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ABSTRACT 

This study presents representative electrical load shapes, disaggregated to the end-use 

level, for over 5000 customer clusters across California’s residential, commercial, industrial and 

agricultural sectors. We developed a novel, multi-level load shape clustering approach for 

residential and commercial sectors leveraging interval meter data for over 350,000 California 

utility customers collected as a part of the Phase 4 California Demand Response (DR) Potential 

Study. The clustering approach allowed us to identify typical consumption patterns and 

categorize customers based on their daily load shape displayed throughout the year. For example, 

we were able to identify customers with particular energy technologies such as electric vehicles 

and rooftop solar, as well as building occupancy types such as restaurants, grocery stores and 

even unoccupied buildings, based solely on whole-building interval data. We then combined the 

load shape-based clusters with other customer information including building type, climate, 

geographical area, total consumption and low-income status, to create a set of customer clusters 

based on both demographics and usage patterns. Total cluster electricity demand was then 

disaggregated into a wide variety of end-uses using weather normalization and other publicly 

available end-use load shape datasets. The resulting disaggregated cluster load shapes will be 

released in anonymized form as part of the Phase 4 DR Potential Study. They will have wide-

ranging applications in energy research and policy analysis, including estimation of energy 

efficiency (EE) and DR potential on the end-use level, time-dependent valuation of EE savings, 

building stock modeling, and developing customer targeting strategies for EE and DR programs. 

Introduction 

California has been at the forefront of grid decarbonization efforts, with policies 

requiring the supply of 100 percent carbon-free electricity by 2045 (SB 100) and greenhouse gas 

emissions to be reduced to 40% below 1990 levels by 2030 (SB 32). California’s power grid is 

changing rapidly in order to meet these targets; for example, in 2020, non-hydro renewables 

accounted 28% of total generation in the California Independent System Operator (CAISO) 

service area (CAISO 2021). Increased grid integration of variable renewable energy (VRE) 

generation increases the need for flexible resources to balance supply and demand (Mills and 

Wiser 2015). Demand response (DR) therefore becomes a critical resource to maintain the 

stability of the system, while also providing additional benefits such as deferment of 

transmission and distribution system upgrades. 

The California DR Potential Study is an ongoing research effort to support California 

Public Utilities Commission’s (CPUC) efforts to enhance the role of DR in meeting the State’s 

resource planning needs and operational requirements. The DR Potential Study uses a bottom-up 

modeling framework based on detailed demographic and hourly load data of customers 



 

 

belonging to California’s three Investor-Owned Utility (IOUs)1 in order to estimate California’s 

DR potential. This paper describes the methodology for developing an updated customer dataset 

into a set of representative customer clusters for Phase 4 of the DR Potential Study. For an 

overview of Phase 4, see a separate paper in these proceedings (Gerke et al. 2022). 

The previous phases of this study used customers’ demographic characteristics, location, 

and total annual consumption to develop customer clusters (Alstone et al. 2017; Gerke et al. 

2020). However, this approach did not account for temporal differences among the customers’ 

load shapes, and therefore the resulting aggregation of load generated very general averages that 

smoothed out the variation in behavior and site occupancy. Load shape-based clustering can 

improve the specificity of aggregated load shapes by capturing heterogeneity in the consumption 

patterns, hence also improving the associated estimates of DR potential. Additionally, 

understanding variations in load shape clusters can improve resource planning and forecasting 

(Quilumba et al. 2015) and aid in better identifying and targeting customers that are likely to 

respond during DR events (Smith, Wong, and Rajagopal 2012). For example, households with an 

evening peak profile, might be good candidates for implementing pre-cooling strategies. The 

variations in the load profile could be especially useful in structuring energy efficiency (EE) and 

DR programs by incentivizing specific segments of customers to enroll. Finally, changes in load 

profiles can provide insights to improve tariff design (Zhou, Yang, and Shen 2013). 

Prior work in load shape clustering has been largely been single-sector focused – 

residential sector (Todd-Blick et al. 2020; Jin et al. 2017; Kwac et al. 2013; Zethmayr and 

Makhija 2019) or non-residential sector (Nystrup et al. 2021; Luo et al. 2017). Some studies have 

performed clustering on seasonal load profile data instead of daily load profiles (Rhodes et al. 

2014). In addition to finding common patterns, clustering has also been deployed to study 

similarities in building energy consumption for specific time periods (e.g., during anomalies) and 

not necessarily the whole year (Divina, Vela, and Torres 2019). Finally, although a common 

approach to clustering residential and commercial customers has been described (Räsänen et al. 

2010), this study only considered buildings that were comparable to households in size and used 

only 5% of the year’s data. 

In this study, we have developed a novel multi-level load shape clustering approach using 

over 350,000 sampled California IOU customers’ advanced metering infrastructure (AMI) data 

for 2019 across residential, commercial, industrial and agricultural sectors. This resulted in 9 

residential and 7 commercial load profiles that isolated several typical characteristics of 

electricity consumption within each sector. We further combined these prototypical load profiles 

with demographic and geographic characteristics to arrive at a set of 5422 customer clusters 

across all sectors. Then, we disaggregated these cluster load shapes into a variety of end-uses 

using weather normalization and other publicly available end use datasets. The weather 

normalization model was significantly updated since past phases to include residential heating, 

intraday variability and the capability to account for lag in the reflection of outdoor temperature 

change in a building load. We also expanded other end-use disaggregation to include existing 

electric vehicle (EV) charging load from residential and commercial buildings due to an increase 

 
1 Pacific Gas & Electric (PG&E), Southern California Edison (SCE) and San Diego Gas & Electric (SDG&E) 



 

 

in EV adoption in California2 since the previous studies. The resulting set of disaggregated load 

shapes are key inputs to forecasting future years’ load profiles and estimating DR potential.  

Some of the boundaries applicable to this study are described as follows. This study only 

considers customers that are within the three IOUs’ service territories. Next, although we 

received 20183 and 2019 hourly load data, clustering and disaggregation were performed only on 

2019 data. Load shape clustering was performed only on residential and commercial sectors’ 

customers. We took a simpler approach in clustering and disaggregating the remaining sectors 

because of fewer samples of customers and the lack of availability of end use load shape data. 

Finally, since our analysis was based on 2019 data, any future analysis may require additional 

adjustments to account for COVID-19 related impacts on the load shape.  

Analytical Approach 

Data Collection and Preprocessing 

The DR Potential Study leverages AMI data from the three California IOUs. Phases 1 

through 3 used data from 2014; Phase 4 updates the modeling effort with a new dataset reflecting 

consumption in 2019. Data were requested and collected through a two-stage process via the 

CPUC. The first stage included demographic data for every single account that was active in 

2019; a total of 13.6 million customers. In the second data request, 2018-2019 AMI data was 

requested for a sample of 3% of accounts (411,000) in the demographic data. More description 

on the data fields and sampling strategy can be found in a separate paper (Gerke et al. 2022). 

Each sampled customer was assigned two weights describing the fraction of total customers they 

represent, in number as well as annual energy consumption, based on the sampling process. We 

use these weights to construct aggregate cluster load shapes from this sample.  

After cleaning and formatting the raw AMI data for the 411,000 sampled customers, we 

applied a number of preprocessing steps to each time series to develop a final hourly load shape 

representing total customer demand. These preprocessing steps consist of (1) estimating 

customer PV generation, for customers known to have rooftop PV, to account for true total 

energy consumption and (2) filling in estimated consumption data during times that customers’ 

power was shut off due to safety concerns (namely wildfire risk) (Gerke et al. 2022). These final 

customer load shapes are then used for load shape clustering as described in the next section. 

Load shape clustering 

The clustering process aims to segment the sampled customers based on similarity in 

their characteristics (e.g., location, building type, total annual energy use) as well as energy use 

patterns. The latter part is referred to here as “load shape clustering”. We perform this clustering 

in a multi-step process. The first step, referred to as “Level 1 clustering” develops an identifier 

for each 24-hour profile in a customer’s time series. Next, the cluster centers from Level 1 

clusters are grouped further into superclusters based on descriptive analysis. Finally, customers 

 
2 Battery electric vehicles and Plug-in hybrid EVs’ sales increased to 1.9% of total sales of Light Duty vehicles by 

the end of 2019 (CEC 2021) 
3 2018 data was primarily requested for the purposes of weather normalization 



 

 

are once again clustered based on how frequently each supercluster pattern is displayed. We refer 

to this as “Level 2 clustering”. Load shape clustering is done separately for the residential and 

commercial sectors using K-means clustering algorithm. We begin by normalizing each 

customer’s load data by the daily total in order to ensure that similar shapes are grouped together 

regardless of the magnitude of the load.  We did not perform load shape clustering on the 

industrial, agricultural and other sector customers due to the lack of specific information beyond 

their building type to identify their load characteristics.  

The objective of K-means algorithm is to minimize the Sum of Squared Errors (Luo et al. 

2017). Level 1 clustering involves clustering each day of each customer’s demand. In order to 

decide the optimal number of clusters (N), we chose a sample of 20,000 residential customers. 

We clustered this data with N=100 clusters such that each customer was assigned 365 cluster 

values – one for each day’s load profile. We then plotted the distribution of the number of cluster 

shapes required to describe all the load patterns of these customers. We saw that for both 

residential and commercial sectors roughly N=60 would be sufficient. Beyond this, the division 

of load profiles would start to become less meaningful for the purposes of DR (i.e., there were an 

increasing number of qualitatively similar cluster load shapes). In fact, even with N=60, we 

observed several repetitive load patterns. For example, the algorithm separated load profiles that 

peak at 8am and 9am into two separate clusters, but they are similar for a DR application.  

 

 
 

Figure 1. Illustration of reducing 60 residential level 1 cluster centers into 12 superclusters. Each panel in the figure 

is annotated with text that indicates the supercluster characteristics. 

 

To reduce the dimensionality of the clusters and focus on relevance to DR, we then 

undertook a qualitative analysis to group the cluster centers further by examining the number of 

peaks, height and width. From this, we encoded each cluster center using a combination of the 

number of peaks (04, 1, or 2), time of occurrence of peak (Morning, Day, Evening, Night, or 

 
4 0 refers to a flat load shape 



 

 

All5) and the width of the peak (Narrow, Medium, or Wide). For example, 2MNEN represents a 

profile with 2 peaks, the one occurring in the Morning is Narrow and the other occurring in the 

Evening is also Narrow. This qualitative analysis reduced 60 Level 1 clusters to 12 superclusters 

in the residential sector (see Figure 1) and 11 in commercial sector.  

Next, we computed the frequency of occurrence of each supercluster as a fraction of 365 

days for each customer time series. We could represent each customer’s full year load pattern 

using a combination of superclusters. For example, a customer could exhibit 1EN for 50%, 1EM 

for 25% and 2MNEN for the remaining 25% of the year. We then performed Level 2 clustering 

on the frequency of appearance of each supercluster. Figure 2 summarizes our approach to 

determining the optimal number of clusters. We compared cluster centers for different values of 

K and matched them using sum of least squared differences. We then overlaid the matches on a 

radar plot and observed the difference in the patterns. If the additional cluster center from the 

higher K value created a meaningful distinction, we incremented the number of clusters to K+1 

and repeated the process until the additional cluster center from the higher K value did not 

improve the variation in the load profiles. We did this for a range of K values from 4 to 15.  

 

 

Figure 2. Flow chart describing how the optimal value of Level 2 clusters can be determined. This process is 

repeated until the incremental value of K does not produce a cluster center that is qualitatively distinct from the 

previous set. 

 

Figure 3 presents the intermediate results of such an analysis with K=7 and K=8 for the 

purposes of illustration. The black line in each radar plot shows the cluster centers for K=7 

whereas blue and orange lines represent the cluster centers for K=8. The first six radar plots 

represent highly similar cluster centers. But in the last radar plot, we observe that the center 

represented by the black line splits into two distinct cluster centers such that the load profiles 

represented by the blue and orange lines are quite different. The blue cluster center is mostly a 

combination of flat and double peaking load profiles, whereas the orange cluster center has a 

combination of load curves with evening narrow peaks. Hence, it makes sense to increment the 

number of clusters to 8. With this method, we chose 9 residential and 7 commercial load shape 

 
5 The time of occurrence of peak is assigned as All if the peak lasts for over 8 hours in a day 



 

 

clusters and assigned a meaningful name to each cluster that qualitatively described it. For 

example, residential cluster with a midnight peak was named as NitePeak. Refer to Figure 4 for 

residential and Figure 5 for commercial load shape clusters.  

 

 

 

Figure 3. Sample figure comparing Level 2 cluster centers for K=7 and K=8 by overlaying them after minimizing 

their sum of squared differences. Notice that in the last radar plot, the cluster centers for K=8, depicted in blue and 

orange, have distinct profiles. 

 

In the final stage of clustering, we assigned a default load shape cluster to the remaining 

sectors and combined the results of load shape clustering with demographic and geographic 

characteristics for each customer. For this step, we considered sector, utility, building type, size, 

climate region6, receipt of low-income rate subsidy (CARE7 or nonCARE), local capacity area 

(LCA), load shape cluster, and quintiles of total annual consumption value. This yielded a set of 

5422 clusters across all sectors. For each cluster, we aggregated the 2019 load data of all 

customers that belonged to the cluster, weighted by their assigned energy use weights from the 

sampling process, to produce an hourly cluster-level aggregated load shape. Next, in order to 

release this data publicly, certain anonymization criteria must be met related to the fraction of 

load represented by any single member of the cluster. To create an anonymized version of the 

cluster data, we adjust the customer weights recursively and redistribute their surplus to other 

members in the cluster until the criterion is satisfied.  

Disaggregation of cluster load 

The hourly load data that we received from the three IOUs, and therefore our resulting 

cluster load shapes, represent whole-building load. In order to assess DR potential, we 

disaggregated this data over a variety of end uses. In the previous phases of this study, a limited 

number of end uses were considered for disaggregating the cluster-level load data. With the 

advent of smart technologies, retrofits and communicating devices, utility DR programs have 

also expanded in the recent years to include a variety of end uses. In the phase 4 study, we 

considered a wide variety of end uses to disaggregate the cluster-level load data. We considered 

these end uses because they are either already targeted by existing DR programs or are likely to 

be targeted by future ones. End-use disaggregation described below occurs largely in three steps: 

(1) disaggregation of temperature-dependent loads for the residential and commercial sectors, (2) 

disaggregation of EV load in the residential and commercial sector, and (3) disaggregation of all 

 
6 Climate zones are mapped to climate regions (e.g., hot-dry, marine, cold) in accordance with EE Potential and 

Goals Study (Sathe et al. 2021) 
7 California Alternate Rates for Energy 



 

 

other end-uses for each sector independently. The accuracy of the disaggregation depends on the 

accuracy of the input end-use load shapes and saturation values; since these largely derive from 

recent and California-specific data sources, our disaggregation should be as accurate as can be 

computed with present data. In addition, since we used 2019 customer data for the analysis, the 

load shapes do not account for any COVID-19 induced changes in behavior.  

In the first step of the process, we separated temperature and non-temperature dependent 

loads. This is done at the individual customer level using a temperature normalization model, 

which determines the correlation between each customer’s hourly load data with the hourly 

outdoor temperature (Alstone et al. 2017) according to the nearest weather station data obtained 

from California National Oceanic and Atmospheric Administration (NOAA). In this study, the 

model was updated to include both heating and cooling loads, to consider lags between outdoor 

temperature and energy demand (to capture the effects of thermal inertia or pre-cooling 

strategies), and to account for variation in temperature sensitivity across seasons, time of day, 

and weekdays and weekends. This additional variation allowed us to more accurately model 

temperature-dependent loads that are based both on outdoor temperature as well as building 

occupancy patterns. These changes had significant impact on some customer but were found to 

be unimportant for most. For each time period (e.g., fall weekday evenings), the model computed 

five parameters to approximate the temperature dependence of a given hour’s load to outdoor air 

temperature. Two of these parameters are the heating and cooling changepoint. The heating 

changepoint temperature represents the maximum temperature at which heating loads occur, 

while cooling changepoint represents the minimum temperature at which cooling loads occur. 

For this analysis, we iteratively tested heating changepoints of 50-70 degrees Fahrenheit and 

cooling changepoints of 70-90 degrees Fahrenheit for each customer and each time period and 

chose the model with the best fit. The remaining parameters are the slope of the heating and 

cooling sensitivity, meaning the amount of additional energy use expected for each degree of 

temperature difference above or below the changepoint, and the baseline load that occurs 

regardless of temperature. We applied a threshold to these parameters below which we assumed 

that there is no space heating or cooling load. A limitation of this approach is that it assigns all 

load correlated with hourly outdoor temperature to space heating and cooling. Other loads (e.g., 

water heating, pool pumps) may also correlate with daily average temperature or season, 

although these are less likely than space conditioning to correlate strongly with the hourly 

temperature. Figure 3 illustrates how the model disaggregated using a sample customer data for a 

period of 3 days. The yellow curve in the figure represents the outdoor temperature, while the 

stacked bars show the total load disaggregated into non-temperature dependent loads (blue) and 

cooling loads (green) in response to variations in temperature.  

EV load disaggregation in the residential and commercial sector was another significant 

update in the study. With an increase in the EV penetration in California, we were able to 

disaggregate Level 1 (120 V, can be plugged into a typical building wall outlet) and Level 2 (240 

V, faster charging but requiring special installation) charging load using data from EVI-Pro 

(Bedir et al. 2018). In the residential sector, we used data from the Residential Appliance 

Saturation Study (Palmgren et al. 2021) from 2019 (RASS) to determine saturation values and 

average annual consumption for all end uses including EV by each IOU. Specifically, EV-related 

data in RASS contains information regarding unit energy consumption and availability of Level 

1 or Level 2 charging. We used this to determine the average annual consumption. Further, 



 

 

RASS also contains information about where (e.g., home, office or other location) and how 

frequently a respondent charges (e.g., once a week, 2-3 times a week). We used this data to 

determine and allocate different average energy consumption values to those who charge their 

EVs all the time at home and those who charge it partially at home and other commercial 

locations (e.g., office). For the latter, we also apportioned their total load between residential and 

commercial sectors. We used these three sets of information to determine the average annual EV 

load for Level 1 and Level 2 charging. In order to determine the saturation values of EV in each 

cluster, we have IOU data indicating if a customer owns an EV as well as if they are on an EV 

rate. Note that not all EV owners are on an EV Time-of-Use (TOU) rate. Additionally, our 

analysis also indicated that the number of customers owning an EV as identified by the IOU data 

is quite underestimated. So, we used California Air Resources Board’s (CARB) estimates of EVs 

on the road in 2019 (CARB 2019) with CEC data on private vehicle ownership (CEC 2015) to 

estimate the total number of residential and commercial EVs. We then used this data to augment 

the fractions of customers in each cluster owning an EV as indicated by the IOU data. We used 

these values as total EV saturation values and capped it at 100%. From this, we assumed that the 

fraction of customers on an EV rate take advantage of it and have Level 2 chargers and the 

remaining to utilize Level 1 charging. So, we applied Level 1 and Level 2 EV charging load 

shapes from EVI-Pro accordingly.  

In the commercial sector, we adopted a multi-step approach to disaggregate cluster-level 

EV load. We restricted EV charging to offices and retail building types only. There are two main 

sources of EV charging load in the commercial sector – privately owned EVs that may charge 

partially in a commercial building and commercial fleet EVs that are charged only in commercial 

buildings. Then, using the CEC estimates of EV (CEC 2015), we computed the ratio of private 

EVs to commercial fleet EVs and applied commercial charging load shapes from EVI-Pro. 

 

 

Figure 3. Illustration of results of temperature normalization model for a sample customer for cooling over a period 

of three days. Notice the lag in the building’s cooling load in response to temperature change. 

 

In order to disaggregate other end uses in the residential sector, we were able to subset 

RASS by utility, building type and climate region. We used load shape data for each building 

type modeled by ADM associates (Baroiant et al. 2019) for CEC. We then took the product of 

saturation, annual average energy consumption and the load shape for each hour normalized by 



 

 

the hourly total load. The product of this intermediate load shape and the non-temperature 

dependent load is the final disaggregated end use load. We followed a similar approach in the 

commercial sector using saturation data from the California Commercial End Use Survey 

abbreviated as CEUS (Itron 2006) and California Commercial Saturation Survey (Itron 2014), 

and load shapes from ADM associates. For those end-uses where hourly load shape data was not 

available, we selected a proxy load shape from the set of available load shapes. For data centers, 

we used the bottom-up energy use modeling of the U.S. data center industry that showed 

Information Technology (IT) equipment is responsible for 65% of electricity use, cooling for 

28%, and other end uses for 7% (Shehabi et al. 2016). We applied these fractions to all hours of 

the year due to lack of temporally-resolved data on end use behavior. 

We used the data from the Manufacturing Energy Consumption Survey (MECS) to 

disaggregate load in the industrial sector (EIA 2021). First, we mapped the NAICS8 code of each 

customer in the cluster to the nearest NAICS code in the MECS database, and calculated the 

fraction of load across NAICS codes in the cluster. Next, we took the breakdown of electricity 

consumption across end-uses for each relevant NAICS code and weighted by the cluster-specific 

fraction. Due to lack of data on temporal usage of these end uses, we applied the final end-use 

fraction to all hours of the year. For the agricultural sector, we disaggregated demand into 

pumping and non-pumping loads based on assumed pumping fractions of 100% for crop and 

water agriculture types (according to NAICS code mapping), 50% for agriculture activities 

related to livestock or indoor crops, and 80% for other designations. 

Results and discussion 

The combination of load shape and demographic clustering yielded 5422 clusters across 

all sectors. The anonymized load shapes after disaggregation will be released as a part of the 

Phase 4 of California DR Potential Study. However, in this section, we will highlight a subset of 

the results to show the intricacies captured by our clustering and disaggregation methodologies. 

We will start by looking at the results of load shape clustering. Figure 4 shows the results of load 

shape clustering in the residential sector. The top panel shows the Level 2 cluster centers in the 

form of radar plots. The bottom panel shows the corresponding cluster’s average load shape. We 

chose 9 load shape patterns to represent residential electricity consumption and named each one 

based on their average load shape.   

 

 
Figure 4. Representation of results from residential load shape clustering. The top panel represents radar plots 

indicating the cluster centers and the bottom panel represents their corresponding average load shape. 

 

 
8 North American Industrial Classification System 



 

 

The first pattern is called NiteFlat and was found in both residential and commercial 

sectors (see Figure 5 for commercial load shape clusters). This pattern indicates the presence of 

the supercluster with a single wide peak at night (1NW) and generally represents vacant 

buildings or parking lots that have evening outdoor lighting loads and certainly always-on base 

loads, but no significant occupant-driven loads. Other clusters where 1NW is found in smaller 

proportion can be interpreted as being intermittently vacant (e.g., vacation homes). The next two 

patterns indicate Flat and FlatCool load shapes respectively. FlatCool has a combination of flat 

and some evening peaking load shapes, which further analysis shows to occur in the summer. 

Thus, FlatCool indicates the presence of cooling load in combination with an underlying flat load 

shape, demonstrating the power of our clustering methodology to separate homes with and 

without air conditioning. AllDay indicates peaks that lasts throughout the daytime and can be 

applicable to homes that are occupied during the day (e.g., families with stay-at-home parents, 

remote workers, or people outside the labor force). This segment also contains an elevated 

fraction of single-family homes with rooftop PV, suggesting either that PV adoption may be 

correlated with high daytime load, or that our modeling approach over-estimated daytime 

generation for some customers with PV. DayEve and MrnEve represents a typical residential 

consumption pattern with double peaks indicating a surge in electricity consumption right before 

and after work hours. EarlyEve and LateEve profiles could indicate a variety of profiles such as 

occupants working until late night, uncontrolled EV charging, usage of cooking appliances and 

other plug loads. NitePeak mostly indicates customers responding to EV Time-of-Use rates, 

which are disproportionally represented in this cluster. This is highlighted in Figure 8. 

 

  

Figure 5. Representation of results from commercial load shape clustering. The top panel represents radar plots 

indicating the cluster centers and the bottom panel represents their corresponding average load shape. 

 

Figure 5 shows the results of commercial load shape clustering. We identified 7 distinct 

shapes to describe the consumption patterns in the commercial sector, and named them based on 

their average load shape. NiteFlat and Flat are similar to the residential load shape clusters with 

the same names. Figure 6 represents the distribution of building types in each cluster. We can see 

that the DayEve load shape has a significantly higher fraction of restaurants and other dining 

facilities than other clusters, reflecting the distinctive operation hours for such establishments, 

with peaks at midday and in the evening. Next, from Figure 5, we can notice that EarlyDay 

cluster is made up of mostly single peaking day wide (1DW) load shape with a small percentage 

of Flat load shape. These are buildings that operate mostly on weekdays and have relatively low 

loads during the weekend as indicated by the upper panel plot in Figure 7. In comparison, the 

load profile in the lower panel of Figure 7 exhibits that distinction between weekday and 



 

 

weekend loads to a much lesser extent. LongDay and LateDay also represent retail buildings and 

grocery stores that open later in the day. Finally, MrnEve is a double peaking profile with a 

larger peak in the evening. This represents the load shape of buildings such as fitness centers and 

performance theaters with a moderate morning load and a higher evening load, as evidenced by 

the disproportionate representation of the assembly building type in Figure 6.  

 
Figure 6. Representation of fraction of customer counts by building type in each commercial load shape cluster 

 

 
Figure 7. Comparison of annual hourly load of clusters EarlyDay and LongDay. Notice the periodic dip in the 

consumption in the upper plot indicating consistent changes in weekday and weekend patterns. 

 

Next, let us take a look at some interesting examples of end use disaggregation in both 

commercial and residential sectors. With the recent increase in the number of EV sales and 

customers transitioning to TOU rates, specifically EV TOU rates, the load shape clustering was 

able to clearly distinguish customers who own EVs and respond to the EV TOU rates, since 

these rates are designed to incentivize customers to charge their EVs starting around midnight. 

Figure 8 shows the seasonal average load shape of a sample PG&E cluster in the Bay Area with 

the load shape NitePeak. First of all, this figure shows the numerous end-uses considered for 

residential disaggregation. Level 1 and Level 2 EV charging loads are indicated in light purple 

and dark purple respectively. We can observe that the Level 2 EV charging load increases around 



 

 

midnight and reduces gradually by around 5am. The figure also shows the results of temperature 

normalization model where we can see heating loads in winter, spring and early hours of fall, and 

a tiny sliver of cooling load in the summer. This makes sense because cooling need may not be 

significant in the marine climate region of the Bay Area.   

 

 

Figure 8. Seasonal daily average load profile of a sample residential cluster with EVs. EV loads are indicated in light 

purple (Level 1 EV charging) and dark purple (Level 2 EV charging). 

 

 
Figure 9. Seasonal average daily load profile of a sample commercial cluster to illustrate the effects of cooling on 

the overall load shape. 

 

In order to observe the influence of cooling on the overall load shape, let us look at 

Figure 9. This is the seasonal average load shape of a sample PG&E cluster in the Central 



 

 

Valley. We can observe that all the non-temperature dependent loads such as cooking and office 

equipment remain somewhat similar across the four seasons. However, the amount of cooling 

load in the summer is almost the same as the other end uses combined at its peak. There is also 

noticeable heating load in winter. Further, in the spring and fall seasons, we notice that the early 

morning hours have heating followed by the evening need for cooling. Finally, we can observe 

commercial EV charging load in the middle of the day since this is an office building cluster. 
 

Conclusion 

In this study, we described a novel multi-level load shape clustering and load 

disaggregation methodology for using over 350,000 California IOU customers’ smart meter 

interval data as a part of the phase 4 DR Potential Study. The load shape clustering was 

performed on residential and commercial customers using the whole building hourly load data 

for 2019, which yielded 9 residential and 7 commercial unique load patterns that clearly 

segmented customers with rooftop PV, EV, restaurants and grocery stores. Combining this with 

the previous phases’ demographic clustering yielded 5422 clusters across all sectors. We then 

disaggregated the cluster-level load data into a variety of end uses in each sector using publicly 

available datasets. We also updated the phase 2 study’s temperature normalization model to 

include residential heating, account for building’s thermal inertia and capture variability in 

sensitivity of load to outdoor temperature.  

The resulting disaggregated cluster load shapes are planned to be anonymized and 

released as a part of the Phase 4 study. We believe that this dataset can be applied to numerous 

energy and energy policy research questions. For instance, it can improve the estimates of energy 

savings from EE measures, EE and DR potential, load planning and forecasting and building 

stock modeling. Additionally, it can also be applied to study the impact of rate design such as 

dynamic pricing, which can help identify structural winners and losers at a very granular level.  
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