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ABSTRACT OF THE DISSERTATION

Asymptotic behavior of a fluid model for bandwidth sharing with general file size
distributions

by

Yingjia Fu

Doctor of Philosophy in Mathematics

University of California San Diego, 2021

Professor Ruth J. Williams, Chair

We study the asymptotic behavior of solutions to a fluid model for a data communication

network, where file sizes are generally distributed and the network operates under a fair bandwidth

sharing policy, chosen from the family of (weighted) α-fair policies introduced by Mo and

Walrand (2000). Solutions of the fluid model are measure-valued functions of time. Under law of

large numbers scaling, Gromoll and Williams (2009) proved that these solutions approximate

dynamic solutions of a flow level model for congestion control in data communication networks,

introduced by Massoulié and Roberts (2000).

Our first result is the stability of the strictly subcritical version of this fluid model under

xi



mild assumptions. For this, using a slight generalization of a Lyapunov function proposed by

Paganini et al. (2012), and taking into account that some fluid model solution components may

reach zero while others are positive, we prove that the Lyapunov function composed with a

subcritical fluid model solution converges to zero as time goes to infinity. Our second result is

on the asymptotic behavior (as time goes to infinity) of solutions of the critical fluid model, in

which the nominal load on each network resource is less than or equal to its capacity and at least

one resource is fully loaded. For this we introduce a new Lyapunov function, inspired by the

work of Kelly and Williams (2004), Mulvany et al. (2019) and Paganini et al. (2012). Using

this, under moderate conditions on the file size distributions, we prove that critical fluid model

solutions converge uniformly to the set of invariant states as time goes to infinity, when started

in suitable relatively compact sets. We expect that this result will play a key role in developing

a diffusion approximation for the critically loaded flow level model of Massoulié and Roberts

(2000). Furthermore, the techniques developed here may be useful for studying other stochastic

network models with resource sharing.
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Chapter 1

Introduction

1.1 Overview

The design and analysis of congestion control mechanisms for modern data networks

such as the Internet is a challenging problem. Mathematical models at various levels have

been introduced in an effort to provide insight into some aspects of this problem. In particular,

Massoulié and Roberts [MR00] introduced a stochastic model called a flow level model that

aimed to capture the connection level dynamics of file arrivals and departures in a network where

bandwidth is dynamically shared amongst flows which correspond to continuous transfers of

individual elastic files. A natural family of “fair” bandwidth sharing policies was introduced by

Mo and Walrand [MW00] around the same time. These policies are often referred to as (weighted)

α-fair policies, since a parameter α ∈ (0,∞) (and optional weight parameters) is associated with

the family. The cases α = 1 (proportional fairness with equal weights) and α→ ∞ (max-min

fairness) have received particular attention.
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1.1.1 Stability

One of the first natural questions to ask about the flow level model operating under an

α-fair bandwidth sharing policy is “when is it stable?”. Here we take stability to mean that a

Markov process describing the model is positive Harris recurrent. Assuming Poisson arrivals

and exponential file sizes, this is a solved problem. Indeed, under these assumptions, Lyapunov

functions constructed by De Veciana et al. [DVLK01] for max-min fair and proportionally fair

policies, and by Bonald and Massoulié [BM01] for α-fair policies (α ∈ (0,∞)), can be used

to establish positive recurrence of the Markov chain that tracks the number of flows on each

route, provided the network is subcritically loaded, i.e., the average load on each link is less

than its capacity. Kelly and Williams [KW04] proved that subcriticality is necessary for positive

recurrence of the Markov chain. Ye et al. [YOY05] generalized the stability result to where

the arrival processes are stationary renewal processes, but the file sizes are still exponentially

distributed, and the bandwidth sharing policies come from a class of utility based policies that

include the α-fair policies.

When the interarrival time and file sizes are generally distributed, the process that records

the number of flows on each route is usually not Markovian and a more complicated Markovian

state descriptor is needed to track the dynamics of the model. Much less is known concerning

stability in this general situation, although a few cases have been treated. Massoulié [Mas07]

showed stability of subcritical networks under the proportionally fair policy with Poisson arrivals

and phase-type distributions for file sizes. Bramson [Bra10] proved that subcritical networks

operating under max-min fair policies and having general interarrival and file size distributions

are stable, provided the file size distributions have finite pth moments for some p > 2.

One general approach to exploring stability of stochastic networks uses fluid models,

solutions of which are obtained as functional law of large numbers limits from the original

stochastic network. The idea of this approach is to first prove that the fluid model for a subcritical

network is stable (i.e., all fluid model solutions converge towards the zero state) and then to use

2



this to infer stability of the original stochastic model. This methodology has been successfully

used to obtain sufficient conditions for stability of a variety of multiclass queueing networks (see

[Bra08, Dai95] and the references therein) and was the approach used in the work by Massoulié

[Mas07] mentioned above.

Gromoll and Williams [GW09] used a measure-valued process to track the dynamics of

the flow level model with general interarrival and file size distributions when operating under a

member of a family of fairly general bandwidth sharing policies that includes the α-fair policies

of Mo and Walrand [MW00]. They showed that, under law of large numbers scaling, the measure-

valued processes corresponding to a sequence of flow level models are tight and any weak limit

point of the sequence is almost surely a continuous solution of a measure-valued fluid model.

In [GW08], the same authors also established stability of the fluid model for α-fair bandwidth

sharing policies (α ∈ (0,∞)), for linear networks and simple tree networks under subcritical

loading. In this context, the zero state is the measure with each component equal to the zero

measure on [0,∞).

Chiang et al. [CST06] obtained the same fluid model as [GW09] (but with a zero initial

condition) from the flow level model via a different law of large numbers scaling limit in which

the arrival rate and bandwidth capacity are allowed to grow to infinity proportionally, but the

bandwidth per flow stays uniformly bounded. They used the fluid model to derive some conclu-

sions concerning rate stability for the flow level model when file sizes have general distributions

with compact support, and for bandwidth sharing policies that are a slight generalization of the

α-fair policies of [MW00], in which the parameter α ∈ (0,∞) is allowed to vary with the route.

For their stability result, their α parameters need to be sufficiently small.

Paganini et al. [PTFA12] developed a Lyapunov function to study the stability of the fluid

model introduced by Gromoll and Williams [GW09] for all α-fair policies (α ∈ (0,∞)). Using

this function, under the assumptions that fluid model solutions are sufficiently smooth that they

have densities that are strong solutions of a nonlinear parabolic partial differential equation, and

3



that no fluid level on any route touches zero before all route levels reach zero, Paganini et al.

[PTFA12] proved stability of the subcritical fluid model. The aim of Chapter 3 is to prove stability

of the subcritical fluid model without the strong assumptions of Paganini et al. [PTFA12].

1.1.2 Critical Behavior

Beyond issues of stability, the performance of the flow level model when some resources

are operating at or near capacity, is of particular interest. Indeed, as generally observed by

Kelly and Laws [KL93], in the heavily loaded regime, important features of good control

policies are often displayed in sharpest relief. Furthermore, system designers and managers often

strive to position systems in this regime to achieve maximal utilization of resources. Diffusion

approximations have provided useful and insightful measures of performance for various heavily

loaded stochastic networks (see the survey article by Williams [Wil16] and references therein).

For open multiclass queueing networks with head-of-the-line service, Bramson [Bra98] and

Williams [Wil98] developed a modular approach to establishing diffusion approximations for

these networks when heavily loaded. A key aspect of this approach was to analyze the asymptotic

behavior of critical fluid model solutions and to use this analysis to establish a dimension reduction

property called multiplicative state space collapse, which provided a crucial step in proving a

diffusion approximation. (The fluid models associated with heavily loaded stochastic networks

are called critically loaded, meaning that in the fluid model, the nominal load on each resource

is less than or equal to its capacity and at least one resource is at capacity.) Various authors

have expanded and adapted the approach of Bramson [Bra98] and Williams [Wil98], to establish

diffusion approximations for a variety of other heavily loaded stochastic networks.

For the flow level model of Massoulié and Roberts [MR00], there are a few works

establishing diffusion approximations under certain distributional, control or network assumptions.

All of these use analysis of fluid models as a key ingredient. In general, it remains an open

problem to establish a diffusion approximation for the flow level model with general interarrival
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time and file size distributions when operating under α-fair bandwidth sharing policies. We

provide a brief summary of existing work in this area and then describe the main focus of Chapter

4.

With Poisson arrivals and exponentially distributed file sizes, Kelly and Williams [KW04]

studied the asymptotic behavior of a critical fluid model for the flow level model operating under

an α-fair bandwidth sharing policy, and proved uniform convergence of fluid model solutions

to an invariant manifold when starting in a compact set. Subsequently, Kang et al. [KKLW09]

used this analysis to prove multiplicative state space collapse, and, for α = 1, combined the result

of Kelly and Williams [KW04] with an invariance principle for reflected Brownian motion by

Kang and Williams [KW07], to prove a diffusion approximation for the heavily loaded flow level

model under a mild local traffic condition. The latter condition was subsequently weakened to a

full rank condition on the network structure by Ye and Yao [YY12].

The fluid model considered by Kelly and Williams [KW04] focused on the fluid limit of

the flow count process; the latter is a Markovian process when arrivals are Poisson and file sizes

are exponentially distributed. As noted above, for more generally distributed arrivals and file

sizes, a larger state descriptor is usually needed. A special case of the flow level model is when

there is a single type of file and a single resource or communication link. In this case, bandwidth

sharing is the same as processor sharing, and a natural state descriptor is a measure on the positive

half line that keeps track of residual file sizes (plus a variable that tracks residual interarrival

times). The modular approach of Bramson [Bra98] and Williams [Wil98] has been adapted to

this case. Specifically, a fluid model for a GI/GI/1 processor sharing queue was developed by

Gromoll et al. [GPW02], asymptotic analysis of the critical fluid model was carried out by Puha

and Williams [PW04], and Gromoll [Gro04] subsequently used this to prove state space collapse

and a heavy traffic diffusion approximation for the processor sharing queue. For the full flow

level model of Massoulié and Roberts [MR00], operating under the proportional fair sharing

discipline (α = 1 and with equal weights), when arrivals are given by Poisson processes and file

5



sizes have a phase-type distribution, Vlasiou et al. [VZZ14] used a critical fluid model analysis to

study the steady-state distribution of the flow count process.

In Chapter 4, we analyze the asymptotic behavior (as time goes to infinity) of measure-

valued solutions to the fluid model of Gromoll and Williams [GW09] for the α-fair bandwidth

sharing policies of Mo and Walrand [MW00]. It is anticipated that this chapter will provide a

crucial link in a modular approach to proving a diffusion approximation for the Massoulié-Roberts

flow level model with general interarrival and file size distributions when operating under the

aforementioned fair bandwidth sharing policies. The key to our analysis is a new Lyapunov

function, the formulation of which was inspired by the work of Kelly and Williams [KW04],

Mulvany et al. [MPW19] and Paganini et al. [PTFA12]. Using this, under moderate conditions on

the file size distributions for the fluid model, we prove that critical fluid model solutions converge

uniformly to the set of invariant states (called the invariant manifold) as time goes to infinity,

when started in suitable relatively compact sets.

1.2 Notation and Terminology

Let R = (−∞,∞) and R+ = [0,∞). For x ∈ R, let x+ = max(x,0). Define C1
b(R) (resp.

C1
b(R+)) to be the set of once continuously differentiable functions f : R→R (resp. f : R+→R)

that together with their first derivatives are continuous and bounded on R (resp. R+). Let C∞
c (R)

be the set of infinitely differentiable functions defined on the real line that have compact support.

Let 1A denote the indicator function of a set A and let 1= 1R+ .

Let M be the set of finite non-negative Borel measures on R+, endowed with the topology

of weak convergence. If {ξn}∞
n=1 is a sequence in M converging (weakly) to ξ ∈M, we write

ξn w−→ ξ as n→ ∞. Given ξ ∈M, let L1(ξ) denote the set of Borel measurable functions from R+

into R that are integrable with respect to ξ. For f ∈ L1(ξ), let 〈 f ,ξ〉 =
∫
R+

f dξ. Also for any

non-negative Borel measurable function f 6∈ L1(ξ), let 〈 f ,ξ〉 = +∞. For x ∈ R+, let χ(x) = x.

6



Define M1 = {ξ ∈M : 〈χ,ξ〉 < ∞}. Let K = {ξ ∈M : ξ({x}) = 0 for all x ∈ R+}, the set of

continuous measures in M, and let K1 = M1 ∩K. Let A denote the elements of M that are

absolutely continuous (with respect to Lebesgue measure).

Let N denote the set of positive integers. For I ∈ N, let I = {1, . . . ,I} and define

MI = {(ξ1, . . . ,ξI) : ξi ∈M for all i ∈ I},

MI
1 = {(ξ1, . . . ,ξI) : ξi ∈M1 for all i ∈ I},

KI = {(ξ1, . . . ,ξI) : ξi ∈K for all i ∈ I},

KI
1 = {(ξ1, . . . ,ξI) : ξi ∈K1 for all i ∈ I},

AI = {(ξ1, . . . ,ξI) : ξi ∈ A for all i ∈ I}.

Here MI has its product topology and the other sets have the induced topologies as subsets of

MI. Fluid model solutions will take values in MI and we shall refer to the measure ξ ∈MI that

has ξi equal to the zero measure on R+ for all i ∈ I , as the zero measure (in MI) or the zero state

(for the fluid model). Given a real-valued Borel measurable function f ≥ 0, for ξ ∈MI, define

〈 f ,ξ〉= (〈 f ,ξ1〉, . . . ,〈 f ,ξI〉).

With its topology of weak convergence, M is a Polish space (see [Pro56]), and a metric

(called the Prokhorov metric) which induces this topology and under which M is complete and

separable is defined as follows. For a Borel set B⊂ R+ and ε > 0, define

Bε = {y ∈ R+ : inf
x∈B
|x− y|< ε}.

For ξ,η ∈M, the Prokhorov distance between ξ and η is defined by

d(ξ,η) = inf{ε > 0 : ξ(B)≤ η(Bε)+ ε and η(B)≤ ξ(Bε)+ ε,

for all closed sets B⊂ R+}.
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For ξ,η ∈MI, define

dI(ξ,η) = max
i∈I

d(ξi,ηi). (1.1)

For any /0 6= B ⊂MI and ξ ∈MI, define

dI(ξ,B) = inf
η∈B

dI(ξ,η).

1.3 Acknowledgement

Chapter 1 is a combination of extracts from Section 1 of “Stability of a Subcritical Fluid

Model for Fair Bandwidth Sharing with General File Size Distributions”, Stochastic Systems,

Yingjia Fu and Ruth J. Williams, Volume 10, Number 3, 2020, and Section 1 of “Asymptotic

Behavior of a Critical Fluid Model for Bandwidth Sharing with General File Size Distributions”
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Chapter 2

Fluid Model

Here we recall the fluid model developed by Gromoll and Williams [GW09] as a functional

law of large numbers approximation to the flow level model of Massoulié and Roberts [MR00]

operating under a bandwidth sharing policy such as one of the α-fair policies of [MW00]. This

fluid model (with a zero initial condition) was also obtained by Chiang et al. [CST06] from the

flow level model operating under a slight generalization of the α-fair policies of Mo and Walrand

[MW00]. This used a different law of large numbers scaling limit from [GW09]; in particular, in

the work of Chiang et al. [CST06], the arrival rate and bandwidth capacity were allowed to grow

to infinity proportionally. We begin by introducing the fluid model parameters.

2.1 Parameters

Consider finitely many resources (e.g., links in a communication network) labelled by

j ∈ J ≡ {1, . . . ,J}, and a finite set of routes labeled by i ∈ I ≡ {1, . . . ,I}. A route i ∈ I is simply

a non-empty subset of J and is interpreted as the set of resources used by the route. Let R be the

J× I incidence matrix satisfying R ji = 1 if resource j is used by route i, and R ji = 0 otherwise.

Each resource j ∈ J has a fixed (bandwidth) capacity C j > 0.

Fix a vector ν = (ν1, . . . ,νI) where νi > 0 for each i ∈ I , and a vector ϑ = (ϑ1, . . . ,ϑI)
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where for each i ∈ I , ϑi is a Borel probability measure on R+ that does not charge the origin and

has finite mean, i.e., 〈χ,ϑi〉< ∞. For i ∈ I , the constant νi represents the mean arrival rate of files

to route i and ϑi represents the distribution for the sizes of files arriving to route i.

For each i ∈ I , µi ≡ 1
〈χ,ϑi〉 is the reciprocal of the mean of the distribution ϑi and ρi ≡ νi

µi

is interpreted as the nominal load (average bandwidth needed) on route i. For each i ∈ I , let ϑe
i

be the excess lifetime distribution associated with ϑi. The probability measure ϑe
i is absolutely

continuous with respect to Lebesgue measure on R+ and has density

pe
i (x) = µi〈1(x,∞),ϑi〉 for all x ∈ R+. (2.1)

For each i∈ I , we define Ni(x) = 〈1[0,x],ϑi〉, Ni(x) = 1−Ni(x), Ne
i (x) = 〈1[0,x],ϑe

i 〉, and Ne
i (x) =

1−Ne
i (x) for each x ∈ R+. Note that µ−1

i =
∫

∞

0 Ni(x)dx and pe
i (x) = µiNi(x) for all x ∈ R+. For

ξ ∈MI, for each i ∈ I , define Mi
ξ(x) = 〈1(x,∞),ξi〉 for each x ∈ R+.

2.2 Bandwidth Sharing Policy

We will consider a family of bandwidth sharing policies that were studied by Chiang

et al. [CST06], and which are a slight generalization of the α-fair policies of Mo and Walrand

[MW00].

The bandwidth allocations in the fluid model change dynamically as a function of the

amount of fluid on each route. We will need the following notation to describe them. For each

z ∈ RI
+, let I+(z) = {i ∈ I : zi > 0} and O(z) = {ψ ∈ RI

+ : ψi = 0 for all i /∈ I+(z)}.

Fix parameters αi > 0,κi > 0, for each i ∈ I . Let α = (α1, . . . ,αI) and κ = (κ1, . . . ,κI).

The following optimization problem will be used to define the bandwidth sharing policy associated

with the pair of vector parameters (α,κ). Given z ∈ RI
+, the vector of bandwidth allocations φ(z)

associated with z is the unique value of ψ ∈ O(z) that solves the following utility maximization
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problem:

maximize ∑
i∈I+(z)

κiziUi

(
ψi

zi

)
subject to ∑

i∈I
R jiψi ≤C j for all j ∈ J , ψ ∈ O(z), (2.2)

where for each i, Ui : [0,∞)→ [−∞,∞) is a utility function of the form

Ui(xi) =


1

1−αi
x1−αi

i if αi 6= 1,

log(xi) if αi = 1.

Remark 2.2.1. For i ∈ I+(z), we have φi(z) > 0 because, either Ui(0) = −∞ if αi ≥ 1, or

Ui(0) = 0 and U ′i (xi)→ +∞ as xi → 0 if αi ∈ (0,1). Let S(z) = {ψ ∈ RI
+ : ψi > 0 for all i ∈

I+(z),ψi = 0 for all i /∈ I+(z)}. Then one can restrict the choice of ψ to the set S(z) for the utility

maximization problem. The uniqueness of the maximizer follows from the strict concavity of the

utility functions Ui, i ∈ I+(z). Furthermore, for z ∈RI
+, φi(·) is continuous at z for each i ∈ I+(z).

If αi = α ∈ (0,∞) for all i ∈ I , this last statement was proved by Kelly and Williams [KW04].

When αi ∈ (0,1) for all i ∈ I , it was noted by Chiang et al. [CST06] that a similar proof to that

of [KW04] can be used to establish this result. Similar ideas can be used to give a proof for all

αi ∈ (0,∞), i ∈ I . For completeness, in Lemma A.1 in the Appendix, we give such a proof.

2.3 Definition of Fluid Model Solutions

The fluid model of Gromoll and Williams [GW09], with the bandwidth sharing policy

described in the previous section, is described below. For the remainder of this dissertation, the

parameters (R,C,α,κ,ν,ϑ) are fixed and the bandwidth allocation function φ is as specified in

the previous section.

Definition 2.3.1. Given a continuous function ζ : [0,∞)→MI, define the auxiliary functions
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(z,Λ,τ,u,w) by the following for all t ≥ 0:

z(t) = 〈1,ζ(t)〉,

Λ(t) = φ(z(t)),

τi(t) =
∫ t

0

(
Λi(s)1(0,∞)

(
zi(s)

)
+ρi1{0}

(
zi(s)

))
ds, i ∈ I ,

u(t) =Ct−Rτ(t),

w(t) = 〈χ,ζ(t)〉.

In Definition 2.3.1 the integrals defining z(t) and w(t) are to be interpreted componentwise.

In particular, the i-th component of w(·) represents the fluid workload for route i, wi(t) = 〈χ,ζi(t)〉,

t ≥ 0. The fluid workload per link is given by w̃ j(t) = ∑i∈I R jiwi(t), t ≥ 0.

A fluid model solution is defined through projections against test functions in the class

C = { f ∈ C1
b(R+) : f (0) = f ′(0) = 0}. (2.3)

Definition 2.3.2. A fluid model solution associated with the parameters (R,C,α,κ,ν,ϑ) is a

continuous function ζ : [0,∞)→MI that, together with its auxiliary functions (z,Λ,τ,u), satisfies:

(i) 〈1{0},ζ(t)〉= 0 for all t ≥ 0,

(ii) the function u j is nondecreasing for all j ∈ J ,

(iii) for each f ∈ C , i ∈ I , and t ≥ 0,

〈 f ,ζi(t)〉= 〈 f ,ζi(0)〉−
∫ t

0
〈 f ′,ζi(s)〉

Λi(s)
zi(s)

1(0,∞)(zi(s))ds+νi〈 f ,ϑi〉
∫ t

0
1(0,∞)

(
zi(s)

)
ds.

(2.4)

Remark 2.3.1. The auxiliary function w associated with ζ satisfies the following for all t ≥ 0 for
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those i for which wi(0)< ∞:

wi(t) = wi(0)+
∫ t

0

(
ρi−Λi

(
z(s)
))
1(0,∞)

(
zi(s)

)
ds; (2.5)

see Lemma 3.3 of [GW09] and Lemma 4 of [CST06] for the method of proof.

Remark 2.3.2. The third property in Definition 2.3.2 can be extended to hold for all functions

f ∈ C̃ = { f ∈ C1
b(R+) : f (0) = 0}. A proof of this is given in Lemma A.2 in Appendix A.

Remark 2.3.3. The fluid limit result proved by Gromoll and Williams [GW09] yields fluid model

solutions which have initial states that are continuous measures and which have finite workload,

i.e., for which ζ(0) ∈KI
1. Indeed, in order for fluid model solutions to be continuous functions

of time, the initial condition cannot have any atoms. For our results in Chapter 3, we will be

assuming that ζ(0) ∈KI
1, see Section 3.3.

2.4 Additional Notation for Fluid Model Solutions

Suppose that ζ(·) is a fluid model solution. We shall often use Mi
t(x) in place of Mi

ζ(t)(x)

to simplify notation. Let (z,Λ) be auxiliary functions associated with ζ, as in Definition 2.3.1.

For each i ∈ I and 0≤ s < t < ∞, let

Si
s,t =

∫ t

s

Λi(r)
zi(r)

1(0,∞)

(
zi(r)

)
dr. (2.6)

Note that this may take the value +∞. However, if zi(r)> 0 for all r ∈ [s, t], then Si
s,t < ∞, since

Λi(·) is bounded and zi(·) is continuous (hence it is bounded away from zero on the interval [s, t]).

Indeed, r→ Si
r,t is continuously differentiable on [s, t] because Λi(·) = φi(z(·)) is continuous on

[s, t], since z→ φi(z) is continuous at points z where zi > 0 (see Remark 2.2.1) and r→ zi(r) is

continuous, and furthermore r→ zi(r) is continuous and bounded away from zero on [s, t]. We
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interpret Si
s,t as the cumulative amount of bandwidth per unit of fluid allocated to route i over the

time interval [s, t].
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Chapter 3

Stability of the Subcritical Fluid Model

In this chapter, we analyze the asymptotic behavior of solutions to the (strictly) subcritical

fluid model for bandwidth sharing. In Section 3.1, we introduce assumptions on the parameters

under which our results will be proved and in Section 3.2, we define the Lyapunov function H

(as a function of measures); this is a slight variant of the function proposed by Paganini et al.

[PTFA12]. We also introduce the composition H ζ of H with a fluid model solution ζ, and a

function K ζ which is used to describe the density in time of H ζ. Our main results for this chapter

are stated in Section 3.3. The proofs of these main results are given in Sections 3.5 and 3.6. Some

preliminary lemmas needed for our proofs are given in Section 3.4.

Our proofs have benefitted from prior works of others. In particular, our starting point is

the clever Lyapunov function posited by Paganini et al. [PTFA12]. The preliminary results in

Section 3.4 include three lemmas taken from [PTFA12] and four lemmas and a corollary giving

some basic properties of fluid model solutions. The proofs of the fluid model solution results

extend some techniques developed by Gromoll et al. [GPW02] for a critical fluid model of a

single class processor sharing queue. The latter is a special case of a bandwidth sharing model

with one route and one link. The final result in Section 3.4 is our proof of the continuity of the

function H ζ(·), which is a critical precursor to our proof of absolute continuity of this function.
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The key new results, Theorem 3.3.1 and Corollary 3.3.1, are proved in Section 3.5. These rely on

a result proved in Section 3.5.1, where we show that smoothed versions of each component of a

fluid model solution satisfy certain parabolic partial differential equations on intervals of time

where the fluid level for the component is not zero. This provides a rigorous formulation of a

partial differential equation assumed to hold by Paganini et al. [PTFA12]. A similar smoothing

technique was also used by Puha and Williams [PW16], in the study of the asymptotic behavior

of critical fluid model solutions for a single class processor sharing queue. Our method is a

little different from that of Puha and Williams [PW16] in that we smooth the entire fluid model

solution, not just the initial condition. Theorems 3.3.2 and 3.3.3 are proved in Section 3.6. Having

Theorem 3.3.1 and Corollary 3.3.1 in place, these proofs follow a similar line of argument to that

of Paganini et al. [PTFA12]. However, we do generalize from having a common parameter α

for all routes to the case where there is a separate αi for each route i ∈ I , and we also establish

uniformity of the convergence to the zero state under suitable conditions. Throughout, our proofs

need to deal with the more complex bandwidth sharing model and especially to deal with the

singular situation where the fluid level for some routes can reach zero while other route levels

remain positive.

3.1 Assumptions

3.1.1 Subcritical Parameters

Henceforth in this chapter, we shall assume that the fluid model is subcritical, that is, the

following assumption holds.

Assumption 3.1. The parameters (R,ρ,C) satisfy

∑
i∈I

R jiρi <C j for all j ∈ J . (3.1)
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This condition means that the average load on each link is strictly less than its capacity. Under

this condition, we can choose a sufficiently small δ > 0 such that

ρ̃i ≡ (1+δ)ρi, for all i ∈ I , (3.2)

satisfies

∑
i∈I

R jiρ̃i <C j for all j ∈ J and (1−δ)(1+δ)αi+1 > 1 for all i ∈ I . (3.3)

We fix such a sufficiently small δ > 0 henceforth and define

θi(x) =
(

1− miµi

αi

∫ x

0
Ni(u)du

)−αi

for all x ∈ [0,∞), i ∈ I , (3.4)

where mi ∈ (0,αi) is defined so that
(

αi
mi

)αi = (1− δ)(1+ δ)αi+1 holds for all i ∈ I . Since

µi
∫

∞

0 Ni(u)du = 1, we have

1≥ 1− miµi

αi

∫ x

0
Ni(u)du =

mi

αi

(
1−µi

∫ x

0
Ni(u)du

)
+1− mi

αi

=
miN

e
i (x)

αi
+1− mi

αi

≥ 1− mi

αi
> 0,

and so θi(·) is positive and bounded above and below on [0,∞) for all i ∈ I .

3.1.2 File Size Distributions

The following assumption will be used in Lemma 3.4.8 to prove continuity in time of H ζ,

the composition of the Lyapunov function H (defined below) with a suitable fluid model solution

ζ. This continuity property ultimately features in our proof of the absolute continuity of H ζ as a

function of time and the convergence of fluid model solutions to the zero state.
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Assumption 3.2. For each i ∈ I , the probability measure ϑi is in K1, that is, it has no atoms and

has finite first moment.

Remark 3.1.1. We already assumed that ϑi has finite first moment, so the additional assumption

here is that it has no atoms.

The additional assumption below, will be used in showing that under suitable constraints

on the initial conditions, fluid model solutions reach the zero state in finite time. Indeed, we will

prove that the time can be chosen uniformly provided there is a uniform bound on the initial

workload vector and on the p-th moments of the components of the initial state of the fluid model

solutions.

Assumption 3.3. There is p ∈ (1,∞) such that Bϑ,p ≡maxi∈I 〈χp,ϑi〉< ∞.

3.2 Lyapunov Function

3.2.1 The Functions H and H ζ

Definition 3.2.1. Given ξ ∈MI, for each i ∈ I , define

Hi(ξ) =
κi

ρ̃
αi
i

∫
∞

0

(
〈1(x,∞),ξi〉

)αi+1
θi(x)dx, (3.5)

and define

H(ξ) = ∑
i∈I

Hi(ξ)

αi +1
. (3.6)

The function H will be our Lyapunov function for studying stability in this chapter. It is a slight

generalization of the one used by Paganini et al. [PTFA12], where we have made adjustments to

allow for the fact that our αi can depend on i. Note that for ξ ∈MI, H(ξ) ∈ [0,∞] and H(ξ) = 0

if and only if ξi((0,∞)) = 0 for all i ∈ I . We shall ultimately be applying H to ξ ∈KI
1. For such
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ξ, H(ξ) is finite and such that H(ξ) = 0 if and only if ξi is the zero measure on R+ = [0,∞) for

each i ∈ I .

Definition 3.2.2. Given a fluid model solution ζ(·), for each t ≥ 0 and i ∈ I , define Mi
t(x) =

〈1(x,∞),ζi(t)〉 for all x≥ 0 and

H ζ

i (t) = Hi
(
ζ(t)

)
=

κi

ρ̃
αi
i

∫
∞

0

(
Mi

t(x)
)αi+1

θi(x)dx for all i ∈ I , (3.7)

and let

H ζ(t) = H
(
ζ(t)

)
= ∑

i∈I

H ζ

i (t)
αi +1

. (3.8)

The following provides a sufficient condition for H ζ(t) to be finite-valued for all t ∈ [0,∞).

Proposition 3.2.1. Let ζ(·) be a fluid model solution. Suppose that i ∈ I such that wi(0) =

〈χ,ζi(0)〉< ∞. Then H ζ

i (t) is finite for all t ≥ 0.

Proof. Fix t ≥ 0. By (2.5) we have that wi(t) is finite. Also, since Mi
t(x) ≤ zi(t) and wi(t) =∫

∞

0 Mi
t(x)dx, we have

H ζ

i (t)≤
κi‖θi‖∞

ρ̃
αi
i

(zi(t))αi

∫
∞

0
Mi

t(x)dx

=
κi‖θi‖∞

ρ̃
αi
i

(zi(t))αiwi(t)< ∞, (3.9)

where ‖θi‖∞ = supx∈[0,∞) |θi(x)|.

3.2.2 The Function K ζ

In this section, we introduce the function K ζ, which arises in taking the derivative of the

function t→H ζ(t).
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Definition 3.2.3. Suppose that ζ(·) is a fluid model solution. Define for each i ∈ I and t ≥ 0,

K ζ

i (t) = ρ̃
−αi
i

(
−κiΛi(t)

(
zi(t)

)αi

−κi

∫
∞

0

(
Mi

t(x)
)αi

(
Λi(t)
zi(t)

1(0,∞)

(
zi(t)

))
Mi

t(x)θ
′
i(x)dx

+κi(αi +1)νi

∫
∞

0

(
Mi

t(x)
)αiNi(x)θi(x)dx

) (3.10)

and let

K ζ(t) = ∑
i∈I+(z(t))

K ζ

i (t)
αi +1

for all t ≥ 0. (3.11)

Remark 3.2.1. In (3.10), if zi(t) = 0, we interpret the right member of the equality to be zero and

so K ζ

i (t) = 0 in this case.

Proposition 3.2.2. Suppose that ζ(·) is a fluid model solution. Then, for each i ∈ I and t ≥ 0,

sups∈[0,t] |K
ζ

i (s)|< ∞.

Proof. Fix i ∈ I and t ≥ 0. For each s ∈ [0, t], let

k1(s) = ρ̃
−αi
i κiΛi(s)(zi(s))

αi ,

k2(s) = ρ̃
−αi
i κi

∫
∞

0

(
Mi

s(x)
)αi
(

Λi(s)
zi(s)

1(0,∞)

(
zi(s)

))
Mi

s(x)θ
′
i(x)dx,

k3(s) = ρ̃
−αi
i κi(αi +1)νi

∫
∞

0

(
Mi

s(x)
)αi

Ni(x)θi(x)dx.

Noting that θ′i(x) = miµi(θi(x))
αi+1

αi Ni(x) for all x ∈ R+, ‖θi‖∞ < ∞, Mi
s(·)

zi(s)
1(0,∞)

(
zi(s)

)
≤ 1,

|Λi(·)| ≤ max j C j, Mi
s(·) ≤ zi(s) < ∞, and

∫
∞

0 Ni(x)dx = 〈χ,ϑi〉 = µ−1
i < ∞, we have that k1(s),
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k2(s), k3(s) are well defined, non-negative and finite for each s ∈ [0, t]. Indeed,

sup
s∈[0,t]

k1(s) ≤ ρ̃
−αi
i κi(max

j
C j)
(

sup
s∈[0,t]

zi(s)
)αi

< ∞, (3.12)

sup
s∈[0,t]

k2(s) ≤ ρ̃
−αi
i κi

(
sup

s∈[0,t]
zi(s)

)αi
(max

j
C j)mi ‖θi‖

αi+1
αi

∞ < ∞, (3.13)

sup
s∈[0,t]

k3(s) ≤ ρ̃
−αi
i κi(αi +1)νi

(
sup

s∈[0,t]
zi(s)

)αi
〈χ,ϑi〉‖θi‖∞ < ∞. (3.14)

Noting that

K ζ

i (s) =−k1(s)− k2(s)+ k3(s), for all s ∈ [0, t], (3.15)

the result follows.

3.3 Main Results

Theorem 3.3.1. Suppose that Assumptions 3.1 and 3.2 hold. Further suppose that ζ(·) is a fluid

model solution with ζ(0) ∈KI
1. For each i ∈ I , the function H ζ

i (·) is absolutely continuous with

respect to Lebesgue measure on [0,∞), and K ζ

i (·) is a density for H ζ

i (·), that is, for each t ≥ 0,

H ζ

i (t)−H ζ

i (0) =
∫ t

0
K ζ

i (s)ds. (3.16)

Furthermore, for each t ≥ 0,

K ζ

i (t)≤ κi
(
zi(t)

)αi

(
−Λi(t)

ρ̃
αi
i

+
ρ̃i(1−δ)

Λi(t)αi

)
1(0,∞)

(
zi(t)

)
, (3.17)

where the right member is interpreted to be zero if zi(t) = 0.

Corollary 3.3.1. Under the assumptions of Theorem 3.3.1, H ζ(·) is absolutely continuous with

respect to Lebesgue measure on [0,∞) and K ζ(·) is a density for H ζ(·). In addition, for all t ≥ 0
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we have

K ζ(t)≤−δ ∑
i∈I+(z(t))

κiρ̃i

αi +1

(
zi(t)
Λi(t)

)αi

. (3.18)

The proofs of Theorem 3.3.1 and Corollary 3.3.1 are presented in Section 3.5.

Theorem 3.3.2. Suppose that Assumptions 3.1 and 3.2 hold. For any fluid model solution ζ(·)

with ζ(0) ∈KI
1, H ζ(t) decreases monotonically to zero as t→ ∞. Furthermore, for any W > 0,

lim
t→∞

sup{H ζ(t) : ζ is a fluid model solution, ζ(0) ∈KI
1, max

i∈I
(〈1,ζi(0)〉,〈χ,ζi(0)〉)≤W}= 0.

Consequently, ζi(t) as a measure on (0,∞) converges vaguely1 to the zero measure on (0,∞) as

t→ ∞, for each i ∈ I .

The following theorem shows that with the addition of Assumption 3.3 (with p ∈ (1,∞))

to the assumptions of Corollary 3.3.1, and assuming the components of the initial fluid state have

finite p-th moments, we have that the fluid model solution reaches the zero state in finite time,

and the hitting time of the zero state is uniformly bounded for fluid model solutions starting in

{ξ ∈KI
1 : maxi∈I (〈1,ξi〉, 〈χp,ξi〉)≤W} for any fixed W > 0.

Theorem 3.3.3. Suppose that Assumptions 3.1, 3.2 and 3.3 hold and let p ∈ (1,∞) be as in

Assumption 3.3. For each W ≥ 1 there exists TW > 0 such that for all fluid model solutions ζ(·)

satisfying ζ(0)∈KI
1 and maxi∈I (〈1,ζi(0)〉,〈χp,ζi(0)〉)≤W, we have ζ(t) = 0, the zero measure

in MI, for all t ≥ TW .

The proofs of Theorems 3.3.2 and 3.3.3 are given in Section 3.6.

1That is, 〈 f ,ζi(t)〉 → 0 as t→ ∞ for each continuous function f with compact support in (0,∞).
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3.4 Preliminary Lemmas

The following three lemmas are similar to Lemma 1, a result in Section III.C, and Lemma

5 in [PTFA12]. For the first lemma, Paganini et al. [PTFA12] indicated the idea for a proof. Here

we provide more details, for completeness. For the other two lemmas, we provide the statements

and the short proofs as a convenience to the reader.

Lemma 3.4.1. Fix z ∈ RI
+. Recall that φ(z) solves the maximization problem (2.2). Let ψ be a

vector in RI
+ such that ψi > 0 for all i ∈ I+(z) and ∑i∈I R jiψi ≤C j for all j ∈ J . Then

∑
i∈I+(z)

κiU ′i

(
φi(z)

zi

)(
ψi−φi(z)

)
≤ 0, (3.19)

where, for each i ∈ I+(z), U ′i (x) is the derivative of Ui(x) when x > 0.

Proof. Since (3.19) holds trivially for z = 0, we may assume that z 6= 0. Let φ̃(z) =
(
φi(z) :

i ∈ I+(z)
)

and Ψ̃ = {ψ̃ = (ψ̃i : i ∈ I+(z)), ψ̃i > 0 for all i ∈ I+(z)}. For each i ∈ I+(z), Ui is a

concave, continuously differentiable function on (0,∞). Then the following function is concave

and continuously differentiable on Ψ̃:

f (ψ̃) = ∑
i∈I+(z)

κiziUi

(
ψ̃i

zi

)
, ψ̃ ∈ Ψ̃.

Consider the set

F (z) =

{
ψ̃ ∈ Ψ̃ : ∑

i∈I+(z)
R jiψ̃i ≤C j for all j ∈ J

}
.

Then f achieves its maximum value on F (z) at φ̃(z). We claim that ∇ f
(
φ̃(z)

)
·
(
ψ̃− φ̃(z)

)
≤ 0,

for any ψ̃ ∈ F (z). For a proof by contradiction, suppose there is ψ̃ ∈ F (z) such that ∇ f
(
φ̃(z)

)
·(

ψ̃− φ̃(z)
)
> 0. Then for any t ∈ [0,1], γ(t) = tψ̃+ (1− t)φ̃(z) is in F (z), since this set is

convex, and d
dt f
(
γ(t)
)∣∣

t=0 = ∇ f
(
φ̃(z)

)
·
(
ψ̃− φ̃(z)

)
> 0, by our assumption. It follows that for

all sufficiently small t > 0, we have f
(
γ(t)
)
> f
(
φ̃(z)

)
, which contradicts the fact that φ̃(z) is the
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optimal solution of the maximization problem. Thus, ∇ f
(
φ̃(z)

)
·
(
ψ̃− φ̃(z)

)
≤ 0. Computing the

gradient of f , and using the fact that φi(z) = φ̃i(z) for all i ∈ I+(z), it follows that

∑
i∈I+(z)

κiU ′i

(
φi(z)

zi

)(
ψ̃i−φi(z)

)
≤ 0 for all ψ̃ ∈ F (z).

For a ψ satisfying the hypotheses of the lemma, ψ̃ = (ψi : i ∈ I+(z)) is in F (z) and so the

inequality holds for it. Because the sum in this inequality does not involve (ψi : i /∈ I+(z)), it

follows that (3.19) holds for ψ.

Lemma 3.4.2. Let g(s) = sa((a+1)q−bs
)

for s≥ 0 where a,b,q are fixed strictly positive real

numbers. Then g has a maximum of
(aq

b

)aq at s = aq
b .

Proof. Differentiating g with respect to s > 0, we have:

g′(s) = (a+1)sa−1(aq−bs
)
,

which is zero on (0,∞) only when s = aq
b and noting the sign of g′ on either side of this value, we

see that g has a local maximum at s = aq
b with value

(
aq
b

)a
q. Further noting that g is continuous

on [0,∞) and is zero at s = 0 and tends to −∞ as s→ ∞, we see that the local maximum is the

global maximum.

Lemma 3.4.3. For any strictly positive real numbers, a, b, q, we have

− b
qa +

q
ba ≤ (a+1)

q−b
ba .

Proof. Let f (x) = xa+1 for x ≥ 0. Then f is a convex function. The tangent line at x = q is

a support line and so ba+1 ≥ qa+1 +(a+ 1)qa(b− q). Dividing both sides by qaba yields the

desired result.
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The remaining lemmas in this section contain various results for fluid model solutions

that will be used in later sections in the chapter. The proof of Lemma 3.4.4 is the same as that of

Proposition 4.2 in [GPW02], so we omit it. The proofs of Lemmas 3.4.5 and 3.4.6, are similar

to those of Lemmas 4.1 and 4.3, respectively, from the work of Gromoll et al. [GPW02]. Since

some details are a bit different, we provide the proofs for our context as a convenience to the

reader.

Recall the third property in Definition 2.3.2. We now state a version of this property

that holds for a class of functions of both time and space. Let Cb([0,∞)×R+) denote the set

of continuous, bounded functions on [0,∞)×R+, and let C1
b([0,∞)×R+) denote the set of

once continuously differentiable functions defined on [0,∞)×R+ which, together with their

first partial derivatives are bounded on [0,∞)×R+. That is, f (s,x), fs(s,x) = ∂

∂s f (s,x) and

fx(s,x) = ∂

∂x f (s,x) are continuous and bounded by a constant for all (s,x) ∈ [0,∞)×R+.

Lemma 3.4.4. Let ζ : [0,∞)→MI be continuous. Then for each f ∈ Cb([0,∞)×R+) and i ∈ I ,

t→ 〈 f (t, ·),ζi(t)〉

is a continuous function of t ∈ [0,∞).

Proof. The proof is the same as that of Proposition 4.2 in [GPW02].

The proofs of the next two lemmas are similar to those of Lemmas 4.1 and 4.3 in

[GPW02]. However, because bandwidth sharing is more general than the processor sharing

treated in [GPW02], and because special care is needed in our setting to treat the fact that zi(·)

can be zero at some times, we give the full proofs here. We note that the special case where x = 0

in (3.24) follows from Appendix A in [BEZ14]. A dynamic equation for z(t) for all t ≥ 0 is also

derived there.
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Lemma 3.4.5. Suppose that ζ(·) is a fluid model solution, i ∈ I , and 0≤ s < t < ∞ are such that

ζi(r) 6= 0 for all s < r < t. Then for each f ∈C1
b([0,∞)×R+) such that f (·,0)≡ 0, we have that

the following holds.

〈 f (t, ·),ζi(t)〉= 〈 f (s, ·),ζi(s)〉+
∫ t

s
〈 fr(r, ·),ζi(r)〉dr

−
∫ t

s
〈 fx(r, ·),ζi(r)〉

Λi(r)
zi(r)

1(0,∞)

(
zi(r)

)
dr+νi

∫ t

s
〈 f (r, ·),ϑi〉1(0,∞)

(
zi(r)

)
dr. (3.20)

Proof. Suppose that ζ, s, t, i∈ I and f are as in the statement of the lemma. Then for r,r+h∈ (s, t)

we have

〈 f (r+h, ·),ζi(r+h)〉−〈 f (r, ·),ζi(r)〉= 〈 f (r+h, ·),ζi(r+h)〉−〈 f (r, ·),ζi(r+h)〉

+ 〈 f (r, ·),ζi(r+h)〉−〈 f (r, ·),ζi(r)〉. (3.21)

In the following, for clarity, we write f1 for the first partial derivative of f with respect to its

first variable, and f2 for its first partial derivative with respect to its second variable. The first

difference on the right hand side of the equation (3.21) equals

〈∫ r+h

r
f1(u, ·)du,ζi(r+h)

〉
=
〈∫ 1

0
f1(r+hv, ·)hdv,ζi(r+h)

〉
= h

∫ 1

0
〈 f1(r+hv, ·),ζi(r+h)〉dv,

where we have used Fubini’s theorem to change the order of integration to obtain the last equality.

For each v ∈ [0,1], define a function f v : [0,∞)×R+→ R by f v(y,x) = f1(r+(y− r)v,x) for

(y,x) ∈ [0,∞)×R+. Then f v ∈ Cb([0,∞)×R+), and so by Lemma 3.4.4, y→ 〈 f v(y, ·),ζi(y)〉 is

a continuous function of y ∈ [0,∞). Noting that f v(r+h, ·) = f1(r+hv, ·), it follows that for each
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v ∈ [0,1],

lim
h→0
〈 f1(r+hv, ·),ζi(r+h)〉= lim

h→0
〈 f v(r+h, ·),ζi(r+h)〉= 〈 f v(r, ·),ζi(r)〉= 〈 f1(r, ·),ζi(r)〉.

Combining this and, because f1(·, ·) is bounded by a constant and sup0≤u≤t zi(u) is finite by the

continuity of zi(·), using the bounded convergence theorem, we have

lim
h→0

〈 f (r+h, ·),ζi(r+h)〉−〈 f (r, ·),ζi(r+h)〉
h

=
∫ 1

0
〈 f1(r, ·),ζi(r)〉dv = 〈 f1(r, ·),ζi(r)〉.

Now consider the last difference on the right hand side of (3.21). For fixed r ∈ (s, t), we can use

Lemma A.2 with f (r, ·) in place of f (·) there, to conclude that

〈 f (r, ·),ζi(r+h)〉−〈 f (r, ·),ζi(r)〉=−
∫ r+h

r
〈 f2(r, ·),ζi(u)〉

Λi(u)
zi(u)

1(0,∞)

(
zi(u)

)
du

+νi〈 f (r, ·),ϑi〉
∫ r+h

r
1(0,∞)

(
zi(u)

)
du.

Now, because zi(u)> 0 for u ∈ (s, t), we have that

u→ 〈 f2(r, ·),ζi(u)〉
Λi(u)
zi(u)

1(0,∞)

(
zi(u)

)
,

is continuous on (s, t). Consequently, by the fundamental theorem of calculus,

lim
h→0

1
h

∫ r+h

r
〈 f2(r, ·),ζi(u)〉

Λi(u)
zi(u)

1(0,∞)

(
zi(u)

)
du = 〈 f2(r, ·),ζi(r)〉

Λi(r)
zi(r)

1(0,∞)

(
zi(r)

)
. (3.22)

Finally, we note that r→〈 f (r, ·),ϑi〉 is continuous on [0,∞) by the bounded convergence theorem.

Combining all of these and replacing f1(r,x), f2(r,x) with fr(r,x), fx(r,x), we can conclude that

r→ 〈 f (r, ·),ζi(r)〉 is once continuously differentiable on (s, t), with continuous derivative given
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by

〈 fr(r, ·),ζi(r)〉−〈 fx(r, ·),ζi(r)〉
Λi(r)
zi(r)

+νi〈 f (r, ·),ϑi〉, r ∈ (s, t). (3.23)

Integrating over any closed interval [s1, t1] contained in (s, t), we obtain that (3.20) holds with

s1, t1 in place of s, t, respectively. Then invoking Lemma 3.4.4 again for the continuity of

r → 〈 f (r, ·), ζi(r)〉 from the right at s and the left at t, and noting the boundedness of the

integrands in the integrals in (3.20), we see that we can let s1 ↓ s and t1 ↑ t to obtain the desired

result.

Lemma 3.4.6. Suppose that ζ(·) is a fluid model solution, i ∈ I and 0 ≤ s < t < ∞ such that

ζi(r) 6= 0 for all r ∈ [s, t]. Then

Mi
t(x) = Mi

s(x+Si
s,t)+νi

∫ t

s
Ni(x+Si

u,t)du for all x ∈ R+. (3.24)

Proof. Because ζi(·) 6= 0 on [s, t], zi(·) is strictly positive on [s, t] and since it is continuous, there

is s1 ∈ [0,s], where s1 < s if s 6= 0 and s1 = 0 if s = 0, such that zi(·) is still strictly positive on

[s1, t]. Then u→ Si
u,t is continuously differentiable on [s1, t], with

dSi
u,t

du = −Λi(u)
zi(u)

for u ∈ [s1, t].

Consider g ∈C1
b(R) with g(x) = 0 for all x≤ 0. By the continuous differentiability of g, we must

have g′(x) = 0 for all x≤ 0. Let

f (u,x) = g(x−Si
u,t), u ∈ [s1, t], x ∈ R+.

Then, f ∈ C1
b([s1, t]×R+) where for u ∈ [s1, t] and x ∈ R+,

fu(u,x) =
g′(x−Si

u,t)Λi(u)
zi(u)

and fx(u,x) = g′(x−Si
u,t).

Because g(x) = 0 and g′(x) = 0 for all x≤ 0, we have for u ∈ [s1, t], f (u,0) = 0 and fx(u,0) = 0.

Let ε ∈ (0,(t− s)/2). We wish to construct a function f ε that satisfies the conditions in Lemma
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3.4.5 and that equals f on [s, t− ε]×R+. Let hε ∈ C1
b([0,∞)) be such that

hε(u) =


1, u ∈ [s, t− ε],

0, u ∈ [0,s1)∪ [t,∞).

If s = 0, then [0,s1) = /0. When [0,s1) 6= /0, we have by continuity (from the left) of hε and h′ε that

hε(s1) = 0 and h′ε(s1) = 0. Extend f to be identically equal to zero on ([0,s1)∪ (t,∞))×R+ and

define

f ε(u,x) = f (u,x)hε(u), u ∈ [0,∞),x ∈ R+.

Then, f ε ∈ C1
b([0,∞)×R+) with f ε(·,0) ≡ 0 and f ε = f on [s, t− ε]×R+ ⊂ [s1, t]×R+. On

replacing f , t in (3.20) with f ε, t− ε, respectively, we obtain

〈 f (t− ε, ·),ζi(t− ε)〉=〈 f (s, ·),ζi(s)〉+
∫ t−ε

s
〈g′(·−Si

u,t),ζi(u)〉
Λi(u)
zi(u)

du

−
∫ t−ε

s
〈g′(·−Si

u,t),ζi(u)〉
Λi(u)
zi(u)

du

+νi

∫ t−ε

s
〈g(·−Si

u,t),ϑi〉du

=〈g(·−Si
s,t),ζi(s)〉+νi

∫ t−ε

s
〈g(·−Si

u,t),ϑi〉du.

(3.25)

Similar to Lemma 3.4.4, u→ 〈 f (u, ·),ζ(u)〉 is continuous on [s, t] and so we can let ε→ 0 in

(3.25) to obtain

〈g(·),ζi(t)〉= 〈 f (t, ·),ζi(t)〉=〈g(·−Si
s,t),ζi(s)〉+νi

∫ t

s
〈g(·−Si

u,t),ϑi〉du. (3.26)

For x∈R+, to obtain (3.24) from (3.26), consider a sequence of non-negative functions {gn}∞
n=0⊂

C1
b(R) satisfying gn(x) = 0 for all x≤ 0 and all n, and such that gn increases to 1(x,∞) pointwise

on R and apply the monotone convergence theorem.

Lemma 3.4.7. Suppose that Assumption 3.2 holds and let ζ(·) be a fluid model solution. Suppose
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that 0≤ s < t < ∞ and i ∈ I such that ζi(s) ∈K and zi(r)> 0 for all r ∈ (s, t). Then ζi(r) ∈K

for all r ∈ (s, t).

Proof. Fix r ∈ (s, t). It suffices to show that x→Mi
r(x) is continuous.

We first consider the case where zi(s)> 0. From (3.24), we have for all x ∈ R+,

Mi
r(x) = Mi

s(x+Si
s,r)+νi

∫ r

s
Ni(x+Si

u,r)du. (3.27)

Because ζi(s) ∈K, y→Mi
s(y) is continuous and it follows that the first term on the right hand

side of (3.27) is continuous as a function of x. From the assumption that ϑi ∈K, we have that

y→ Ni(y) is continuous (and bounded). It follows from the dominated convergence theorem that

the second term on the right hand side of (3.27) is continuous as a function of x. This completes

the proof when zi(s)> 0.

Now suppose that zi(s) = 0. Then for s < s0 < r < t0 < t, we have zi(·)> 0 on [s0, t0] and

so by (3.24) we have for all x ∈ R+,

Mi
r(x) = Mi

s0
(x+Si

s0,r)+νi

∫ r

s0

Ni(x+Si
u,r)du. (3.28)

Fix x0 ∈ R+ and let ε > 0. Because zi(·) is continuous and zi(s) = 0, we can choose s0 close

enough to s so that Mi
s0
(·) ≤ zi(s0) < ε/4. It follows that the difference of two evaluations of

the first term in the right hand side of (3.28), where the evaluations are at x0 and x ∈ R+, has

magnitude less than ε/2. For this fixed value of s0, the last term in (3.28) is continuous as a

function of x (because ϑi ∈K). Combining the properties of the first and last terms in the right

hand side of (3.28), it follows that there is δ > 0 such that whenever |x− x0|< δ, we have

|Mi
r(x)−Mi

r(x0)| ≤ ε.

Because ε > 0 and x0 ∈ R+ were arbitrary, it follows that x→Mi
r(x) is continuous when zi(s) =
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0.

Corollary 3.4.1. Suppose that Assumption 3.2 holds and ζ(·) is a fluid model solution with

ζ(0) ∈KI. Then ζ(t) ∈KI for all t > 0.

Proof. Fix i ∈ I and t > 0. If zi(t) = 0, then ζi(t) = 0 is in K. On the other hand, if zi(t) > 0,

then by the continuity of zi(·), there is an open interval V = (a,b) containing t such that zi(s)> 0

on V and either a = 0 or zi(a) = 0. In either case, ζi(a) ∈K, and it follows from Lemma 3.4.7

that ζi(s) ∈K for all s ∈V and in particular, ζi(t) ∈K.

Lemma 3.4.8. Suppose that Assumption 3.2 holds. Let ζ(·) be a fluid model solution with

ζ(0) ∈KI
1. Then for each i ∈ I , H ζ

i (·) as defined in (3.7) is continuous on [0,∞).

Proof. Fix i ∈ I and t0 ∈ [0,∞).

We first consider the case where zi(t0) = 0. Then H ζ

i (t0) = 0. Note that zi(·) is continuous.

Also, because wi(0) = 〈χ,ζi(0)〉<∞ by assumption, it follows from (2.5), that wi(·) is continuous.

Then, because zi(t0) = wi(t0) = 0, it follows from the continuity of zi(·), wi(·) and (3.9), that

H ζ

i (s) tends to zero as s→ t0. So H ζ

i (·) is continuous at t0.

We now turn to the case where zi(t0)> 0. By the continuity of zi(·), there is an interval

[s, t] containing t0 on which zi(r) 6= 0 for all r ∈ [s, t], where we may choose s < t0 < t if t0 6= 0

and s = t0 < t if t0 = 0. Because ζ(0) ∈KI, it follows from Corollary 3.4.1 that for all r ∈ [0,∞),

x→Mi
r(x) is continuous. From Lemma 3.4.6, with r in place of t there, we have for each r ∈ [s, t]

that for each x ∈ R+,

Mi
r(x) = Mi

s(x+Si
s,r)+

∫ r

s
νiNi(x+Si

u,r)du.

It then follows from the continuity of Mi
s(·) and Ni(·) (because ϑi is continuous) on R+, and the

continuity of r→ Si
u,r for r ∈ [s, t], for each fixed u ∈ [s, t], that r→Mi

r(x) is continuous for each
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x ∈ R+. Now, for r ∈ [s, t],

H ζ

i (r) =
κi

ρ̃
αi
i

∫
∞

0

(
Mi

r(x)
)αi

θi(x)M
i
r(x)dx,

where the integrand is dominated by ‖θi‖∞(supu∈[s,t] zi(u))αiMi
r(·). By the generalized Lebesgue

dominated convergence theorem and the fact that wi(r) =
∫

∞

0 Mi
r(x)dx is continuous as a function

of r, we have that H ζ

i (r)→H ζ

i (t0) as r→ t0.

3.5 Proofs of Theorem 3.3.1 and Corollary 3.3.1

3.5.1 Smooth Approximation of Measures

We use an approximation argument to prove Theorem 3.3.1. To prepare for this, for each

positive integer n, let ϕn ∈ C∞
c (R) be such that ϕn ≥ 0,ϕn(x) = 0 for all x ∈ (−∞,−1

n ]∪ [
1
n ,∞),

ϕn(x) = ϕn(−x) for all x > 0, and
∫
Rϕn(x)dx = 1. Given ξ ∈ M and n ∈ N, let ξn be the

nonnegative, absolutely continuous Borel measure on R+ whose density is given by dn(x) =∫
R+

ϕn(x− y)ξ(dy) =
∫
R+

ϕn(y− x)ξ(dy) for x ∈ R+, where we have used the symmetry of ϕn

for the last equality. Note that dn(·) is in C∞
b (R+), because ϕn is infinitely differentiable with

compact support and ξ is a finite measure on R+. For any bounded, Borel measurable function f

defined on R+, let ( f ∗ϕn)(y) =
∫
R+

ϕn(y− x) f (x)dx for y ∈ R+. Then, by Fubini’s theorem,

〈 f ,ξn〉=
∫
R+

f (x)
∫
R+

ϕn(y− x)ξ(dy)dx = 〈 f ∗ϕn,ξ〉. (3.29)

The following lemma can be proved in the same manner as Lemma 7.12 of Puha and Williams

[PW16], so we omit the proof.
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Lemma 3.5.1. Let ξ ∈K1. For each n ∈ N and x ∈ R+, we have

〈
1(x+ 1

n ,∞),ξ
〉
≤ 〈1(x,∞),ξ

n〉 ≤
〈
1(

(x− 1
n )

+,∞
),ξ〉, (3.30)

〈χ,ξ〉− 〈1,ξ〉
n
≤ 〈χ,ξn〉 ≤ 〈χ,ξ〉+ 〈1,ξ〉

n
. (3.31)

Furthermore, we have ξn ∈ A for each n ∈ N and as n→ ∞,

ξ
n w−→ ξ and 〈χ,ξn〉 → 〈χ,ξ〉. (3.32)

Given a fluid model solution ζ(·), for each t ≥ 0 and i ∈ I , let {ζn
i (t)}∞

n=1 be the ap-

proximating sequence of measures for ζi(t), as defined above with ζi(t) in place of ξ. For any

positive integer `, let C0,` = {g ∈ C1
b

(
R+

)
: g = 0 on [0, 1

` ]}. For g ∈ C0,` and all n > `, we have

(g∗ϕn)(0) = 0 and (g∗ϕn)
′(0) = 0. It follows that g∗ϕn ∈ C . By (2.4), with g∗ϕn replacing f

and noting that (g∗ϕn)
′(·) = (g′ ∗ϕn)(·), we have for any t ≥ 0,

〈g∗ϕn,ζi(t)〉= 〈g∗ϕn,ζi(0)〉−
∫ t

0
〈g′ ∗ϕn,ζi(s)〉

Λi(s)
zi(s)

1(0,∞)(zi(s))ds

+νi〈g∗ϕn,ϑi〉
∫ t

0
1(0,∞)

(
zi(s)

)
ds. (3.33)

Then, using (3.29), we can rewrite the above as

〈g,ζn
i (t)〉= 〈g,ζn

i (0)〉−
∫ t

0
〈g′,ζn

i (s)〉
Λi(s)
zi(s)

1(0,∞)(zi(s))ds+νi〈g,ϑn
i 〉

∫ t

0
1(0,∞)

(
zi(s)

)
ds.

(3.34)

For each positive integer n, i ∈ I , t ≥ 0 and x ∈ R+, let

Mi,n
t (x) = 〈1(x,∞),ζ

n
i (t)〉, Ni,n

(x) = 〈1(x,∞),ϑ
n
i 〉. (3.35)

The following lemma is key to our proof of Theorem 3.3.1. It provides a rigorous formulation of
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the partial differential equation result assumed in Paganini et al. [PTFA12].

Lemma 3.5.2. Assume that ζ(·) is a fluid model solution. Suppose that i ∈ I and 0≤ a < b < ∞

are such that zi(t) 6= 0 for all t ∈ [a,b]. Then, for each positive integer ` and all n > `, t→Mi,n
t (x)

is continuously differentiable on [a,b] for each fixed x ∈ R+, and x→Mi,n
t (x) is continuously

differentiable on [1
` ,∞) for each fixed t ∈ [a,b], and furthermore,

∂Mi,n
t (x)
∂t

=
Λi(t)
zi(t)

∂Mi,n
t (x)
∂x

+νiN
i,n
(x), (3.36)

for t ∈ [a,b], x ≥ 1
` , where the partial derivatives with respect to time at t = a,b are from the

right, left, respectively, and the partial derivative with respect to x at x = 1/` is from the right.

Proof. For each s ∈ [0,∞), i ∈ I and fixed n, by the definition of ζn
i (s), mi,n

s (·) =
∫
R+

ϕn(y−

·)ζi(s)(dy) is the C∞
b density function for the measure ζn

i (s). Thus, x → Mi,n
s (x) is contin-

uously differentiable on [0,∞) with derivative function −mi,n
s (·). By the finiteness of ζi(s),

limx→∞ mi,n
s (x) = 0. Using integration by parts, for any g ∈ C0,` that has compact support in R+,

we have for each n > `, using the facts that g is bounded, g(1
` ) = 0, and g is zero outside some

compact set, we have

〈g′,ζn
i (s)〉=

∫
∞

1
`

g′(x)mi,n
s (x)dx =−

∫
∞

1
`

g(x)
dmi,n

s (x)
dx

dx. (3.37)

Now suppose, as in the statement of the lemma, that i ∈ I and 0≤ a < b < ∞ such that zi(s) 6= 0

for s ∈ [a,b]. Then we have from (3.34) that for any t ∈ [a,b],

〈g,ζn
i (t)〉−〈g,ζn

i (a)〉=−
∫ t

a
〈g′,ζn

i (s)〉
Λi(s)
zi(s)

ds+νi〈g,ϑn
i 〉(t−a). (3.38)

Fix `,n > `, x0 ≥ 1
` and z > x0. Combining (3.37), (3.38), and considering a sequence {gm}∞

m=1

of non-negative functions in C0,` that have compact support and that converge monotonically

34



upwards to 1(x0,z), we obtain using monotone and dominated convergence (noting that dmi,n
s (x)
dx =

−〈ϕ′n(·− x),ζi(s)〉 is uniformly bounded for all s ∈ [a,b] and x ∈ R+), that for all t ∈ [a,b] and

z > x0,

〈1(x0,z),ζ
n
i (t)〉−〈1(x0,z),ζ

n
i (a)〉 =

∫ t

a

〈
1(x0,z),

dmi,n
s

dx

〉
Λi(s)
zi(s)

ds+νi〈1(x0,z),ϑ
n
i 〉(t−a)

=
∫ t

a
(mi,n

s (z)−mi,n
s (x0))

Λi(s)
zi(s)

ds+νi〈1(x0,z),ϑ
n
i 〉(t−a).

We can let z→∞, using monotone and bounded convergence, plus the fact that limz→∞ mi,n
s (z) = 0

for each s ∈ [a, t], to conclude that for each t ∈ [a,b] and x0 ≥ 1
` ,

〈1(x0,∞),ζ
n
i (t)〉−〈1(x0,∞),ζ

n
i (a)〉=−

∫ t

a
mi,n

s (x0)
Λi(s)
zi(s)

ds+νi〈1(x0,∞),ϑ
n
i 〉(t−a). (3.39)

Rewriting, we have for all t ∈ [a,b] and x≥ 1
` ,

Mi,n
t (x)−Mi,n

a (x) =
∫ t

a

Λi(s)
zi(s)

∂Mi,n
s (x)
∂x

ds+νiN
i,n
(x)(t−a). (3.40)

For fixed x ≥ 1
` , s→ ∂Mi,n

s (x)
∂x = −mi,n

s (x) is continuous, because the fluid model solution ζi

is continuous as a function of time. Also, s→ Λi(s)
zi(s)

is continuous on [a,b], because zi(·) is

strictly positive there. It follows that t→Mi,n
t (x) is continuously differentiable on [a,b], and by

differentiating (3.40), we obtain (3.36). Since all of the other properties have been verified, this

completes the proof.

3.5.2 Proof of Theorem 3.3.1

Proof. Assume that the hypotheses of Theorem 3.3.1 hold. Because ζ(0) ∈ KI
1, we have by

Corollary 3.4.1 and (2.5), that for each t ≥ 0, ζ(t) ∈KI
1. It follows that for each i ∈ I and t ≥ 0,

x→Mi
t(x) is continuous and integrable with respect to Lebesgue measure (with integral equal to
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〈χ,ζi(t)〉< ∞) on [0,∞). Also, x→ Ni(x) is continuous and integrable with respect to Lebesgue

measure (with integral equal to 〈χ,ϑi〉< ∞) over [0,∞).

Fix i ∈ I . Because K ζ

i (·) is bounded and measurable on [0, t] for each t ≥ 0, to prove the

absolute continuity of H ζ

i (·), it suffices to prove that (3.16) holds for each t ≥ 0. We first prove

that if 0≤ a < b < ∞ such that zi(s) 6= 0 for all s ∈ [a,b], then

H ζ

i (b)−H ζ

i (a) =
∫ b

a
K ζ

i (s)ds. (3.41)

Assume that 0 ≤ a < b < ∞ such that zi(s) 6= 0 for all s ∈ [a,b]. For (3.42), we shall use the

definition of K ζ

i (·), the facts that Λi(·) ≤ max j C j, zi(·) is bounded on [a,b], being continuous

there, Mi
s(x) ≤ zi(s) for all x ∈ R+ and s ∈ [a,b],

∣∣Λi(·)
zi(·)
∣∣ is bounded on [a,b] because zi(·) is

continuous and strictly positive there, θ′i(x) = miµi(θi(x))
αi+1

αi Ni(x) for all x ∈ R+, ‖θi‖∞ < ∞,

and
∫

∞

0 Ni(x)dx = 〈χ,ϑi〉= µ−1
i < ∞. With these we see that by dominated convergence,

∫ b

a
K ζ

i (s)ds =−ρ̃
−αi
i κi

∫ b

a
Λi(s)(zi(s))αids (3.42)

+ lim
`→∞

ρ̃
−αi
i κi

∫ b

a

∫ `

1
`

(Mi
s(x))

αi

(
−Λi(s)

zi(s)
Mi

s(x)θ
′
i(x)+(αi +1)νiNi(x)θi(x)

)
dxds.

Now, for positive integers ` and n > `, because ϑi ∈ K1 and ζi(s) ∈ K1 for all s ∈ [a,b], by

Lemma 3.5.1, we have that as n→ ∞, Nn
i (x)→ Ni(x) for each x ∈ (0,∞) and Mi,n

s (x)→Mi
s(x)

for each x ∈ (0,∞), s ∈ [a,b]. Moreover, Nn
i (x) ≤ Ni((x− 1)+) and Mi,n

s (x) ≤Mi
s((x− 1)+) ≤

zi(s) for all x ∈ R+ and s ∈ [a,b], where x→ Ni((x− 1)+) has integral on (0,∞) bounded by∫
∞

0 Ni(x)dx+1 < ∞ and there is a uniform bound on zi(·) for all s ∈ [a,b]. It then follows by the

dominated convergence theorem (using the boundedness of θ′i and θi) that for each fixed positive
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integer `,

∫ b

a

∫ `

1
`

(Mi
s(x))

αi

(
−Λi(s)

zi(s)
Mi

s(x)θ
′
i(x)+(αi +1)νiNi(x)θi(x)

)
dxds

= lim
n→∞

∫ b

a

∫ `

1
`

(Mi,n
s (x))αi

(
−Λi(s)

zi(s)
Mi,n

s (x)θ′i(x)+(αi +1)νiN
n
i (x)θi(x)

)
dxds. (3.43)

Using integration by parts on the first term, the expression is equal to

lim
n→∞

(∫ b

a

(
Λi(s)
zi(s)

)
[−(Mi,n

s (·))αi+1
θi(·)]`1

`
ds

+(αi +1)
∫ b

a

∫ `

1
`

(Mi,n
s (x))αi

(
Λi(s)
zi(s)

∂Mi,n
s (x)
∂x

+νiN
n
i (x)

)
θi(x)dxds

)

= lim
n→∞

(∫ b

a

(
Λi(s)
zi(s)

)
[−(Mi,n

s (·))αi+1
θi(·)]`1

`
ds (3.44)

+(αi +1)
∫ b

a

∫ `

1
`

(Mi,n
s (x))αi

(
∂Mi,n

s (x)
∂s

)
θi(x)dxds

)
,

where we have used Lemma 3.5.2 for the last equality. By Fubini’s theorem (where the joint

measurability of the integrand follows from (3.36) and the fact that the partial derivative with

respect to x there is given by −mi,n
s (x)), the quantity is equal to

lim
n→∞

(∫ b

a

(
Λi(s)
zi(s)

)
[−(Mi,n

s (·))αi+1
θi(·)]`1

`
ds+(αi +1)

∫ `

1
`

∫ b

a
(Mi,n

s (x))αi

(
∂Mi,n

s (x)
∂s

)
θi(x)dsdx

)

= lim
n→∞

(∫ b

a

(
Λi(s)
zi(s)

)[
−(Mi,n

s (`))αi+1
θi(`)+

(
Mi,n

s

(
1
`

))αi+1

θi

(
1
`

)]
ds

+
∫ `

1
`

(
(Mi,n

b (x))αi+1− (Mi,n
a (x))αi+1

)
θi(x)dx

)
=

∫ b

a

(
Λi(s)
zi(s)

)[
−(Mi

s(`))
αi+1

θi(`)+

(
Mi

s

(
1
`

))αi+1

θi

(
1
`

)]
ds (3.45)

+
∫ `

1
`

(
(Mi

b(x))
αi+1− (Mi

a(x))
αi+1

)
θi(x)dx,

where we have used bounded convergence to pass to the limit for the last equality. Observe

that as `→ ∞, we have Mi
s(`)→ 0, Mi

s
(1
`

)
→ zi(s), θi

(1
`

)
→ 1, and there is a uniform bound
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for (s,x)→ Mi
s(x) and x→ θi(x) for all s ∈ [a,b],x ∈ R+. Combining this with the fact that

(Mi
s(x))

αi+1 ≤ (zi(s))αiMi
s(x), which is integrable on R+ for s = a,b, we see that as `→ ∞, the

expression after the last equals sign in (3.45) converges to

∫ b

a

(
Λi(s)
zi(s)

)
(zi(s))αi+1ds+

∫
∞

0

(
(Mi

b(x))
αi+1− (Mi

a(x))
αi+1

)
θi(x)dx. (3.46)

On substituting the above into (3.42), we obtain

∫ b

a
K ζ

i (s)ds = −ρ̃
−αi
i κi

∫ b

a
Λi(s)(zi(s))αids

+ρ̃
−αi
i κi

∫ b

a

(
Λi(s)
zi(s)

)
(zi(s))αi+1ds

+ρ̃
−αi
i κi

∫
∞

0

(
(Mi

b(x))
αi+1− (Mi

a(x))
αi+1

)
θi(x)dx

= H ζ

i (b)−H ζ

i (a), (3.47)

as desired.

We now turn to proving (3.16) for each t ≥ 0. It clearly holds for t = 0, so we consider

t > 0 fixed. If zi(s) 6= 0 for all s∈ [0, t], then the result follows immediately from (3.41) with a = 0

and b = t. Therefore, we only need to treat the case where zi(s) = 0 for some s ∈ [0, t]. Assuming

this, let s∗ = inf{s ∈ [0, t] : zi(s) = 0} and t∗ = sup{s ∈ [0, t] : zi(s) = 0}. Then, 0≤ s∗ ≤ t∗ ≤ t,

zi(s∗) = zi(t∗) = 0 and zi(s)> 0 for s ∈ (0,s∗)∪ (t∗, t). (The interval (0,s∗) is empty if zi(0) = 0

and (t∗, t) is empty if zi(t)= 0.) In any event, we can write the open set T i
t = {s∈ (0, t) : zi(s)> 0}

as a (finite or countable) union of disjoint open intervals:

T i
t = (0,s∗)∪

(⋃
n
(sn, tn)

)
∪ (t∗, t),

where
⋃

n(sn, tn)⊂ (s∗, t∗) and zi(sn) = zi(tn) = 0 for each n.

For each fixed n, for sn < a < b < tn, we have that (3.41) holds. Then using the continuity
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of H ζ

i (·) (see Lemma 3.4.8) and the boundedness of K ζ

i on [sn, tn] that we can let a ↓ sn and b ↑ tn

in the last equation, to obtain

H ζ

i (tn)−H ζ

i (sn) =
∫
(sn,tn)

K ζ

i (s)ds.

Moreover, since zi(sn) = zi(tn) = 0, H ζ

i (sn) = H ζ

i (tn) = 0. Thus we have

∫
(sn,tn)

K ζ

i (s)ds = 0. (3.48)

In a similar manner, we can obtain

H ζ

i (s
∗)−H ζ

i (0) =
∫
(0,s∗)

K ζ

i (s)ds, (3.49)

where H ζ

i (s
∗) = 0, and

H ζ

i (t)−H ζ

i (t
∗) =

∫
(t∗,t)

K ζ

i (s)ds, (3.50)

where H ζ

i (t
∗) = 0. Combining all of these and using the integrability of K ζ

i on [0, t], the fact that

K ζ

i (·) is zero on (0, t)\T i
t , and the disjointness of the intervals {(sn, tn)}, we have

∫ t

0
K ζ

i (s)ds =
∫
(0,s∗)

K ζ

i (s)ds+∑
n

∫
(sn,tn)

K ζ

i (s)ds+
∫
(t∗,t)

K ζ

i (s)ds

= −H ζ

i (0)+0+H ζ

i (t),

which is the desired result (3.16).

We now prove (3.17). Since both sides are zero when zi(t) = 0, it suffices to consider the
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case where zi(t)> 0. In this case,

ρ̃
αi
i K ζ

i (t) =−κiΛi(t)
(
zi(t)

)αi

+κi

∫
∞

0

(
Mi

t(x)
)αi

(
− Λi(t)

zi(t)
Mi

t(x)miθi(x)
αi+1

αi µiNi(x)+(αi +1)νiNi(x)θi(x)
)

dx

=−κiΛi(t)
(
zi(t)

)αi

+κi

∫
∞

0

(
Mi

t(x)
)αi

(
− Λi(t)

zi(t)
Mi

t(x)miθi(x)
1
αi +(αi +1)ρi

)
µiθi(x)Ni(x)dx

≤−κiΛi(t)(zi(t))αi +κi

∫
∞

0

(
αi

mi

)αi
ρ

αi+1
i

( zi(t)
Λi(t)

)αi
µiNi(x)dx

=−κiΛi(t)(zi(t))αi +
κiα

αi
i ρ

αi+1
i (zi(t))αi

mαi
i (Λi(t))αi

,

where we used Lemma 3.4.2, with a = αi, q = ρi, b = Λi(t)
zi(t)

θi(x)
1
αi mi, for the inequality, and the

fact that
∫

∞

0 µiNi(x)dx = 1 for the last equality. Recall that δ > 0 and mi ∈ (0,αi) were chosen so

that
(

αi
mi

)αi = (1−δ)(1+δ)αi+1 > 1 and ρ̃i = (1+δ)ρi satisfies (3.3). Using that in the above

expression, we obtain when zi(t)> 0,

K ζ

i (t)≤ κi(zi(t))αi

(
− Λi(t)

ρ̃
αi
i

+
ρ̃i(1−δ)

(Λi(t))αi

)
= κi(zi(t))αi

(
− Λi(t)

ρ̃
αi
i

+
ρ̃i

(Λi(t))αi
−δ

ρ̃i

(Λi(t))αi

)
≤ κi(zi(t))αi

(
(αi +1)

ρ̃i−Λi(t)
(Λi(t))αi

−δ
ρ̃i

(Λi(t))αi

)
, (3.51)

where the last step follows by Lemma 3.4.3 with a = αi, b = Λi(t) and q = ρ̃i. The first inequality

yields (3.17). We shall use the last inequality to prove Corollary 3.3.1.

3.5.3 Proof of Corollary 3.3.1

Proof of Corollary 3.3.1. Given the results of Theorem 3.3.1, all that requires proof is the in-

equality. For fixed t ≥ 0 and i ∈ I+(z(t)), U ′i
(

Λi(t)
zi(t)

)
=
(

zi(t)
Λi(t)

)αi
. Furthermore, ρ̃ has positive
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components and satisfies ∑i∈I R jiρ̃i <C j for all j ∈ J . Then, by (3.51) and replacing z,ψ,φ(z)

by z(t), ρ̃,Λ(t), respectively, in Lemma 3.4.1, we obtain

K ζ(t) = ∑
i∈I+(z(t))

K ζ

i (t)
αi +1

≤ ∑
i∈I+(z(t))

κi

(
zi(t)
Λi(t)

)αi(
ρ̃i−Λi(t)

)
−δ ∑

i∈I+(z(t))

κiρ̃i

αi +1

(
zi(t)
Λi(t)

)αi

≤−δ ∑
i∈I+(z(t))

κiρ̃i

αi +1

(
zi(t)
Λi(t)

)αi

.

3.6 Proofs of Theorems 3.3.2 and 3.3.3

Theorem 3.3.1 and Corollary 3.3.1 are the main new results of this chapter. In particular,

these results are given proofs that, in contrast to Paganini et al. [PTFA12], do not make strong

smoothness assumptions on fluid model solutions and deal with the singular situation where some

components of a fluid model solution may touch zero before all components reach zero. With

these results in place, Theorems 3.3.2 and 3.3.3 follow in a similar manner to the arguments

presented in [PTFA12]. However, we do generalize from having a common parameter α for

all routes to the case where there is a separate αi for each route i ∈ I . We also establish the

uniformity of the convergence to the zero state under suitable conditions.

Proof of Theorem 3.3.2. Let ζ(·) be a fluid model solution with ζ(0) ∈KI
1 and suppose that

max
i∈I

(〈1,ζi(0)〉,〈χ,ζi(0)〉)≤W, (3.52)
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for some finite, positive constant W . By (3.9) and the fact that wi(t)≤ wi(0)+ρit, we have

H ζ

i (t)≤
(
AW +Bt

)
(zi(t))αi for all t ≥ 0, i ∈ I , (3.53)

where

AW =W ·max
i∈I

(
κi‖θi(·)‖∞

ρ̃
αi
i

)
and B = max

i∈I

(
κi‖θi(·)‖∞ρi

ρ̃
αi
i

)
.

Let ρ̃⊥ = mini∈I ρ̃i and C = max j∈J C j. It follows from (3.53) that

κiρ̃i

αi +1

(
zi(t)
Λi(t)

)αi

≥
κiH ζ

i (t)ρ̃⊥
(αi +1)Cαi(AW +Bt)

for all t ≥ 0, i ∈ I . (3.54)

Combining this with Corollary 3.3.1, we have for all t ≥ 0,

K ζ(t) ≤ −δ ∑
i∈I+(z(t))

κiρ̃i

αi +1

(
zi(t)
Λi(t)

)αi

≤ − δDρ̃⊥
AW +Bt

H ζ(t)

where D = mini∈I
κi

Cαi , and we used the definition of H ζ(t) given in (3.8), as well as the fact that

H ζ

i (t) = 0 for i /∈ I+(z(t)).

Recall that H ζ(t)≥ 0 for all t ≥ 0. Since K ζ(·) is the density (in time) for the absolutely

continuous function H ζ(·), we see from the above that H ζ(·) is monotone decreasing with time

and it is strictly decreasing on {s ≥ 0 : H ζ(s) > 0}. Let η = inf{t ≥ 0 : H ζ(t) = 0}. Then for

0≤ t < η, we have

logH ζ(t) = logH ζ(0)+
∫ t

0

K ζ(s)
H ζ(s)

ds

≤ logH ζ(0)−
∫ t

0

δDρ̃⊥
AW +Bs

ds.

We observe that this holds for t ≥ η as well, because logH ζ(t) =−∞ for such t. The last integral

in the above expression diverges as t→ ∞. From this it follows that logH ζ(t)→−∞ as t→ ∞,
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and therefore, whether η is finite or infinite, we have that limt→∞ H ζ(t) = 0. Moreover, this

convergence is uniform for all fluid model solutions satisfying ζ(0) ∈KI
1 and (3.52). (Note that

H ζ

i (0) is bounded by AWW αi for this.)

In a similar manner to that in Remark 3 in [PTFA12], for each i ∈ I , because the weight

function θi(·) is bounded above and below on [0,∞), the convergence of H ζ(t) to zero as t→ ∞

implies that Mi
t(·) converges to zero in Lαi+1 (with Lebesgue measure) as t→ ∞, and because

Mi
t(x) is monotone decreasing as a function of x ∈ (0,∞), it follows that Mi

t(x) converges to zero

as t→ ∞ for each x ∈ (0,∞). Consequently, ζi(t) as a measure on (0,∞) converges vaguely to

zero as t→ ∞ for each i ∈ I .

We shall next prove Theorem 3.3.3. For the remainder of the section we shall assume that

Assumptions 3.1, 3.2 and 3.3 hold and that W ≥ 1 is fixed. Let p ∈ (1,∞) be such that Bϑ,p < ∞,

as in Assumption 3.3. We shall need the following supporting propositions.

Proposition 3.6.1. Suppose that ζ(·) is a fluid model solution such that ζ(0) ∈KI
1 and for each

i ∈ I , 〈χp,ζi(0)〉 ≤W. Then for each i ∈ I and t ≥ 0,

〈χp,ζi(t)〉 ≤W +νitBϑ,p. (3.55)

Proof. By Remark 2.3.2, the fluid model equation (2.4) holds for ζ for all f ∈ C̃ = { f ∈C1
b(R+) :

f (0) = 0}. Let { fn}∞
n=1 be a sequence of functions in C̃ such that fn(0) = 0, f ′n ≥ 0 on [0,∞)

for all n and 0 ≤ fn ↑ χp on [0,∞) as n→ ∞. Equation (2.4) holds with f replaced by fn and

discarding the first integral term, which is a non-negative integral since f ′n ≥ 0, we obtain for each

i ∈ I and t ≥ 0,

〈 fn,ζi(t)〉 ≤ 〈 fn,ζi(0)〉+νi〈 fn,ϑi〉
∫ t

0
1(0,∞)

(
zi(s)

)
ds

≤ 〈χp,ζi(0)〉+νi〈χp,ϑi〉t

≤ W +νitBϑ,p.
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Letting n→ ∞ and using monotone convergence, we obtain

〈χp,ζi(t)〉 ≤ W +νitBϑ,p,

as desired.

Proposition 3.6.2. Under the conditions of Proposition 3.6.1, for each i ∈ I and t ≥ 0,

wi(t)≤ (W +νitBϑ,p)
1
p (zi(t))

1
q , (3.56)

where 1
p +

1
q = 1.

Proof. Using Hölder’s inequality and Proposition 3.6.1, we have

wi(t) = 〈χ,ζi(t)〉

≤
(
〈χp,ζi(t)〉

) 1
p
(
〈1,ζi(t)〉

) 1
q

≤ (W +νitBϑ,p)
1
p (zi(t))

1
q .

Proof of Theorem 3.3.3. Applying Proposition 3.6.2 to (3.9), we have for all fluid model solutions

ζ(·) satisfying ζ(0) ∈KI
1 and 〈χp,ζi(0)〉 ≤W for all i ∈ I ,

H ζ

i (t)≤C†(A† +B†t)1−β(zi(t))αi+β, (3.57)

where β = 1
q = 1− 1

p ∈ (0,1), A† =W ≥ 1, B† = (maxi∈I νi)Bϑ,p and C† = maxi∈I
(

κi‖θi(·)‖∞

ρ̃
αi
i

)
.

44



Using this, for i ∈ I+(z(t)), we have

κiρ̃i

αi +1

(
zi(t)
Λi(t)

)αi

≥ κiρ̃i

(αi +1)Cαi(C†)
αi

αi+β

(
H ζ

i (t)
(A† +B†t)1−β

) αi
αi+β

,

where C = max j C j.

By Proposition 3.6.2, if zi(0) = 〈1,ζi(0)〉 ≤W and 〈χp,ζi(0)〉 ≤W for all i ∈ I , then

wi(0) = 〈χ,ζi(0)〉 ≤W for all i ∈ I . Then, by Theorem 3.3.2, there is T1 < ∞ such that for all

fluid model solutions ζ satisfying ζ(0) ∈ KI
1 and maxi∈I (〈1,ζi(0)〉,〈χp,ζi(0)〉) ≤W , we have

H ζ(t) ≤ 1 for all t ≥ T1. Then by the definition of H ζ(·) and the fact that A† ≥ 1, we have
H ζ

i (t)
(A†+B†t)1−β

≤ 1 for all i ∈ I and t ≥ T1. On setting

γ = min
i∈I

 κiρ̃i

(αi +1)Cαi(C†)
αi

αi+β

 , α
† = max

i∈I
αi and γ

† =
γ

I
α†

α†+β

,

and noting that x
αi

αi+β ≥ x
α†

α†+β for all i ∈ I when 0 < x≤ 1, it follows from the above that for all
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t ≥ T1,

∑
i∈I+(z(t))

κiρ̃i

αi +1

(
zi(t)
Λi(t)

)αi

≥ γ ∑
i∈I+(z(t))

(
H ζ

i (t)
(A† +B†t)1−β

) α†

α†+β

≥ γ

(A† +B†t)
α†(1−β)

α†+β

max
i∈I

(H ζ

i (t))
α†

α†+β

≥ γ

(A† +B†t)
α†(1−β)

α†+β

max
i∈I

{(
H ζ

i (t)
αi +1

) α†

α†+β

}

≥ γ

(A† +B†t)
α†(1−β)

α†+β

(
∑i∈I

H ζ

i (t)
αi+1

I

) α†

α†+β

=
γ† (H ζ(t))

α†

α†+β

(A† +B†t)
α†(1−β)

α†+β

. (3.58)

Then, by Corollary 3.3.1, the density K ζ(·) for H ζ(·) satisfies for all t ≥ T1,

K ζ(t)≤−δ
γ† (H ζ(t))

α†

α†+β

(A† +B†t)
α†(1−β)

α†+β

. (3.59)

Let η = inf{t ≥ 0 : H ζ(t) = 0}. On [0,η),
(

H ζ(·)
) β

α†+β is absolutely continuous with density

given by the left-hand member of the following string of (in)equalities, which hold for all

T1 ≤ t < η:

β

α† +β
H ζ(t)

−α†

α†+β K ζ(t)≤ β

α† +β

 −δγ†

(A† +B†t)
α†(1−β)

α†+β

=−γ
‡ d(A† +B†t)

β(1+α†)
α†+β

dt
(3.60)
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where γ‡ = δγ†

B†(1+α†)
> 0. Integrating in time, we obtain for T1 ≤ t < η,

(H ζ(t))
β

α†+β ≤ (H ζ(T1))
β

α†+β − γ
‡(A† +B†t)

β(1+α†)
α†+β + γ

‡(A† +B†T1)
β(1+α†)

α†+β . (3.61)

The right-hand side of (3.61) goes to−∞ as t→∞. Because H ζ(·) is non-negative, it follows that

H ζ(·) reaches zero in finite time and stays there forever after. Assuming ζ(0) ∈KI
1, by Corollary

3.4.1 and (2.5), ζ(t) ∈KI
1 for all t ≥ 0, and it follows that ζ(t) = 0 for all t such that H ζ(t) = 0.

Moreover, since H ζ(T1) is bounded by one, and T1 was chosen to be the same for all fluid model

solutions ζ satisfying ζ(0) ∈KI
1 and maxi∈I (〈1,ζi(0)〉,〈χp,ζi(0)〉)≤W , it follows that there is

a uniform bound TW < ∞ for the time for these fluid model solutions to reach the zero state and

stay there forever after.
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Chapter 4

Asymptotic Behavior of the Critical Fluid

Model

In this chapter, we analyze the asymptotic behavior (as time goes to infinity) of measure-

valued solutions to the critical fluid model for bandwidth sharing. In Section 4.1, we introduce

the set-up and notation for the critical fluid model. In this chapter, we restrict to where αi is

a constant for all i, which we will denote by a scalar α ∈ (0,∞). (Note that in this chapter, α

will be a scalar rather than a vector in the previous chapter.) In Section 4.2, we introduce the

characterization of its invariant states as developed by Gromoll and Williams [GW09]. We also

recall some preliminary properties of fluid model solutions, taken from Chapter 3. In Section 4.3,

we introduce key assumptions on fluid model parameters, under which our results will be proved.

In Section 4.4, we reuse the symbol H from Chapter 3 to denote a new function for this chapter,

and define functions K and F , which are used in defining our Lyapunov function G in Section 4.7,

and proving its properties. We reuse the symbol H ζ (respectively K ζ) from Chapter 3 and define

these new functions too, as the composition of H (respectively K) with a fluid model solution ζ.

Under our assumptions, the function K ζ will be shown to be the density in time of H ζ.

This relationship between H ζ and K ζ, and a non-positive upper bound on K ζ, is stated in the key
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result, Theorem 4.4.1, in Section 4.4.3. For the proof of this theorem, given in Section 4.9, we

use a smooth approximation of fluid model solutions that was also used in Chapter 3, and which

is similar to a smoothing used by Puha and Williams [PW16] and Mulvany et al. [MPW19]. For

the proof of an associated lemma (Lemma 4.4.4), we also employ some inequalities (see Lemmas

3.4.1–3.4.3) from Chapter 3, which are similar to ones developed by Paganini et al. [PTFA12].

Conditions for sharpness of an inequality in Lemma 4.4.4 are new here and useful.

The function F is defined in Section 4.4.4 via an optimization problem, which is similar

to one used by Kelly and Williams [KW04] for the case of Poisson arrivals and exponential file

sizes. Section 4.5 presents a characterization of solutions of this optimization problem and of the

optimization problem used to define the bandwidth sharing policy, and in Section 4.6, we give a

further characterization of the invariant states for the fluid model. The proofs of these results are

similar to those of results in [KW04]. Our Lyapunov function, G, and its composition, Gζ, with a

fluid model solution, ζ, is defined in Section 4.7. Key properties of G are stated there and proved

in Section 4.10.3.

In Section 4.8, we state the main results of this chapter. These describe the asymptotic

behavior of Gζ as time goes to infinity, i.e., that it decreases monotonically and converges

uniformly to zero for all fluid model solutions starting in suitable relatively compact sets, and

that fluid model solutions converge uniformly to the invariant manifold starting in such sets. The

proofs of these main results are given in Section 4.11. These proofs draw on some arguments

first introduced in [PW16], where the asymptotic behavior of a critical fluid model for a single

class processor sharing queue was studied. These arguments were extended in [MPW19] to

a critical fluid model of a multiclass processor sharing queue. However, for the bandwidth

sharing (network) model considered here, key details for many parts of the arguments are more

complicated than in either of these prior works. In particular, our Lyapunov function is different,

we have a much more general bandwidth allocation policy, and we need to deal with the singular,

but realistic, situation where the fluid level for some routes reaches zero.
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In this chapter, in referencing arguments that we generalize from [PW16, MPW19], we

shall generally refer to the first paper [PW16], from which the arguments were adapted for

[MPW19]. In the course of proving the main results, along the way, in Lemma 4.11.1 we prove

that when there is non-zero fluid flow on a route, the ratio of the total fluid mass on the route to

the bandwidth allocated to that route is bounded for all time, and we use this to prove in Lemma

4.11.2 that any fluid model solution starting in one of our relatively compact sets stays within a

(larger) relatively compact set from the same family for all time, where our relatively compact

sets are more general than those in [PW16]. Besides the proof of properties of G, Section 4.10

develops some properties of resource level workload, the relationship between H and F , and a

bound on the total mass of fluid model solutions when started in suitable relatively compact sets,

as preliminaries to the proofs of the main results. For reference, Appendix B gives some basic

background on hazard rates.

4.1 Basic Assumptions for the Critical Fluid Model

In this chapter throughout, beyond the assumptions in Chapter 2, we assume here that

the incidence matrix R has full row rank J and that the file size distributions ϑi, i ∈ I have finite

second as well as first moments. Furthermore, in this chapter, α ∈ (0,∞) and we assume αi = α

for all i ∈ I . Note that α is now a scaler rather than the vector in Chapter 3.

Remark 4.1.1. For each i ∈ I , since ϑi has finite second moment, ϑe
i has finite mean given by

〈χ,ϑe
i 〉=

µi

2
〈χ2,ϑi〉. (4.1)

Remark 4.1.2. For the critical fluid model studied in this chapter, our proof of Theorem 4.8.1,

which shows that the Lyapunov function constructed in this chapter decreases along fluid model

solutions, extends to the situation where αi depends on i. However, our proofs of Theorems
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4.8.2 and 4.8.3, which demonstrate that the Lyapunov function decreases to zero and fluid model

solutions converge to the invariant manifold, depend on the scaling property that φi(rz) = φi(z)

for all i ∈ I , z ∈ RI
+ and r > 0. However, this property does not hold when αi depends on i.

Notice the fluid limit result proved by Gromoll and Williams [GW09] yields fluid model

solutions which have initial states that are continuous measures and which have finite workload,

i.e., for which ζ(0) ∈ KI ∩MI
1. Indeed, in order for fluid model solutions to be continuous

functions of time, the initial condition cannot have any atoms. For the analysis of Chapter 3, the

initial conditions were required to satisfy ζ(0) ∈KI∩MI
1. Here for our analysis of the critical

case, we will ultimately assume that ζ(0) ∈KI
υ for some υ > 0, where

KI
υ = {ξ ∈KI : 〈1[x,∞),ξi〉 ≤ υ〈1[x,∞),ϑ

e
i 〉 for all x ∈ R+, i ∈ I}. (4.2)

We note that since ξ ∈KI and ϑe have no atoms, in (4.2), 1[x,∞) can be replaced by 1(x,∞) without

changing the definition. So we can use the following alternative representation:

KI
υ = {ξ ∈KI : 〈1(x,∞),ξi〉 ≤ υ〈1(x,∞),ϑ

e
i 〉 for all x ∈ R+, i ∈ I}. (4.3)

We shall define certain functions on

MI
υ = {ξ ∈MI : 〈1[x,∞),ξi〉 ≤ υ〈1[x,∞),ϑ

e
i 〉 for all x ∈ R+, i ∈ I}, (4.4)

which contains the closure of KI
υ. Note that in (4.4), we cannot replace 1[x,∞) by 1(x,∞), without

changing the definition. Indeed, if ξ ∈MI
υ, then 〈1(x,∞),ξi〉 ≤ υ〈1(x,∞),ϑ

e
i 〉 for all x ∈ R+, i ∈ I ,

but the converse is not true in general as ξi could have an atom at zero. Note that for any ξ ∈MI
υ,

we have for each i ∈ I , 〈1,ξi〉 ≤ υ and

〈χ,ξi〉=
∫

∞

0
〈1(x,∞),ξi〉dx≤ υ

∫
∞

0
Ne

i (x)dx = υ〈χ,ϑe
i 〉=

υµi

2
〈χ2,ϑi〉< ∞. (4.5)

51



It follows that MI
υ is compact as a subset of MI and so KI

υ, although not closed, is relatively

compact as a subset of MI; see Lemma 15.7.5 of [Kal83] for the method of proof.

A small comment on notation is in order here. In this chapter, we only refer to MI
υ with

general υ > 0. Consequently, when we refer to MI
1, we do not mean MI

υ with υ = 1.

4.2 Invariant States

Under a natural condition on the parameters R,C,ν,ϑ, there exist fluid model solutions

that are time invariant. Following Section 6 of [GW09], we call these invariant states for the fluid

model.

Definition 4.2.1. A vector of measures ξ ∈MI is an invariant state for the fluid model if there is

a fluid model solution ζ satisfying ζ(t) = ξ for all t ≥ 0.

To help describe invariant states, let

P = {z ∈ RI
+ : φi(z) = ρi for all i ∈ I+(z)}. (4.6)

Theorem 6.3 of [GW09] gives necessary and sufficient conditions for the existence of invariant

states for the fluid model and a representation for the invariant states. For convenience, we

formulate these results as a proposition here and refer readers to [GW09] for the proof.

Proposition 4.2.1. There exist invariant states for the fluid model if and only if

Rρ≤C. (4.7)

When (4.7) holds, the set of invariant states is given by

M = {ξ ∈MI : ξi = ziϑ
e
i , for all i ∈ I and some z ∈ P}. (4.8)
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Remark 4.2.1. We call M the invariant manifold for the fluid model.

4.2.1 Some Properties of Fluid Model Solutions

The first two propositions in this subsection are the same as Corollary 3.4.1 and Lemma

3.4.6 in Section 3.4 of Chapter 3, respectively. For later use, we state the results here without

proof.

Proposition 4.2.2. Suppose that ϑ ∈KI and that ζ is a fluid model solution with ζ(0) ∈KI. Then

ζ(t) ∈KI for all t ≥ 0.

Remark 4.2.2. The assumption on ϑ is in addition to the basic requirements that its components

do not charge the origin and have finite first and second moments. The assumption on ϑ in

Proposition 4.2.2 is automatically satisfied if our Assumption 4.2 (stated in Section 4.3) holds.

Proposition 4.2.3. Suppose that ζ is a fluid model solution, i ∈ I and 0 ≤ s < t < ∞ such that

ζi(r) 6= 0 for all r ∈ [s, t]. Then

Mi
t(x) = Mi

s(x+Si
s,t)+νi

∫ t

s
Ni(x+Si

u,t)du for all x ∈ R+. (4.9)

Remark 4.2.3. If ζ is a fluid model solution, i ∈ I and 0≤ s0 < t < ∞ such that ζi(r) 6= 0 for all

r ∈ (s0, t] and ζi(s0) = 0, then (4.9) holds for s ∈ (s0, t] and letting s ↓ s0, since Mi
s(x+Si

s,t) ≤

Mi
s(0) = zi(s)→ zi(s0) = 0 as s→ s0, by taking the limit as s→ s0 in (4.9), we obtain

Mi
t(x) = νi

∫ t

s0

Ni(x+Si
u,t)du for all x ∈ R+. (4.10)

4.3 Key Assumptions

In this section, we first state additional assumptions on fluid model parameters for the

critical case and on file size distributions needed for our analysis.
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4.3.1 Critical Parameters

For our main results, we shall assume that the fluid model is critical, that is, the parameters

(R,ρ,C) satisfy the following assumption.

Assumption 4.1. We assume that

∑
i∈I

R jiρi ≤C j for all j ∈ J , (4.11)

and that J∗ = { j ∈ J : ∑i∈I R jiρi =C j} is non-empty. Furthermore, without loss of generality, we

assume that the first J∗ = |J∗| elements of J correspond to the set J∗.

Assumption 4.1 requires that the average load on each resource is less than or equal to its

capacity and that there exists at least one resource that is fully loaded.

Remark 4.3.1. The Lyapunov function defined later in this chapter could also be applied when

J∗ is empty. Since the stability result for that strictly subcritical case has already been shown in

Chapter 3 with weaker assumptions, we focus only on the critical case here, where at least one

resource is fully loaded.

4.3.2 File Size Distributions

The following assumption will be used in the proofs of Lemmas 4.3.1 and 4.4.1, which

are used to prove Lemma 4.4.2. The latter gives the continuity in time of H ζ, the composition of

the function H (defined below) with a suitable fluid model solution ζ. This continuity property

ultimately features in our proof of the absolute continuity of H ζ as a function of time and the

convergence of fluid model solutions to the invariant manifold.

Assumption 4.2. For each i ∈ I , assume the file size distribution ϑi is continuous and there is a
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finite constant Cϑ such that

Ni(x)≤CϑNe
i (x) for all x ∈ [0,∞), i ∈ I . (4.12)

Remark 4.3.2. We already assumed in Section 4.1 that ϑi has finite first and second moments and

Assumption 4.2 is in addition to this. Condition (4.12) is equivalent to ϑe
i having bounded hazard

rate, which implies the support of ϑe
i (and hence of ϑi) is unbounded. A sufficient condition for

ϑe
i to have bounded hazard rate is that ϑi is absolutely continuous with bounded hazard rate. For

the definition and some examples related to hazard rate, see Appendix B.

Assumption 4.2 is used to prove the following lemma, which will help us to analyze the

asymptotic behavior of fluid model solutions.

Lemma 4.3.1. Suppose that Assumption 4.2 holds. Fix T > 0 and υ > 0. For any fluid model

solution ζ with ζ(0) ∈KI
υ, we have ζ(t) ∈KI

υ∗T
for all t ∈ [0,T ], where υ∗T = υ+CϑT maxi∈I νi.

Proof. Let ζ be a fluid model solution with ζ(0) ∈KI
υ. For t ∈ (0,T ] and i ∈ I , either zi(t) = 0 or

zi(t) 6= 0. If zi(t)= 0, then Mi
t(x)

Ne
i (x)

= 0 for all x∈ [0,∞). If zi(t) 6= 0, let t i
0 = sup{s∈ [0, t) : zi(s)= 0}

where sup /0= 0. We consider the case where t i
0 > 0 first. Then ζi(·) is nonzero on (t i

0, t], ζi(t i
0) = 0

and by Remark 4.2.3 and Assumption 4.2, for all x ∈ [0,∞),

Mi
t(x)

Ne
i (x)
≤ νi

Ni(x)
Ne

i (x)
(t− t i

0)≤ νiCϑ(t− t i
0). (4.13)

If t i
0 = 0, then ζ(·) is nonzero on (0, t]. In this case, by (3.24), for all s ∈ (0, t), we have for all

x ∈ [0,∞),

Mi
t(x)≤Mi

s(x)+νiNi(x)(t− s).

On letting s ↓ 0 and using the facts that s→ ζ(s) is continuous and ζ(0) ∈ KI
υ, together with
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Assumption 4.2, we obtain

Mi
t(x)

Ne
i (x)
≤ υ+νiCϑt, for all x ∈ [0,∞).

Combining the above with the fact that ζ(0) ∈KI
υ, we obtain for any t ∈ [0,T ], Mi

t(x)
Ne

i (x)
≤ υ∗i,T for

all x ∈ [0,∞), where υ∗i,T = υ+νiCϑT . The desired result follows from this, Proposition 4.2.2

and the alternative representation of KI
υ∗T

(see (4.3)).

Remark 4.3.3. In Lemma 4.3.1, υ∗T depends on T . Later, after more results have been developed,

we shall prove in Lemma 4.11.2, with the addition of Assumption 4.1, that υ∗T can be chosen not

to depend on T .

4.4 Functions for Fluid Model Analysis

In this section, we reuse the following symbols: H, H ζ, K ζ and Hi,H ζ

i ,K
ζ

i for each i∈ I ,

to define functions in preparation for the Lyapunov function to be defined in Section 4.7. For

critical fluid model analysis, we also define function K and F , which together with H, are used

in defining our Lyapunov function and establishing its properties. We describe some properties

of H ζ and K ζ, the compositions of H and K, respectively, with a fluid model solution, ζ. In

particular, we give the relationship between H ζ and K ζ, and some properties of F .

We shall define functions H and K on
⋃

υ>0
MI

υ and then apply them to fluid model solutions

ζ with initial conditions in
⋃

υ>0
KI

υ to obtain functions H ζ and K ζ of time. The larger domain for

H and K is needed for the proof of Theorem 4.8.2.
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4.4.1 The Functions H and H ζ

Definition 4.4.1. Given ξ ∈ ∪υ>0MI
υ, for each i ∈ I , define

Hi(ξ) =
κi

ρα
i

∫
∞

0

( 〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉

)α+1

〈1(x,∞),ϑ
e
i 〉dx, (4.14)

and define

H(ξ) =
1

α+1 ∑
i∈I

Hi(ξ). (4.15)

Remark 4.4.1. For ξ ∈
⋃

υ>0
MI

υ, if 〈1(x,∞),ϑ
e
i 〉 = 0, then 〈1(x,∞),ξi〉 = 0 and we interpret the

integrand in (4.14) at x as being zero. Note that when Assumption 4.2 holds, 〈1(x,∞),ϑ
e
i 〉> 0 for

all x ∈ [0,∞), since the support of ϑi is unbounded in this case.

The function H will be used in defining our new Lyapunov function. For ξ ∈ ∪υ>0MI
υ,

there is υ > 0 such that ξ ∈MI
υ and then Hi(ξ)≤ κiυ

α+1

ρα
i
〈χ,ϑe

i 〉< ∞ for all i ∈ I . It follows that

Hi(ξ), i ∈ I , and H(ξ) are finite. Furthermore, we have the following lemma.

Lemma 4.4.1. The functions Hi, i ∈ I , and H are continuous, non-negative, real-valued functions

on MI
υ for each υ > 0.

Proof. The non-negative, real-valued property follows from observation and the last paragraph

before this lemma. For the continuity, fix υ > 0. Suppose that {ξn}∞
n=1 is a sequence in MI

υ

converging (weakly) to ξ ∈ MI
υ. Then as n→ ∞, 〈1(x,∞),ξn〉 → 〈1(x,∞),ξ〉 for almost every

x ∈ [0,∞). Since {ξn}n∈N ⊂ MI
υ, the sequence of integrands in the definition of Hi(ξn) is

dominated by υα+1Ne
i (·), which is integrable because 〈χ,ϑe

i 〉 < ∞. Thus, by the dominated

convergence theorem, Hi(ξn)→ Hi(ξ) as n→ ∞ for each i ∈ I . It follows that Hi, i ∈ I and H

are continuous on MI
υ.

Remark 4.4.2. The form of H is largely inspired by two prior works: Mulvany et al. [MPW19]

and Paganini et al. [PTFA12]. In [MPW19], building on work of Puha and Williams [PW16],
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Mulvany et al. considered a relative entropy functional for comparing the probability measure

on R+ with density proportional to pi(x) = 〈1(x,∞),ξi〉 to the probability measure on R+ with

density proportional to qi(x) = 〈1(x,∞),ϑ
e
i 〉. When normalized to be probability densities, pi

and qi are the densities of excess lifetime distributions associated with ξi and ϑe
i , respectively.

The relative entropy employed by Mulvany et al. [MPW19] uses u→ u ln(u) in place of the

function f (u) = uα+1 that we have used in the integral in (4.14). The form of Hi(ξ) used here

is proportional to the so-called f -divergence [Csi67] for the two finite measures on R+ that

have densities pi and qi. Further inspiration for our use of f in place of u→ u ln(u) comes from

Paganini et al. [PTFA12]; see also Chapter 3, as in [FW20], for the inclusion of the weights

κi. In those works, for the strictly subcritical case, f was applied directly to the function pi (no

quotient) and integrated with a reference density θi that involved ϑe
i , to give the i-th Lyapunov

function component. In fact, if one formally takes the limit in the Lyapunov function in [PTFA12]

and Chapter 3 as critical loading is approached on all resources, one obtains the Hi and H in

(4.14) and (4.15) for the case where equality holds in (4.7) (all resources are fully loaded).

Definition 4.4.2. Suppose that Assumption 4.2 holds. Given a fluid model solution ζ with

ζ(0) ∈ ∪υ>0KI
υ, for each t ≥ 0 and i ∈ I , define

H ζ

i (t) = Hi
(
ζ(t)

)
=

κi

ρα
i

∫
∞

0

(
Mi

t(x)
Ne

i (x)

)α+1

Ne
i (x)dx for all i ∈ I , (4.16)

and let

H ζ(t) = H
(
ζ(t)

)
=

1
α+1 ∑

i∈I
H ζ

i (t). (4.17)

Lemma 4.4.2. Suppose that Assumption 4.2 holds. Let ζ be a fluid model solution with ζ(0) ∈

∪υ>0KI
υ. Then for each i ∈ I , H ζ

i : [0,∞)→ [0,∞) is well defined and continuous on [0,∞).

Proof. This follows immediately on combining Lemmas 4.3.1, 4.4.1 and the fact that t→ ζ(t) is

continuous.
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4.4.2 The Functions K and K ζ

In this section, we introduce the functions K and K ζ. The latter arises in taking the

derivative of the function H ζ(·).

Definition 4.4.3. Given ξ ∈ ∪υ>0MI
υ, for each i ∈ I , define

Ki(ξ) = κiρ
−α

i

(
−φi(〈1,ξ〉)(〈1,ξi〉)α (4.18)

+
∫

∞

0

( 〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉

)α

〈1(x,∞),ϑi〉
(
− αφi(〈1,ξ〉)
〈1,ξi〉

〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉〈χ,ϑi〉

+νi(α+1)
)
1(0,∞)(〈1,ξi〉)dx

)
.

Then with z = 〈1,ξ〉, define

K(ξ) =
1

α+1 ∑
i∈I+(z)

Ki(ξ). (4.19)

Remark 4.4.3. For ξ ∈
⋃

υ>0
MI

υ, if x ∈ R+ such that 〈1(x,∞),ϑ
e
i 〉 = 0, then 〈1(x,∞),ξi〉 = 0 and

we interpret the integrand in the integral in (4.18) as being zero at x. In (4.18), if ξi = 0,

we interpret the right member of the equality to be zero and so Ki(ξ) = 0 in this case. If

ξi 6= 0, there is υ > 0 such that 〈1(x,∞),ξi〉 ≤ υ〈1(x,∞),ϑ
e
i 〉 for all x ∈ [0,∞). Then noticing∫

∞

0 〈1(x,∞),ϑi〉dx = 〈χ,ϑi〉 < ∞, we have |Ki(ξ)| < ∞. Note that (4.19) can also be written as

K(ξ) = ∑i∈I Ki(ξ)/(α+1).

The following property of the Ki and K will be used in proving our main results.

Lemma 4.4.3. Fix υ > 0. The functions Ki, i ∈ I , and K are real-valued, upper semicontinuous

functions on MI
υ. Furthermore, if ξ∈MI

υ and i∈ I such that zi = 〈1,ξi〉 6= 0, then Ki is continuous

on MI
υ at ξ.
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Proof. The real-valuedness of Ki, i ∈ I , and K follows from Remark 4.4.3. For ξ ∈MI
υ, let

k(1)i (ξ) =−κiρ
−α

i φi(〈1,ξ〉)(〈1,ξi〉)α,

k(2)i (ξ) =−κiρ
−α

i

∫
∞

0

( 〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉

)α

〈1(x,∞),ϑi〉
(

αφi(〈1,ξ〉)
〈1,ξi〉

〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉〈χ,ϑi〉

)
1(0,∞)(〈1,ξi〉)dx,

k(3)i (ξ) = κiρ
−α

i

∫
∞

0

( 〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉

)α

〈1(x,∞),ϑi〉νi(α+1)1(0,∞)(〈1,ξi〉)dx.

Fix ξ ∈MI
υ and let z = 〈1,ξ〉. We first show that, for each i ∈ I+(z), Ki is continuous on MI

υ at

ξ. Fix i ∈ I+(z). Suppose {ξn}n∈N is a sequence in MI
υ that converges to ξ (weakly). We want

to show that lim
n→∞

Ki(ξ
n) = Ki(ξ). For k(1)i , by the continuity of φi(·) at z when zi 6= 0, and the

fact that ξn converges to ξ implying 〈1,ξn〉 → 〈1,ξ〉, we have lim
n→∞

k(1)i (ξn) = k(1)i (ξ). For k(2)i ,

we have 〈1(x,∞),ξ
n
i 〉 → 〈1(x,∞),ξi〉 as n→ ∞ for almost every x ∈ [0,∞), 〈1,ξn

i 〉 → zi 6= 0 and

φi(〈1,ξn〉)→ φi(〈1,ξ〉) as n→ ∞ (by the continuity of φi at z such that zi 6= 0),
〈1(x,∞),ξ

n
i 〉

〈1(x,∞),ϑ
e
i 〉
≤ υ

for all n ∈ N and x such that 〈1(x,∞),ϑi〉 > 0, and
∫

∞

0 〈1(x,∞),ϑi〉dx = 〈χ,ϑi〉 < ∞, and so using

the fact that φi(〈1,ξn〉) ≤ max j∈J C j for all n ∈ N, we can apply the dominated convergence

theorem to conclude that lim
n→∞

k(2)i (ξn) = k(2)i (ξ). For k(3)i , we can also apply the dominated

convergence theorem to conclude that lim
n→∞

k(3)i (ξn)= k(3)i (ξ). It follows that Ki = k(1)i +k(2)i +k(3)i ,

is continuous on MI
υ at ξ for i ∈ I+(z). This proves the last statement of the lemma.

For i ∈ I\I+(z), we will show that Ki is upper semicontinuous on MI
υ at ξ, where ξi = 0.

For this it suffices to show for {ξn}n∈N, a sequence in MI
υ that converges to ξ (weakly), we

have limsup
n→∞

Ki(ξ
n) ≤ Ki(ξ). Notice that k(1)i (ξn) ≤ 0 and k(2)i (ξn) ≤ 0, while k(1)i (ξ) = 0 and

k(2)i (ξ) = 0. It follows that limsup
n→∞

(k(1)i (ξn)+ k(2)i (ξn)) ≤ k(1)i (ξ)+ k(2)i (ξ). For k(3)i (ξn), the

integrand is dominated by the integrable function x→ υανi(α+1)〈1(x,∞),ϑi〉 and tends to zero

as n→ ∞, since 〈1(x,∞),ξ
n
i 〉 ≤ zn

i → zi = 0 as n→ ∞. It follows by the dominated convergence

theorem that k(3)i (ξn)→ 0= k(3)i (ξ) as n→∞. Combining, we see that Ki is upper semicontinuous

on MI
υ at ξ, for i /∈ I+(z).

Since ξ ∈MI
υ was arbitrary and any continuous function is upper semicontinuous, it
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follows that Ki is upper semicontinuous on MI
υ for each i ∈ I . Furthermore, K = ∑i∈I Ki/(α+1)

is upper semicontinuous on MI
υ, being a linear combination, with positive coefficients, of such

functions.

The following is a key lemma, proved in Section 4.9.1. For the statement of this, let δ0

denote the probability measure on R+ that has unit mass at the origin and define

M ∗ = {ξ ∈MI : for each i ∈ I , ξi = aiδ0 +biϑ
e
i , where a ∈ RI

+ and b ∈ P}. (4.20)

Lemma 4.4.4. Given ξ ∈
⋃

υ>0
MI

υ, with z = 〈1,ξ〉 and zi = 〈1,ξi〉 for each i ∈ I , we have

Ki(ξ)≤ κizα
i

(
−φi(z)

ρα
i

+
ρi(

φi(z)
)α

)
1(0,∞)(zi). (4.21)

Moreover, if Assumption 4.1 is satisfied, we have

K(ξ)≤ ∑
i∈I+(z)

κi

(
zi

φi(z)

)α(
ρi−φi(z)

)
≤ 0, (4.22)

where equality holds everywhere in (4.22) if and only if ξ ∈M ∗.

Definition 4.4.4. Suppose that Assumption 4.2 holds. Given a fluid model solution ζ with

ζ(0) ∈ ∪υ>0KI
υ, for each t ≥ 0 and i ∈ I , define

K ζ

i (t) = Ki
(
ζ(t)

)
=

κi

ρα
i

(
−Λi(t)

(
zi(t)

)α

+
∫

∞

0

(
Mi

t(x)
Ne

i (x)

)α

Ni(x)
(
− αΛi(t)

zi(t)
Mi

t(x)
Ne

i (x)〈χ,ϑi〉
+νi(α+1)

)
1(0,∞)

(
zi(t)

)
dx

)
(4.23)
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and

K ζ(t) =
1

α+1 ∑
i∈I+(z(t))

K ζ

i (t) for all t ≥ 0. (4.24)

Lemma 4.4.5. Suppose that Assumption 4.2 holds. Let ζ be a fluid model solution with ζ(0) ∈

∪υ>0KI
υ. Then K ζ

i , i ∈ I , and K ζ are real-valued, upper semicontinuous functions on [0,∞).

Furthermore, for each i ∈ I , K ζ

i is continuous on {t ≥ 0 : zi(t)> 0}.

Proof. This follows immediately on combining Lemma 4.3.1 with Lemma 4.4.3 and the continuity

of ζ(·) on [0,∞).

4.4.3 Relationship between H ζ and K ζ

Theorem 4.4.1. Suppose that Assumptions 4.1 and 4.2 hold. Further suppose that ζ is a fluid

model solution with ζ(0) ∈ ∪υ>0KI
υ. For each i ∈ I , K ζ

i (·) is integrable over [0, t] for each t ≥ 0

and the function H ζ

i (·) is absolutely continuous with respect to Lebesgue measure on [0,∞), with

density K ζ

i (·), and so

H ζ

i (t)−H ζ

i (0) =
∫ t

0
K ζ

i (s)ds for each t ≥ 0. (4.25)

Consequently, H ζ(·) is absolutely continuous with respect to Lebesgue measure on [0,∞) and

K ζ(·) is a density for H ζ(·). Furthermore, for each t ≥ 0,

K ζ(t)≤ ∑
i∈I+(z(t))

κi

(
zi(t)
Λi(t)

)α(
ρi−Λi(t)

)
≤ 0, (4.26)

where equality holds everywhere in (4.26) if and only if ζ(t)∈M . Hence H ζ(·) is non-increasing

on [0,∞), and is strictly decreasing at times t ∈ [0,∞) where ζ(t) /∈M .

The proof of Theorem 4.4.1 is given in Section 4.9.
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4.4.4 The Function F

One characterization of the invariant states for the fluid model that we will give uses the

following optimization problem. This optimization problem is similar to one used by Kelly and

Williams [KW04], who studied properties of the fluid model when ϑi is exponentially distributed

for each i ∈ I . The main difference in the form from [KW04] is that in two places (one in the

function F and one in the constraint of the optimization problem (4.27)), 1
µi

from [KW04] is

replaced by 〈χ,ϑe
i 〉 for i ∈ I . We now describe the optimization problem.

For z ∈ RI
+, let

F(z) =
1

α+1 ∑
i∈I

κi〈χ,ϑe
i 〉

ρα
i

zα+1
i .

For w̃ ∈ RJ∗
+ , consider the optimization problem

minimize F(z) subject to ∑
i∈I

R jizi〈χ,ϑe
i 〉 ≥ w̃ j for all j ∈ J∗ and z ∈ RI

+. (4.27)

In Section 4.6, we give several different characterizations of the set P , which features in the

characterization (4.8) of invariant states for the fluid model. One of these uses the optimization

problem (4.27). For w̃ ∈ RJ∗
+ , let F(w̃) be the optimal value attained in the optimization problem

(4.27) and let ∆(w̃) be the optimizing value of z. These exist and are unique. The following

proposition gives properties of F . Its proof is the same as that of Lemma 6.3 of [KW04] with

diag(〈χ,ϑe〉) in place of M−1 = diag(µ−1
i : i ∈ I ), and we refer the reader to [KW04] for the

details. We note that this proof uses the fact that R has full row rank.

Proposition 4.4.1. The functions F : RJ∗
+ →R+ and ∆ : RJ∗

+ →RI
+ are continuous. In addition, F

is a non-decreasing function, i.e., for w̃, w̃† ∈RJ∗
+ , if w̃ j ≤ w̃†

j for each j ∈ J∗, then F(w̃)≤ F(w̃†).

The non-decreasing property of F will be a key property for proving that our Lyapunov

function, when applied to a fluid model solution, yields a non-increasing function of time.
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4.5 Characterization of Solutions for the Optimization Prob-

lems (2.2) and (4.27)

In this section, we characterize the optimizing solutions for the optimization problems

used to define the bandwidth sharing policy and F . The first optimization problem considered

here is (2.2) and the second is (4.27). We characterize the optimal solutions for both problems

below, so as to give an alternative characterization of the invariant states. The idea of using

these two optimization problems to characterize invariant states was employed by Kelly and

Williams [KW04] when the file sizes are exponentially distributed. Proposition 4.5.1, which

characterizes the optimal solution for (2.2), is equivalent to Lemma A.4 in [KW04]. Proposition

4.5.2, which characterizes the optimal solution for (4.27), is similar to Lemma 6.4 in [KW04].

Both propositions are proved using Lagrange multipliers. For the proof of Proposition 4.5.2, in

the proof of Lemma 6.4 in [KW04], substitute 〈χ,ϑi
e〉 for µ−1

i in the constraints and in one place

in F . The proof uses the fact that R has full row rank. We refer readers to [KW04] for details of

the proofs of these two propositions.

Proposition 4.5.1. Fix z ∈RI
+\{0}, where 0 is the origin of RI

+. A vector ψ = (ψi : i ∈ I )∈O(z)

is the unique optimal solution of (2.2), i.e. ψ = φ(z), if and only if there is p ∈ RJ
+ such that

p j
(
C j− ∑

i∈I+(z)
R jiψi

)
= 0 for all j ∈ J , (4.28)

∑
j∈J

p jR ji > 0 for all i ∈ I+(z), (4.29)

ψi = zi

(
κi

∑ j∈J p jR ji

)1/α

for all i ∈ I+(z) and (4.30)

∑
i∈I+(z)

R jiψi ≤C j for all j ∈ J . (4.31)

Proposition 4.5.2. Suppose Assumption 4.1 holds. For each w̃ ∈ RJ∗
+ , a vector z ∈ RI

+ is the
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unique optimal solution of (4.27), i.e. z = ∆(w̃), if and only if there is p ∈ RJ∗
+ such that for each

i ∈ I ,

zi = ρi

(
∑ j∈J∗ p jR ji

κi

)1/α

, (4.32)

and for each j ∈ J∗,

p j

(
∑
i∈I

R jizi〈χ,ϑe
i 〉− w̃ j

)
= 0 and ∑

i∈I
R jizi〈χ,ϑe

i 〉 ≥ w̃ j.

4.6 Further Characterizations of Invariant States

In this section, we further characterize the set of invariant states. Under Assumption 4.1,

recall the set of invariant states M is given by (4.8) and P is defined in (4.6). Here we characterize

the set P in two further ways, similar to Lemma 6.4 of Gromoll and Williams [GW09], whose

proof relies on those of Theorems 5.1 and 5.3 of Kelly and Williams [KW04].

Lemma 4.6.1. Suppose Assumption 4.1 holds. The following three conditions are equivalent:

(i) z ∈ P ,

(ii) for some p ∈ RJ∗
+ , zi = ρi

( 1
κi

∑ j∈J∗ p jR ji
)1/α for all i ∈ I ,

(iii) z = ∆(w̌(z)), where w̌ j(z) = ∑i∈I R jizi〈χ,ϑe
i 〉 for all j ∈ J∗.

Proof. The proof is very similar to that of Theorems 5.1 and 5.3 of [KW04], with 〈χ,ϑe
i 〉 replacing

µ−1
i in two places for each i ∈ I . For (i)⇔ (ii), one uses Proposition 4.5.1; and for (ii)⇔ (iii),

one uses Proposition 4.5.2 in place of Lemma 6.4 of [KW04].

Remark 4.6.1. The above characterization of P is slightly different from what is given by Gromoll

and Williams [GW09]. The latter uses w(z) and µ−1
i in the constraints rather than w̌(z) and

〈χ,ϑe
i 〉. Both characterizations are correct and although the difference is subtle, we find that our

form is more useful for our proofs.
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4.7 Lyapunov Function G and Gζ

In this section, we define the Lyapunov function G on
⋃

υ>0
MI

υ and the function Gζ for any

fluid model solution satisfying ζ(0) ∈
⋃

υ>0
KI

υ.

Definition 4.7.1. Given ξ ∈
⋃

υ>0
MI

υ, define

G(ξ) = H(ξ)−F
(
w̃(ξ)

)
(4.33)

where w̃ j(ξ) = ∑i∈I R ji〈χ,ξi〉 for each j ∈ J∗, and F (w̃(ξ)) is the optimal value for the optimiza-

tion problem (4.27) with w̃ = w̃(ξ).

The following lemma is proved in Section 4.10.3.

Lemma 4.7.1. For each υ > 0,

(i) G : MI
υ→ [0,∞) is continuous.

Moreover, if Assumption 4.1 holds, then for any ξ ∈ ∪υ>0MI
υ,

(ii) G(ξ) = 0 if and only if ξ ∈M ∗, where M ∗ is given by (4.20).

Definition 4.7.2. Suppose that Assumption 4.2 holds. Given a fluid model solution ζ with

ζ(0) ∈
⋃

υ>0
KI

υ, define

Gζ(t) = G(ζ(t)) = H ζ(t)−F(w̃(ζ(t))) for all t ≥ 0. (4.34)

Remark 4.7.1. By Lemmas 4.3.1 and 4.7.1, Gζ(·) is well defined and continuous on [0,∞).

4.8 Main Results

The proofs of the next three theorems are given in Section 4.11.
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Theorem 4.8.1. Suppose that Assumptions 4.1 and 4.2 hold. Further suppose that ζ is a fluid

model solution with ζ(0) ∈ ∪υ>0KI
υ. Then

(i) Gζ : [0,∞)→ [0,∞) is continuous,

(ii) for any t ≥ 0, Gζ(t) = 0 if and only if ζ(t) ∈M , and

(iii) Gζ is a non-increasing function on [0,∞) and at times t ∈ [0,∞) where ζ(t) /∈M , Gζ is

strictly decreasing.

Theorem 4.8.2. Suppose that Assumptions 4.1 and 4.2 hold. Fix υ > 0. For any fluid model

solution ζ with ζ(0) ∈KI
υ, Gζ(t) decreases monotonically to zero as t→ ∞. Furthermore, this

convergence is uniform, i.e.,

lim
t→∞

sup{Gζ(t) : ζ is a fluid model solution with ζ(0) ∈KI
υ}= 0. (4.35)

Theorem 4.8.3. Suppose that Assumptions 4.1 and 4.2 hold. Fix υ > 0. For any fluid model

solution ζ satisfying ζ(0) ∈ KI
υ, ζ(t) converges towards M as t → ∞, uniformly for all initial

measures in KI
υ, i.e.,

lim
t→∞

sup{dI(ζ(t),M ) : ζ is a fluid model solution with ζ(0) ∈KI
υ}= 0. (4.36)

Furthermore, given ε > 0, there is δ > 0 such that

sup
t≥0
{dI(ζ(t),M ) : ζ is a fluid model solution with ζ(0) ∈KI

υ and dI(ζ(0),M )< δ} ≤ ε.

(4.37)
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4.9 Proofs of Lemma 4.4.4 and Theorem 4.4.1

4.9.1 Proof of Lemma 4.4.4

For our proof of Lemma 4.4.4, we need Lemmas 3.4.1, 3.4.2 and the following proposition.

Proposition 4.9.1 is nearly the same as Lemma 3.4.3, with the condition for equality in the

inequality specified. Here, we indicate the reasoning for that and leave the reader to consult

Section 3.4 for the rest of the proof for Proposition 4.9.1.

Proposition 4.9.1. For any strictly positive real numbers, a, b, q, we have

− b
qa +

q
ba ≤ (a+1)

q−b
ba , (4.38)

where equality holds if and only if q = b.

Proof of when equality holds in (4.38). The inequality (4.38) comes from the fact that the tangent

line to the graph of y = xa+1 at x = q is a lower support line for the graph. It follows from the

strict convexity of x→ xa+1 that this support line touches the graph only at x = q and hence the

inequality in (4.38) is strict for all b 6= q.

Proof of Lemma 4.4.4. We first prove (4.21). Since both sides of the inequality are zero when

zi = 0, it suffices to consider the case where zi > 0. In this case, we have

ρ
α
i Ki(ξ) =−κiφi(z)zα

i

+κi

∫
∞

0

( 〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉

)α(
(α+1)ρi−

αφi(z)
zi

〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉

)
µiNi(x)dx

≤−κiφi(z)zα
i +κi

∫
∞

0

(
ρizi

φi(z)

)α

ρiµiNi(x)dx (4.39)

= κizα
i

(
−φi(z)+

ρ
α+1
i

(φi(z))
α

)
, (4.40)
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where we used Lemma 3.4.2 with a = α, q = ρi, b = αφi(z)
zi

for zi > 0 to obtain the inequality, and

the fact that
∫

∞

0 µiNi(x)dx = 1 for the last equality. We note here that the inequality in (4.39) is

strict unless 〈1(x,∞),ξi〉= ρizi
φi(z)
〈1(x,∞),ϑ

e
i 〉 for all x ∈R+; this follows for x ∈R+ where Ni(x)> 0

by the uniqueness of the maximum in Lemma 3.4.2, and the relation automatically holds for x

where Ni(x) = 0, since 〈1(x,∞),ϑ
e
i 〉= 0 for such x and ξ ∈MI

υ for some υ > 0. Thus,

Ki(ξ)≤ κizα
i

(
−φi(z)

ρα
i

+
ρi

(φi(z))
α

)
(4.41)

≤ κizα
i (α+1)

ρi−φi(z)
(φi(z))

α , (4.42)

where the last step follows by Proposition 4.9.1 with a = α,b = φi(z) and q = ρi. We note here

that by Proposition 4.9.1, the last inequality is strict unless φi(z) = ρi. The inequality (4.41) yields

(4.21).

Assuming that Assumption 4.1 holds, we shall now use inequality (4.42) to prove (4.22),

and we shall use the conditions for equality in (4.39) and (4.42) to determine conditions for

equality in (4.22). For i ∈ I+(z), U ′
(

φi(z)
zi

)
=
(

zi
φi(z)

)α

. Furthermore, ρ has positive components

and satisfies ∑i∈I R jiρi ≤C j for all j ∈ J , by Assumption 4.1. Then, by (4.42) and replacing

z,ψ,φ(z) by z,ρ,φ(z), respectively, in Lemma 3.4.1, we obtain

K(ξ) =
1

α+1 ∑
i∈I+(z)

Ki(ξ)≤ ∑
i∈I+(z)

κi

(
zi

φi(z)

)α(
ρi−φi(z)

)
≤ 0. (4.43)

Hence (4.22) holds. By the conditions for equality in (4.39) and (4.42), the first inequality in

(4.43) is an equality if and only if 〈1(x,∞),ξi〉= ρizi
φi(z)
〈1(x,∞),ϑ

e
i 〉 for all x ∈ R+ and φi(z) = ρi, for

all i ∈ I+(z). Noting that zi = 0 for all i /∈ I+(z), it then follows that K(ξ) = 0 if and only if for

all i ∈ I , 〈1(x,∞),ξi〉 = ziN
e
i (x) for all x ∈ R+, where z is such that φi(z) = ρi for all i ∈ I+(z).

When the measures are restricted to (0,∞), this is the characteristic property of elements of the

invariant manifold M , as described in (4.8). Because K only captures the behavior of ξ on (0,∞),
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and a general ξ ∈MI could be such that any of its components has an atom at zero, it follows that

K(ξ) = 0 if and only if ξ ∈M ∗, as defined in (4.20).

4.9.2 Smooth Approximation of Measures

We use an approximation argument to prove Theorem 4.4.1. An approximation argument

was also used in Section 3.5.1. Consequently, some propositions and proofs are the same

as in Section 3.5.1 and we record those results here without proof. We focus on the details

that differ from those in Section 3.5.1. For each positive integer n, let ϕn ∈ C∞
c (R) be such that

ϕn≥ 0,ϕn(x) = 0 for all x∈ (−∞,−1
n ]∪ [

1
n ,∞), ϕn(x) = ϕn(−x) for all x > 0, and

∫
Rϕn(x)dx = 1.

Given ξ ∈M and n ∈ N, let ξn be the non-negative, absolutely continuous Borel measure on R+

whose continuous density is given by

dn(x) =
∫
R+

ϕn(x− y)ξ(dy) =
∫
R+

ϕn(y− x)ξ(dy) for x ∈ R+, (4.44)

where we have used the symmetry of ϕn for the last equality. Note that dn(·) is in C∞
b (R+), since

ϕn is infinitely differentiable with compact support and ξ is a finite measure on R+. For any

bounded, Borel measurable function f defined on R+, let ( f ∗ϕn)(y) =
∫
R+

ϕn(y− x) f (x)dx for

y ∈ R+. Then, by Fubini’s theorem,

〈 f ,ξn〉=
∫
R+

f (x)
∫
R+

ϕn(y− x)ξ(dy)dx = 〈 f ∗ϕn,ξ〉. (4.45)

The next two propositions are the same as Lemma 3.5.1 and Lemma 3.5.2, where the first of

these is proved by an argument similar to that in Lemma 7.12 of [PW16]. We refer the reader to

Section 3.5.1 and [PW16] for the proofs noting that they do not rely on whether the fluid model

is in the strictly subcritical regime or not.
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Proposition 4.9.2. Let ξ ∈K∩M1. For each n ∈ N and x ∈ R+, we have

〈
1(x+ 1

n ,∞),ξ
〉
≤ 〈1(x,∞),ξ

n〉 ≤
〈
1(

(x− 1
n )

+,∞
),ξ〉, (4.46)

〈χ,ξ〉− 〈1,ξ〉
n
≤ 〈χ,ξn〉 ≤ 〈χ,ξ〉+ 〈1,ξ〉

n
. (4.47)

Furthermore, we have ξn ∈ A for each n ∈ N and as n→ ∞,

ξ
n w−→ ξ and 〈χ,ξn〉 → 〈χ,ξ〉. (4.48)

Given a fluid model solution ζ, for each t ≥ 0 and i ∈ I , let {ζn
i (t)}∞

n=1 be the approximat-

ing sequence of measures for ζi(t), as defined above with ζi(t) in place of ξ. Similarly, define ϑn
i

for each i ∈ I , n ∈ N. For any positive integer `, let C0,` = {g ∈ C1
b

(
R+

)
: g = 0 on [0, 1

` ]}. For

g ∈ C0,` and all n > `, we have (g∗ϕn)(0) = 0 and (g∗ϕn)
′(0) = 0. It follows that g∗ϕn ∈ C ,

where C is defined in (2.3). For each positive integer n, i ∈ I , t ≥ 0 and x ∈ R+, let ϑ
n,e
i be the

excess lifetime distribution for ϑn
i , and

Mi,n
t (x) = 〈1(x,∞),ζ

n
i (t)〉, Nn

i (x) = 〈1(x,∞),ϑ
n
i 〉, Nn,e

i (x) = 〈1(x,∞),ϑ
n,e
i 〉.(4.49)

We note that ϑ
n,e
i has density Nn

i (·)/〈χ,ϑn
i 〉.

The following proposition shows that for all n sufficiently large, (t,x)→Mi,n
t (x) satisfies

a transport partial differential equation with nonlinear, nonlocal coefficients on intervals of time

where zi(·) is not zero and on intervals for x that are bounded away from zero.

Proposition 4.9.3. Assume that ζ is a fluid model solution. Suppose that i ∈ I and 0≤ a < b < ∞

are such that zi(t) 6= 0 for all t ∈ [a,b]. Then, for each positive integer ` and all n > `, t→Mi,n
t (x)

is continuously differentiable on [a,b] for each fixed x ∈ R+, and x→Mi,n
t (x) is continuously
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differentiable on [1
` ,∞) for each fixed t ∈ [a,b], and furthermore,

∂Mi,n
t (x)
∂t

=
Λi(t)
zi(t)

∂Mi,n
t (x)
∂x

+νiN
n
i (x), (4.50)

for t ∈ [a,b], x ≥ 1
` , where the partial derivatives with respect to time at t = a,b are from the

right, left, respectively, and the partial derivative with respect to x at x = 1/` is from the right.

Remark 4.9.1. From (4.44), for each fixed t ∈ [0,∞), the measure ζn
i (t) on R+ has a continuous

density function given by

mi,n
t (x) =

∫
R+

ϕn(y− x)ζi(t)(dy) for all x ∈ R+. (4.51)

For any fixed x ∈ R+, t→ ∂Mi,n
t (x)
∂x =−mi,n

t (x) (where the derivative at x = 0 is from the right) is

continuous on [0,∞), because the fluid model solution ζi is continuous as a function of time. It

follows that (t,x)→ ∂Mi,n
t (x)
∂x is separately continuous in t and x and hence is jointly measurable

on [0,∞)×R+. Via (4.50), this implies joint measurability of (t,x)→ ∂Mi,n
t (x)
∂t on [a,b]× [1

` ,∞)

for any n > `≥ 1 when zi(t) 6= 0 for all t ∈ [a,b]. Furthermore, from (4.50) and (4.51), we have

for any n > `≥ 1, t ∈ [a,b] and x ∈ R+,

∣∣∣∣∣∂Mi,n
t (x)
∂t

∣∣∣∣∣ ≤ Λi(t)
zi(t)

∣∣∣−mi,n
t (x)

∣∣∣+νiN
n
i (x) (4.52)

≤ Λi(t)sup
y∈R

ϕn(y)+νiN
n
i (x). (4.53)

It follows that (t,x)→ ∂Mi,n
t (x)
∂t is measurable and integrable over the interval [a,b]× [1

` , `] for

each fixed n > `≥ 1. These measurability and integrability properties will be needed for a use of

Fubini’s theorem in the proof of Theorem 4.4.1 below.

Lemma 4.9.1. Suppose that ϑ ∈ KI and ζ is a fluid model solution with ζ(0) ∈ KI∩MI
1. For
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any 0≤ a < b < ∞, for each i ∈ I , we have the following uniform bounds:

sup
n∈N

sup
t∈[a,b]

sup
x∈R+

Mi,n
t (x) ≤ sup

t∈[a,b]
zi(t)< ∞, (4.54)

sup
n∈N

sup
t∈[a,b]

〈χ,ζn
i (t)〉 ≤ sup

t∈[a,b]
(wi(t)+ zi(t))< ∞. (4.55)

In addition, for each i ∈ I , as n→ ∞, ζn
i (t)

w−→ ζi(t), ϑn
i

w−→ ϑi, 〈χ,ϑn
i 〉 → 〈χ,ϑi〉, ϑ

n,e
i

w−→ ϑe
i ,

Mi,n
t (x)→Mi

t(x), Nn
i (x)→ Ni(x) and Nn,e

i (x)→ Ne
i (x) for each x ∈ [0,∞).

Proof. By Proposition 4.2.2 and Remark 2.3.1, ζ(t) ∈KI∩MI
1 for each t ≥ 0, and by Proposition

4.9.2, for each i∈ I , n∈N, t ≥ 0 and x∈R+, we have Mi,n
t (x) := 〈1(x,∞),ζ

n
i (t)〉≤Mi

t
(
(x− 1

n)
+
)
≤

zi(t) and 〈χ,ζn
i (t)〉 ≤ wi(t)+ zi(t). Since zi(·) and wi(·) are continuous, it follows that for any

0≤ a < b < ∞, Mi,n
t (x) and 〈χ,ζn

i (t)〉 have uniform bounds for all t ∈ [a,b], n ∈ N and x ∈ R+.

Furthermore, by Proposition 4.9.2, ζn
i (t)

w−→ ζi(t), ϑn
i

w−→ ϑi and 〈χ,ϑn
i 〉 → 〈χ,ϑi〉 as n→ ∞. It

follows, since ζi(t) ∈K and ϑi ∈K, that Mi,n
t (x)→Mi

t(x) and Nn
i (x)→ Ni(x) for each x ∈ R+

as n→ ∞, and the density Nn
i (·)/〈χ,ϑn

i 〉 for ϑ
n,e
i converges everywhere on R+ to Ni(·)/〈χ,ϑi〉,

the density for ϑe
i , as n→ ∞. Since the last sequence of densities is eventually dominated by

2Ni ((·−1)+)/〈χ,ϑi〉, which is integrable on R+, it follows by dominated convergence that

ϑ
n,e
i

w−→ ϑe
i as n→ ∞, which implies, since Ne

i (·) is continuous, that Nn,e
i (x)→ Ne

i (x) as n→ ∞

for all x ∈ [0,∞).

The following lemma is used to control x→ Mi,n
t (x)

Nn,e
i (x)

uniformly in n.

Lemma 4.9.2. Suppose Assumption 4.2 holds and that ζ is a fluid model solution with ζ(0) ∈

KI∩MI
1. Let 0≤ a < b < ∞ and i ∈ I be such that Mi

t(x)
Ne

i (x)
≤ υa,b for all x ∈ R+ and t ∈ [a,b], for

some υa,b ∈ (0,∞). Then there is na,b ∈ N (depending only on a, b, Cϑ and ϑi) such that for all

n≥ na,b, we have Mi,n
t (x)

Nn,e
i (x)
≤ 2υa,b for all x ∈ R+ and t ∈ [a,b].
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Proof. By Proposition 4.9.2, we have for t ∈ [a,b], x ∈ R+,

Mi,n
t (x)

Nn,e
i (x)

=
〈1(x,∞),ζ

n
i (t)〉

〈1(x,∞),ϑ
n,e
i 〉
≤
〈1((x− 1

n )
+,∞),ζi(t)〉〈χ,ϑn

i 〉∫
∞

x 〈1(y,∞),ϑ
n
i 〉dy

≤
〈1((x− 1

n )
+,∞),ζi(t)〉〈χ,ϑn

i 〉∫
∞

x+ 1
n
〈1(y,∞),ϑi〉dy

=
〈χ,ϑn

i 〉
〈χ,ϑi〉

〈1((x− 1
n )

+,∞),ζi(t)〉
〈1((x− 1

n )
+,∞),ϑ

e
i 〉−〈1((x− 1

n )
+,x+ 1

n )
,ϑe

i 〉

=
〈χ,ϑn

i 〉
〈χ,ϑi〉

〈1((x− 1
n )

+,∞),ζi(t)〉/〈1((x− 1
n )

+,∞),ϑ
e
i 〉

1− (〈1((x− 1
n )

+,x+ 1
n )
,ϑe

i 〉/〈1((x− 1
n )

+,∞),ϑ
e
i 〉)

. (4.56)

Note that lim
n→∞

〈χ,ϑn
i 〉

〈χ,ϑi〉 = 1. For the other term in (4.56), the numerator is bounded above by υa,b

and for the denominator, by Assumption 4.2,
〈1(x,∞),ϑi〉
〈1(x,∞),ϑ

e
i 〉
≤Cϑ for all x≥ 0, which implies that

〈1((x− 1
n )

+,x+ 1
n )
,ϑe

i 〉
〈1((x− 1

n )
+,∞),ϑ

e
i 〉

=

∫ x+ 1
n

(x− 1
n )

+

〈1(y,∞),ϑi〉
〈χ,ϑi〉 dy

〈1((x− 1
n )

+,∞),ϑ
e
i 〉

≤
2〈1((x− 1

n )
+,∞),ϑi〉

n〈χ,ϑi〉〈1((x− 1
n )

+,∞),ϑ
e
i 〉

≤ 2Cϑ

n〈χ,ϑi〉
.

Thus for all sufficiently large n (not depending on x), the denominator of the second fraction in the

right hand side of (4.56) is greater than 1/2. It follows that for all sufficiently large n (depending

only on Cϑ and ϑi),
Mi,n

t (x)
Nn,e

i (x)
≤ 2υa,b for all t ∈ [a,b],x ∈ R+.
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4.9.3 Proof of Theorem 4.4.1

The following proof is similar to a combination of the proofs in Section 3.5.2 and Section

3.5.3 with (ρ,0) in place of (ρ̃,δ) there. However, since we are now in the critical case, rather

than the strictly subcritical case, some aspects in our proof are more delicate and require different

justifications due to the more singular form of the Lyapunov function considered here. In addition,

our development of conditions for equality to hold everywhere in (4.26) is new.

Proof of Theorem 4.4.1. Assume that the hypotheses of Theorem 4.4.1 hold. Since ζ(0) ∈KI
υ for

some υ > 0, we have by Lemma 4.3.1 that ζ(t) ∈KI
υ∗t

for all t ≥ 0, where υ∗t is given in Lemma

4.3.1. Hence, ζ(t) ∈KI∩MI
1 for all t ≥ 0. It follows that for each i ∈ I and t ≥ 0, x→Mi

t(x) is

continuous and integrable with respect to Lebesgue measure (with integral equal to 〈χ,ζi(t)〉< ∞)

on R+. Also, under the assumptions on ϑi, including Assumption 4.2, we have that ϑi ∈K and

x→ Ni(x) is continuous and integrable with respect to Lebesgue measure (with integral equal to

〈χ,ϑi〉< ∞) on R+.

Fix i ∈ I . By the upper semicontinuity of K ζ

i (·) (see Lemma 4.4.5), this function is Borel

measurable on [0, t] for each t ≥ 0. To prove the absolute continuity of H ζ

i (·), it suffices to prove

that K ζ

i (·) is integrable over [0, t] and that (4.25) holds, for each t ≥ 0.

We first prove that if 0 ≤ a < b < ∞ such that zi(s) 6= 0 for all s ∈ [a,b], then K ζ

i (·) is

integrable on [a,b] and

H ζ

i (b)−H ζ

i (a) =
∫ b

a
K ζ

i (s)ds. (4.57)

Assuming we have such a < b, note that by the last part of Lemma 4.4.5, K ζ

i is continuous on

[a,b] and hence integrable there. To prove that (4.57) holds, recall the form of K ζ

i (·) from (4.23).

Using the facts that Λi(·)≤max j C j; zi(·) is bounded on [a,b], being continuous there; Mi
s(·)

Ne
i (·)
≤ υ∗b

for all s ∈ [a,b], by Lemma 4.3.1;
∣∣Λi(·)

zi(·)
∣∣ is bounded on [a,b] since zi(·) is continuous and strictly

positive there; and
∫

∞

0 Ni(x)dx = 〈χ,ϑi〉= µ−1
i < ∞; we see that by dominated convergence,

75



∫ b

a
K ζ

i (s)ds =− κi

ρα
i

∫ b

a
Λi(s)(zi(s))αds (4.58)

+ lim
`→∞

κi

ρα
i

∫ b

a

∫ `

1
`

(
Mi

s(x)
Ne

i (x)

)α(
−Λi(s)

zi(s)
Mi

s(x)
Ne

i (x)
αNi(x)
〈χ,ϑi〉

+νi(α+1)Ni(x)

)
dxds.

Now, for positive integers ` and n > `, by Assumption 4.2 and since ζ(s) ∈ KI
υ∗b

, we have

ϑi ∈K∩M1 and ζi(s) ∈K∩M1 for all s ∈ [a,b]. Then by Lemma 4.9.1, we have that as n→ ∞,

〈χ,ϑn
i 〉 → 〈χ,ϑi〉 > 0, Nn

i (x)→ Ni(x), Nn,e
i (x)→ Ne

i (x) and Mi,n
s (x)→Mi

s(x) for each x ∈ R+,

s ∈ [a,b]. Furthermore, for s ∈ [a,b], since ζ(s) ∈KI
υ∗b

, we have Mi
s(x)

Ne
i (x)
≤ υ∗b for all x ∈ R+, and

then by Lemma 4.9.2 there is a positive integer na,b such that for all n≥ na,b, Mi,n
s (x)

Ne
i,n(x)
≤ 2υ∗b for all

x ∈ R+ and s ∈ [a,b]. It then follows by the dominated convergence theorem (using the fact from

Proposition 4.9.2 that Nn
i (x)≤ Ni((x−1)+, where the latter is integrable over x ∈ [1

` , `]), that for

each fixed positive integer `,

∫ b

a

∫ `

1
`

(
Mi

s(x)
Ne

i (x)

)α(
−Λi(s)

zi(s)
Mi

s(x)
Ne

i (x)
αNi(x)
〈χ,ϑi〉

+νi(α+1)Ni(x)

)
dxds

= lim
n→∞

∫ b

a

∫ `

1
`

(
Mi,n

s (x)
Nn,e

i (x)

)α(
−Λi(s)

zi(s)
Mi.n

s (x)
Nn,e

i (x)
αNn

i (x)
〈χ,ϑn

i 〉
+νi(α+1)Nn

i (x)

)
dxds. (4.59)

Using integration by parts on the first term in the integral in (4.59), and the fact that

∂

∂x

(
Nn,e

i (x)
)−α

=
αNn

i (x)(
Nn,e

i (x)
)α+1 〈χ,ϑn

i 〉
,
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the last line in (4.59) is equal to

lim
n→∞

(∫ b

a

(
Λi(s)
zi(s)

)
[−(Mi,n

s (·))α+1(Nn,e
i (·))−α]`1

`
ds

+(α+1)
∫ b

a

∫ `

1
`

(
Mi,n

s (x)
Nn,e

i (x)

)α(
Λi(s)
zi(s)

∂Mi,n
s (x)
∂x

+νiN
n
i (x)

)
dxds

)

= lim
n→∞

(∫ b

a

(
Λi(s)
zi(s)

)
[−(Mi,n

s (·))α+1(Nn,e
i (·))−α]`1

`
ds (4.60)

+(α+1)
∫ b

a

∫ `

1
`

(
Mi,n

s (x)
Nn,e

i (x)

)α(
∂Mi,n

s (x)
∂s

)
dxds

)
,

where we have used Proposition 4.9.3 for the last equality. By Fubini’s theorem, the above is equal

to the expression immediately below. For this use of Fubini’s theorem, the joint measurability and

absolute integrability of the integrand for each fixed n≥max(na,b, `+1) follow from Remark

4.9.1 and the fact that Mi,n
s (x)

Nn,e
i (x)
≤ υ∗b for all x ∈ [1

` , `],s ∈ [a,b].

lim
n→∞

∫ b

a

(
Λi(s)
zi(s)

)−(Mi,n
s (`))α+1

(Nn,e
i (`))α

+

(
Mi,n

s
(1
`

))α+1

(
Nn,e

i
(1
`

))α

ds

+
∫ `

1
`

(
(Mi,n

b (x))α+1− (Mi,n
a (x))α+1

)(
Nn,e

i (x)
)−α

dx
)

=
∫ b

a

(
Λi(s)
zi(s)

)−(Mi
s(`))

α+1(
Ne

i (`)
)α +

(
Mi

s
(1
`

))α+1

(
Ne

i
(1
`

))α

ds (4.61)

+
∫ `

1
`

(
(Mi

b(x))
α+1− (Mi

a(x))
α+1
)(

Ne
i (x)

)−α
dx,

where we have used dominated convergence, provided by Lemmas 4.9.1 and 4.9.2, to pass to

the limit for the last equality. Note that as `→ ∞, Mi
s(`)→ 0, Mi

s
(1
`

)
→ zi(s), Ne

i
(1
`

)
→ 1 and

Mi
s(x)≤ zi(s),

Mi
s(x)

Ne
i (x)
≤ υ∗b for all s ∈ [a,b],x ∈ R+. Combining this with the fact that for s = a,b,∣∣∣∣Mi

s(x)
Ne

i (x)

∣∣∣∣≤ υ∗b for all x ∈R+ and x→Mi
s(x) is integrable on R+, we see by dominated convergence
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that as `→ ∞, the above expression converges to

∫ b

a

(
Λi(s)
zi(s)

)
(zi(s))α+1ds+

∫
∞

0

(
(Mi

b(x))
α+1− (Mi

a(x))
α+1
)(

Ne
i (x)

)−α dx. (4.62)

On substituting the above into (4.58), we obtain

∫ b

a
K ζ

i (s)ds = − κi

ρα
i

∫ b

a
Λi(s)(zi(s))αds+

κi

ρα
i

∫ b

a

(
Λi(s)
zi(s)

)
(zi(s))α+1ds

+
κi

ρα
i

∫
∞

0

(
(Mi

b(x))
α+1− (Mi

a(x))
α+1
)(

Ne
i (x)

)−α dx

= H ζ

i (b)−H ζ

i (a), (4.63)

as desired.

We now turn to proving that K ζ

i (·) is integrable over [0, t] and (4.25) holds for each t ≥ 0.

This clearly holds for t = 0, so we consider t > 0 fixed. If zi(s) 6= 0 for all s ∈ [0, t], then the result

follows immediately from what we proved for (4.57) with a = 0 and b = t. So we only need to

treat the case where zi(s) = 0 for some s ∈ [0, t]. Assuming this, let s∗ = inf{s ∈ [0, t] : zi(s) = 0}

and t∗ = sup{s ∈ [0, t] : zi(s) = 0}. Then, 0 ≤ s∗ ≤ t∗ ≤ t, zi(s∗) = zi(t∗) = 0 and zi(s) > 0 for

s ∈ (0,s∗)∪ (t∗, t). (Note that the interval (0,s∗) is empty if zi(0) = 0 and (t∗, t) is empty if

zi(t) = 0.) In any event, we can write the open set T i
t = {s ∈ (0, t) : zi(s) > 0} as a (finite or

countable) union of disjoint open intervals:

T i
t = (0,s∗)∪

(⋃
n
(sn, tn)

)
∪ (t∗, t), (4.64)

where
⋃

n(sn, tn)⊂ (s∗, t∗) and zi(sn) = zi(tn) = 0 for each n.
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Recall the definitions of k(1)i ,k(2)i ,k(3)i from the proof of Lemma 4.4.3. For all s≥ 0, let

k(1)i (s) = k(1)i (ζ(s)) =−κiρ
−α

i Λi(s)
(
zi(s)

)α
,

k(2)i (s) = k(2)i (ζ(s)) =−κiρ
−α

i

∫
∞

0

(
Mi

s(x)
Ne

i (x)

)α+1

Ni(x)
αΛi(s)

zi(s)〈χ,ϑi〉
1(0,∞)

(
zi(s)

)
dx,

k(3)i (s) = k(3)i (ζ(s)) = κiρ
−α

i νi(α+1)
∫

∞

0

(
Mi

s(x)
Ne

i (x)

)α

Ni(x)1(0,∞)

(
zi(s)

)
dx. (4.65)

Then we have |k(1)i (s)| ≤ κiρ
−α

i (max j∈J C j)sups∈[0,t](zi(s))α for s ∈ [0, t], which implies that∫
[0,t] |k

(1)
i (s)|ds<∞. By Lemma 4.3.1, |k(3)i (s)| ≤ κiρ

−α

i (α+1)νi(υ
∗
t )

α〈χ,ϑi〉 for s∈ [0, t], which

implies that
∫
[0,t] |k

(3)
i (s)|ds < ∞.

For each fixed n, equation (4.57) gives that for any [a,b]⊂ (sn, tn)

∫
[a,b]

k(1)i (s)ds+
∫
[a,b]

k(2)i (s)ds+
∫
[a,b]

k(3)i (s)ds = H ζ

i (b)−H ζ

i (a).

Thus,

−
∫
[a,b]

k(2)i (s)ds =
∫
[a,b]

k(1)i (s)ds+
∫
[a,b]

k(3)i (s)ds+H ζ

i (a)−H ζ

i (b).

By the continuity of H ζ

i (·) established in Lemma 4.4.2, as a→ sn and b→ tn, H ζ

i (b)→H ζ

i (tn) =

0 and H ζ

i (a)→H ζ

i (sn) = 0. It follows from the above and since k2(s)≤ 0 for all s≥ 0, that

∫
(sn,tn)

|k2(s)|ds =−
∫
(sn,tn)

k(2)i (s)ds (4.66)

=
∫
(sn,tn)

k(1)i (s)ds+
∫
(sn,tn)

k(3)i (s)ds+H ζ

i (sn)−H ζ

i (tn) (4.67)

=
∫
(sn,tn)

k(1)i (s)ds+
∫
(sn,tn)

k(3)i (s)ds. (4.68)

In a similar manner, we can obtain

∫
(0,s∗)
|k2(s)|ds =−

∫
(0,s∗)

k(2)i (s)ds =
∫
(0,s∗)

k(1)i (s)ds+
∫
(0,s∗)

k(3)i (s)ds+H ζ

i (0), (4.69)
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since H ζ

i (s
∗) = 0, and

∫
(t∗,t)
|k2(s)|ds =−

∫
(t∗,t)

k(2)i (s)ds =
∫
(t∗,t)

k(1)i (s)ds+
∫
(t∗,t)

k(3)i (s)ds−H ζ

i (t), (4.70)

since H ζ

i (t
∗) = 0. Hence using the integrability of k(1)i and k(3)i on [0, t], the fact that k(2)i is

zero on (0, t) \ T i
t and non-positive on T i

t , together with the disjointness of the intervals in

the representation (4.64) for T i
t , we have

∫
(0,t) |k

(2)
i (s)|ds < ∞. Thus, K ζ

i = k(1)i + k(2)i + k(3)i is

integrable on (0, t), and by (4.68)–(4.70), we have

∫
(sn,tn)

K ζ

i (s)ds = 0 for each n, (4.71)

∫
(0,s∗)

K ζ

i (s)ds =−H ζ

i (0) and
∫
(t∗,t)

K ζ

i (s)ds = H ζ

i (t). (4.72)

Combining all of the above, and using the integrability of K ζ

i on [0, t], the fact that K ζ

i (·) is zero

on (0, t)\T i
t and the disjointness of the intervals in the representation (4.64), we have

∫ t

0
K ζ

i (s)ds =
∫
(0,s∗)

K ζ

i (s)ds+∑
n

∫
(sn,tn)

K ζ

i (s)ds+
∫
(t∗,t)

K ζ

i (s)ds

= −H ζ

i (0)+0+H ζ

i (t),

which is the desired result (3.16).

The inequality (4.26) follows immediately from Lemma 4.4.4 with ξ = ζ(t) where ζ(t) ∈

KI
υ∗t
⊂MI

υ∗t
. By Lemma 4.4.4, equality holds everywhere in (4.26) if and only if ζ(t) ∈M ∗.

Furthermore, since ζ(t) ∈KI
υ∗t

, its components cannot have atoms at zero and so the M ∗ can be

replaced by M in this “if and only if statement” just stated. The non-positivity of K ζ(·) yields

the non-increasing property of H ζ(·), and the fact from that K ζ(t)< 0 at times t ∈ [0,∞) where

ζ(t) /∈M yields that H ζ(·) is strictly decreasing at such times.
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4.10 Properties of Workload, H, F, G, and Total Mass for

Fluid Model Solutions

In this section, we develop some properties of fluid model solutions and the relationship

between H and F that will be needed for the proofs of our main results.

4.10.1 Properties of Workload

Lemma 4.10.1. Suppose that Assumption 4.1 holds and ζ is a fluid model solution satisfying

wi(0)< ∞ for all i ∈ I . Then t→ w̃ j(ζ(t)) is a non-decreasing function on [0,∞) for each j ∈ J∗.

Proof. For j ∈ J∗, by (2.5), Definition 2.3.1 and Assumption 4.1, we have for each t ≥ 0,

w̃ j(ζ(t)) = ∑
i∈I

R jiwi(t)

= ∑
i∈I

R ji

(
wi(0)+

∫ t

0

(
ρi−Λi(s)

)
1(0,∞)

(
zi(s)

)
ds
)

= w̃ j(ζ(0))+∑
i∈I

R jiρit−∑
i∈I

R jiτi(t)

= w̃ j(ζ(0))+u j(t).

The desired result follows from the fact that u j(·) is non-decreasing, by Definition 2.3.2(ii) for a

fluid model solution.

Lemma 4.10.2. Suppose Assumptions 4.1 and 4.2 hold. Let υ > 0. Then, for any fluid model

solution ζ satisfying ζ(0) ∈KI
υ, we have

sup
t≥0

max
i∈I

wi(t)≤ Bυ, (4.73)

where Bυ is a finite, positive constant depending only on υ,α,ρ,κ,〈χ,ϑe〉.
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Proof. Fix i ∈ I and t ≥ 0. Then

wi(t) =
∫

∞

0
Mi

t(x)dx

= 〈χ,ϑe
i 〉
∫

∞

0

Mi
t(x)

Ne
i (x)

Ne
i (x)
〈χ,ϑe

i 〉
dx

≤ 〈χ,ϑe
i 〉
(∫

∞

0

(
Mi

t(x)
Ne

i (x)

)α+1 Ne
i (x)
〈χ,ϑe

i 〉
dx
) 1

α+1

, (4.74)

where the last inequality follows from Jensen’s inequality, since Ne
i (·)
〈χ,ϑe

i 〉
is a probability density

(for the probability measure (ϑe
i )

e). We observe that the last line in (4.74) equals

(
ρα

i H ζ

i (t)〈χ,ϑe
i 〉α

κi

) 1
α+1

. (4.75)

By the definition of H ζ(·), H ζ

i (t)≤ (α+1)H ζ(t). By Theorem 4.4.1, H ζ(·) is non-increasing

and so H ζ(t) is bounded above by H ζ(0) and hence (4.75) is bounded above by

(
ρα

i (α+1)H ζ(0)〈χ,ϑe
i 〉α

κi

) 1
α+1

≤

(
ρα

i
κi
〈χ,ϑe

i 〉αυ
α+1

∑
k∈I

κk〈χ,ϑe
k〉

ρα

k

) 1
α+1

,

where we have used the fact that ζ(0) ∈ KI
υ for the last inequality. The desired result follows

because i ∈ I and t ≥ 0 were arbitrary and by taking the maximum over i ∈ I .

4.10.2 Relationship between H and F

Lemma 4.10.3. Let ξ ∈ ∪υ>0MI
υ. Then

F (w̃(ξ))≤ F(ž)≤ H(ξ), (4.76)
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where ži =
〈χ,ξi〉
〈χ,ϑe

i 〉
for i ∈ I and w̃ j(ξ) = ∑i∈I R ji〈χ,ξi〉 for j ∈ J∗. If, in addition, Assumption 4.1

holds, then the inequalities in (4.76) are all equalities if and only if ξ ∈M ∗.

Proof. We have

H(ξ) = ∑
i∈I

κi〈χ,ϑe
i 〉

(α+1)ρα
i

∫
∞

0

( 〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉

)α+1 Ne
i (x)
〈χ,ϑe

i 〉
dx

≥ ∑
i∈I

κi〈χ,ϑe
i 〉

(α+1)ρα
i

(∫
∞

0

〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉

Ne
i (x)
〈χ,ϑe

i 〉
dx

)α+1

by Jensen’s Inequality (4.77)

= ∑
i∈I

κi〈χ,ϑe
i 〉

(α+1)ρα
i

(
〈χ,ξi〉
〈χ,ϑe

i 〉

)α+1

= F(ž)

≥ F(w̃(ξ)), (4.78)

where the last inequality follows because w̌(ž) = w̃(ξ) for w̌(·) defined as in Lemma 4.6.1, and

so ž is feasible for the optimization problem (4.27) for which F(w̃(ξ)) is the optimal value. The

stream of inequalities above establishes (4.76).

We now assume that Assumption 4.1 holds and characterize when equality holds every-

where in (4.76). By the sharp version of Jensen’s inequality, equality holds in (4.77) if and only

if x→ 〈1(x,∞),ξi〉
〈1(x,∞),ϑ

e
i 〉

is a constant for x ∈ R+ such that Ne
i (x) 6= 0. It follows that equality holds in

(4.77) if and only if for each i ∈ I , ξi = aiδ0 +biϑ
e
i for some ai,bi ∈ [0,∞). For ξ of this form,

ž = b = (b1, . . . ,bI). The inequality in (4.78) is an equality if and only if ž is the optimal solution

for the optimization problem (4.27) with w̃ = w̃(ξ) = w̌(ž), i.e., ž = ∆(w̌(ž)). It then follows from

Lemma 4.6.1, which requires Assumption 4.1, that the inequality in (4.78) is an equality if and

only if ž ∈ P . Hence, by the definition of M ∗, both inequalities in (4.76) are equalities if and only

if ξ ∈M ∗, as defined in (4.20).
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4.10.3 Properties of G: Proof of Lemma 4.7.1

Proof of Lemma 4.7.1. For (i), fix υ > 0. If ξ∈MI
υ, then H(ξ) is finite and wi(ξ)≤ υ〈χ,ϑe

i 〉< ∞

for all i ∈ I , and so w̃ j(ξ) < ∞ for each j ∈ J∗, since |I | is finite. It follows that G(ξ) is well

defined and finite. By Lemma 4.10.3, G(ξ) ≥ 0. For the continuity, suppose {ξn}n∈N,ξ are

in MI
υ and ξn

w−→ ξ as n→ ∞. Then 〈1(x,∞),ξn〉 → 〈1(x,∞),ξ〉 for almost every x ∈ R+ where

〈1(x,∞),ξn〉 ≤ υ〈1(x,∞),ϑ
e
i 〉 for each n and x, and so it follows by dominated convergence that

wi(ξn) =
∫

∞

0 〈1(x,∞),ξn〉dx→ wi(ξ) =
∫

∞

0 〈1(x,∞),ξ〉dx and w̃ j(ξn)→ w̃ j(ξ) as n→ ∞ for each

i ∈ I , j ∈ J∗. It then follows from the continuity of H on MI
υ (see Lemma 4.4.1) and of F on RJ∗

+

(see Proposition 4.4.1) that G(ξn)→ G(ξ) as n→ ∞. Hence G is continuous on MI
υ.

For (ii), assume that Assumption 4.1 holds and suppose that ξ ∈MI
υ for some υ > 0.

Noting that G(ξ) = 0 if and only if equality holds everywhere in (4.76), we conclude from the

last part of Lemma 4.10.3 (which assumes that Assumption 4.1 holds) that G(ξ) = 0 if and only

if ξ ∈M ∗.

4.10.4 Property of Total Mass

The next lemma is an important element in our proof of the convergence of fluid model

solutions to the invariant manifold. The proof, in part, uses some ideas from the proof of Lemma

5.1 in the paper of Puha and Williams [PW16] for a critical fluid model of a single class processor

sharing queue. However, the proof given here also has new elements needed to treat general

bandwidth sharing policies, which allocate bandwidth to routes in a utility-based, state-dependent

manner, whereas for the single class processor sharing queue situation treated in [PW16], the

bandwidth allocated to the class is always one.

Lemma 4.10.4. Suppose Assumptions 4.1 and 4.2 hold. Fix υ > 0. Then, for any fluid model
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solution ζ with ζ(0) ∈KI
υ, we have

sup
t≥0

max
i∈I

zi(t)≤ B̃υ, (4.79)

where zi(t) = 〈1,ζi(t)〉, i ∈ I , t ≥ 0, and B̃υ is a finite, positive constant depending only on

υ,α,ν,ρ,C,κ,〈χ,ϑe〉.

Proof. It is apparent from the form of the objective function in the optimization problem (2.2)

that we have the scaling property:

φi(rz) = φi(z) for all i ∈ I ,z ∈ RI
+ and r > 0. (4.80)

Fix υ > 0. Consider a fluid model solution ζ with ζ(0) ∈KI
υ. By Lemma 4.10.2, we know

that

〈χ,ζi(t)〉 ≤ Bυ for all t ≥ 0, i ∈ I . (4.81)

Let ν∗ = maxi∈I νi and

γ = min
i∈I

min
{

φi(z) : z ∈ RI
+,zi ≥

1
4
, zk ≤

3
2

for all k ∈ I
}
. (4.82)

We note from the properties of φ described in Remark 2.2.1 that, for each i ∈ I , φi is continuous

and strictly positive on the compact set

{
z ∈ RI

+ : zi ≥
1
4
,zk ≤

3
2

for all k ∈ I
}
,

and so γ > 0. Furthermore, from the scaling property (4.80) of φ, we have that for each a > 0,

γ = min
i∈I

min
{

φi(z) : z ∈ RI
+,zi ≥

a
4
, zk ≤

3a
2

for all k ∈ I
}
. (4.83)
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Let β = Bυν∗

γ
and f (x) = x2−6βx+β2. The quadratic function f has two roots, the largest of

which is x∗ = β(3+2
√

2), and so f (x) ≥ 0 for x ≥ x∗. Let a∗ = max(υ,x∗), ` = (a∗−β)/2ν∗,

and b∗ = a∗+ν∗`. Then f (a∗)≥ 0, ` > 0, ν∗`≤ a∗
2 , and b∗ ≤ 3a∗

2 .

We shall prove the following: for n = 0,1,2, . . ., for each i ∈ I ,

zi(n`) ≤ a∗ and (4.84)

zi(t) ≤ b∗ for all t ∈ [n`,(n+1)`]. (4.85)

Once this is proved, we obtain that

sup
t∈[0,∞)

sup
i∈I

zi(t)≤ b∗, (4.86)

and the desired result holds with B̃υ = b∗.

We shall prove (4.84)–(4.85) by induction. Before commencing that proof, we first prove

some preliminary estimates that hold for all n = 0,1,2, . . .. For this, fix n ∈ {0,1,2, . . .} and i ∈ I .

We consider two cases:

(I) zi(s) 6= 0 for all s ∈ [n`,(n+1)`],

(II) zi(s) = 0 for some s ∈ [n`,(n+1)`].

In case (I), by Proposition 4.2.3, on setting x = 0 in (4.9), we have for t ∈ [n`,(n+1)`],

zi(t) = Mi
t(0) = Mi

n`(S
i
n`,t)+νi

∫ t

n`
Ni(Si

u,t)du

≤ Mi
n`(S

i
n`,t)+ν

∗` (4.87)

≤
∫ Si

n`,t
0 Mi

n`(x)dx
Si

n`,t
+ν
∗`, (4.88)

≤ wi(n`)
Si

n`,t
+ν
∗`, (4.89)
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where we used the non-increasing property of Mi
n`(·) for the inequality in (4.88). Setting

t = (n+1)` in (4.89), we obtain

zi((n+1)`) ≤ wi(n`)
Si

n`,(n+1)`
+ν
∗`≤ Bυ

Si
n`,(n+1)`

+ν
∗`, (4.90)

where we used Lemma 4.10.2 for the last inequality.

Thus, in case (I), if zi(n`)≤ a∗, then by (4.87), since Mi
n`(·) is non-increasing, we have

for all t ∈ [n`,(n+1)`]:

zi(t)≤Mi
n`(0)+ν

∗`≤ a∗+ν
∗`= b∗. (4.91)

Hence, we see that in case (I), (4.85) follows once (4.84) is proved.

In case (II), by Proposition 4.2.3, for t ∈ [n`,s0) where s0 = inf{s ≥ n` : zi(s) = 0}, if

zi(n`)≤ a∗, then

zi(t) ≤ zi(n`)+ν
∗` (4.92)

≤ a∗+ν
∗`= b∗, (4.93)

and for any t ∈ [s0,(n+1)`], either zi(t) = 0 or zi(t)> 0 and by Remark 4.2.3, for st = sup{s ∈

[n`, t) : zi(s) = 0}, we have

zi(t) = νi

∫ t

st

Ni(x+Si
u,t)du

≤ ν
∗`

≤ b∗. (4.94)

Thus, in case (II), if zi(n`)≤ a∗, then zi(t)≤ b∗ for all t ∈ [n`,(n+1)`].

Combining all of the above, we see that in either case (I) or case (II), (4.85) follows once
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(4.84) is proved. Also, in case (II),

zi((n+1)`) ≤ νi

∫ (n+1)`

s(n+1)`

Ni(x+Si
u,t)du

≤ ν
∗`

≤ a∗

2
. (4.95)

We now proceed to the induction proof. Consider first the case of n = 0. Fix i ∈ I . Then

by the definition of a∗, zi(0)≤ υ≤ a∗, and from the consideration of cases (I) and (II) above, it

follows that zi(t)≤ b∗ for all t ∈ [0, `]. Thus, (4.84) and (4.85) hold for n = 0 and since i ∈ I was

arbitrary, they hold for all i ∈ I for n = 0.

Suppose now for the induction step that (4.84) and (4.85) hold for some n≥ 0 for all i ∈ I .

We desire to prove that these inequalities hold with n+1 in place of n for all i ∈ I . For this, fix

i ∈ I . By the consideration of cases (I) and (II) above, we know that it suffices to prove (4.84)

holds with n+1 in place of n, since (4.85) follows once (4.84) is proved with n+1 in place of n.

We consider two cases:

(i) zi(s)< a∗
4 for some s ∈ [n`,(n+1)`],

(ii) zi(s)≥ a∗
4 for all s ∈ [n`,(n+1)`].

Consider case (i) first. If zi(s) = 0 for some s ∈ [n`,(n+1)`], then we are in case (II) and

by (4.95), we have that zi((n+ 1)`) ≤ a∗/2 < a∗ and then (4.84) holds. On the other hand, if

zi(s) 6= 0 for all s ∈ [n`,(n+1)`], then by Proposition 4.2.3 we have

zi((n+1)`) ≤ Mi
(n+1)`(0) = Mi

tn(S
i
tn,(n+1)`)+νi

∫ (n+1)`

tn
Ni(Si

u,(n+1)`)du

≤ zi(tn)+ν
∗`

≤ a∗

4
+

a∗

2

< a∗, (4.96)
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where tn = inf{s≥ n` : zi(s)≤ a∗
4 }. Thus, (4.84) holds with n+1 in place of n in case (i).

Now we suppose that we are in case (ii). Then, we are also in case (I), and by (4.90) we

have that

zi((n+1)`) ≤ wi(n`)
Si

n`,(n+1)`
+ν
∗`≤ Bυ

Si
n`,(n+1)`

+ν
∗`, (4.97)

where

Si
n`,(n+1)` =

∫ (n+1)`

n`

φi(z(s))
zi(s)

ds≥ γ`

b∗
, (4.98)

and we have used the property (4.83) of γ with a = a∗, and the facts that for all s ∈ [n`,(n+1)`],

zi(s)≥ a∗
4 (since we are in case (ii)), and zk(s)≤ b∗ ≤ 3a∗

2 for all k ∈ I (since (4.85) holds with

arbitrary k in place of i, by the induction assumption). Combining (4.97) with (4.98), we obtain

zi((n+1)`) ≤ Bυb∗

γ`
+ν
∗`

=
1

4ν∗`

(
4β(a∗+ν

∗`)+(2ν
∗`)2)

=
1

2(a∗−β)

(
4βa∗+2β(a∗−β)+(a∗−β)2)

=
1

2(a∗−β)

(
(a∗)2 +4βa∗−β

2) (4.99)

where we substituted for b∗ and used the definition of β for the second line, substituted for ` for

the third line, and simplified the expression for the last line. The expression on the right hand

side of the inequality in (4.99) is less than or equal to a∗ if and only if

(a∗)2−6βa∗+β
2 ≥ 0. (4.100)

The left hand side of (4.100) is f (a∗) and it follows from the fact a∗ ≥ x∗, the largest root of the

quadratic f , that (4.100) holds. It follows that we must have zi((n+1)`)≤ a∗. This concludes
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the proof that (4.84) holds with n+1 in place of n in case (ii).

Combining all of the preceding arguments, and using the fact that i ∈ I was arbitrary, we

see that (4.84) (and hence (4.85)) holds with n+1 in place of n for all i ∈ I . This completes the

induction step and hence (4.84) and (4.85) hold for all i ∈ I and n = 0,1,2, . . ..

4.11 Proofs of Main Results: Theorems 4.8.1, 4.8.2 and 4.8.3

4.11.1 Proof of Theorem 4.8.1

Proof of Theorem 4.8.1. Property (i) follows by combining Lemma 4.3.1 with Lemma 4.7.1

and the continuity of ζ(·) on [0,∞). (We note that this part uses Assumption 4.2, but does not

need Assumption 4.1.) For property (ii), for t ≥ 0, by Lemma 4.3.1 and (ii) of Lemma 4.7.1,

Gζ(t) = 0 if and only ζ(t) ∈M ∗. Furthermore, by Lemma 4.3.1, ζ(t) ∈ KI
υ∗t

and so it has no

atoms (including no atom at zero). It follows that M ∗ can be replaced by M in the “if and

only if” statement. Hence, property (ii) holds. For property (iii), by Theorem 4.4.1, H ζ(·) is

non-increasing. Furthermore, F(w̃(ζ(·))) is non-decreasing by Proposition 4.4.1 and Lemma

4.10.1. Hence Gζ(·) is non-increasing. In addition, by Theorem 4.4.1, H ζ(·) is strictly decreasing

at all t ≥ 0 such that ζ(t) /∈M , which implies Gζ(·) is strictly decreasing at all t ≥ 0 such that

ζ(t) /∈M .

4.11.2 Fluid Model Solutions Stay in Relatively Compact Sets

The next lemma provides a key step in the proof that fluid model solutions stay in certain

relatively compact sets.

Lemma 4.11.1. Suppose Assumptions 4.1 and 4.2 hold. Fix υ > 0. For any fluid model solution
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ζ with ζ(0) ∈KI
υ and any t ≥ 0, let zζ(t) = 〈1,ζ(t)〉. Define

Mυ = sup

{
zζ

i (t)
φi(zζ(t))

1{zζ

i (t)6=0} : i ∈ I , t ≥ 0,ζ is a fluid model solution with ζ(0) ∈KI
υ

}
.

(4.101)

Then Mυ < ∞.

Proof. For any fluid model solution ζ with ζ(0) ∈KI
υ, for any t ≥ 0 and i ∈ I such that zζ

i (t)> 0,

by Proposition 4.5.1, we have

zζ

i (t)
φi(zζ(t))

=

(
∑ j∈J pζ

j(t)R ji

κi

) 1
α

(4.102)

where pζ(t) ∈ RJ
+ satisfies conditions (4.28)–(4.31) with p = pζ(t),z = zζ(t) and ψ = φ(zζ(t)).

Suppose, for a proof by contradiction, that there is i ∈ I , a sequence of fluid model

solutions {ζn}n∈N with ζn(0) ∈ KI
υ, and an associated sequence of times {tn}n∈N, such that

zn
i (tn) 6= 0 and

{ zn
i (tn)

φi(zn(tn))

}
n∈N is unbounded. Here we use zn(·) to represent zζn

(·) for simplicity.

(Note also that ζn here is not the smoothed version of ζ used in Section 4.9.) Since |J | = J is

finite, R is a matrix of zeros and ones, and κi and α are fixed positive constants, by (4.102), we

have that there exists { j∗n}n∈N ⊂ J such that R j∗ni = 1 for each n and such that {pζn

j∗n
(tn)}n∈N is an

unbounded sequence of positive real numbers. By (4.28), for each n, since pζn

j∗n
(tn)> 0, we have

∑
k∈I+(zn(tn))

R j∗nkφk(zn(tn)) =C j∗n . (4.103)

Let Cmin = min{C j : j ∈ J } and δ = Cmin
2I > 0. Then for each n, there is i∗n ∈ I+(zn(tn)) such that

R j∗ni∗n = 1 and φi∗n(z
n(tn))> δ. Combining this with Lemma 4.10.4, we have

zn
i∗n
(tn)

φi∗n(z
n(tn))

<
B̃υ

δ
(4.104)
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for each n. Now, by (4.30) with i∗n in place of i, we have

zn
i∗n
(tn)

φi∗n(z
n(tn))

=

(
∑ j∈J pζn

j (tn)R ji∗n

κi∗n

) 1
α

. (4.105)

Since R j∗ni∗n = 1 and {pζn

j∗n
(tn)}n∈N is unbounded, it follows that

zn
i∗n
(tn)

φi∗n(z
n(tn))

diverges as n→∞, which

contradicts (4.104). Because of this contradiction, it follows that Mυ is finite.

With Lemma 4.11.1, we can prove the following strengthened form of Lemma 4.3.1,

under the added assumption that the fluid model is critical, i.e., Assumption 4.1 holds.

Lemma 4.11.2. Suppose Assumptions 4.1 and 4.2 hold. Fix υ > 0. For any fluid model solution

ζ with ζ(0) ∈KI
υ, we have ζ(t) ∈KI

υ∗ for all t ≥ 0, where

υ
∗ = υ+Mυ max

i∈I
ρi. (4.106)

Proof. Fix i ∈ I and a fluid model solution ζ with ζ(0) ∈KI
υ. For any t ≥ 0, if ζi(t) = 0, then the

result holds for any υ∗ > 0. If ζi(t) 6= 0, let t0 = sup{0 ≤ s < t : ζi(s) = 0}, where sup( /0) = 0.

Then ζi(·) is nonzero on (t0, t] and ζi(t0) = 0 if t0 > 0. For s ∈ (t0, t] and x ∈ [0,∞), by (4.9),

Mi
t(x) = Mi

s(x+Si
s,t)+νi

∫ t

s
Ni(x+Si

u,t)du

≤Mi
s(x)+

∫ t

s
νiNi(x+Si

u,t)
zi(u)
Λi(u)

Λi(u)
zi(u)

du

≤Mi
s(x)+Mυνi

∫ t

s
Ni(x+Si

u,t)
d(−Si

u,t)

du
du

= Mi
s(x)+Mυνi

∫ x+Si
s,t

x
Ni(y)dy with y = x+Si

u,t (4.107)

= Mi
s(x)+Mυνiµ−1

i
(
Ne

i (x)−Ne
i (x+Si

s,t)
)

≤Mi
s(x)+MυρiN

e
i (x), (4.108)
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where we used Lemma 4.11.1 for the second inequality. Now let s ↓ t0 in (4.108) to obtain

Mi
t(x)≤Mi

t0(x)+MυρiN
e
i (x),

where Mi
t0(x) ≤ zi(t0) = 0 if t0 > 0 and Mi

t0(x) = Mi
0(x) ≤ υNe

i (x) if t0 = 0. Then for all t ≥ 0,

i ∈ I ,

Mi
t(x)≤ υ

∗Ne
i (x) for all x ∈ [0,∞), (4.109)

where υ∗ is given by (4.106). Combining with Proposition 4.2.2 yields the desired result.

Remark 4.11.1. The substitution step in (4.107) is similar to one used in the proof of Corollary

5.1 in [PW16]. However, the new crucial step here is to use the uniform bound on zi(·)
Λi(·) from

Lemma 4.11.1.

4.11.3 Proofs of Theorems 4.8.2 and 4.8.3

Our proofs of Theorems 4.8.2 and 4.8.3 draw on some arguments in the proofs of Theorems

3.2 and 3.1, respectively, given in [PW16] for the case of a single class processor sharing queue.

However, multiple details are more complicated in our more general setting. In particular, our

Lyapunov function G is different, our fluid model solutions can have components that reach zero

and we also have a less restrictive precompact set KI
υ than in [PW16].

Proof of Theorem 4.8.2 (Monotone convergence of Gζ(·) to zero). Fix υ > 0. The monotonic

decreasing property is an immediate consequence of Theorem 4.8.1. So it suffices to prove the

uniform convergence to zero. Note that by Lemma 4.11.2, for υ∗ as given there, and all fluid

model solutions ζ satisfying ζ(0) ∈KI
υ, we have ζ(t) ∈KI

υ∗ for all t ≥ 0. Given ε > 0, let

Gε = {ξ ∈MI
υ∗ : G(ξ)< ε}. (4.110)
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It suffices to show that there exists Tε > 0 such that for all ζ with ζ(0) ∈KI
υ, we have ζ(t) ∈Gε

for all t ≥ Tε.

By Lemma 4.7.1, G is continuous on MI
υ∗ . Then

Gc
ε = MI

υ∗\Gε = {ξ ∈MI
υ∗ : G(ξ)≥ ε} (4.111)

is a closed set in the compact set MI
υ∗ and hence is compact. By Lemma 4.7.1(ii), we have

Gc
ε ∩M ∗ = /0. Then by Lemma 4.4.4, K(ξ) < 0 for all ξ ∈ Gc

ε. By Lemma 4.4.3, K is upper

semicontinuous on the compact set Gc
ε, and so it achieves its maximum there, which will be

strictly negative. Let δ > 0 be such that K(ξ)≤−δ for all ξ ∈Gc
ε. Then for any t ≥ 0 and fluid

model solution ζ with ζ(0) ∈KI
υ, since F(·)≥ 0 and using Theorem 4.4.1, we have for any t ≥ 0,

0≤ Gζ(t) = H ζ(t)−F (w̃(ζ(t)))

≤H ζ(t)

= H ζ(0)+
∫ t

0
K ζ(s)ds. (4.112)

Let τ
ζ

ε = inf{t ≥ 0 : ζ(t)∈Gε}. Then by (4.112), since K ζ(s) =K(ζ(s)) where K has a maximum

of −δ on Gc
ε, we have

τ
ζ

ε ≤
H ζ(0)

δ
≤ 1

δ(α+1) ∑
i∈I

κi〈χ,ϑe
i 〉(υ∗)α+1

ρα
i

:= Tε.

Since t → Gζ(t) is non-increasing, by Theorem 4.8.1, it follows that ζ(t) ∈ Gε for all t ≥ Tε.

Since Tε does not depend on the particular ζ chosen, the desired result follows.

Before proving Theorem 4.8.3, we first prove the following two lemmas. The first lemma

is like Theorem 4.8.3, but with M ∗ in place of M . The second lemma will be used to derive

Theorem 4.8.3 from the first lemma.
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Lemma 4.11.3. Suppose that Assumptions 4.1 and 4.2 hold. Fix υ > 0. For any fluid model

solution ζ satisfying ζ(0) ∈KI
υ, ζ(t) converges towards M ∗ as t→ ∞, uniformly for all initial

measures in KI
υ, i.e.,

lim
t→∞

sup{dI(ζ(t),M ∗) : ζ is a fluid model solution with ζ(0) ∈KI
υ}= 0. (4.113)

Furthermore, given ε > 0, there is δ > 0 such that

sup
t≥0
{dI(ζ(t),M ∗) : ζ is a fluid model solution with ζ(0) ∈KI

υ and dI(ζ(0),M ∗)< δ} ≤ ε.

(4.114)

Proof. Fix υ > 0. By Lemma 4.11.2, with υ∗ as given there, for any fluid model solution with

ζ(0) ∈KI
υ, we have ζ(t) ∈KI

υ∗ for all t ≥ 0. For each a > 0, let

Da := {ξ ∈MI
υ∗ : dI(ξ,M ∗)≥ a} and Ga := {ξ ∈MI

υ∗ : G(ξ)< a}.

For the proof of (4.113), consider ε > 0 fixed. Since ξ→ dI(ξ,M ∗) is a continuous

function on MI
υ∗ , Dε is a closed subset of the compact set MI

υ∗ and hence is compact. By Lemma

4.7.1, G is strictly positive on Dε. Then by the compactness of Dε, there is δ1(ε)> 0 such that

G(ξ) ≥ δ1(ε) for all ξ ∈ Dε. Hence Dε ⊂ Gc
δ1(ε)

= MI
υ∗\Gδ1(ε) and so Gδ1(ε) ⊂ Dc

ε = MI
υ∗\Dε.

By Theorem 4.8.2, there is Tδ1(ε) < ∞ such that ζ(t) ∈Gδ1(ε) for all t ≥ Tδ1(ε), for all fluid model

solutions ζ satisfying ζ(0) ∈KI
υ. It follows that dI(ζ(t),M ∗)< ε for all t ≥ Tδ1(ε) and all fluid

model solutions ζ satisfying ζ(0) ∈KI
υ. The result (4.113) follows since ε > 0 was arbitrary.

For the proof of (4.114), fix ε > 0 and let δ1(ε) be as defined above. Since G is a

continuous function on the compact set MI
υ+1, it is uniformly continuous there. Also, G is zero on

M ∗
υ+1 =M ∗∩MI

υ+1. It follows that there is δ∈ (0,1) such that G(ξ)< δ1(ε) whenever ξ∈MI
υ+1

and dI(ξ,M ∗
υ+1)< δ. If ζ is a fluid model solution with ζ(0) ∈KI

υ satisfying dI(ζ(0),M ∗)< δ,

then there is η ∈M ∗ such that dI(ζ(0),η)< δ. By the form of the elements of M ∗, we have for
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all i∈ I , 〈1[x,∞),ηi〉 ≤ 〈1,ηi〉〈1[x,∞),ϑ
e
i 〉 where 〈1,ηi〉 ≤ 〈1,ζi(0)〉+δ≤ υ+1, and so η∈MI

υ+1.

It follows that dI(ζ(0),M ∗
υ+1)< δ and hence, by the choice of δ, G(ζ(0))< δ1(ε). By Theorem

4.8.1, t→ G(t) = G(ζ(t)) is a non-increasing function and so G(ζ(t))< δ1(ε) for all t ≥ 0. By

Lemma 4.11.2, we also have that ζ(t) ∈KI
υ∗ . Thus, ζ(t) ∈Gδ1(ε) ⊂MI

υ∗ \Dε, from the first part

of this proof. It follows that dI(ζ(t),M ∗)< ε for all t ≥ 0. The desired result (4.114) follows.

The following lemma is a vector measure analogue of Lemma 4.4 in [PW16].

Lemma 4.11.4. Suppose that ξ ∈MI and θ > 0 such that dI(ξ,M ∗)< θ. Then

dI(ξ,M )≤max
i∈I

ξi([0,θ))+2θ. (4.115)

Proof. There is η ∈M ∗ such that dI(ξ,η)< θ, and there is a ∈ RI
+ and b ∈ P such that for each

i ∈ I , ηi = aiδ0 +biϑ
e
i . Let ϑ

e,b
i = biϑ

e
i for i ∈ I . Note that ϑe,b ∈M . Then,

dI(ξ,M )≤ dI(ξ,ϑ
e,b)≤ dI(ξ,η)+dI(η,ϑ

e,b)≤ θ+max
i∈I

ai, (4.116)

where by the definition of the metric dI,

ai = ηi({0})≤ ξi([0,θ))+θ for each i ∈ I . (4.117)

Combining the above, yields the desired result (4.115).

Proof of Theorem 4.8.3 (Convergence to the invariant manifold). We first note that for any θ> 0

and any fluid model solution ζ satisfying ζ(0)∈KI
υ, for t ≥ 0, i∈ I , and ti = sup{s≤ t : zi(s) = 0}

where zi(s) = 〈1,ζi(s)〉, using the fact that ζi(t) has no atom at {0} and letting s ↓ ti in (4.9)
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(when ti 6= t), we have that

ζi(t)([0,θ)) = Mi
t(0)−Mi

t(θ)

= 1{ti=0}

(
Mi

0(S
i
0,t)−Mi

0(θ+Si
0,t)
)
+νi

∫ t

ti
(Ni(Si

u,t)−Ni(θ+Si
u,t))du

≤ 1{ti=0}

(
Mi

0(S
i
0,t)−Mi

0(θ+Si
0,t)
)
+νiMυ

∫ Si
ti,t

0
(Ni(y)−Ni(θ+ y))dy

≤ 1{ti=0}

(
Mi

0(S
i
0,t)−Mi

0(θ+Si
0,t)
)
+νiMυ

∫
θ

0
Ni(y)dy

≤ 1{ti=0}

(
Mi

0(S
i
0,t)−Mi

0(θ+Si
0,t)
)
+νiMυθ, (4.118)

where for the third inequality, we used the change of variable y = Si
u,t and the upper bound of Mυ

on zi(u)/Λi(u) for u ∈ (ti, t) afforded by Lemma 4.11.1, and for the last inequality we used the

fact that Ni(·) is bounded by one.

We first prove (4.36). For this, let ε > 0 and

θ =
ε

3(1+υ+Mυ maxi∈I νi)
∈
(

0,
ε

3

)
.

By Lemma 4.11.3, there is T (1)
θ

> 0 such that

dI(ζ(t),M ∗)< θ for all t ≥ T (1)
θ

, (4.119)

for all fluid model solutions ζ satisfying ζ(0) ∈KI
υ. Then for each such fluid model solution, by

Lemma 4.11.4, we have

dI(ζ(t),M )≤max
i∈I

ζi(t)([0,θ))+2θ for all t ≥ T (1)
θ

, (4.120)
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and by (4.118), the fact that ζ(0) ∈KI
υ, and since by Lemma 4.11.1,

Si
0,t =

∫ t

0

φi(z(u))
zi(u)

du≥ t
Mυ

when ti = 0,

we have for each i ∈ I ,

ζi(t)([0,θ)) ≤ 1{ti=0}M
i
0(S

i
0,t)+νiMυθ

≤ υNe
i (t/Mυ)+νiMυθ. (4.121)

Let T (2)
θ

be such that for each i ∈ I , Ne
i (t/Mυ)< θ for all t ≥ T (2)

θ
. Combining this with (4.120),

(4.121), and the definition of θ, we see that for all t ≥ T (1)
θ
∨T (2)

θ
, for any fluid model solution ζ

satisfying ζ(0) ∈KI
υ, we have

dI(ζ(t),M )≤ ε

3
+

2ε

3
= ε. (4.122)

Since ε > 0 was arbitrary, it follows that (4.36) holds.

We now turn to proving (4.37). For this, fix ε ∈ (0,1). It suffices to consider such an

ε, since a δ that works for such an ε also works for all larger ε. Because Ne
i (·) is uniformly

continuous on [0,∞) and i ∈ I takes finitely many values, there is hε > 0 such that for all i ∈ I

and 0≤ h≤ hε, we have

sup
x∈[0,∞)

(Ne
i (x)−Ne

i (x+h))<
ε

4(υ+1)
. (4.123)

Let

θ = min
(

hε

3
,

ε

4(1+Mυ maxi∈I νi)

)
. (4.124)

By the last part of Lemma 4.11.3, with θ in place of ε there, we can find δ ∈ (0,θ∧ 1) (not
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depending on ζ) such that

dI(ζ(t),M ∗)≤ θ for all t ≥ 0, (4.125)

for all fluid model solutions ζ satisfying ζ(0) ∈KI
υ and dI(ζ(0),M )< δ. It follows from Lemma

4.11.4 that for all such fluid model solutions ζ,

dI(ζ(t),M )≤max
i∈I

ζi(t)([0,θ))+2θ for all t ≥ 0. (4.126)

Since dI(ζ(0),M ) < δ, there is b ∈ P such that dI(ζ(0),ϑe,b) < δ where ϑ
e,b
i = biϑ

e
i and bi ≤

υ+δ for each i ∈ I . It follows from this and (4.118) that for any t ≥ 0 and i ∈ I ,

ζi(t)([0,θ)) ≤ 1{ti=0}(〈1(Si
0,t ,θ+Si

0,t ]
,ζi(0)〉)+νiMυθ

≤ 1{ti=0}(bi〈1((Si
0,t−δ)+,θ+Si

0,t+δ),ϑ
e
i 〉+δ)+νiMυθ

= 1{ti=0}(bi(N
e
i ((S

i
0,t−δ)+)−Ne

i (θ+Si
0,t +δ))+δ)+νiMυθ

≤ (υ+δ)( sup
x∈[0,∞)

(Ne
i (x)−Ne

i (x+θ+2δ))+δ+νiMυθ

≤ (υ+1)
ε

4(υ+1)
+θ+νiMυθ

≤ ε

2
, (4.127)

where we used (4.123), the facts that δ < θ∧1 and θ+2δ≤ 3θ≤ hε for the second last inequality,

and we used the definition of θ for the last inequality. Combining (4.126) with (4.127) and the

fact that θ≤ ε

4 , we find that

dI(ζ(t),M )≤ ε for all t ≥ 0, (4.128)

for all fluid model solutions ζ satisfying ζ(0)∈KI
υ and dI(ζ(0),M )< δ. Hence (4.37) holds.
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Appendix A

Supplementary Lemmas

Lemma A.1. For each z∗ ∈ RI
+, φi(·) is continuous at z∗ for each i ∈ I+(z∗).

We first observe that κiziUi(ψi/zi) = κiz
αi
i Ui(ψi) for all ψi ≥ 0, i ∈ I+(z),z ∈ RI

+. So the

objective function in the utility maximization problem (2.2) is the same as ∑i∈I+(z)κiz
αi
i Ui(ψi).

Fix z∗ ∈ RI
+. We want to show that for each i ∈ I+(z∗), z→ φi(z) is continuous at z = z∗,

where φ(z) = (φ1(z), . . . ,φI(z)) is the optimal solution of (2.2). For convenience, for z ∈ RI
+, let

Gz(ψ
+) = ∑

i∈I+(z)
κiz

αi
i Ui(ψi),

where ψ+ = (ψi : i ∈ I+(z)) will be regarded as a vector in R|I+(z)|+ (this vector contains all of the

positive entries of any feasible vector ψ ∈ RI
+ for the optimization problem (2.2)).

Let ε > 0 be sufficiently small that the open ball Bε in R|I+(z
∗)|

+ , that is centered at

φ∗(z∗) = {φi(z∗) : i ∈ I+(z∗)} and has radius ε > 0, is a strictly positive distance from the

boundary of the orthant R|I+(z
∗)|

+ . Let Dε denote the compact set of ψ† = (ψi : i ∈ I+(z∗)) in

R|I+(z
∗)|

+ that satisfy the constraints:

∑
i∈I+(z∗)

R jiψi ≤C j for all j ∈ J , ψi ≥ 0 for all i ∈ I+(z∗), ψ
† /∈ Bε.
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We claim that there is η > 0 and δ1 > 0 such that for all z ∈ RI
+ satisfying |z− z∗|< δ1

and ψ† = (ψi : i ∈ I+(z∗)) in Dε, we have

∑
i∈I+(z∗)

κiz
αi
i Ui(ψi)< Gz∗ (φ

∗(z∗))−η. (A.1)

Here | · | denotes the usual Euclidean norm. Note that the sum in (A.1) is only over i ∈ I+(z∗),

even though the functions being summed have zi not z∗i in them. The claim can be proved using

an argument by contradiction as follows. Suppose that for each positive integer n there is zn ∈RI
+

such that |zn− z∗|< 1/n and ψ†,n = (ψn
i , i ∈ I+(z∗)) ∈ Dε such that

∑
i∈I+(z∗)

κi(zn
i )

αiUi(ψ
n
i )≥ Gz∗ (φ

∗(z∗))− 1
n
. (A.2)

Then zn→ z∗ as n→ ∞ and, since Dε is compact, by passing to a suitable subsequence, denoted

by {nk}∞
k=1, we may assume that ψ†,nk →ψ∗ for some ψ∗ ∈Dε as k→∞. For any i ∈ I+(z∗) such

that αi ∈ (0,1), the term κi(zn
i )

αiUi(ψ
n
i ) in the left member of (A.2) is jointly continuous in zn

i

and ψn
i and so with n replaced by nk, this term tends to the finite value κi(z∗i )

αiUi(ψ
∗
i ) as k→ ∞.

For any i ∈ I+(z∗) such that αi ∈ [1,∞), if ψ∗i > 0, then Ui(ψ
nk
i ) tends to Ui(ψ

∗
i ) as k→∞; on the

other hand, if ψ∗i = 0 then Ui(ψ
nk
i ) tends to −∞. In fact, the latter cannot occur; because, if it did,

taking the liminf as k→ ∞ in (A.2), with nk in place of n, and using the fact that znk
i → z∗i > 0 as

k→ ∞ for i ∈ I+(z∗), would yield a contradiction to the finiteness of the right member of (A.2).

Consequently, we can pass to the limit as k→ ∞ in (A.2), with nk in place of n, to conclude that

ψ∗ ∈ Dε and

∑
i∈I+(z∗)

κi(z∗i )
αiUi(ψ

∗
i )≥ Gz∗ (φ

∗(z∗)) . (A.3)

Recognizing the left member of (A.3) as Gz∗(ψ
∗), this implies that ψ∗ ∈ Dε and φ∗(z∗) ∈ Bε are
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two distinct maximizers for the optimization of Gz∗(·) over the set

{
ψ

† ∈ R|I+(z
∗)|

+ : ∑
i∈I+(z∗)

R jiψi ≤C j for all j ∈ J
}
.

This contradicts the uniqueness of such a maximizer (see Remark 2.2.1). This last contradiction

implies that the claim associated with (A.1) is true.

Without loss of generality, we can assume that the δ1 > 0 in the claim proved above is

small enough that for all z ∈ RI
+ such that |z− z∗|< δ1 we have zi > 0 for all i ∈ I+(z∗), which

implies that I+(z∗)⊂ I+(z) and for ψ+ = (ψi : i ∈ I+(z)) ∈ R|I+(z)|+ ,

Gz(ψ
+) = ∑

i∈I+(z∗)
κiz

αi
i Ui(ψi)+ ∑

i∈I+(z)\I+(z∗)
κiz

αi
i Ui(ψi). (A.4)

Note z∗i = 0 for all i ∈ I+(z)\ I+(z∗), and for all ψ+ satisfying

∑
i∈I+(z)

R jiψi ≤C j, for all j ∈ J , (A.5)

we have Ui(ψi) ≤Ui(C∗) for all i ∈ I+(z) where C∗ = max j∈J C j. It follows that there is δ2 ∈

(0,δ1) such that the last sum in (A.4) is less than η/4 for all z ∈ RI
+ satisfying |z− z∗|< δ2 and

ψ+ ∈ R|I+(z)|+ satisfying (A.5). Combining this with (A.1) and (A.4), we see that for such z and

ψ+, if in addition, ψ† = (ψi : i ∈ I+(z∗)) /∈ Bε, then

Gz(ψ
+)≤ Gz∗(φ

∗(z∗))− 3η

4
. (A.6)

On the other hand, consider the first sum on the right side of (A.4). By the continuity of

the Ui(·) on (0,∞) and since φi(z∗) > 0 for all i ∈ I+(z∗), there is δ3 ∈ (0,δ2) such that for all

z ∈ RI
+ satisfying |z− z∗| < δ3 and all ψ† = (ψi : i ∈ I+(z∗)) satisfying |ψ†−φ∗(z∗)| < δ3, we
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have

ψi > 0 for all i ∈ I+(z∗) and ∑
i∈I+(z∗)

κiz
αi
i Ui(ψi)≥ Gz∗(φ

∗(z∗))− η

4
. (A.7)

In particular, an allowed value of such a ψ† is ψ‡ = (φ∗i (z
∗)− δ3

2I : i ∈ I+(z∗)). For this ψ‡, if

j ∈ J such that ∑i∈I+(z∗)R jiφ
∗
i (z
∗) = C j, we must have that R ji = 1 for some i ∈ I+(z∗) and

then ∑i∈I+(z∗)R jiψi ≤ C j− δ3
2I . Furthermore, there is δ4 ∈ (0,δ3/2I) such that for those j ∈ J

satisfying ∑i∈I+(z∗)R jiφ
∗
i (z
∗) < C j, we have ∑i∈I+(z∗)R jiφ

∗(z∗) < C j − δ4. Then, ψ‡ satisfies

∑i∈I+(z∗)R jiψi < C j− δ4 for all j ∈ J . Then, for any z ∈ RI
+ satisfying |z− z∗| < δ4, we can

define a vector ψ[(z) in R|I+(z)|+ such that ψ[
i (z) = ψ

‡
i for i ∈ I+(z∗) and ψ[

i (z) =
δ4
I for all

i ∈ I+(z)\ I+(z∗). Then ∑i∈I+(z)R jiψ
[
i (z)≤C j for all j ∈ J , and by (A.4) and (A.7),

Gz(ψ
[(z))≥ Gz∗(φ

∗(z∗))− η

4
+ ∑

i∈I+(z)\I+(z∗)
κiz

αi
i Ui

(
δ4

I

)
. (A.8)

For i ∈ I+(z)\ I+(z∗), we have that z∗i = 0, and so there is δ5 ∈ (0,δ4) such that the sum that is

the last term in the above is smaller in magnitude than η/4 for all z ∈ RI
+ satisfying |z− z∗|< δ5.

Then, for all z ∈ RI
+ such that |z− z∗|< δ5, we have that ψ[(z) (expanded to a vector in RI

+ that

has zeros for the components indexed by i /∈ I+(z)) is feasible for the optimization problem (2.2)

and by (A.8) and (A.6),

Gz(ψ
[(z)) ≥ Gz∗(φ

∗(z∗))− η

2

≥ Gz(ψ
+)+

η

4

for all ψ+ = (ψi : i ∈ I+(z)) ∈ R|I+(z)|+ that satisfy (A.5) and are such that ψ† = (ψi : i ∈ I+(z∗))

is not in Bε. It follows that the optimal solution φ(z) must be such that (φi(z) : i ∈ I+(z∗)) is

in Bε. Hence ∑i∈I+(z∗) |φi(z)− φi(z∗)|2 < ε2 whenever |z− z∗| < δ5. This proves the desired

continuity.
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Lemma A.2. Let C̃ = { f ∈C1
b(R+) : f (0) = 0}. If ζ(·) is a solution for the fluid model, then for

each f ∈ C̃ , property (iii) in Definition 2.3.2 still holds.

Proof. Fix f ∈ C̃ . We first consider the case where f has compact support contained in [0,M] for

some M > 1. Let {gn}∞
n=0 be a uniformly bounded sequence of continuous functions on R+ such

that each gn has support in [0,M], gn(0) = 0, and gn(x)→ f ′(x) pointwise for each x ∈ (0,∞) as

n→ ∞. For each n, let fn(x) =
∫ x

0 gn(t)dt, x ∈ [0,∞). Then fn ∈ C for each n, f ′n = gn converges

to f ′ pointwise and boundedly on (0,∞), and by bounded convergence, fn converges pointwise to

f on [0,M] and also on [M,∞) since fn(x) = fn(M)→ f (M) = f (x) for all x≥M.

The property (2.4) holds with fn,gn in place of f , f ′, respectively. Hence,

〈 fn,ζi(t)〉= 〈 fn,ζi(0)〉−
∫ t

0
〈gn,ζi(s)〉

Λi(s)
zi(s)

1(0,∞)(zi(s))ds+νi〈 fn,ϑi〉
∫ t

0
1(0,∞)(zi(s))ds.

(A.9)

By the bounded convergence theorem, since ζi(t), ζi(0), ζi(s), ϑi are finite measures on R+

that do not charge the origin, as n→ ∞, we have 〈 fn,ζi(t)〉 → 〈 f ,ζi(t)〉, 〈 fn,ζi(0)〉 → 〈 f ,ζi(0)〉,

〈gn,ζi(s)〉 → 〈 f ′,ζi(s)〉 for each s≥ 0, and 〈 fn,ϑi〉 → 〈 f ,ϑi〉. Furthermore,

sup
s∈[0,t]

∣∣∣∣〈gn,ζi(s)〉
Λi(s)
zi(s)

∣∣∣∣≤ sup
n
‖gn‖∞(max

j∈J
C j)< ∞.

Combining the above and using bounded convergence again for the second term in the right side

of (A.9), we can let n→∞ in (A.9) to show that (2.4) holds for f . Thus, (2.4) holds for f ∈ C̃ that

has compact support in [0,M] for any M > 1. In particular, for an arbitrary f ∈ C̃ , it holds with

f χM in place of f and ( f χM)′ = f ′χM + f χ′M in place of f ′, where χM is a function in C1
b(R+)

that equals 1 on [0,M− 1], is zero on [M,∞), and is monotonically decreasing on [M− 1,M]

with first derivative bounded in absolute value by 2. Then using the facts that f χM and ( f χM)′

converge pointwise and boundedly on R+ to f and f ′, respectively, as M→ ∞, using bounded

convergence again, we conclude that (2.4) holds for all f ∈ C̃ .
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Appendix A in full is extracted from the Appendix of “Stability of a Subcritical Fluid

Model for Fair Bandwidth Sharing with General File Size Distributions”, Stochastic Systems,

Yingjia Fu and Ruth J. Williams, Volume 10, Number 3, 2020. The dissertation author was the

co-author of this paper.
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Appendix B

Hazard Rate

Definition B.1. Assume that ξ is a probability measure on R+ defining the distribution of an

absolutely continuous, non-negative random variable with probability density function j(·) and

cumulative distribution function J(·). The hazard rate function for ξ is defined by

q(x) =
j(x)

1− J(x)
for 0 < x < x∗,

where x∗ = inf{x≥ 0 : J(x) = 1}. The distribution is said to have bounded hazard rate if there is

a finite constant L such that

q(x)≤ L for all 0 < x < x∗.

It turns out that in order to have a bounded hazard rate, the support of the distribution

must be unbounded and so, in this case, x∗ = ∞ and

q(x)≤ L for all x ∈ (0,∞).

Under Assumption 4.2, we have 〈1(x,∞),ϑi〉 ≤Cϑ〈1(x,∞),ϑ
e
i 〉 for all x ∈ [0,∞), which is

equivalent to ϑe
i having bounded hazard rate, noticing

〈1(x,∞),ϑi〉
〈χ,ϑi〉 is the density of ϑe

i . A sufficient

condition for ϑe
i to have bounded hazard rate is that ϑi is absolutely continuous with bounded

107



hazard rate. To see this, note that if qi, ji, Ji are the hazard rate, probability density and cumulative

distribution function, respectively, for an absolutely continuous ϑi for some i ∈ I and Li is a

bound for qi, then for all x≥ 0, we have

∫
∞

x

(
1− Ji(y)

)
dy≥ 1

Li

∫
∞

x
ji(y)dy =

1− Ji(x)
Li

,

and consequently,
〈1(x,∞),ϑi〉

〈χ,ϑi〉〈1(x,∞),ϑ
e
i 〉

=
1− Ji(x)∫

∞

x
(
1− Ji(y)

)
dy
≤ Li.

We now give some examples of common distributions with bounded hazard rates.

• Gamma Distribution. The probability density function has the form

j(x) =
abxb−1

Γ(b)
e−ax for x > 0,

where a,b > 0 are parameters. The hazard rate corresponding to this Gamma distribution is

q(x) =
xb−1e−ax∫

∞

x yb−1e−aydy
for x > 0.

If 0 < b < 1, the hazard rate function is decreasing, but it is unbounded on (0,∞). If b = 1,

the Gamma distribution is the exponential distribution with constant hazard rate function

equal to a, which is clearly bounded. If b > 1, the hazard rate function is increasing and

using the asymptotic behavior of the incomplete gamma function at infinity, we see that

limx→∞ q(x) = a and so q is bounded.

• Pareto Distribution. The probability density function has form

j(x) =
axa

m
xa+1 for x≥ xm,
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where a > 0 and xm > 0 are parameters. The corresponding hazard rate function is q(x) = a
x

for x≥ xm. This function is decreasing and bounded on [xm,∞). Note that we must have

a > 2 in order for such a distribution to have finite first and second moments.

• Lognormal Distribution. A random variable X follows the lognormal distribution if Y =

log(X) is normally distributed. The probability density function is therefore given by

j(x) =
1

xσ
√

2π
exp
(
−(lnx−a)2

2σ2

)
for x > 0,

where a ∈ (0,∞) and σ > 0 are parameters. The hazard rate function is given by

q(x) =
exp
(
− (lnx−a)2

2σ2

)
xσ
√

2π

(
1−Φ

( lnx−a
σ

)) , for x > 0.

where Φ is the cumulative distribution function for the standard normal distribution. It can

be shown, see e.g., [Swe90], that the hazard rate function tends to zero at zero and infinity

and has a maximum in between. Thus it has an inverted bathtub shape and is bounded.

Appendix B in full is extracted from the Appendix of “Asymptotic Behavior of a Critical

Fluid Model for Bandwidth Sharing with General File Size Distributions”, preprint, Yingjia Fu

and Ruth J. Williams, and is slightly rewritten. The manuscript has been submitted to a major

applied probability journal. The dissertation author was the co-author of this paper.
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