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EDITORIAL
New Tricks for Old Friends: Treating Gut
Microbiota of Patients With CKD
RECENT OMICS-BASED STUDIES have helped
elucidate the influence of gut microbiota on human

health and disease. The diverse community of microorgan-
isms that inhabit the human intestine has essential roles in
host immunity and producing numerous bioactive metab-
olites that influence the host metabolism. Interesting,
chronic metabolic disorders, despite their specifics, shared
abnormalities in the composition and function of the intes-
tinal microbiota, which can be associated with a low-grade
chronic inflammation that is characteristic of disease
phenotypes.1

Regarding chronic kidney disease (CKD), there is a
bidirectional cause-effect relationship with gut micro-
biota.2 In patients with CKD, the accumulation of uremic
metabolites leads to changes in the composition and func-
tionality of the gut microbiota and intestinal barrier disrup-
tion.3 On the other hand, the presence of dysbiosis in these
patients leads to increased production of substances result-
ing from gut microbial metabolisms, such as uremic toxins,
including indoxyl sulfate, p-cresyl sulfate, N-trimethyl-
amine N-oxide (TMAO), and indole acetic acid, which
are associated with inflammation and oxidative stress.3,4

These disorders in the gut microbiota, associated with
the accumulation of toxins in the blood, aggravate several
complications in patients with CKD by activating the im-
mune system and leading to changes in other organs. Thus,
gut microbiota may be seen as the cross-road between
CKD and the phenotype of inflammation and oxidative
stress that is typical in CKD.4

There is a growing interest in therapeutic strategies to
modulate the gut microbiota in patients with chronic dis-
eases. Several studies investigate the influence of nutrients,
bioactive compounds from botanical foods, prebiotics,
probiotics, symbiotics, postbiotics, and also physical exer-
cise in microbial composition and functions.1,3,5

Diet is the main factor responsible for variations in
the gut microbiome, and change can be fast.6,7 Indeed,
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David et al.8 observed that after 5 days with different di-
ets (vegetarian and animal protein), the gut microbiota
composition was altered in healthy individuals, and
the animal protein-based diet provoked an increase in
the abundance of the genera Alistipes, Bilophila, and Bac-
teroides, and a reduction in the genera Roseburia, Eubac-
terium rectale, and Ruminococcus bromii, which can
metabolize polysaccharides. Therefore, the ‘‘food as
medicine’’ approach in culinary medicine can be
considered a strategy to target gut microbiota in
CKD.5,9 A high-intake animal protein-based diet and
a low intake of dietary fiber change the gut microbiota,
increasing the bacteria Hungatella, a trimethylamine
(TMA) producer that leads to the high TMAO levels,
which is a uremic toxin associated with inflammation
and cardiovascular disease.10

Food is considered the primary driver of the gut micro-
biota composition; thus, more attention should be paid to
patients with CKD regarding nutrition modulation of mi-
crobiota be leverage for disease management.11-14

Researchers are evaluating the potential therapeutic
strategies to modulate the gut microbiota in these
patients. In fact, recent studies have shown that
probiotics, prebiotics, and symbiotics can be effective on
that modulation.3 A recent systematic review and meta-
analysis of randomized controlled trials concluded that pre-
biotic, probiotic, and symbiotic have a beneficial effect on
metabolic, inflammatory, and oxidative stress markers.
However, more studies are needed to evaluate the changes
in gut microbial composition promoted by food interac-
tion in patients with CKD.15

The assessment of responses to therapeutic interventions
on the gut microbiota profile is arduous due to the
complexity of this ecosystem and various factors that can
impact this response.16-21 Probiotics were the first
strategies Hida et al.22 used to modulate the gut microbiota
in CKD, but the benefits remained controversial. Prebi-
otics and symbiotics are also studied as potential beneficial
strategies for patients with CKD.17,23,24

In a pilot study published in this issue of the Journal of
Renal Nutrition on the relationship between consumption
of the prebiotic fiber inulin and gut microbiota composi-
tion and its metabolites, Biruete et al.25 showed that inulin
consumption for 4 weeks increased the relative abundance
of the phylum Verrucomicrobia. However, they did not
observe any change in the other parameters evaluated.
This paper was very well controlled and designed with
fascinating data, which additionally showed the impact of
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the drug sevelamer, body mass index, and gender on the
gut microbiota composition of CKD patients, opening
the way to new and more extensive studies. Nevertheless,
the study should be qualified for certain limitations like the
sample size, the accurate adherence of the supplementa-
tion, and the ‘‘low’’ amount of the inulin supplementation
(10 and 15 g). Another paper published in the Journal
regarding gut microbiota by Yang et al.26 is a meta-
analysis that observed the effects of dietary fiber intake
on uremic toxins produced by the gut microbiota. Despite
the small number and heterogeneity between studies eval-
uated (10 randomized controlled clinical trials involving
292 patients with CKD), the authors concluded that die-
tary fiber supplementation could reduce uremic toxin
levels, with more evident effects in patients on dialysis
and without diabetes. However, more studies should be
addressed to establish the amount and type of fibers to pro-
mote the beneficial effects.

In addition to the prebiotics, several hypotheses have
been addressed on this topic focusing on bioactive com-
pounds from food that may be effective strategies for gut
microbiota modulation as well as mitigation of inflamma-
tion and oxidative stress in patients with CKD.3,27,28

Polyphenol-rich foods like grape, red wine, pomegranate,
garlic, green tea, chocolate, propolis, turmeric, blueberry,
and cranberry may modify the gut microbiota composition
due to their bacteriostatic or bactericidal actions.5,27-31 On
the other hand, the enzymatic activity of the gut
microbiota contributes to the breakdown of the
oligomeric and polymeric polyphenol structures into the
low molecular weight phenolic metabolites, increasing
their bioavailability.

It is crucial to notice that diet can provoke both malefic
and salutary effects on the gut microbiota, for example,
high red meat and eggs consumption may increase the pro-
duction of toxins as TMAO, indoxyl sulfate, and p-cresyl
sulfate due to fermentation of some amino acids, carnitine,
and choline by the gut microbiota.32,33 Also, studies sug-
gest that both higher dietary intake of salt and sugar may
deleteriously alter the gut microbiota composition.34,35

Alcohol has been associated with modification in gut mi-
crobiota, leading to increased Proteobacteria and Actino-
bacteria phyla and a decrease of Firmicutes.36 Artificial
sweeteners may increase Firmicutes and alter gut micro-
biota in mice,37 and micronutrients supplementation
(e.g., oral iron) can result in a remarkable change in the mi-
crobiota.38 Gut microbiota can also be affected by environ-
mental chemicals (pesticides, herbicides, insecticides),
which have been increased exponentially in the contem-
porary era.39

In contrast, beneficial strategies have shown to effec-
tively decrease uremic toxins in patients with CKD, such
as a low protein diet in which the red meat intake is
low.40 Taken together, a low protein diet is associated
with lower phosphorus intake, which is well-known to
bring beneficial effects to these patients. However, little
is known about its effects on gut microbiota. In another
study published in this issue of the Journal, Zhang
et al.41 showed the difference between a standard and
low phosphorus diet in a selected group of healthy men.
After 5 days of intervention for each type of diet, they
observed a shift in the intestinal microbiome in the low
phosphorus diet group, where an increase in the relative
abundance of beneficial microbes was noted, in addition
to other interesting results in biochemical analysis. How-
ever, these changes, mainly the intestinal microbiome,
were attributed to phosphorus diet content since the car-
bohydrate and protein diet content was changed in the
low phosphorus diet. Thus, these findings are promising
contributions to other studies in this area.
The influence of diet on gut microbiota composition is

very complex. However, food intake is the primary factor
that influences the gut microbiota composition and diver-
sity, and evaluation of different kinds of foods on the gut
microbiota in CKD patients should take new aspects into
account. The articles discussed in this commentary high-
light the importance of diet to the gut microbiota meta-
bolism in patients with CKD; hence, renal dietitians
should pay attention to all diet prescriptions, not only for
kidney function and complications in these patients but
also to treat well the microorganism living in their body.
Altogether the effects of food intake on the microbiota
in CKD patients deserve further studies.
This issue of the Journal also addresses some issues asso-

ciated with the importance of metabolic balance in pa-
tients with kidney disease. Hypertension associated with
elevated homocysteine levels, known as H-type hyper-
tension, may place patients at greater risk for CKD and
cardiovascular events. In a registry study of H-type hyper-
tension, Shi et al.42 examined these associations while ad-
justing for age, body mass index, waist circumference,
smoking, drinking, blood pressure, lipid profile, and
medication use in a cohort of 12,873 patients. They found
that people with H-type hypertension having homocyste-
ine levels .22 mmol/L had increased risk for CKD and
lower kidney function in the multivariate analyses.
Although following a cohort of 746 patients with CKD
for almost 5 years, Gal�an et al.43 demonstrated hypermag-
nesemia to be associated with cardiovascular events and
all-cause mortality in patients with CKD. The findings
held across univariate, multivariate, and propensity score
analyses. Their results suggest caution when using magne-
sium supplementation in CKD. In a report by Haghighat-
doost et al.,44 it was demonstrated that the net
endogenous acid production was associated with calcium
oxalate stone production in patients with CKD, indepen-
dent of dietary potassium and protein intake. Metabolic
rate was assessed by Vilar et al.45 using the gold-standard
doubly labeled water technique for total energy expendi-
ture and indirect calorimetry for resting energy
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expenditure. They assessed whether levels of kidney func-
tion in 80 patients at differing stages of CKD were associ-
ated with changes in metabolic rate. Their study
demonstrated no differences in energy metabolism be-
tween patients with eGFR ,50 and $50 mL/min/
1.73 m2 after adjusting for age, sex, and weight.
Other contributions in this issue of the Journal of Renal

Nutrition address concerns related to helping patients
with CKD make changes in their diet and lifestyle. Imple-
mentation of behavioral modification in patients with
CKD was examined by Okubo et al.46 who reports on
the cost-effectiveness of implementing behavior modifica-
tion as evaluated in the Frontier of Renal Outcome Mod-
ifications in Japan (FROM-J) study. They determined that
the behavior modification delivered by dietitians together
with practice guidelines implementing the program in pri-
mary care settings was cost effective as demonstrated by
fewer canceled visits, more nephrology referrals, and
slower progressive decrease in kidney function. Adherence
to pharmacotherapy and life style recommendations for
patients having maintenance hemodialysis or kidney trans-
plant was evaluated by Nowicka et al.47 using a self-
assessment questionnaire. They determined that kidney
transplant recipients rated their knowledge higher and re-
ported a higher adherence rate than the patients on hemo-
dialysis. Assessing physical performance of patients
requiring maintenance hemodialysis using the Health-
related Quality of Life questionnaire was examined by
Matsuzawa et al.48 They demonstrated that the 10 items
in the questionnaire associated with physical functioning
were associated with measured physical performance and
could be used as a surrogate for formal physical function
assessment. Telehealth for medical nutrition therapy49

continues to be an important option for delivery of medical
nutrition therapy for patients with CKD. In this issue of the
Journal, telehealth is addressed by a personal perspective
from Betz50 who routinely provides virtual MNT, espe-
cially during the recent Coronavirus Disease 2019
(COVID 19). She outlines some advantages and disadvan-
tages observed during the process of managing nutrition
care for nephrology patients, including increased sched-
uling and show rates. The Patient Education51 offering
in this issue of the Journal also addresses telehealth and pro-
vides a handout to be used for patients that explains the
terms and definitions of telehealth.
In the United States, discussions surrounding staffing ra-

tios in dialysis centers continue.Currently, eight states in the
United States have staffing ratio requirements for dialysis fa-
cilities but only one state (Texas) has ratio requirements for
dietitians.52 Hand et al.53 continue a series of investigations
into patient:dietitian staffing ratios in dialysis facilities in the
United States. In the latest report, comparisons are made
between the mandated patient:dietitian ratio required by
the State of Texas of ,125:1 to comparable facilities else-
where in the United States that do not require a staffing ra-
tio. Significant differences were noted between Texas and
other regions for patient:dietitian staffing ratios. More areas
outside of Texas had ratios.125:1 but, even within Texas,
the number of facilities having .125 patients is fewer,
indicating that more dialysis facilities are smaller in current
times compared to when the Texas mandate was first
enacted (ca. 1999).Unfortunately, theCenters forMedicare
andMedicaid Dialysis Facilities Report does not allow for a
deeper examination into the quality of professional practice
such as that noted by McClellan54 who reported that stan-
dardized mortality ratios were impacted by, among other
factors, dietitian practice pattern (one of 5 factors explaining
31% of mortality rates). We hope these important issues
continue to be examined by this team and others.
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