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Abstract

In this paper, we investigate students' use of the generate-
and-test strategy to solve algebra word problems. This
strategy involves first choosing an estimate for the answer
and then checking whether the estimate satisfies the
constraints of the problem. Based on verbal protocol data,
we developed a production system model to simulate
students” behavior when they apply this informal strategy.
The model predicts problem features that should affect the
difficulty of the problems. A large-scale experiment tested
the predictions of the model. Verbal protocol data provided
additional insights into how students use the generate-and-
test strategy.

Introduction

What is the weakest way to solve a problem? Take a guess.
Generate-and-test is a heuristic that at first blush may seem
hopelessly unlikely to lead to solution. Yet in the domain
of algebra word problems, generate-and-test is used
effectively by many students. A form of this heuristic
(called “guess and check”™) is even taught by some algebra
instructors. In several studies of algebra problem solving,
Berger & Katz (1995) found that participants (high school
students) used generate-and-test on approximately 50% of
problems presented by the researchers. Generate-and-test is
not necessarily a “fallback” strategy for weaker students, but
is used effectively by students with good math skills (Katz,
Friedman, Bennett, & Berger, 1996; Tabachneck, Koedinger,
& Nathan, 1995). Other researchers have similarly noted the
prevalence of generate-and-test and other “informal”
strategies (e.g., Hall, Kibler, Wenger, & Truxaw, 1989;
Koedinger & Tabachneck, 1994). Yet generate-and-test is
underrepresented in the problem solving literature, and
practically unmentioned in research on algebra word problem
solving. Much of the research on algebra word problem
solving has focused on the formal representations and
procedures used by students when solving traditional word
problems (e.g., Kintsch & Greeno, 1985; Mayer, Larkin, &
Kadane, 1984; Paige & Simon, 1966). These problems
typically have one unique solution and can be solved using
standard algorithmic techniques.

In the generate-and-test strategy, a student chooses a
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possible answer, then checks whether that answer satisfies
the constraints of the problem. If the candidate answer does
not fit, the student generates a new one.

The use of an informal strategy such as generate-and-test
raises several theoretical issues. For example, how &
problem solvers generate their initial estimate of a potential
solution? If their first estimate is found to be incorrect, how
do they update that estimate to get another (hopefully better)
estimate? Another theoretical question is how problem
solvers make the initial decision to use the generate-and-test
strategy. Why do they choose generate-and-test when they
could use the formal algebraic strategy they had been taught?

This paper presents a production system model of the
generate-and-test strategy as it appears when solving algebra
word problems. This model is consistent with observed
solution procedures of students solving traditional algebra
word problems. However, an explanatory model alone is
not particularly strong evidence for one’s account of human
behavior. To provide stronger evidence, predictions derived
from the model were tested in a large-scale experiment. A
second experiment, involving collection of verbal protocols,
suggests that generate-and-test may be a more complex skill
than 1s captured in the model.

To investigate the generate-and-test strategy, we use a type
of algebra word problem that engenders use of the strategy.
Under-determined problems cannot be solved by a purely
algebraic approach. Each problem is under-determined in that
it cannot be represented as an algebraic equation with a
single unknown. Instead, the problem solver poses example
answers that fit the constraints presented in the problem.
The next section describes under-determined problems in
more detail. Following that discussion, we describe our
production system model that accounts for solving both
under-determined problems and well-determined problems
(i.e., traditional word problems).

Under-determined problems

Under-determined problems do not provide all the
information necessary to find a unique solution t0 a
problem—i.e., it is impossible to apply a standard algebraic
solution strategy to determine a correct solution. By
algebraic strategy, we mean a strategy that allows the
problem solver to isolate and solve for one unknown
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Figure 1. Model of the generate-and-test and formal algebra strategies.

variable (e.g., x = 22). Note some under-determined
problems may involve inequalities that allow the problem
solver to use algebraic manipulation of inequalities to
isolate a variable with an inequality (e.g., x > 20). Note,
this final derived inequality does not constitute a solution.
The problem solver must still generate a solution based on
that inequality. Thus, under-determined problems require
problem solvers to generate examples of potential solutions.
Below is an example of an under-determined problem:

If some tickets to a play were bought for a total of $50.00
and if tickets cost $1.00 for adults and $0.50 for children,
how many children’s tickets could have been bought?

The problem solver must produce an example value for the
total number of children’s tickets that satisfy a variety of
explicitly stated constraints:

1. The total amount paid for the tickets is $50.00;
2. The cost of an adult’s ticket is $1.00;
3. The cost of a child’s ticket $0.50;

These constraints do not determine a unique solution to the
problem. Several values for the total number of children’s
tickets satisfy these constraints.

A problem solver might proceed in solving the above
problem by first identifying the explicit constraints given in
the problem. The problem solver might then infer that,
since the total amount paid is $50.00, the number of
children’s tickets must be even. Through this derivation of
implicit constraints, the problem solver greatly reduces the
space of possible examples to consider.  Ultimately,
however, taking into consideration all the constraints that
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have been identified, both explicit and implicit, the problem
solver must propose a candidate solution and evaluate it
against the constraints. A successful example is found if the
proposed solution does not violate any problem constraint.

It is this reasoning with constraints that makes under-
determined problems seemingly different from traditional,
well-determined word problems. Unless the student detects,
prioritizes, and instantiates the constraints by specifying
appropriate values, the problems cannot be solved. Under-
determined problems are potentially more realistic than
traditional word problems, as most real problems are not
well formulated (Frederiksen, 1984).

Computational Model

Our model simulates the behavior of students solving either
well-determined or under-determined algebra word problems,
using the generate-and-test strategy, an algebraic strategy, or
a combination of the two. Our model was written in the
ACT-R production system language (Anderson, 1993).

The general structure of the generate-and-test strategy came
from protocols of 55 students solving well-determined
algebra word problems, similar to those found on the SAT-
Mathematics test. For two problems in particular, students
tended to use a generate-and-test strategy to find a solution
rather than an algebraic approach. This preference cuts
across all ability levels, suggesting that generate-and-test is
not necessarily a fallback strategy to be used only when one
does not know a stronger way to approach a problem.

The model simulates the generate-and-test strategy by first
estimating a potential solution. Then it propagates the value
through the constraints of the problem. Propagation
continues until all of the constraints have been used. The



process terminates with success if the proposed solution
simultaneously satisfies all of the constraints of the
problem. If a discrepancy is found, the estimate is updated
and the propagation process is repeated.

Data on the estimation and updating portions of the model
were gathered from verbal protocols of seven students as
they solved four problems similar to the “tickets™ problem
presented above (i.e., well-determined, simultaneous
equation problems).! The number of generate-and-test ““cases”
was reduced (from 28) because students occasionally solved
the problems algebraically, despite instructions. Of 16 cases
in which students generated an initial estimate, students’
estimates were half of the potential maximum value for the
estimated element in nine of the cases. The other two-thirds
of cases were not as easily categorized as reflecting a
particular estimation strategy. The model implements this
“half-of-total™ initial estimation strategy.

If an estimate is found to be incorrect, the model
simulates an update strategy observed in students. In this
strategy, the estimate is changed based on the relation
between a derived quantity and the known quantity. For
example, a well-determined version of the tickets problem
stated that 70 tickets were bought to a play.” Through the
propagation process, a student might derive a value of 80 for
the total number of tickets (by first estimating 60 to the
number of children’s tickets. then deriving $30 for the cost
of children’s tickets, and then deriving $20 and 20 tickets for
adult’s tickets). The student would decrease the estimate of
the children’s ticket by 10. Alternatively, if the derived
value were 60, the student would increase the estimate by
10. We call this strategy the “logic change rule”. Note
following this rule will not necessarily result in the correct
choice. The correctness of the rule depends on the relation
among the variables in the problem. Nonetheless, students
do not realize this caveat and apply the rule indiscriminately.
Of the 17 cases in which students updated their estimate at
least once, on 11 occasions students’ performance was
consistent with this update approach. In other words, 63%
of the time, students updated their initial estimates in a way
consistent with the logic change rule.

The model also solves algebra word problems by applying
a formal algebraic strategy. The strategy was derived from
the protocols mentioned earlier. The model first selects an
equation from the problem situation. It then simulates
symbolic manipulation by matching and substituting
variables. The model iterates until a single final equation
with just one unknown variable is left or until all the
equations have been used. Once a final equation is obtained,
the answer can then be solved for. On the other hand, when
a final equation cannot be obtained because the equation
contains more than one unknown variable and there are no
more values or equations to substitute in, the model either
retries the algebra strategy or switches to the generate-and-
test strategy.

Predictions
The model suggests the types of factors that should affect

' The algebra word problems were given to these participants as
warm-up exercises for an unrelated experiment.
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the difficulty of under-determined problems. For example,
requesting a second example from a solver should be more
likely to result in an error because of the additional
processing needed. The additional processing provides the
solver with more opportunities to commit math errors.
Alternatively, a student might have happened upon a correct
first example by chance, but does not understand the
problem sufficiently to find a second example.

A second prediction is that additional constraints might
increase difficulty, again because of predicted increased
processing. However, the model suggests that only certain
types of constraints will increase processing. “Verifier
constraints” are used to verify whether a cormect example
solution has been derived. These constraints often involve a
relation between two variables. According to our model, the
use of such a constraint involves an extra iteration through
the propagation process (see Figure 1). On the other hand, a
constraint that just changes the range of possible estimates
should not necessarily be more difficult because it affects a
small part of the model. Such *“generator constraints”
involve a single variable that broadly suggests where a
solution may be found. In the model, such constraints are
used to estimate potential solutions. Thus, adding a
generator constraint to a problem should not entail extra
iteration, and so might not affect difficulty.

Experiment 1’

Method

Participants. Participants were 257 paid volunteers,
including advanced undergraduates (54%), first-year graduate
students (28%), and individuals not currently registered as
students who intended to apply to graduate school (18%).
Participants were recruited through 10 institutions of higher
education in different regions of the United States.

Design and Materials. Two parallel test forms were
created, each containing nine under-determined problems.’
The first four problems represented a manipulation of the
number of constraints provided. The treatment group
received problems that contained one additional constraint
compared with the problems given to the control group.
The control and treatment problems were otherwise identical
(see Table 1). In the first three problems, the additional
constraint was a generator constraint; the final problem
contained an additional verifier constraint. Note either a
verifier or a generator constraint was added to each problem,
not both. However, either a generator or a verifier constraint
could have been added to a problem. For example, in the
first problem of Table 1, a generator constraint could have
been added by stating that the “company sold more than
1500 paperback books.” The last five items represented a

This section describes an experiment reported in Bennett,
Morley, Quardt, Singley, Katz, & Nhouyvanisvong (1998). We
limit the current discussion to those portions of the experiment
that test the computational model.

3 As reported in Bennett et al. (1998), the test forms contained
an additional 11 problems, representing two other
manipulations.



Table 1. Problems showing the addition of a verifier versus generator constraint. Additional constraints are in bold.

Addition of a Verifier Constraint

A company makes a profit of $3.30 on every
hardback book it sells and a profit of $1.20 on every
paperback book it sells. If it made a profit of $3,960
on hardback and paperback books last month, how
many books could it have sold last month?

A company makes a profit of $3.30 on every hardback book it sells
and a profit of $1.20 on every paperback book it sells. Last month
the company sold more than twice as many paperback books
as hardback books and it made a profit of $3,960 on the books.
How many books could the company have sold last month?

Addition of a Generator Constraint

A certain population of bacteria doubled every d
hours. At =60 hours the population was 1,024,000.
What is a possible value for the initial bacteria
population at /=0 and the corresponding value of &7

A certain population of bacteria doubled every d hours,

where d <20. At =60 hours the population was 1,024,000.
What is a possible value for the initial bacteria population at =0
and the corresponding value of d?

manipulation of the number of solutions requested. These
five problems were identical in the treatment and control
conditions except that the treatment group was asked to
provide two examples for each problem whereas the control
group was asked to provide just one example.

Procedures.  Test forms were randomly assigned to
participants, with each participant receiving either the
control or treatment problems. The math problems were
administered on a computer. Participants were allowed to
use scratch paper and a calculator during the 60-minute
problem solving session,

Results

To test the effects of the additional constraint on
performance, we ran a 2x2 repeated-measures ANOVA, with
number of constraints (fewer constraints/more constraints) as
a between-subjects factor and constraint type (generator or
verifier constraint added) as a within-subjects factor.* The
main effect of number-of-constraints was significant,
F(1,228)=9.05, p<.01, as was the main effect of constraint
type, F(1,228)=10.32, p<.01. Of primary interest was the
significant interaction between number-of-constraints and
constraint type, F(1,228)=16.19, p<.01. Figure 2 shows
the interaction. As predicted, adding a generator constraint
did not affect problem difficulty, but the addition of a verifier
constraint does increase difficulty.

A one-way ANOVA revealed the predicted significant
effect of number-of-examples, F(1,234)=27.77, p<.0l.
Participants in the one-example group solved more of the
problems correctly than did participants in the two-example
group, 3.3 and 2.3, respectively. Furthermore, a comparison
of only the first solution from the two-example group with
the one-example group did nor reveal a significant difference
between the mean number of problems correct, 3.1 and 3.3,
respectively. This result suggests that the greater difficulty
of the two-example problems comes from deriving the
second example.

Discussion
This experiment investigated the effect of two problem

* Analyses excluded cases for which one or more problem scores
were missing (because the participant exceeded a time limit).

773

features—number of constraints and number of requested
examples—on problem difficulty. As predicted by the
model, an additional constraint increases difficulty only if
that constraint leads to more processing (i.e., verifier
constraints).  Generating a second example increases
difficulty as well, again supposedly due to the greater
processing needed to generate a second solution.

In the next experiment, we investigate whether the
problem features had the expected effects for the reasons
predicted by the model. That is, the model predicts that
providing the second example solutions requires more
iteration of the generate-and-test strategy and that verifier
constraints affect difficulty because they affect the
propagation process of the model. The second experiment
seeks this evidence through an investigation of participants’
solution processes as inferred from concurrent verbal
protocols (cf. Ericsson & Simon, 1993).
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Figure 2. Proportion correct in control (fewer constraints)
and treatment (more constraints) conditions.

Experiment 2

Method

Participants. Six college seniors and recent graduates
from the Princeton, New Jersey area participated for pay.

Design and Materials. The design and materials were



identical to those of Experiment 1.

Procedure. The volunteers participated individually in
sessions lasting from 1-1.5hr. All problems were
administered on paper, with a 10min time limit per
problem. Participants were asked to provide concurrent
verbal protocols as they solved the problems. All written
work was videotaped and participant utterances were recorded
on the videotape. Participants were provided with a simple
calculator (analogous to the calculator provided in
Experiment 1).

Results

The same general pattern of means was found as in
Experiment 1. Additon of a generator constraint did not
affect proportion correct (control: 0.67; generator constraint
added: 0.67), whereas addition of a verifier constraint did
impact difficulty (control: 0.67; verifier constraint added:
0.33). One-example problems were more difficult than two-
example problems (one-example: 0.80; two-example: 0.67).

The analysis of participant solution procedures should
address three questions: (1) Can the extra difficulty associated
with two-example problems be attributed to participants re-
applying the generate-and-test strategy? (2) Does the addition
of a verifier constraint increase difficulty because of the extra
processing involved in judging whether a potential solution
fits all of the problem constraints? (3) Why do generator
constraints not add difficulty?

Producing a second example, When asked at the end
of the session whether providing two examples was difficult,
a few of the participants expressed that “it wasn’t difficult”
because they “could just double the first answer.” That is,
for two of the five problems, simply taking a trivial
transformation of the first response could generate a correct
second example. For instance, to provide a second example,
participants could simply double the first example (or take
any multiple of it). For one problem, more elaborate
(nontrivial) calculations were required.’ This suggests that
the difficulty between the one-example and two-example
problems may be solely due to the nontrivial transformation
problem,

The analysis did not reveal any difference in the mean
proportion correct between the one-example and two-
example trivial transformation problems. The comparable
difference was .33 for the problem that required more
complex calculations.  Reanalysis of the data from
Experiment 1 support these results. The difference in mean
proportion correct between the one-example and two-
example trivial transformation and nontrivial transformation
problems was .14 and .39, respectively. These results
support the claim that the added source of difficulty from
providing two examples comes from having to recycle
through the generate-and-test strategy. However, the extra
processing occurs only for problems that do not allow a
shortcut strategy (i.e., trivial transformation problems).

5 The remaining two items could not be classified
unambiguously and therefore are omitted from this discussion.
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Adding a verifier constraint. Why does an additional
verificr constraint increase problem difficulty? Of the six
participants, three correctly answered this problem. They
provided correct solutions by using the generate-and-test
strategy. The three participants who did not provide correct
examples used symbolic-like strategies by manipulating the
constraints and values of the problem. Thus, it is unclear
whether verifier constraints cause more iteration of processes
as suggested by our model. Future research can determine
whether verifier constraints cause more cycling of a strategy
or lead to use of inappropriate strategies.

Adding a generator constraint. Analysis of the
protocol data revealed that on 50% of the problems,
participants in the control condition generated example
solutions that satisfied the additional generator constraint in
the experimental condition. In other words, participants’
estimates were unaffected by the generator constraint.

Discussion

The analyses of verbal protocols suggests that the account of
generate-and-test presented in Figure 1 is incomplete.
Generating a second example sometimes involves reasoning
that falls outside the generate-and-test or formal algebra
strategies.  In addition, the difficulty of the verifier
constraint may be due to its encouraging an inappropriate
solution strategy rather than because it causes more
processing in a generate-and-test strategy. Finally, the
analysis of participants’ estimates suggests that different
manipulations of the generator constraints may, in fact,
affect difficulty. The current generator constraints suggest
solution ranges that overlap with participants’ natural
propensities. Problems may be made more difficult (or
easier) by adding generator constraints that ‘“push”
participants into estimatjon ranges that have a lesser (or
greater) density of acceptable solutions.

General Discussion

Our production system model illuminates the cognitive
processes involved in solving both under-determined and
well-determined algebra word problems, The model
simulates the processes involved in performing the generate-
and-test strategy for both well-determined and under-
determined problems. It also simulates the symbolic
manipulation of constraints, an integral skill of the formal
algebraic strategy.

In addition to accounting for the solution paths, the model
correctly predicted factors that affect the difficulty of under-
determined problems. We found that providing to examples
is more difficult than one and that adding a constraint that
influences the propagation process of the model affects
difficulty. The protocols revealed that the source of
difficulty can be attributed to elaborate calculations to derive
the second example and not to short-circuiting of this
process. Although this insightful strategic behavior of
short-circuiting the process does not work on all problems,
it can be an effective strategy on other problems. Future
research should investigate how students decide to use this
strategy. Based on that research, we can revise and extend
our model to account for this behavior.



Currently, our model also does not account for the
strategy choice between generate-and-test and formal algebra.
Recall, our research only used under-determined problems.
Consequently, the formal algebraic strategy could not be
implemented to solve them. To force the model v use
generate-and-test, the probability of the processes involved
leading to eventual success is set higher for productions
involved in the generate-and-test strategy. For example, the
model will start to generate and test if we set the probability
of the production that estimates a potential solution to be
higher than the probability of the production that selects an
equation. Conversely, if we reversed the probabilities, the
model will start the formal algebraic strategy by selecting an
equation, instead of estimating a potential solution. Thus,
in our simulations of under-determined problems, we set the
probability of estimating a solution higher than selecting an
equation (see Figure 1),

This probability dependent decision process is analogous
to a low ability student always choosing one strategy over
the other strategies irrespective of the problem type. The
student might not be mathematically sophisticated and
consequently lacks the skills (the production rules) to
perform the alternative strategies. On the other hand, a high
ability math swmdent will possess the skills to solve a
problem  successfully through  numerous means.
Consequently, the student must decide which strategy to
implement. This decision to select one strategy over the
others might be dependent on problem features. For
example, factors such as the number of variables, equations,
and type of equations in a problem may affect this decision
process.  Future research comparing under-determined
problems to their well-determined counterparts should
provide us with a better understanding of how the choice
between using generate-and-test and formal algebra is made.

In addition to developing the strategy selection
component, we plan to build ability-referenced models and
devise metrics of problem difficulty. Through the inclusion
or omission of certain productions as well as certain buggy
productions, we can produce models that simulate different
mathematical ability levels. As alluded to earlier, a low
ability student may lack the skills to match and substitute
variables. Analogously, a low ability model may lack the
necessary production rules to perform these procedures.
Another variant of a low ability model may be to include
buggy productions that manipulate the problem information
(declarative memory elements) incorrectly or apply them at
inappropriate times. High ability mathematics students may
possess more math knowledge and skills than low ability
students. Thus, a high ability model may include more
production rules to reflect the advanced knowledge and skills
of a high ability student.

The model simulation output can provide us with metrics
of problem difficulty. In the simplest case, the number of
production cycles (i.e., the number of times the productions
fired) may be predictive of problem difficulty. Another
predictor may be the number and kind of productions that
fired. This metric not only reveals the skills that are
necessary, it also discloses the skills that students
predominantly use to solve the problem. Knowing the
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skills more likely to be employed for a certain problem may
lead us to better predict the difficulty of the problem.
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