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ARTICLE

Automatic comprehensive radiological reports for
clinical acute stroke MRIs
Chin-Fu Liu1,2, Yi Zhao 3, Vivek Yedavalli4, Richard Leigh 5, Vitor Falcao6, on behalf of the STIR and VISTA

Imaging investigators*, Michael I. Miller 1,2,7, Argye E. Hillis5,8 & Andreia V. Faria 4✉

Abstract

Background Although artificial intelligence systems that diagnosis among different condi-

tions from medical images are long term aims, specific goals for automation of human-labor,

time-consuming tasks are not only feasible but equally important. Acute conditions that

require quantitative metrics, such as acute ischemic strokes, can greatly benefit by the

consistency, objectiveness, and accessibility of automated radiological reports.

Methods We used 1,878 annotated brain MRIs to generate a fully automated system that

outputs radiological reports in addition to the infarct volume, 3D digital infarct mask, and the

feature vector of anatomical regions affected by the acute infarct. This system is associated

to a deep-learning algorithm for segmentation of the ischemic core and to parcellation

schemes defining arterial territories and classically-identified anatomical brain structures.

Results Here we show that the performance of our system to generate radiological reports

was comparable to that of an expert evaluator. The weight of the components of the feature

vectors that supported the prediction of the reports, as well as the prediction probabilities are

outputted, making the pre-trained models behind our system interpretable. The system is

publicly available, runs in real time, in local computers, with minimal computational

requirements, and it is readily useful for non-expert users. It supports large-scale processing

of new and legacy data, enabling clinical and translational research.

Conclusion: The generation of reports indicates that our fully automated system is able to

extract quantitative, objective, structured, and personalized information from stroke MRIs.
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Plain language summary
Artificial intelligence (AI) uses com-

puter software to solve problems that

normally require human input. It is

likely that AI will take over, or help

with, certain tasks in medical ima-

ging, particularly where these tasks

are time-consuming and laborious for

clinicians. Here, we demonstrate the

possibility of using AI to generate

radiological reports for brain scans

from patients who have had a stroke.

These reports provide a summary of

what is shown in the scans, and are

normally written by clinicians. Our

system performs similarly to human

experts, is fast, publicly available, and

runs on normal computers with

minimal computational requirements,

meaning that it might be a useful tool

for researchers and clinicians to use

when assessing and treating patients

with stroke.
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The advancement in labeling techniques signaled the end of
services that require human interpretation of images, such
as radiology reading. However, 6 years after the

announcement of the “end of the path” for radiologists1, they are
still alive and operating. Humans still seem superior than
machine to decode high level features and relate them to mean-
ingful concepts. Radiologists might have some time until the
massive annotated knowledge representing all the variation in
human population and diseases will feed AI models that produce
comprehensive results and could rival humans in all aspects.

The development of new unsupervised learning methods2 or
the massive labeling of medical images to train supervised
methods are daunting projects. It is unlikely that multipurpose
reporting systems, that can detect and differentiate among several
conditions simultaneously, can be created at short term. However,
specific goals for automation are not only feasible but also
important3. For instance, the typical work flow for reporting
quantitative data, e.g., performing a measure in Picture Archive
and Communication System (PACS), is redundant, subjective,
time-consuming and hard to record. Automated radiological
reports describing consistent lesion features such as location,
contrast, volumetric properties, and related effects could be a
time-saver, particularly in acute conditions and in those that
require quantitative report. In addition, it would produce text-
structured information that would, in future, reduce the chal-
lenges of natural language processing (NLP) and other artificial
intelligence (AI) applications in medical analysis.

The initial attempts to generate automated labels for medical
images are based on AI models for automated recognition and
classification of abnormalities4,5. The first systems to generate
automated reports focused in specific goals and were trained in
2D images as chest X-rays6 (please see7 for a review) and
mammography8. These are widely performed medical images,
relatively less challenging for human annotation, compared to 3D
MRIs. The possibility of aggregating considerable sized datasets of
these images has been supporting the nascent development of
deep learning models (DL) for report generation9. For 3D MRIs,
the scarcity of large datasets and difficulties on expert annotation,
as well as the unbalance between abnormal and normal cases to
derive the knowledge about populations variation, impose extra
challenges for AI. Finally, the current inability of AI models to
provide findings as well as underlying justifications reduce their
popularity among medical professionals.

We present an automated system, the Acute stroke detection
and segmentation, ADS10, to generate radiological reports for
MRIs of patients with clinical diagnosis of acute ischemic stroke.
This system was developed in a large database of annotated 1878
cases11, associated to a deep-learning algorithm for detection and
segmentation of the ischemic core in diffusion weighted images
(DWIs)12. It reports the lesion location and volume in terms of
arterial brain territories13 and classical brain structures14. It can
be combined to other brain segmentation schemes to generate
reports in different sets of structures and scores of clinical
importance, such as ASPECTS15. Most important, ADS is public,
user-friendly, runs in CPU of local, regular personal computers
with minimum computational requirements (as described
previously12 and in the tool documentation10), outputting the
reports with a single command line. It therefore fulfills all the
conditions to perform large scale, reliable and reproducible
clinical and translational research.

Methods
Cohort and Images. This study included MRIs of patients
admitted to the Comprehensive Stroke Center at Johns Hopkins
Hospital with the clinical diagnosis of ischemic stroke, between

2009 and 2019. This is a subset of the “Annotated Clinical MRIs
and Linked Metadata of Patients with Acute Stroke”, an anon-
ymized dataset organized under waiver of patient consent
(IRB00228775), publicly shared11. Briefly, the entire dataset
consists of 2888 multimodal clinical MRIs performed at the
admission of patients with acute brain strokes, retrospectively
archived over 10 years, organized under FAIR principles16. Of
note, only patients with MRI diagnosis of acute stroke were
included, which represents a subset of all hospital stroke patients.
The dataset includes lesion segmentation, expert radiological
description, patient demographic information, and basic clinical
profile. Details of this publicly available dataset are in the doc-
umentation that accompanies the data11 and in the related
publication17. We have complied with all relevant ethical reg-
ulations from the Johns Hopkins Institutional Review Board that
approved this study (IRB00290649).

In this study, we included 1,878 mutually exclusive MRIs with
evidence of ischemic stroke in the diffusion weighted images
(DWI). The flowchart for data inclusion is shown in Fig. 1. The
data were random split into training set (n= 1414, 75%) and
testing set (n= 464, 25%). The detailed description of the
demographic, lesion and scanner profiles of the data used in this
study is in Table 1. The distribution of infarcts according to brain
location and the demographic characteristics reflect the general
population of stroke patients. MRIs were obtained on eleven
scanners from four different manufacturers, in different magnetic
fields (1.5 T and 3 T), with dozens of different protocols. The
DWIs had high in plane (axial) resolution (1.2 × 1.2 mm, or less),
and typical clinical high slice thickness (up to 5 mm plus gap).
Although a challenge for imaging processing, the technical
heterogeneity promotes the potential generalization of the
resulting developed tools.

Our testing set was completely independent and unseen in the
machine learning training and validation phases. We reinforce
that although we used data from a single National Stroke Center,
these data originated from multiple hospitals and a large
geographic region, reflecting the profile of the national population
with stroke. Still, a second external testing set (STIR (http://stir.
dellmed.utexas.edu/), n= 100), was used to test the generalization
of our models in a unrelated population. We have complied with
all relevant STIR regulations for data usage.

The delineation of the stroke core was defined in the DWI by 2
experienced evaluators and revised by a neuroradiologist until
reaching a final decision by consensus, as described in17. The
DWIs were mapped to a common template in MNI space18 by
12-parameter linear deformation; the deformation matrix was
then applied to the binary stroke masks. The detailed description
of these procedures, including used parameters and quality
control of the image mapping, is in our publication describing the
dataset17.

Visual lesion description and validation. The infarct location
was classified by a neuroradiologist according to two schemes:

1. arterial territories, which consists of territories of the
following arteries: anterior, medial, and posterior cerebral
(ACA, MCA (excluding lenticulostriates)), and PCA
(excluding choroidal and thalamoperforating), superior
and inferior cerebellar, medial and lateral lenticulostriate,
posterior and anterior choroidal and thalamoperforating,
and the watershed zone ACA-MCA and MCA-PCA;

2. “classical” anatomy, which defines frontal, temporal,
parietal, occipital lobes, insula, internal capsule, deep white
matter (corona radiata and centrum semiovale), thalamus,
basal ganglia, cerebellum, and brainstem (midbrain, pons,
and medulla).
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Regions considered injured received a score of 1; the non-
injured received 0. The evaluator also recorded the presence (1)
or absence (0) of hydrocephalus. The lesion descriptions were
validated against the clinical radiological reports in the medical
records in a subsample of 110 of cases (6%). The “events”
annotated, using BRAT rapid annotation tool (https://brat.nlplab.
org/), consisted in words describing stroke type (e.g., “ischemic”,
“hemorrhage”, “bleeding”) and location (e.g., words related to
arterial territories and brain structures). The annotations were as
standardized as possible, to enable the comparison with our
standardized description (e.g., “occipital lobe” became “occipital”;
“middle cerebral artery” became “MCA”). The comparison
between the annotation of the radiological reports and our
descriptive metadata was made by the inter-annotator agreement
(IAA) with Kohen’s Kappa, using the “irr” R package (https://
cran.r-project.org/web/packages/irr/index.html). Values for IAA
Kappa range from 0 to 1 (1 is perfect agreement).

There was a total agreement for the description of stroke type
(ischemic) between the clinical radiologcal reports and our
metadata. For the lesion locations, the mean IAA Kappa was
0.71 ± 0.16, which is a high level of agreement. The indices varied
from perfect agreement of 1 (for regions such as thalamus), to the
lowest 0.5 (for parietal lobe). We note that the disagreements
were, in their vast majority, result of semantic variations or
analysis at different levels of granularity, rather than divergence
in radiological evaluation. For instance, if the clinical radiological
report says “perirolandic area” and our text-standardized
description says “parietal” lobe, this was considered a disagree-
ment, although the perirolandic area is part of the parietal lobe.
Based on the results of IAA Kappa and these observations, we
considered our radiological descriptions aligned with the medical
records, and well suited for training the automated models.

Multiple evaluators descriptions. To access the level of variation
in visual descriptions, and the agreement of different evaluators
with the developed automated reports, two other clinical experts,
a neuroradiologist (VY) and a neurologist (RL), with >10 years of

experience in stroke care and image reading, classified the infarct
location in the whole testing set (n= 464), following the same
procedures described above. The comparison among the three
evaluators, and among the evaluators and the automated classi-
fication was made by the intraclass correlation (ICC) using the
function ICC3 of the Python package “pingouin.intraclass-
corr”19.

A second question is whether the automated radiological
reports would aid the flow of clinical stroke

care, particularly in settings that do not count on highly trained
experts or second radiology readers full time in emergency
service. Testing clinical impact is beyond the scope of this paper,
as it depends on further stages of technical and bureaucratic
technology development. Even so, as proof-of-concept, we asked
one emergency room physician, not formally trained in neuro-
radiology or neurology (VF), to classify the stroke location in a
testing subset (n= 155), again using the same procedures
described above. The results of the here called non-expert
physician and the automated radiological reports were compared
to the expert physicians’ readings, and rated as “in agreement”,
“in partial agreement”, or “in disagreement” with those. “In
disagreement” was used if an infarcted area was not or was
wrongly described, and that would have clinical implications,
such as change of clinically relevant metrics (e.g. ASPECTS20).
“In partial agreement” was used if the error would have no
potential clinical implications. We also recorded the time for the
non-expert physician reading.

Automatic extraction of feature vectors. The quantitative fea-
tures used to train the models for automatic classification of the
infarct location were defined to be compatible with the visual
scoring. Digital atlases, based on arterial territories13 (Arterial
atlas—NITRC. https://www.nitrc.org/docman/?group_id=1498)
and classical anatomy14 (illustrated in Fig. 2), were overlaid on
the brains in standardized space (MNI). These atlases define
similar regions of interest (ROI) as those used in the visual
analysis, which are the most clinically relevant for the description
of the acute infarct location. The quantitative feature vectors

Fig. 1 Data description and study design. The flowchart describes data inclusion and exclusion, and of the design used for developing and testing of
machine learning models.
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(QFV) extracted proportionally reflect the ratio of injury in each
ROI (i.e., the proportion of ROI voxels in which the infarct
mask= 1). We note that all ROIs are bilateral (except by the
brainstem) and homologous ROIs have approximately the same
volume. One illustrative example is shown in Fig. 3 and Table 2.
The infarct volume (in log ml) was also included in QFVs.

We also trained and tested a model to predict hydrocephalus,
as this is an important characteristic to be reported in strokes.
Two strips of 5-voxel width bandwidth were defined around the
five sub-regions of the lateral ventricles (LV, as defined in
template brain14): the outside strip of the LV (OLV), and the
inside strip of the LV (ILV). After linearly mapping the brain to

the template, the number of voxels with ADC intensity
>0.0018 mm2/s (CSF voxels) and <0.0018 mm2/s (non-CSF
voxels)21 are calculated to generate:

1 γOLVR: the ratio of the number of the deformed non-CSF
voxels in OLV over the number of voxels in OLV. γOLVR lower
than the dataset average γOLVR indicates ventricular enlargement
compared to the expected average ventricle size (although not
necessarily hydrocephalus).

2 γILVR: the ratio of the number of the deformed CSF voxels in
ILV over the number of voxels in ILV. γILVR lower than the
dataset average γILVR indicates possible ventricular compression
or midline shift

Table 1 Population, lesion and scanner profiles. For continuous variables the numbers are shown as median [IQR stands for
interquartile range].

Dataset total Training Testing p-value

Number of Participants 1878 1414 464
Age in years 62.0 [53,72] 62.0 [52,72] 62.0 [54,72] 0.40
Sex

male 1012 (53.89%) 756 (53.47%) 256 (55.17%) 0.56
female 866 (46.11%) 658 (46.53%) 208 (44.83%)

Race/Ethnicity
African American 824 (43.88%) 601 (42.5%) 223 (50.22%) 0.79
Caucasian 533 (28.38%) 393 (27.79%) 140 (30.17%)
Asian 44 (2.34%) 32 (2.26%) 12 (2.59%)
Missing Data 477 (25.40%) 388 (27.44%) 89 (19.18%)

Lesioned hemisphere
left 834 (44.41%) 635 (44.91%) 199 (42.89%) 0.09
right 766 (40.79%) 554 (39.18%) 212 (45.69%)
bilateral 278 (14.80%) 225 (15.91%) 53 (11.42%)

infarct location (arterial territory) 0.012
ACA 98 (5.22%) 73 (5.16%) 25 (5.39%) 0.945
MCA 969 (51.60%) 709 (50.14%) 260 (56.03%) 0.032
PCA 257 (13.68%) 193 (13.65%) 64 (13.79%) 1.000
cerebellar 255 (13.58%) 196 (13.86%) 59 (12.72%) 0.584
basilar 113 (6.02%) 95 (6.72%) 18 (3.88%) 0.034
Lateral Lenticulostriates 470 (25.03%) 331 (23.41%) 139 (29.96%) 0.006
Choroidal&Thalamoperforating 313 (16.67%) 243 (17.19%) 70 (15.09%) 0.327
watershed 209 (11.13%) 170 (12.02%) 39 (8.41%) 0.039

infarct location (brain structure) 0.014
basal ganglia 396 (21.09%) 270 (19.09%) 126 (27.16%) 0.0004
deep white matter 716 (38.13%) 539 (38.12%) 177 (38.15%) 0.979
cerebellum 260 (13.84%) 201 (14.21%) 59 (12.72%) 0.435
frontal lobe 638 (33.97%) 471 (33.31%) 167 (35.99%) 0.358
insula 323 (17.20%) 239 (16.90%) 84 (18.10%) 0.638
internal capsule 184 (9.80%) 145 (10.25%) 39 (8.41%) 0.267
brainstem 228 (12.14%) 183 (12.94%) 45 (9.70%) 0.069
occipital lobe 287 (15.28%) 222 (15.70%) 65 (14.01%) 0.393
parietal lobe 522 (27.80%) 403 (28.50%) 119 (25.65%) 0.228
temporal lobe 423 (22.52%) 312 (22.07%) 111 (23.92%) 0.481
thalamus 218 (11.61%) 176 (12.45%) 42 (9.05%) 0.052

hydrocephalus 533 (28.38%) 404 (28.57%) 129 (27.80%) 0.159
Lesion volume in ml 4.27 [0.98,21.98] 4.18 [0.96,21.21] 4.54 [1.04,27.67] 0.066
MRI manufacturer

Siemens 1667 (88.76%) 1229 (86.92%) 438 (94.40%) 0.0003
Phillips 15 (0.80%) 13 (0.92%) 2 (0.43%)
GE 166 (8.84%) 144 (10.18%) 22 (4.74%)
others 30 (1.60%) 28 (1.98%) 2 (0.43%)

MRI magnetic field
1.5 T 1217 (64.88%) 944 (66.76%) 273 (58.84%) 0.002
3.0 T 661 (35.20%) 470 (33.24%) 191 (41.16%)

Voxel size in mm3
Voxel size 5.74 [2.52,7.60] 5.70 [3.00,7.60] 5.74 [2.33,7.40] 0.43
Height/Width 1.20 [0.63,1.30] 1.20 [0.90,1.38] 1.20 [0.60,1.25]
Thickness 5.00 [4.0,5.0] 5.00 [4.0,5.0] 5.00 [4.0,5.0]

For discrete variables, the numbers are the counts and the percentage they represent from the total number in each class.
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To access the accuracy of the QFVs extracted, we deliver
quality control indices (described in the supplementary material
—QCI section) that indicate the agreement between the contour
of the brain in question and the atlases in which the brain
structures are defined. Lastly, we extracted QFVs from brains
non-linearly mapped to the atlases (with Dipy), to evaluate the
influence of the brain mapping method (linear vs. non-linear) in
the automated prediction of stroke location.

Machine Learning (ML) classification models to predict infarct
location. We developed, validated, and tested seven models
(described below) to predict the infarct location using the QFV
calculated with the human-segmented lesions. All ML models
were cross validated over the training set (1414 individuals, 75%)
for hyperparameter searching and tested in the completely
independent testing set of 464 individuals (flowchart in Fig. 1).

We performed 5-fold cross validation on the training set, for a
large set of searching parameters. The models’ hyperparameters
with the top 3 performances (according to the sum of balanced
accuracy (BACC) and F1 score, from this first run of 5-fold cross
validation) were further determined and selected via 10 repeat
5-fold cross-validation, on the training set. The details of
searching parameters’ sets, final optimal parameters, cross vali-
dation results, and the definitions of performance metrics are in
the Supplementary Methods and Supplementary Data 1 and 2.

The simplest model, the Binary Threshold (BT), was built to
classify the stroke location via thresholding its corresponding ROI
component in the QFV for each participant. The threshold can be
interpreted as the minimum percentage of the ROI occupied by
the infarct mask to lead its classification as injured (and receive a
score of 1). The threshold for each ROI was the minimal level to
achieve the highest sum of the BACC and F1 score, found by
cross-validation of the training set. The optimal thresholds for

Fig. 2 Atlases defining the arterial territories13 (A) and brain structures14 (B) used in this study. The regions of interest (ROIs) are overlaid in the
template18 T1-WI.

Fig. 3 Illustrative example of the infarct location prediction to generate automated radiological report. The figures show a large acute ischemic infarct in
DWI (a). The infarct core, automatically segmented12, is overlaid in ADC (b). Brain atlases representing classical anatomical structures (c) and arterial
territories (d) allow to quantify the injury in diverse regions of interest (ROIs). The calculated quantitative feature vectors (QFV) are in Table 2.
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each ROI are summarized in the Supplementary Data 1. The
remaining six models were Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), Random Forest (RF),
K-nearest Neighbors (KNN), Support Vector Machine (SVM),
and Multi-layer Perceptron (MLP). The measures of models’
performances are described in the Table 3.

Because some ROIs are injured only in a few cases (see Table 1)
over our large dataset, deep neural network models would suffer
from imbalanced classes issue. In addition, the interpretation of
deep learning models is not as straightforward as that of classic
ML methods. Furthermore, given that the ML models employed
proved sufficiently efficient compared to humans (as we will show
in Results), we opted to further investigate the potential of deep
learning techniques to improve the classification performance
when this dataset is expanded, or when other public sets of
clinical data become available.

Feature analysis. The implementation of interpretable models
potentially increases their practical usefulness and enable to
investigate whether machine uses features of biological relevance,
similarly to humans. We explored how the visual classification
attributed to different ROIs relate to each other, as well as the
relationship between visual analysis and QFV for each ROI, and
between different QFV components, using bivariate correlations
(Table 4).

We then conducted an analysis of feature importance to
inspect how the ML models use the QFVs to describe lesion
location. The analyses presented here are based on Random
Forest (RF) models, which had the best average performance
(BACC, F1) among all ML models. The impurity-based feature
importance analysis22,23 was conducted to build 100 RF models
on the training set with the optimal parameters selected from
cross validation. The Mean Decrease in Impurity (MDI), shown
in Fig. 4, indicates the feature importance (high MDIs correspond
to the most important features). We also conducted permutation
feature importance tests (100 iterations), using the training and
testing set separately (Supplementary Tables 1 and 2 and
Supplementary Fig. 1 and 2), to illustrate the consistency in
feature learning and their potential generalization, respectively.

To generate and deliver explanations about the predictions in a
new given sample, we adapted the SHapley Additive exPlanations
(SHAP)24 module in the ADS. The SHAP computes the Shapley
values25 of features via coalitional game theory to indicate how to
fairly distribute prediction of an instance among features. Because
the Shapley feature value is linearly additive, this value can be
directly added or subtracted from the probability of predicts,
making the models’ interpretation straightforward. The outputs
are intuitively comprehensible graphs of the predicted infarct
location (example in Supplementary Fig. 3), explaining how the
QFV components were combined to predict injury in each brain
area.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Correlations among human expert evaluation and QFVs.
Table 4 illustrates how the visual determination of the presence of
infarct (yes= 1, no= 0) is related in different ROIs. High cor-
relation between a pair ROIs means that the infarct tends to co-
exist on them. As expected, given the spatial coalescence of infarct
lesions, neighboring ROIs defined by the classical anatomic atlas
(Table 4.II.a) are the highest correlated (e.g., frontal, parietal, and
temporal; which are part of the MCA territory). Compared to
those, ROIs defined by the arterial territory atlas (Table 4.I.a) are
less correlated, since they follow the distribution of the infarcts by
definition. Table 4.I.b and II.b demonstrate the correlation
between QFV components. They represent the quantitative ver-
sion of the qualitative scores in Table 4.I.a and II.a, to which they
highly agree. This indicates that the quantitative information
coded in the QFVs (the proportion of each ROI affected by the
infarct) is likely reflecting the qualitative information that
humans relay in their visual analysis. Similar to the visual ana-
lysis, each QFV component is highly correlated to the QFV
components of its neighbor ROIs.

Table 4.I.c and II.c combine the information above, showing
the correlation between visual analysis and QFV components.

Table 2 Calculation of quantitative feature vectors (QFV) shown in Fig. 3.

basal
ganglia

deep wm cerebellum frontal
lobe

insula int.
capsule

brainstem occipital
lobe

parietal
lobe

temporal
lobe

thalamus

visual 1 1 0 1 1 0 0 0 1 1 0
infarct
volume

7262 15693 0 31604 14917 6967 818 22219 27963 96580 1695

ROI volume 11959 19655 103009 249674 16323 8061 44211 100804 137367 132439 10077
QFV 0.61 0.79 0 0.13 0.91 0.86 0.02 0.22 0.2 0.73 0.17
predict.
prob.

0.72 0.79 0.01 0.74 0.81 0.04 0.14 0.16 0.86 0.77 0.09

prediction 1 1 0 1 1 0 0 0 1 1 0

ACA MCA PCA cerebellar basilar Lat. Lenticul. Chor&Thal.Perf

visual 0 1 0 0 0 1 0
infarct volume 10294 199607 6856 0 12 20540 6661
ROI volume 202742 437010 119009 108869 18168 26842 28648
QFV 0.05 0.46 0.06 0 0 0.77 0.23
predict. prob. 0.01 0.98 0.05 0.01 0 0.54 0.05
prediction 0 1 0 0 0 1 0

Each QFV component represents the proportion of the respective ROI affected by the infarct. The rows visual show the classification of the respective ROI in injured or not (1 or 0) according to expert
human evaluation, which is here considered the gold standard. The prediction rows show the infarct location predicted by ML, based on the QFVs. At the bottom, the comparison between the real
radiological report in medical records and the predicted report. These are all outputs of our automated tool, ADS10

Radiological report from medical records: Large area of restricted diffusion in the right middle cerebral artery territory mainly involving the right temporal lobe, right parietal lobe, and portions of the right
frontal lobe. The area measures 11 cm by 4.8 cm. The size of the ventricles is compatible with the age.
Predicted radiological report: Area of restricted diffusion within the right brain hemisphere, with 165.195ml, in the territory of the middle cerebral artery and possibly Lateral Lenticulostriate. The area
involves the following brain regions: basal ganglia, deep white matter, frontal lobe, insula, parietal lobe, and temporal lobe. There is no hydrocephalus. The predicted MCA-ASPECTS is 2.
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They indicate more directly how humans inconspicuously use the
quantitative information about the spatial distribution of the
infarct (reflected by the QFV) to determine the infarct injury. The
rows indicate that the visual classification attributed to each ROI
is mostly correlated to the QFV component that corresponds to
the ROI in question, and secondly, to the QFV components
corresponding to neighboring ROIs, as expected. Again, as the
infarct lesions extend beyond the artificial limits of the
semantically defined areas, the human evaluation is not purely

Table 3 Comparison of models performances to predict
infarct location in the testing set (n= 464). The numbers in
parenthesis are frequency of infarcts per region.

LDA QDA KNN SVM RF MLP BT

I. According to arterial territory
ACA (25)
BACC 0.638 0.696 0.659 0.672 0.712 0.746 0.823
F1 0.412 0.213 0.346 0.439 0.512 0.52 0.404
Precision 0.778 0.128 0.333 0.563 0.611 0.52 0.275
Sensitivity 0.28 0.64 0.36 0.360 0.44 0.52 0.76
Kappa 0.394 0.136 0.307 0.414 0.489 0.493 0.353
MCA (260)
BACC 0.773 0.785 0.85 0.887 0.913 0.883 0.815
F1 0.746 0.748 0.866 0.888 0.916 0.88 0.84
Precision 0.897 0.936 0.875 0.940 0.954 0.951 0.833
Sensitivity 0.638 0.623 0.858 0.842 0.881 0.819 0.846
Kappa 0.525 0.544 0.699 0.763 0.818 0.751 0.632
PCA (64)
BACC 0.707 0.778 0.753 0.822 0.87 0.831 0.837
F1 0.574 0.673 0.653 0.757 0.828 0.775 0.637
Precision 0.9 0.804 0.892 0.894 0.923 0.915 0.538
Sensitivity 0.422 0.578 0.516 0.656 0.75 0.672 0.781
Kappa 0.533 0.63 0.615 0.725 0.803 0.745 0.566
cerebellar (59)
BACC 0.626 0.785 0.725 0.823 0.948 0.81 0.942
F1 0.4 0.649 0.577 0.750 0.893 0.747 0.794
Precision 0.938 0.692 0.737 0.867 0.871 0.925 0.683
Sensitivity 0.254 0.61 0.475 0.661 0.915 0.627 0.949
Kappa 0.366 0.601 0.531 0.719 0.876 0.719 0.759
basilar (18)
BACC 0.609 0.777 0.681 0.817 0.844 0.763 0.952
F1 0.333 0.175 0.378 0.533 0.565 0.488 0.456
Precision 0.667 0.097 0.368 0.444 0.464 0.435 0.295
Sensitivity 0.222 0.889 0.389 0.667 0.722 0.556 1
Kappa 0.32 0.113 0.353 0.511 0.544 0.464 0.421
Lenticulostriate (139)
BACC 0.712 0.693 0.833 0.854 0.859 0.865 0.854
F1 0.595 0.581 0.784 0.814 0.812 0.824 0.757
Precision 0.924 0.427 0.883 0.904 0.85 0.878 0.633
Sensitivity 0.439 0.906 0.705 0.741 0.777 0.777 0.942
Kappa 0.498 0.293 0.706 0.746 0.737 0.756 0.622
Choroidal & Thalamoperfurating (70)
BACC 0.578 0.679 0.751 0.734 0.802 0.784 0.72
F1 0.273 0.479 0.584 0.581 0.672 0.638 0.434
Precision 0.667 0.569 0.597 0.667 0.687 0.647 0.309
Sensitivity 0.171 0.414 0.571 0.514 0.657 0.629 0.729
Kappa 0.225 0.403 0.512 0.517 0.615 0.574 0.282
hydrocephalus (129)
BACC 0.872 0.827 0.824 0.849 0.840 0.842
F1 0.819 0.713 0.762 0.790 0.787 0.784
Precision 0.832 0.594 0.827 0.824 0.855 0.828 NA
Sensitivity 0.806 0.884 0.705 0.760 0.729 0.744
Kappa 0.751 0.570 0.679 0.714 0.713 0.706
II. According to classical brain structures
basal ganglia (126)
BACC 0.75 0.797 0.838 0.830 0.868 0.857 0.874
F1 0.663 0.711 0.798 0.775 0.818 0.807 0.782
Precision 0.955 0.741 0.946 0.871 0.853 0.857 0.693
Sensitivity 0.508 0.683 0.69 0.698 0.786 0.762 0.897
Kappa 0.585 0.609 0.738 0.704 0.754 0.74 0.686
deep WM (177)
BACC 0.668 0.687 0.71 0.763 0.811 0.774 0.773
F1 0.542 0.657 0.637 0.702 0.766 0.718 0.728
Precision 0.75 0.508 0.661 0.779 0.716 0.756 0.604
Sensitivity 0.424 0.932 0.616 0.638 0.825 0.684 0.915
Kappa 0.367 0.323 0.426 0.546 0.605 0.558 0.497

Table 3 (continued)

LDA QDA KNN SVM RF MLP BT

cerebellum (59)
BACC 0.619 0.789 0.75 0.806 0.922 0.821 0.941
F1 0.384 0.638 0.62 0.725 0.864 0.776 0.789
Precision 1 0.649 0.756 0.860 0.864 0.974 0.675
Sensitivity 0.237 0.627 0.525 0.627 0.864 0.644 0.949
Kappa 0.352 0.586 0.576 0.693 0.845 0.75 0.752
frontal (167)
BACC 0.699 0.72 0.807 0.812 0.874 0.814 0.849
F1 0.578 0.631 0.752 0.762 0.835 0.764 0.796
Precision 0.878 0.727 0.733 0.836 0.809 0.816 0.707
Sensitivity 0.431 0.557 0.772 0.701 0.862 0.719 0.91
Kappa 0.447 0.463 0.607 0.646 0.737 0.645 0.657
insula (84)
BACC 0.82 0.867 0.853 0.860 0.901 0.89 0.912
F1 0.72 0.721 0.743 0.754 0.787 0.789 0.763
Precision 0.753 0.628 0.714 0.725 0.712 0.74 0.642
Sensitivity 0.69 0.845 0.774 0.786 0.881 0.845 0.94
Kappa 0.662 0.648 0.683 0.697 0.734 0.738 0.698
internal capsule (39)
BACC 0.613 0.679 0.743 0.780 0.752 0.757 0.768
F1 0.297 0.234 0.512 0.613 0.56 0.537 0.324
Precision 0.314 0.135 0.488 0.639 0.583 0.512 0.2
Sensitivity 0.282 0.872 0.538 0.590 0.538 0.564 0.846
Kappa 0.237 0.103 0.465 0.579 0.521 0.492 0.217
brainstem (45)
BACC 0.677 0.802 0.858 0.924 0.942 0.904 0.905
F1 0.516 0.366 0.776 0.848 0.845 0.841 0.678
Precision 0.941 0.226 0.825 0.830 0.788 0.86 0.548
Sensitivity 0.356 0.956 0.733 0.867 0.911 0.822 0.889
Kappa 0.489 0.248 0.754 0.831 0.827 0.824 0.634
occipital (65)
BACC 0.682 0.709 0.749 0.734 0.794 0.79 0.776
F1 0.495 0.493 0.624 0.562 0.69 0.672 0.513
Precision 0.65 0.478 0.773 0.607 0.784 0.741 0.393
Sensitivity 0.4 0.508 0.523 0.523 0.615 0.615 0.738
Kappa 0.435 0.407 0.576 0.497 0.646 0.625 0.405
parietal (119)
BACC 0.667 0.708 0.714 0.721 0.831 0.768 0.812
F1 0.503 0.567 0.576 0.594 0.735 0.658 0.691
Precision 0.719 0.579 0.6 0.677 0.694 0.67 0.604
Sensitivity 0.387 0.555 0.555 0.529 0.782 0.647 0.807
Kappa 0.394 0.421 0.438 0.477 0.636 0.543 0.562
temporal (111)
BACC 0.775 0.78 0.769 0.798 0.848 0.831 0.849
F1 0.684 0.664 0.67 0.709 0.76 0.75 0.701
Precision 0.805 0.661 0.767 0.768 0.737 0.771 0.567
Sensitivity 0.595 0.667 0.595 0.658 0.784 0.73 0.919
Kappa 0.603 0.557 0.583 0.626 0.681 0.674 0.575
thalamus (42)
BACC 0.637 0.776 0.82 0.873 0.867 0.883 0.859
F1 0.407 0.542 0.691 0.790 0.744 0.795 0.526
Precision 0.706 0.481 0.718 0.821 0.727 0.805 0.379
Sensitivity 0.286 0.619 0.667 0.762 0.762 0.786 0.857
Kappa 0.374 0.49 0.662 0.770 0.718 0.775 0.457
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Table 4 Correlations among human classification of infarct location and quantitative feature vectors (QFVs) automatically
extracted (n= 1414).

I According to Arterial Territory

ACA MCA PCA cerebellar basilar Lat Lent Ch&ThPerf

(a) visual vs. visual
ACA 1 −0.055 −0.009 −0.029 −0.037 −0.046 −0.064
MCA −0.055 1 −0.213 −0.214 −0.224 −0.144 −0.371
PCA −0.009 −0.213 1 0.192 −0.057 −0.152 0.141
cerebellar −0.029 −0.214 0.192 1 −0.018 −0.144 0.056
basilar −0.037 −0.224 −0.057 −0.018 1 −0.115 −0.062
Lat Lent −0.046 −0.144 −0.152 −0.144 −0.115 1 −0.194
Ch&ThPerf −0.064 −0.371 0.141 0.056 −0.062 −0.194 1
(b) QFV vs. QFV
ACA 1 0.538 0.138 −0.026 −0.03 0.333 0.129
MCA 0.538 1 0.16 −0.049 −0.064 0.706 0.238
PCA 0.138 0.16 1 0.207 0.149 0.059 0.661
cerebellar −0.026 −0.049 0.207 1 0.716 −0.061 0.288
basilar −0.03 −0.064 0.149 0.716 1 −0.068 0.301
Lat Lent 0.333 0.706 0.059 −0.061 −0.068 1 0.236
Ch&ThPerf 0.129 0.238 0.661 0.288 0.301 0.236 1
(c) QFV vs. visual
ACA 0.312 0.042 −0.016 −0.043 −0.026 0.025 −0.041
MCA 0.15 0.377 −0.091 −0.158 −0.175 0.209 −0.1
PCA −0.001 −0.091 0.52 0.17 0.133 −0.105 0.318
cerebellar −0.035 −0.09 0.086 0.476 0.318 −0.123 0.069
basilar −0.057 −0.103 −0.037 −0.008 0.207 −0.098 −0.005
Lat Lent −0.013 0.066 −0.107 −0.092 −0.091 0.43 −0.005
Ch&ThPerf −0.067 −0.147 0.138 0.056 0.184 −0.132 0.299

II According to major brain structures

basal
ganglia

deep
WM

cerebellum frontal insula int capsule brainstem occipital parietal
lobe

temporal thalamus

(a) visual vs. visual
basal ganglia 1 0.36 −0.126 0.027 0.151 0.144 −0.144 −0.121 −0.008 0.089 −0.123
deep WM 0.36 1 −0.203 0.085 0.128 0.104 −0.251 −0.127 0.075 0.039 −0.19
cerebellum −0.126 −0.203 1 −0.124 −0.108 −0.091 0.066 0.153 −0.078 −0.104 0.031
frontal 0.027 0.085 −0.124 1 0.354 −0.17 −0.232 −0.037 0.278 0.311 −0.226
insula 0.151 0.128 −0.108 0.354 1 −0.097 −0.174 −0.075 0.255 0.475 −0.142
int capsule 0.144 0.104 −0.091 −0.17 −0.097 1 −0.123 −0.095 −0.126 −0.107 −0.0003
brainstem −0.144 −0.251 0.066 −0.232 −0.174 −0.123 1 −0.068 −0.211 −0.149 0.046
occipital −0.121 −0.127 0.153 −0.037 −0.075 −0.095 −0.068 1 0.132 0.028 0.167
parietal −0.008 0.075 −0.078 0.278 0.255 −0.126 −0.211 0.132 1 0.344 −0.148
temporal 0.089 0.039 −0.104 0.311 0.475 −0.107 −0.149 0.028 0.344 1 −0.103
thalamus −0.123 −0.19 0.031 −0.226 −0.142 −0.0003 0.046 0.167 −0.148 −0.102 1
(b) QFV vs. QFV
basal ganglia 1 0.648 −0.049 0.608 0.714 0.907 −0.029 0.163 0.453 0.526 0.317
deep WM 0.648 1 −0.067 0.742 0.724 0.723 −0.055 0.263 0.773 0.648 0.243
cerebellum −0.049 −0.067 1 −0.045 −0.068 −0.051 0.647 0.144 −0.046 0.007 0.126
frontal 0.608 0.742 −0.045 1 0.727 0.599 −0.04 0.214 0.733 0.59 0.225
insula 0.714 0.724 −0.068 0.727 1 0.721 −0.059 0.179 0.611 0.697 0.188
int capsule 0.907 0.723 −0.051 0.599 0.721 1 −0.017 0.216 0.542 0.611 0.415
brainstem −0.029 −0.055 0.647 −0.04 −0.059 −0.017 1 0.165 −0.037 0.04 0.233
occipital 0.163 0.263 0.144 0.214 0.179 0.216 0.165 1 0.407 0.492 0.395
parietal 0.453 0.773 −0.046 0.733 0.611 0.542 −0.037 0.407 1 0.722 0.2
temporal 0.526 0.648 0.007 0.59 0.697 0.611 0.04 0.492 0.722 1 0.326
thalamus 0.317 0.243 0.126 0.225 0.188 0.415 0.233 0.395 0.2 0.326 1
(c) QFV vs. visual
basal ganglia 0.548 0.305 −0.087 0.215 0.331 0.532 −0.07 −0.015 0.119 0.176 0.088
deep WM 0.214 0.272 −0.15 0.125 0.169 0.259 −0.133 −0.07 0.064 0.037 −0.026
cerebellum −0.103 −0.123 0.469 −0.081 −0.117 −0.116 0.285 0.051 −0.075 −0.079 0.037
frontal 0.194 0.324 −0.107 0.409 0.383 0.155 −0.113 0.039 0.305 0.242 −0.038
insula 0.348 0.462 −0.077 0.421 0.683 0.362 −0.081 0.07 0.41 0.417 0.039
int capsule 0.08 −0.013 −0.06 −0.041 −0.037 0.187 −0.059 −0.056 −0.047 −0.038 0.043
brainstem −0.119 −0.162 0.072 −0.125 −0.156 −0.138 0.411 −0.066 −0.125 −0.105 0.033
occipital −0.036 −0.011 0.095 0.012 −0.044 −0.046 0.092 0.509 0.079 0.096 0.209
parietal 0.158 0.311 −0.074 0.277 0.276 0.171 −0.101 0.223 0.453 0.363 0.031
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based on how individual areas are affected, but also in the
regional lesion pattern.

Accuracy of ML models to predict infarct location. The per-
formance of models to predict the stroke location in the testing
set is summarized in Table 3. The best models, in BACC and F1,
were those created with random forest (RF), achieving an excel-
lent agreement with the visual analysis (vast majority of
BACC > 0.8). The lowest agreement, while still satisfactory,
occurred in the ACA (considering the arterial territory scheme),
and the internal capsule (considering the classical anatomical
scheme). The most efficient RF model, retrained with the auto-
mated infarct segmentations12, was included in our deployed
pipeline to generate reports in ADS10. The hyperparameters and
performances on cross-validation in the training set and in the
testing set, using ADS infarct segmentation, are reported in
Supplementary Data 3, 4 and 5.

As the infarct volume and location are correlated (e.g., small
defined areas, such as the thalamoperfurating territory, irrigated
by arteries of small caliber, tend to have small strokes), large ROIs
had, in general, slightly better accuracy performance for all ML
models. There was no significant difference in the prediction
accuracy regarding the patient sex (male or female) or race (Black/
African America or Caucasian), time from stroke onset (> or
<6 h), magnetic field (1.5 T or 3 T), and infarct side (left or right).

The performance of the RF model was slightly higher when
using non-linearly normalized brain images (as shown in
Supplementary Table 3), compared to linearly normalized. The
model was robust in the external unrelated population (from
STIR), demonstrating similar performance to that achieved in our
independent testing set (results shown in Supplementary Table 4).
The automated classification of infarct location was also robust
when compared with that of different experts. The mean ICCs of
the model against each of the three evaluators were 0.82 ± 0.08,
0.77 ± 0.11, and 0.81 ± 0.08, which rivaled to the ICCs among pairs
of inter-evaluators: 0.75 ± 0.12, 0.8 ± 0.09, and 0.81 ± 0.08; with
standard deviations consistently lower. The indices of agreement
are presented in details and categorized by location in Supple-
mentary Table 5. The regional distribution of ICCs was consistent
inter-evaluators and between the model and the evaluators, i.e.,
regions with the lowest concordance among the model and the
evaluators (e.g., ACA and internal capsule) also had the lowest
concordance inter-evaluators (Supplementary Table 5 and Fig. 5).
Of note, these regions correspond to those with lowest lesion
frequency or those with unclear or less consensual boundaries.

Our system was more accurate than the non-expert physician
to classify the infarct location when both were compared to the
experts’ evaluation. Both the non-expert physician and the
automated reports agreed with the experts’ evaluation in most
of cases (71 and 88%, respectively). The non-expert physician was
“in partial agreement” with the experts in 39 cases (25%), and the
automated generated reports, in 19 (12%). The non-expert
physician was “in disagreement” with the experts in 6 cases

(4%), while the automated generated reports had no substantial
disagreement with the experts’ reports. The mean time of the
non-expert physician evaluation was 1 min per scan, with the
maximum time of 2.6 min.

Prediction interpretability. Instead of building black-box ML
models, we aimed to provide interpretable models to elucidate
whether the machine uses features of biological relevance. Figure 4
indicates the importance of features in the RF models. The most
important feature was the percentage of injury of the region in
question, followed by the injury of neighboring regions. This aligns
with the correlations found between regional classification of injury
by visual analysis (Table 4.I.a and II.a) and indicated that, in
general, RF models and humans are using very similar features for
scoring. The permutation feature importance test demonstrated the
consistency of the importance of features learned in the training
set, and their generalization in the testing set.

While these methods expose general features implied in the
classification, it is important to highlight the reasoning of the
prediction at individual level. This serves as validation for the ML
models, as well to facilitate the calculation of treatment-relevant
scores (e.g., ASPECTS) that depend on the reliable identification
of injured regions. Therefore, SHAP was implemented in ADS to
explain how the features were considered by the pre-trained
model to predict infarct location in any given new sample. The
Supplementary Fig. 3 illustrates one example of the explanation of
our pre-trained model, which is outputted together with the
regional predicts of the infarct location and their probabilities
(Fig. 3 and Supplementary Note 1).

Discussion
We created a fully automated system to quantify ischemic infarcts
and report their location, with accuracy comparable to an expert
evaluator, and among the inter-evaluators variation. The system is
robust to major technical, lesion, and populational variations, and
in an external unrelated population. The random forest (RF)
models achieved the best performance in virtually all the regions
(Table 3). The RF performance was followed by that of the binary
threshold method, BT. However, although the BT accuracy was
particularly high in areas with severe class imbalance (e.g., ACA),
the general BT performance and its precision, in particular, were
significantly lower than that of RF. This indirectly points to the
ways AI uses the image features (in this case, the QFVs) to make a
prediction. As confirmed by the feature analysis, the main feature
determining the injury of a region is, as expected, the proportion
of the respective region affected by the infarct. However, joined
injury of neighboring regions have a secondary but still important
effect in the decision (Fig. 4). Similarly, the human prediction also
relays on these joined conditions in which the determination of
injury in a given ROI is mostly correlated to its respective and
dominant QFV component, followed by the components of the
neighboring ROIs (as depicted in Table 4.II.c). Therefore, it is
expected that more complex models, that take in account the

Table 4 (continued)

II According to major brain structures

basal
ganglia

deep
WM

cerebellum frontal insula int capsule brainstem occipital parietal
lobe

temporal thalamus

temporal 0.314 0.403 −0.057 0.398 0.521 0.328 −0.057 0.175 0.431 0.501 0.097
thalamus −0.069 −0.122 0.078 −0.091 −0.115 −0.036 0.158 0.132 −0.1 −0.027 0.457

Correlation matrices of the visual classification attributed to different ROIs (injured or not) (a), between the quantitative information in the QFVs (b), and between the visual classification and the QFVs
(c). The regions in question follow either the distribution of arterial territories (I) or classic brain structures (II). Note that for each ROI, the highest correlation between visual classification and QFVs (c)
is in general found in its corresponding QFV component, followed by QFV components of the adjacent ROIs.
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Fig. 4 Feature importance, as revealed by the Mean Decrease in Impurity (MDI) of the Random Forest (RF) models (n= 1414). The MDI is proportional
to the importance of the features (the QFVs and lesion volume, in the x-axis) to predict the injury of the region in question (title of each graph). The QFVs
represent the proportion of each ROI affected by the infarct. Note that the dominant QFV component agrees with the prediction of injury in the
corresponding region and is followed by the QFV of its spatially neighboring regions.
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joined probabilities, will generally have better performance than
the simple BT for single ROIs.

From the biological point of view, this phenomenon likely
relates to the coalescence of ischemic strokes, that do not respect
the semantically-defined boundaries, particularly those defined by
the classical structural atlas. From the technical point of view,
inaccuracies in brain mapping can lead to mismatches between
ROIs and the structures they define. This impacts the quantifi-
cation, specifically when the injury is located in small ROIs, close
to the ROI boundaries, or in mesial and periventricular areas.
These areas are particularly challenging for the linear mapping in
populations with high frequency of hydrocephalus or midline
shifts, as occurs in acute stroke. For example, Fig. 3 shows a
visible mismatch between the atlas definition of the ventricles and
mesial structures and the brain in question, due to ventricular
compression and midline shift, caused by the infarct. Although
this inaccuracy did not lead to disagreements between the auto-
mated and the human radiological report in this large infarct, it
might be the case in more focal lesions. As noted, the complex
models employed for the prediction help to diminish this
problem.

Another practical strategy we implemented in our automated
pipeline (ADS10) is the option to recalculate the QFVs using a non-
linear mapping. This theoretically improves the match between the
brain in question and the template, which would consequently
result in more accurate classification of the stroke location. In fact,
we observed slight improvement in the location classification of
infarcts when using non-linear brain mapping (as shown in Sup-
plementary Table 3). The mildness on improving might be
attributed to the presence of previous strokes or microvascular
diseases that often occur in this population. These abnormalities
alter the brain anatomy and contrast, reducing the accuracy of the
non-linear algorithms. On the other hand, the low degree of
deformation elasticity of the non-linear algorithm employed and
the low granularity of our ROIs likely prevented mismatches in the
classification of the lesion location. Given the cost / benefit (the
non-linear deformation takes about 3 extra minutes of processing
time) the linear mapping is the default option in ADS10, and the
non-linear mapping is offered as an optional.

Regarding the regional accuracy of the prediction, the lowest
BACC of all models was in ACA (BACC= 0.712), for the arterial
territory scheme, and internal capsule (BACC= 0.752), for the
classical structural scheme. Infarcts in these regions were less fre-
quent in our sample (in agreement with the epidemiology of

ischemic strokes) which is a limitation for model training and
testing. This will be ameliorated by increasing the dataset. In
addition, these regions offer extra challenges for both humans and
machine, either by having ambiguous / highly variable territories,
like the ACA (Arterial atlas—NITRC. https://www.nitrc.org/
docman/?group_id=1498), or by their ill-defined limits in low
resolution clinical images or small volume, like the internal capsule.

The feature analysis enriched the AI models, increasing their
interpretability and their potential usefulness. Therefore, our
ADS10 system is suited to output not only the radiological report
in semantic format but also the list with the proportion of injury
in each area defined (the QFVs), the regional prediction of injury
and the prediction probability, as well as explanatory reports
showing how the QFVs were combined to predict injury in each
area (example of ADS outputs in Supplementary Fig. 3 and
Note 1). The QFVs are computable data objects that might serve
as lesion loadings for anatomico-functional studies or to train
artificial intelligence models. In clinics, these interpretable reports
may, theoretically, improve the reliability of the system26–28 by
increasing transparency, promoting trust, and indirectly serving
as quality control. For example, clinicians may identify cases
where the model overemphasizes or fails to consider important
information. Further quantitative studies (e.g., measuring number
of reports generated, turnaround times, and error rates), user
surveys, comparison of clinical outcomes, and cost analysis will be
needed to test the real impact in practical settings.

A final consideration regards to the producibility of the auto-
mated generated reports. Our tool is linked to a public and
expandable dataset of clinical images11, and therefore will be
supported by a dynamic dataset whose radiological evaluation can
be modified / refined over time. The tool is modular, therefore
flexible and adaptable to changes, for instance, in brain mapping
procedures or parcellation schemes (e.g., different ROIs can be
easily adopted, either to test their clinical significance or to train
models in order to provide different types of reports). It is easily
linkable to other software for image analysis, for example those
that work directly in MRI scanner outputs, making them com-
patible with our image inputs. Therefore, it can be theoretically
installed in radiological reading settings. The inclusion of a
module that accepts users’ feedback for models’ retraining,
maintenance and quality control is in our future plan. It is also in
our short-term plan leveraging cloud-based infrastructure which
could allow easy and large-scale processing of clinical
research data.

Fig. 5 Agreement between human and machine on the definition of infarct location in the testing set (n= 464). Intraclass correlations (ICCs, y-axis)
among human evaluators (E1, E2, E3) and among evaluators and our automated model for infarct location classification (auto). ICC= 1 is perfect
agreement.
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In summary, using the original DWI as input, we created a
fully automated system that includes automatic detection and
segmentation of ischemic injuries and outputs radiological
reports, in addition to the previously reported12 3D digital infarct
mask, infarct volume, and the feature vector of regions affected by
the acute stroke. We speculate that the automated radiological
reports might be superior to “non-expert” reports, based on the
proof-of-concept comparison with the non-expert physician
evaluation. This would be particularly relevant, and potentially
time-saver, in centers that lack second readers or neuroradiolo-
gists full time in emergency service. However, large scale pro-
spective tests are imperative both to prove the clinical impact as
well as to optimize the technology presented here. So far, we limit
our contribution on generating a publicly available system that
produces computable data objects, runs in real time, in local
CPUs of regular personal computers, with minimal computa-
tional requirements10,12, and is accessible to non-expert users,
fulfilling the conditions to perform large scale, reliable and
reproducible clinical and translational research.

Data availability
The data used in this study are available at https://www.icpsr.umich.edu/web/ICPSR/
studies/3846411. these data is public and free and can be downloaded directly from this
repository after signing the Disclosure of User Agreement. Note that these data include
all the images, in native space and post- processed (mapped to common space), the
annotation of the stroke core (in the DWI), and the demographic and clinical
information. This enables easy validation and replicability test of the results presented
here. The STIR data were used under approval from the STIR steering committee for the
current study, and so are not publicly available. These data are however available from
the STIR / Vista Investigators upon reasonable request to Dr. Marie Luby
(lubym@ninds.nih.gov). The source data for this manuscript is in Supplementary Data 6.

Code availability
The tool described in this study is publicly available at https://www.nitrc.org/projects/
ads10. The source code is available at https://doi.org/10.5281/zenodo.556523029.
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