely on additional information to be 

estimated.

Latent Variable Score Estimation

A common approach to latent variable score estimation in item response models with 

maximum likelihood estimation is the Expected a Posteriori (EAP) approach. In EAP latent 

variable score estimation, the distribution of each individual’s estimated factor score is 

estimated following Bayes’ rule, such that

P θ ig ∣ ypig, αpg, βpg =
P θ ig P ypig ∣ θ ig, αpg, βpg

∫ P θ ig P ypig ∣ θ ig, αpg, βpg
(2)

Where P θ ig ∣ ypig, αpg, βpg  is the posterior probability distribution of the latent variable 

score estimate for individual i in group g given individual i in group g′s response pattern 

(i.e., ypig) and the model’s parameters (i.e., αpg and βpg), P θ ig  is the prior probability 

distribution of the factor score for individual i in group g, and P ypig ∣ θ ig, αpg, βpg  is the 

probability of individual i in group g′s response pattern given the latent variable score 

estimate and the model’s parameters. The EAP latent variable score estimate for individual 

i in group g is the expected value (i.e., mean) of the posterior probability distribution of the 

latent variable score estimate for individual i in group g (i.e., P θ ig ∣ ypig, αpg, βpg ).

Of importance for our discussion, the EAP latent variable score estimate is dependent on 

(1) the probability of the response pattern given the latent variable score estimate and the 
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model’s parameters and (2) the prior distribution of the latent variable score. The necessity 

of strong measurement invariance for having comparable latent variable score estimates is 

evident in Equation 2 because the probability of the response pattern is conditioned on 

the model’s parameters (i.e., P ypig ∣ θ ig, αpg, βpg ). That is, if the model’s parameters are 

different across groups, then it is clear that the probability distribution of the latent variable 

score estimate would not be comparable across groups.

The prior distribution of the latent variable score also comes from the model’s estimated 

parameters. In the estimation of the item response model, the latent variable is assumed to 

be normally distributed with a mean and variance to describe its distribution. Often, in a 

multiple group 2PLM with discrimination and location parameters constrained to be equal 

across groups, the mean and variance of θig are 0 and 1, respectively, for g = 1, and then 

freely estimated in the remaining groups (g > 1). Since participants in different groups will 

differ on the prior distribution of the latent variable score estimate, differences in latent 

variable score estimates can be observed for participants with the same response pattern who 

come from different groups.

To circumvent this issue, we propose eliminating group differences in the prior distribution 

of θig when estimating latent variable scores. This approach should lead to consistent latent 

variable score estimates for individuals in different groups with the same response pattern, 

but may lead to more inaccurate latent variable scores. To highlight the extent of these 

issues, we first report on using the multiple group approach with self-reported violent 

perpetration data from five studies. We then conduct a Monte Carlo simulation study to 

evaluate the performance of the standard multiple group model (MGM) approach along with 

two additional approaches where the prior distribution of the latent variable score estimates 

is the same across groups. We conclude with recommendations for integrating data from 

multiple sources and scaling data with item response models, more generally.

Illustration

Data

Baseline data from five studies of adults with mental illnesses (Desmarais et al., 2014) 

were analyzed. All studies included broad inclusion and minimal exclusion criteria and 

enrolled a range of participants, from exacerbated inpatients to partially remitted outpatients. 

Study protocols were approved by relevant IRBs, and all participants gave written informed 

consent. The University of California, Davis, North Carolina State University, and Research 

Triangle Institute International IRBs approved the current analyses.

Facilitated Psychiatric Advance Directive Study.—The Facilitated Psychiatric 

Advance Directive (F-PAD; Swanson et al., 2006) Study investigated the implementation of 

a facilitated psychiatric advance directive intervention. Participants (n=469) were recruited 

from two mental health systems in North Carolina. Inclusion criteria were: (a) 18–65 years 

of age; (b) schizophrenia-spectrum or major mood disorder; and (c) currently in treatment. 

Data were collected between 2003 and 2007.
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MacArthur Mental Disorder and Violence Risk Study.—The MacArthur Mental 

Disorder and Violence Risk (MacRisk; Steadman et al., 1998) Study examined violence 

risk among civil psychiatric patients. Participants (n=1,136) were recruited from three sites: 

Pittsburgh, PA; Kansas City, MO; and Worcester, MA. Inclusion criteria were: (a) English-

speaking white, black, or Hispanic patients; (b) 18–40 years of age; and (c) schizophrenia-

spectrum, depression, mania, brief reactive psychosis, delusional disorder, ‘other’ psychotic 

disorder, substance abuse/dependence, or personality disorder. Data were collected between 

1992 and 1995.

Schizophrenia Care and Assessment Program.—The Schizophrenia Care and 

Assessment Program (SCAP; Swanson, Swartz, & Elbogen, 2004) examined clinical, 

functional, and service utilization outcomes for adults with schizophrenia. Participants 

(n=404) were recruited from treatment facilities across North Carolina. Inclusion criteria 

were: (a) 18 years of age or older; (b) schizophrenia; and (c) current service use. Data were 

collected between 1997 and 2002.

MacArthur Mandated Community Treatment Study.—The MacArthur Mandated 

Community Treatment (MacMandate) Study (Monahan et al., 2005) collected data 

regarding lifetime experience of leverage (e.g., money, housing, criminal justice, outpatient 

commitment) to improve treatment adherence among psychiatric outpatients. Participants 

(n=1,011) were recruited from five sites: Chicago, IL; Durham, NC; San Francisco, CA; 

Tampa, FL; and Worcester, MA. Inclusion criteria were: (a) 18–65 years of age; (b) English- 

or Spanish-speaking; (c) current outpatient treatment; and (d) first service occurred at least 

six months prior. Data were collected between 2002 and 2003.

Clinical Antipsychotic Trials of Intervention Effectiveness Study.—The Clinical 

Antipsychotic Trials of Intervention Effectiveness (CATIE) Study (Lieberman et al., 2005) 

examined the effectiveness of second compared to first generation antipsychotic medication 

for treating adults with schizophrenia. Participants (n=1460) were recruited from 57 sites (16 

university clinics, 10 state mental health agencies, seven Veteran’s Affairs Medical Centers, 

six private nonprofit agencies, four private practice sites, 14 mixed system sites) across the 

United States. Inclusion criteria were: (a) 18–65 years of age; (b) schizophrenia; and (c) 

ability to take oral antipsychotics. Data were collected between 2001 and 2004.

Measures

Community violence perpetration was assessed using the MacArthur Community Violence 

Screening Instrument (MCVSI; Steadman, 1998). The MCVSI includes eight behaviorally-

based self-report questions. Items assess: (1) pushing, grabbing, or shoving; (2) kicking, 

biting, or choking; (3) slapping; (4) throwing an object; (5) hitting with a fist or object; (6) 

sexual assault; (7) threatening with a weapon in hand; and (8) using a weapon.

Analytic Approach

The multiple group 2PLM was fit to the violence data using Mplus v. 8 (Muthén & 

Muthén, 1998 – 2017) and flexMIRT (Cai, 2013) with maximum likelihood estimation. 

The discrimination and location parameters were held invariant across samples. EAP latent 
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variable scores were then estimated and evaluated with respect to the patterns of item 

responses.

Results

Differences between the estimated latent variable scores from Mplus and flexMIRT were 

negligible. The correlation between estimated latent variable scores was greater than 0.999 

and the average difference between estimates was −0.005, and ranged from −0.028 to 0.020. 

We therefore present results from Mplus; however, the results generalized across programs.

We examined estimated latent variable scores with respect to the patterns of item responses. 

Estimated factor scores varied for individuals from different samples with perfect response 

patterns (all 0s and all 1s). For example, participants who did not endorse any of the 

eight violence items had estimated latent variable scores that ranged from −1.003 to 

+0.637. The differences in the estimated latent variable scores were due to their different 

prior distributions, which were dependent on the distribution of the latent variable of the 

group (sample) to which the participant belonged. These sample differences led to sizable 

differences in the estimated latent variable scores for individuals who responded to the scale 

in the exact same way. The latent variable for the first group had a mean and variance that 

was fixed at 0 and 1, respectively. Thus, a difference in estimated latent variable scores of 

1.640 (difference between −1.003 and +0.637) represents a difference larger than one and a 

half standard deviations compared with the distribution of the latent variable in first sample. 

Note that the standard deviations of the latent variable for the remaining groups were 0.428, 

1.288, 0.756, and 0.907, suggesting that the magnitude of the difference between estimated 

latent variable scores would be larger (in terms of SDs) when compared to groups two, four, 

and five. Differences in estimated factor scores were evident for all response patterns, but 

not to as large of an extent. For example, estimated latent variable scores for the response 

pattern 11011010 (positively endorsing items 1, 2, 4, 5, and 7) ranged from +1.849 and 

+2.151.

These results highlight how strong of an effect the prior distribution of the latent variable 

score estimates can have on the estimated latent variable scores. The effect of the prior was 

particularly strong when response patterns were less informative, such as when participants 

did not endorse any items or when participants endorsed all items.

The effects of the prior distribution reinforce how a participant’s estimated latent variable 

score is partially based on their response pattern and partially based on background 

information included in the model. This result made us question whether estimated latent 

variable scores from this specification of the multiple group model are most appropriate. For 

example, a boy and girl who take a mathematics test and answer each question identically 

should get identical test scores. However, if boys outperform girls, on average, then the 

boy will have a higher latent variable score estimate than the girl (if latent variable scores 

are estimated from the standard multiple group model), and this is inappropriate. Next, 

we propose two alternative model specifications when estimating latent variable scores 

with multiple group item response data and examine the accuracy of latent variable score 
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estimates from these models as well as the standard MGM approach using Monte Carlo 

simulation.

Alternative Approaches

The first alternative approach is to fit a single-group item response model (SGM) to the 

multigroup data. Thus, grouping is ignored. For the SGM, Equation 1 can be simplified, 

such that αpg = αp and βpg = βp because there is one set of item parameters with θi ~ N 
(0,1) for identification. The second alternative approach is to fit the MGM, but constrain 

the mean and variance of the latent variable to be equal across groups, which ignores group 

differences. We refer to this model as the modified multiple group model (MMGM). Thus, 

when ignoring group differences, the MGM in Equation 1 is specified with αpg = αp and 

βpg = βp and θig ~ N (0,1), which forces all groups to have the same prior distribution when 

calculating the estimated latent variable scores. While these models are not recommended 

when evaluating the measurement structure or measurement invariance, we examine the 

utility of these specifications when estimating latent variable scores.

Monte Carlo Simulations

Simulation Design

Dichotomous data were simulated based on a five-group 2PLM to mimic our illustrative 

data. In the simulations, certain population parameters were held invariant across groups 

while others were varied to examine their impact on the estimated factor scores. In total, 

there were nine simulation conditions where the means and standard deviations of the 

latent variable were varied because we expected the latent variable distributions to influence 

factor estimation and we want to study these associations. We had three levels of mean 

and standard deviation differences among the five groups: none, small, and large. For small 

mean differences, group means were sampled from a uniform distribution of values ranging 

from −0.5 to 0.5. For large mean differences, group means were sampled from a uniform 

distribution of values ranging from −3.0 to 3.0. Small standard deviation differences were 

sampled from a range of 0.8 to 1.2. Large standard deviation differences were sampled from 

a range of 0.5 to 2.0. For conditions involving no mean differences, but standard deviation 

differences, the population means were zero. For conditions involving mean differences 

but no group differences in standard deviations, population standard deviations were one. 

Table 1 contains a summary of the nine simulation conditions. In all simulated datasets, the 

population mean and standard deviation of the first group was 0 and 1, respectively.

For each condition, 500 replicate data sets were simulated with each data set containing 

dichotomous data for 15 items for the five groups. In all conditions, group sizes were 

sampled from a uniform distribution ranging from 400 to 1,500. Item parameters for the 

2PLM were also sampled from a uniform distribution with difficulty parameters ranging 

from −3 to 3 and discrimination parameters ranging from 0.8 to 1.5. Item parameters were 

held constant across groups within a given dataset. Thus, measurement invariance of item 

parameters held in the population and its influence was not examined here. All data were 

simulated in R 3.0.0 (R Core Team, 2013).
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After the data for each condition were simulated, the three item response models were fit 

to each dataset, and latent variable score estimates were output. Models were fit in Mplus 
(Muthén & Muthén, 1998 – 2017) and the MplusAutomation package (Hallquist & Wiley, 

2013) was used to facilitate the interaction between R and Mplus. The accuracy of the 

resulting latent variables score estimates was then examined.

Outcomes of Interest

The first outcome is the reliability index - the correlation between the true and estimated 

latent variable scores. The second and third outcomes are the raw difference between the 

true and estimated latent variable scores and the root mean squared difference (RMSD) – the 

square root of the average squared difference between the true and estimated latent variable 

scores.

Prior to calculating the difference measures, we adjusted the scale of the true and estimated 

latent variable scores to aid in comparability. Estimated latent variable scores (true and 

estimated) were adjusted according to the distribution (mean and standard deviation) of the 

first group’s true or estimated latent variable scores. For the simulated latent variable scores, 

the mean latent variable score from the first group was subtracted from each individual’s 

score and then this difference was divided by the standard deviation from the first group. A 

similar process was carried out on the estimated latent variable scores obtained from each of 

the three different models using the calculated mean and standard deviation of the estimated 

latent variable scores from the first group. This scaling was necessary because the latent 

variable scores do not have an inherent scale and the importance of their values are relative 

to one another as opposed to their exact value.

Results

The results are organized with respect to each outcome of interest, which was examined 

with respect to each of the three approaches to estimating latent variable scores and the 

varied simulation conditions. We first report results for the reliability index, followed by raw 

differences, then the RMSD.

Reliability Index

The reliability index was calculated for each dataset/approach combination (overall 

reliability index) as well as for each group within each dataset (group-specific reliability 

index). We first examined the relation between the reliability index and the three approaches 

to estimating the latent variable scores. A one way ANOVA with group-based reliability 

index as the outcome and approach as the factor indicated there were no differences in 

the reliability index for the three approaches, F(2, 67497) = 1.41, p = .24. The mean group-

based reliability index was 0.84 for all three approaches (average model-based reliability 

was .70). Additionally, the standard deviation of the reliability index was approximately 0.05 

across all approaches.

Associations were then examined between the group-specific reliability indices and the 

group-specific population factor means and factor standard deviations. Although significant, 

there was not a strong relation between the true factor means and group-based reliability 
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index (r = 0.02, p < .01) for each approach; however, there was a clear association between 

the group-based reliability index and the true standard deviation of the latent variable 

(r = 0.74, p < .001; r = 0.73, p < .01; r = 0.73, p < .01 for the MGM approach, the 

SGM approach, and the MMGM approach, respectively). Groups with larger latent variable 

standard deviations (larger individual differences in the underlying trait) had stronger 

estimated group-specific reliability indices. The association can be seen in Figure 1, which 

is a plot of the group-specific reliability index as a function of group standard deviation. 

The association was positive and nonlinear, such that increases in the standard deviation 

at the low end of those examined were associated with larger increases in the reliability 

index compared to increases in the standard deviation at the high end of those examined. 

This result mirrors expectations laid forth by reliability theory (McDonald, 1999). The 

association was consistent across each of the three approaches — that is, each approach 

performed equally well.

Raw Differences between True and Estimated Latent Variable Scores

Next, we examined the raw differences between the true and estimated latent variable scores 

for each approach (i.e., true – estimated). The difference was calculated for each simulated 

individual in each group in each simulated dataset, and the mean and standard deviation of 

the difference scores was then calculated for each dataset. This process was repeated for 

the latent variable estimates obtained from each approach. A one way ANOVA with the 

mean raw difference as the outcome and approach as the factor indicated a non-significant 

difference between the three approaches to estimating latent variable scores, F(2, 67497) = 

0.27, p = .77.

As was done with the reliability index, we examined the relations between the group-

specific mean raw differences (averaged raw difference for each group in each dataset/

approach combination) and the group-specific true latent variable means and standard 

deviations. There was no relation between the group-specific mean raw differences and 

latent variable standard deviations in any approach (r = −0.01, p = .40; r = 0.01, p = 

.43; r = 0.01, p = .43 for the MGM approach, the SGM approach, and the MMGM 
approach, respectively). However, there were associations between the population group 

means and the mean raw differences. For the SGM and MMGM approaches, there was 

a strong positive correlation between the group-specific mean of the raw differences and 

the group-specific true latent variable means (r = 0.93, p < .001). Thus, for large positive 

latent variable group-specific means, there were larger positive differences between true and 

estimated latent variable scores and for large negative latent variable means, there were 

larger negative differences between true and estimated latent variable scores. Therefore, the 

SGM and MMGM approaches tended to underestimate the magnitude of group differences 

(i.e., estimated scores were closer to 0 than the population scores). The reverse was true 

for the MGM approach, as the correlation between group-specific mean differences and 

group-specific latent variable means was strong and negative (r = −0.91, p < 0.001). 

Thus, the MGM approach tended to overestimate the magnitude of group differences (i.e., 

estimated scores were closer to their group-level means). These effects can be visualized in 

Figure 2, which is a plot of the group-specific mean raw differences as a function of group 

means. In sum, the SGM and MMGM approaches, which ignore group differences tended 
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to underestimate group differences whereas the MGM approach, which recognizes group 

differences, tended to overestimate group differences and these effects were largest at the 

extremes (i.e., when large differences in the group means were observed).

Root Mean Squared Difference (RMSD)

Finally, we assessed the RMSD for each approach. For each simulated individual, the 

difference between true and estimated latent variable scores was calculated and squared. 

The average squared differences were then calculated for each group and then square 

rooted. The mean RMSDs for the SGM and MMGM approaches were nearly identical, and 

these approaches produced slightly more accurate latent variable estimates than the MGM 
approach (t = −2.94, p < .01).

We investigated the relation between the RMSDs and latent variable means and standard 

deviations across the three approaches. Although significant at times, no practical relation 

was found between RMSDs and the latent variable means across the three approaches (r = 

−0.01, p = .23; r = −0.01, p < .05; and r = −0.01, p < .05, respectively). However, a positive 

association was found between RMSDs and the latent variable standard deviation indicating 

that groups with larger standard deviations had larger RMSDs, which can be seen in Figure 

3, which is a plot of the true latent variable standard deviations against group-specific 

estimated RMSDs. Overall, groups with larger between-individual differences tended to 

show larger discrepancies between estimated and simulated latent variable scores. We then 

examined this association for the different approaches to estimating latent variable scores 

and found the association was stronger for the MGM approach compared to the SGM and 

MMGM approaches (t = 5.06, p < .001). The correlation between RMSD and group standard 

deviation with the MGM approach was 0.57 (p < .001), whereas this correlation was 0.41 for 

the SGM and MMGM approaches.

We further examined the differences in this association with an ANCOVA with group-

specific RMSDs as the outcome variable and two dummy coded variables to compare 

the SGM and MMGM approaches to the MGM approach, the group standard deviation, 

and their products as the input variables to examine interactive effects. The interactions 

were significant, highlighting differences in the strength of the association between group 

standard deviation and RMSD. The interaction coefficients were identical, b = −0.082, 

suggesting that the relation between RMSD and group standard deviations was less strong 

for the SGM and MMGM approaches compared to the MGM approach. The estimated 

cross-over point (see Widaman, Helm, Castro-Schilo, Pluess, Stallings, & Belsky, 2012) for 

the interaction was 1.00 indicating that the SGM and MMGM approaches provided more 

accurate latent variable estimates for groups with large standard deviations, whereas the 

MGM approach provided more accurate estimates for groups with small standard deviations.

Discussion

Our interest lies in the accuracy of latent variable score estimates from multiple group item 

response data. Latent variable score estimates from a typically specified multiple group 

item response model lacked consistency between the individuals’ item response patterns 

and their latent variable score estimates. The lack of consistency in latent variable score 
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estimates was illustrated using multisample item-level data on violence perpetration, and 

was due to mean differences in the level of violence across samples. The lack of consistency 

was concerning because, from a test score bias perspective, latent variable score estimates 

should be based on the participants’ responses as opposed to background variables. Given 

our concern for latent variable score estimates from the typically specified multiple group 

item response model (MGM approach), we examined the accuracy of latent variable score 

estimates from two alternative item response models. The first was a single group item 

response model (SGM approach) and the second was a multiple group model with latent 

variable distributions equated across groups (MMGM approach). The accuracy of latent 

variable score estimates across the three approaches was examined through Monte Carlo 

simulations.

The results of the Monte Carlo simulations suggested that the SGM and MMGM approaches 

led to nearly identical estimated latent variable scores and these two approaches performed 

equally well to the MGM approach, outperformed the MGM approach under certain 

circumstances, and underperformed the MGM approach in others. Specifically, in examining 

the relation between latent variable standard deviations and latent variable score estimate 

accuracy quantified by the RMSD, estimated latent variable scores from the SGM and 

MMGM approaches were more accurate than estimates obtained from the MGM approach 

when the group’s latent variable standard deviation was greater than one. The SGM and 

MMGM approaches performed worse when the group’s latent variable standard deviation 

was less than one.

We also found that the latent variable estimates from the SGM and MMGM approaches 

underestimated group mean differences, whereas the MGM approach overestimated group 

differences. These results can be attributed to the shrinkage of estimated latent variable 

scores to their prior distribution (Grice & Harris, 2010). That is, estimated latent variable 

scores tend to be closer to their mean. Thus, the standard deviation of estimated latent 

variable scores tended to be smaller than the estimated standard deviation of the latent 

variable.

The results of the simulation suggest minor differences in the overall accuracy of latent 

variable score estimates from the three approaches. However, the one-to-one mapping 

of response patterns with factor score estimates is an important benefit of the SGM 
and MMGM approaches, especially when some response patterns are not particularly 

informative. These approaches also ensure that a participant’s latent variable score estimate 

is solely based on the items asked and the participant’s responses, and not based on the 

responses of other associated participants (e.g., members of the same gender or study). For 

these reasons, we feel that it is important for the prior distribution to be the same when 

estimating latent variable scores.

Ignoring group information when estimating latent variable scores is common in item 

response modeling. That is, the estimation of the latent variable model parameters has 

often been separated from the estimation of the latent variable scores. For example, in the 

Multilog program (Thissen, Chen, & Bock, 2003), calibration of item parameters took place 

in the first run, and the scoring of the individuals (latent variable score estimation) took 

Davoudzadeh et al. Page 11

Struct Equ Modeling. Author manuscript; available in PMC 2022 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



place in a second run. In this second run, the model’s parameters were treated as fixed. And 

if latent variable estimates were needed for a new sample, their item response data could 

be scored (as in the second run above) with all of the model’s parameters (discriminations, 

locations, latent variable mean and variance) fixed to their previously estimated values. This 

approach ensured that there was a one-to-one mapping of latent variable score estimates and 

response patterns, which we feel is integral to any scoring procedure.

Given Multilog’s approach, it may be best to separate the estimation of model parameters 

from the estimation of latent variable scores. For example, the standard multiple group item 

response model can be specified to estimate model parameters. Once estimated, a single 

group model can be specified with item parameters fixed at their previously estimated values 

with the mean and variance of the latent variable set to 0 and 1, respectively. This two-step 

approach would ensure that item parameters are not biased when estimating latent variable 

scores, which is a possibility in the SGM and MMGM approaches.

Prior Distribution of Latent Variable Score Estimates

The reason for the inconsistencies between response patterns and latent variable score 

estimates across samples in the MGM approach was due to differences in the prior 

distribution of the latent variable score estimates across samples. The prior distribution 

came from the sample’s estimated mean and variance of the latent variable. Thus, the prior 

came from information obtained from the sample (i.e., group in the multiple group model) 

the participant belonged. Recently, researchers have recommended using covariate-informed 

latent variable estimates (Curran, Cole, Bauer, Hussong, & Gottfredson, 2016; Curran, 

Cole, Bauer, Rothenberg, & Hussong, 2018), which allows covariates to inform the prior 

distribution of the latent variable score estimates. Thus, covariate-informed latent variable 

estimates will lack consistency – there will not be a one-to-one mapping between response 

patterns and latent variable score estimates.

While the covariate-informed latent variable score estimation approach can lead to more 

accurate associations when the effects of covariates are properly specified, we caution 

against their use for three reasons. First, when the scoring of a construct is partially based 

on covariate information, there is an assumption that the covariate information is properly 

specified. This assumption is quite strong because we typically consider only linear and 

additive effects (i.e., no nonlinear associations or interactions). Second, when the response 

pattern is not very informative, the prior distribution dominates the estimation of latent 

variable score. This was the case with the illustrative data because the most common 

response pattern was one where none of the items were endorsed and we observed wide 

ranging latent variable score estimates for individuals with this response pattern. In these 

cases, the latent variable score estimate tells us more about who the person is rather than 

their item responses if covariate-informed latent variable estimates are used. Third, when 

covariates inform latent variable estimation, latent variable scores can be estimated for 

participants who have not responded to any of the indicator items. In these situations, the 

estimated latent variable score is solely based on the prior distribution.

While our focus is on prior distributions when estimating latent variable scores, researchers 

have highlighted similar issues in latent variable models, more generally. That is, there are 
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latent variable models where determinants or consequents of the latent variable affect the 

measurement of the latent variable itself. Levy (2017) highlights this issue where the factor 

loadings differ when an outcome of the latent variable was included in the model. That is, 

when the latent variable was specified with its indicators, the factor loadings were all strong 

suggesting the latent variable was well defined. The model was then extended to include 

an outcome. When this model was estimated, the factor loadings were noticeably smaller 

and varied in strength compared to when the factor model was previously estimated. Levy 

proposed a multistep procedure to distinguish indicators and outcomes in latent variable 

models to resolve this issue.

A second example comes from finite mixture models, where the latent class variable can be 

strongly affected by predictors of class membership. That is, including predictors of class 

membership can make the latent class variable more representative of the predictors than 

the indicators of class membership (see Stegmann & Grimm, 2017). This issue in finite 

mixture modeling led researchers to propose multistep procedures to eliminate the effect of 

predictors on the formation of the latent class variable (Asparouhov & Muthén, 2014). Thus, 

these two examples highlight how researchers have tried to eliminate or reduce the influence 

of covariates in the measurement of a latent variable.

Factor Score Regression

The research presented here on the accuracy of latent variable score estimates is also 

related to factor score regression (FSR; Skrondal & Laake, 2001), which is a stepwise 

estimation procedure for structural equation models (SEM) where researchers use estimated 

factor scores as observed data in subsequent analyses. The steps of FSR include: (1) 

estimate parameters in measurement model, (2) estimate factor scores in EFA or CFA 

using estimated parameters, (3) perform regression analysis, path analysis, or factor analysis, 

where variables in model are the estimated factor scores. Although using factor scores 

as observed variables remedy potential issues with SEM’s simultaneous estimation, the 

factor scores are linear combinations of variables that include error and can produce biased 

estimates in subsequent analyses (Hoshino & Bentler, 2011). Therefore, various methods 

of FSR have been developed to account for this bias (e.g., Croon, 2002; Skrondal & 

Laake, 2001). The focus of this work is on the estimation of the latent variable regression 

parameters and bias that is introduced because of the factor score regression, as opposed to 

the accuracy of latent variable scores. We note that Skrondal and Laake (2001) highlight the 

importance of estimating the latent variable scores separately for each latent variable, which 

separates the latent variable score estimation from its prediction.

Limitations

The simulations focused on latent variable estimates from fitting different item response 

models to multisample item level data. As such, we varied the latent variable’s means and 

standard deviations across groups to evaluate their impact on the accuracy of estimated 

latent variable scores from each of the three approaches. We did not, however, vary the 

number of items, the number of response categories per item, or examine the impact of 

incomplete data. We expect the accuracy of the latent variable estimates to improve with 

more items and with items with more response categories. We also expect the observed 
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differences between the modeling approaches will be minimized with more items and items 

with more response categories because there is likely to be greater information in the 

response patterns.

Although we varied the magnitude of the discrimination and location parameters in the 

population, we did not report on their impact because their effects were in the expected 

directions. That is, replicates with greater discrimination parameters tended to have more 

accurate estimates based on the reliability index, raw differences, and RMSDs. Location 

parameters were not significantly associated with the accuracy indices. From these results, 

we simply note the importance of having high discriminating items that are well targeted to 

the population of interest.

In our simulations, item parameters were invariant across the multiple populations from 

which the data were sampled. In empirical studies, there is usually some lack of 

measurement invariance whether it is observable or not. We expect the results would be 

weaker (i.e., larger differences between estimated and actual latent variable scores) when 

strong measurement invariance does not hold in the population.

Finally, we only examined EAP latent variable score estimates and did not examine Modal 

A Posteriori (MAP) estimates in our simulation. EAP and MAP estimates tend to be highly 

related and in our empirical data, MAP estimates showed very similar patterns to the EAP 

estimates. Thus, we expect our results to generalize to MAP estimates.

Concluding Remarks

The notable results lie in the extent to which the prior distribution of the estimated latent 

variable scores can affect the estimates of the latent variable score for individuals with 

less informative response patterns, and how ignoring group differences when estimating 

latent variable scores can produce estimated latent variable scores that are equally accurate. 

Ignoring group differences has the added benefit of separating the estimation of the 

latent variable scores from their prediction and leads to a one-to-one mapping between 

response patterns and estimated latent variable scores. Thus, we recommend ignoring group 

differences when estimating latent variable scores. However, when using this approach, we 

encourage researchers to examine the measurement parameters when using the SGM and 

MMGM approaches to determine if they differ significantly from when the proper multiple 

group model is specified. If the measurement parameters are noticeably different, then the 

measurement parameters should be fixed to their estimates from the properly specified 

multiple group model and the latent variable mean and variance should be fixed to the same 

values (e.g., 0 and 1, respectively) in all groups.

Our interest lies in the estimates of latent variables because IDA is dependent on such 

estimates due to the size of the studies being integrated and the complexity of the 

subsequent analyses (i.e., IDA studies are often longitudinal). The issue discussed here is 

not relevant when remaining in the latent variable framework; however, in IDA, where latent 

variable score estimates are needed, accurately estimated latent variable scores is of utmost 

importance.

Davoudzadeh et al. Page 14

Struct Equ Modeling. Author manuscript; available in PMC 2022 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The present work also highlights potential issues when utilizing item parameters from 

one study and applying them to another study to estimate latent variable scores to aid 

comparability. Unless the latent variable distributions are equal in the two studies, the 

estimated latent variable scores for individuals from different samples can differ even though 

the same response patterns are observed. However, fixing the distribution of the latent 

variables to be equal in the two studies will result in consistent latent variable estimates that 

are just as accurate.

Finally, we note that this issue is likely to be exacerbated with repeated measures data. 

With repeated measures multisample data, the properly specified item response model is a 

multiple group multilevel model (Kamata, 2001; Muthén & Asparouhov, 2002) where each 

individual has his or her own distribution. Furthermore, fitting a change trajectory within 

the multiple group multilevel model further impacts latent variable estimates (see McArdle 

et al., 2009). Future research should investigate the influence of model specification on 

the accuracy and consistency of estimated latent variable scores from multiple group 

longitudinal data.
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Figure 1. 
Group-specific true latent variable standard deviations plotted against group-specific 

reliability indices for the MGM approach versus the SGM and MMGM approaches

Note: SGM and MMGM approaches grouped because the values were nearly coincident.
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Figure 2. 
Group-specific true latent variable means plotted against group-specific mean raw 

differences for the MGM approach versus the SGM and MMGM approaches

Note: SGM and MMGM approaches grouped because the values were nearly coincident.
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Figure 3. 
Group-specific true latent variable standard deviations plotted against group-specific 

estimated RMSD for the MGM approach versus the SGM and MMGM approaches

Note: SGM and MMGM approaches grouped because the values were nearly coincident.
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Table 1

Summary of simulation conditions

Condition Mean Differences Standard Deviation Differences

1 None None

2 −0.5 to 0.5 None

3 −3 to 3 None

4 None 0.8 to 1.2

5 None 0.5 to 2.0

6 −3 to 3 0.8 to 1.2

7 −0.5 to 0.5 0.8 to 1.2

8 −3 to 3 0.5 to 2.0

9 −0.5 to 0.5 0.5 to 2.0
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