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Abstract
Human solutions to the Traveling Salesperson Problem (TSP)
are surprisingly close to optimal and unexpectedly efficient. We
posit that humans solve instances of the TSP by first clustering
the points into smaller regions and then solving each cluster as
a simpler TSP. Prior research has shown that participants cluster
visual stimuli reliably. That is, their clustering and re-clustering
of the same stimulus are similar, especially when the stimulus is
relatively more clustered. In this study, participants solved the
same TSP instances twice. On the second presentation, half of
the instances were flipped about the horizontal and vertical axes.
Participants solved the TSP reliably, with their two tours of the
same instance sharing 77 percent of the same edges on average.
In addition, within-participant reliability was higher for more
clustered versus more dispersed instances. Our findings are
consistent with the proposal that people use clustering strategies
to solve the TSP.
Keywords: traveling salesperson problem; problem solving;
computational complexity; computational thinking; mathemati-
cal cognition

The traveling salesperson problem (TSP) entails finding
the shortest path connecting a set of points in a plane, start-
ing at one point, visiting all other points exactly once, and
returning to the starting point. Such a solution is called a
tour. There is no known algorithm for solving the TSP in
polynomial time, i.e., time which is a polynomial function
of the number of points. The TSP is at least as hard as the
NP-complete problems: nondeterministric problems that can
be verified in polynomial time. However, it is currently not
possible to verify that a solution to the TSP is optimal without
solving the problem itself, making the TSP an NP-hard prob-
lem. Algorithms for finding the exact solution to an NP-hard

problem have time complexity O(2n). This makes the search
computationally intractable for problems of non-trivial size.
For this reason, for such problems, the TSP is typically solved
using approximation algorithms that utilize heuristics and con-
straint relaxation to avoid the exponential growth associated
with finding optimal solutions. As a result, they find solutions
that are “good enough”, and their performance is evaluated by
how close their solutions are to optimal one i.e. how much
excess length they have above the short possible tour (Perron
& Furnon, 2019). It is therefore surprising that humans are
approximately optimal on the TSP. When solving problem
instances with between 10 and 120 points, humans are able
to find tours that are ±12% of the length of the optimal tour,
and are sometimes considerably closer (Dry, Lee, Vickers,
& Hughes, 2006). Equally surprising, human solution times
appear to scale linearly or nearly linearly with problem size,
with a time complexity of either O(n) or O(n log(n)) (Dry et
al., 2006). This capability generalizes developmentally: it is
present even in 7 year olds (van Rooij, Schactman, Kadlec,
& Stege, 2006). It also extends to variants of the TSP in
non-Euclidean city-block space (Walwyn & Navarro, 2010).
Finally, this ability is not just generative; it is also receptive:
When provided a set of points and tours of them, humans judge
more optimal tours as having “goodness of figure” (Ormerod
& Chronicle, 1999). This is a hint that the surprising efficiency
of humans on this computationally hard problem arises in part
because of the properties of the visual system.

In reporting the first study of human TSP problem solving,
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Krolak, Felts, and Marble (1970) marveled at the efficiency
of human performance. However, it was MacGregor and
Ormerod (1996) who launched the current study of the men-
tal representations and strategies that humans use to achieve
their surprising performance. These researchers noticed that
participants were sensitive to the points on the boundary of
a problem instance that formed the convex hull. The convex
hull is the smallest set of points in a figure which define a
convex space that contains all other points inside of them. For
instances with relatively few points on the convex hull and
relatively many points on the interior, participants provided
poorer solutions. This led MacGregor and Ormerod to posit
the convex hull hypothesis, which states that participants aim
to connect the points of the convex hull in order, and that they
pick up close-by interior points along way from one convex
hull point to another. Instances with larger proportions of
interior points introduce more uncertainty into this strategy,
resulting in less-optimal performance. The authors presented
a computational model of the hypothesis and other aspects
of human behavior, such as the sequentiality of TSP problem
solving (Macgregor, Ormerod, & Chronicle, 2000). The model
fit their data well.

A limitation of these studies is that the instances were
designed to conform to the convex hull hypothesis. Care-
fully varying the number of points on the convex hull against
the number of interior points resulted in instances that were
roughly circular. In studies with more random instances, the
convex hull hypothesis has fared less well. Two later studies
(Vickers, Lee, Dry, & Hughes, 2003; Dry & Fontaine, 2014)
used random instances and found that participants judged
those that contained relatively more interior points easier to
solve than those with relatively more points on the convex hull.
Vickers et al. (2003) also found that participants performed
better at TSP problems with relatively more interior points,
further challenging the convex hull hypothesis.

Alternative hypotheses have been proposed about the strate-
gies that people use to solve the TSP. Many start with the
observation that humans appear sensitive to hierarchical struc-
ture in spatial memory (McNamara, Hardy, & Hirtle, 1989).
This sensitivity may allow them to cluster the points and use
a divide-and-conquer approach to simplify the complexity
of problem solving, and in this way generate approximately
optimal solutions. For example, they might partition the 30
points of a problem instance into 5 groups of roughly 6 points
each, solve each cluster as a separate TSP instance, and then
connect these local solutions into a solution for the original,
overall instance. Graham, Joshi, and Pizlo (2000) proposed
such a model inspired by the structure and function of the
human visual system. It hierarchically segments an instance
into regions and then interactively solves the sub-regions in
a top-down fashion. This model was relatively successful in
fitting human performance. Other models have used cluster-
ing techniques to explain human performance, such as Best
and Simon (2000) and Kong and Schunn (2007). Clustering
approaches can be understood as imposing a relatively shal-

low hierarchy over the points of a problem instance. They
have shown greater success in fitting human data than pure
convex-hull-based models (Kong & Schunn, 2007).

Some of the aforementioned models use clustering algo-
rithms, such as K-means, and posit that humans might be
doing the same. However, relatively little evidence has been
offered to show that humans are sensitive to the cluster struc-
ture of problem instances and that this structure impacts the
solutions of TSP problem instances they generate. An impor-
tant study in this regard is Dry, Preiss, and Wagemans (2012),
who presented participants with the points were relatively
more clustered or relatively more dispersed. They found that
participants produced more optimal solutions for instances
that were more clustered.

Here, we seek more direct evidence for whether partici-
pants use a clustering approach to solving the TSP. We built
on previous work (Marupudi et al., in preparation) in our lab
showing that people have a stable clustering ability. Specifi-
cally, in an earlier study, participants were remarkably reliable
when generating “clusterings” of the same dot stimulus on
two occasions, even when the stimulus is flipped horizontally
and vertically on its second presentation, and even when a
distractor task intervenes between the two sets of presenta-
tions/clusterings. Moreover, the stability of their clusterings
was reduced for relatively dispersed instances versus relatively
clustered instances (where “dispersed” and “clustered” are
defined neutrally, by statistical indices of spatial randomness).
If we assume that people adopt a clustering strategy when
solving TSP instances, then their TSP performance should
show the same patterns as the clustering task. Specifically, we
hypothesize that when participants perform the TSP task on
the same instance on two different occasions, their solution
paths will be more stable for more clustered instances than
for more dispersed instances. Alternatively, if participants are
not clustering, then we would not expect the reliability of TSP
solutions to follow the cluster structure of the instance.

Methods

Participants Forty-six undergraduate students at a large
public university in the Midwest completed the study. They
took approximately 45 minutes (median time) to complete the
experiment online and were compensated with a $15 gift card.
The protocol for the study was approved by the local IRB.

Design This study followed a 4×2×2 within-subjects de-
sign. The factors were Number Of Points (10, 15, 20, 25),
Cluster Structure (clustered, dispersed), and Orientation Con-
gruency on the second presentation (same, flipped). All factors
were varied orthogonally.

Materials We selected instances of different levels of Clus-
ter Structure by randomly generating TSP instances with the
desired number of points and filtering out those that did not
meet the appropriate standard of “clusteriness” or “disper-
sion”. We operationally defined these levels using the Z score
measure, adapting the variance and edge effects estimates of
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Donnelly (1978). The Z score measure is defined as

Z =
d̄−E(di)√

Var(d̄)

where d̄ is the nearest neighbor distance,

d̄ =
∑

N
i=1 di

N
E(di) is the expected value of the nearest neighbor distance
for random patterns where A is the area and B is the perimeter,

E(di) = 0.5

√
A
N
+

(
0.0514+

0.041√
N

)
B
N

and Var(d̄) is the variance

Var(d̄) = 0.070
A

N2 +0.037B

√
A

N5

We corrected the Z score for instances where the points
might appear as a single cluster, which might be biased to-
wards convex hull strategies. This happens when the random
stimulus generation process places points near the center of the
space and leaves the regions near the border unfilled. Specifi-
cally, we calculated the Z score for the bounding box described
by the outermost points for calculating measures A and B, in-
stead of the entire visible space (800× 500). As a result,
the dots of all instances spanned most of the space visible to
participants, and were not oddly clustered in a single region.

We then randomly selected from instances with corrected
Z score values in the range 1± 0.05, our operationalization
for ’clustered’ stimuli, and instances in the range −2±0.05
for our operationalization for ’dispersed’ stimuli. We chose
these specific values because we judged the instances they
selected to be qualitatively more clustered and more dispersed,
respectively, while at the same time keeping the goal of the
experiment hidden to participants. This subtlety can be seen
in the examples shown in Figure 1.

Number Of Points ranged between 10 - 25 points in incre-
ments of 5 points, for a total of 4 levels. For each Number
Of Points, we generated 4 clustered and 4 dispersed instances.
This resulted in 4× (4+4) = 32 instances. Pilot testing con-
firmed that participants could complete trials without experi-
encing excessive mental or physical fatigue.

Procedure All participants solved the same 32 TSP in-
stances on the first presentation in a randomized order, then
completed an unrelated distractor task lasting approximately 5
minutes, and finally solved the same 32 instances in a different
randomized order a second time. On the second presentation,
16 of the 32 instances were flipped horizontally and vertically
as specified by the Orientation Congruency factor which var-
ied orthogonally with Number of Points and Cluster Structure.
(The distractor task involved estimating the value of various
factorial expressions, e.g., 8 ·7 ·6 ·5 ·4 ·3 ·2 ·1.) Thus, each par-
ticipant completed 64 TSP trials across the experiment. They
did so using an online interface on a custom plugin using the

Figure 1: Examples of clustered (Z score: −2.003) and dis-
persed (Z score: 1.009) instances.

jsPsych library (De Leeuw, 2015). Participants constructed
their tour by clicking on the points in sequence. Their choices
were reflected in realtime with a change in the color of the
points and the extension of the line indicating their tour to that
point. The interface did not permit backtracking; this was to
maintain a correspondence with real world movement which
often cannot be undone without spending additional resources.

We collected the sequence of points in each tour and the
response time for each click. Of the 32 instances in the first
presentation, half (16) were statistically clustered and half
(16) were statistically dispersed. On the second presentation,
half of the instances within each Cluster Structure type were
flipped (i.e., 8 clustered, 8 dispersed); the other half were
presented in the same orientation.

We defined the reliability between two solutions of a TSP in-
stance as the proportion of edges (connections between points)
shared between the two tours. This measure ranges between
0 and 1, with 0 indicating no edges shared between the two
tours and 1 indicating all edges shared, i.e., identical tours.

Results
TSP Reliability The primary research questions asked (1)
whether participants are stable in their TSP performance, or
more precisely, whether they produce similar tours when solv-
ing the same problem instance on different occasions, and
(2) whether humans first cluster the points in an instance as a
precursor to generating a tour. Support for (1) would indicate a
stable mechanism underlying TSP performance (i.e. high relia-
bility), and support for (2) would indicate that this mechanism
is clustering (i.e. higher reliability for clustered instances). To
address these research questions, we calculated the reliability
of the two solutions participants produced for each instance.
We then fit a series of linear mixed effects models predicting
the TSP reliability using Number Of Points, Cluster Structure,
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and Orientation Congruency as predictors. The model with all
three factors and all interactions as fixed effects, and with a
random intercept for each participant, was adopted because it
had the lowest AICc value.

There was an effect of Cluster Structure (χ2(1) = 8.3, p <
0.005, β = 0.11). This indicates that clustered instances were
solved 0.11 more reliably than dispersed instances. Specifi-
cally, there was 11% greater overlap in the tours generated on
the two occasions for clustered instances than for dispersed
instances. There was also an interaction between Cluster
Structure and Number Of Points (χ2(1) = 20.15, p < 0.001,
β = −0.01). Each additional point in an instance reduced
TSP reliability by 0.01 (i.e., resulted in 1% less overlap in the
tours), but only for dispersed instances; for clustered instances,
there was no significant effect of Number Of Points on TSP
reliability (Figure 2). This indicates that participants might be
clustering in order to solve the TSP, and this trend follows a
similar performance profile to those we found when partici-
pants clustered stimuli, addressing research question (2) that
one mechanism for humans solving the TSP is clustering

The model did not include a significant effect of Number
Of Points or of Orientation, nor were any interactions involv-
ing Orientation significant. Thus, with respect the the main
research question (1) concerning the reliability of TSP perfor-
mance, it was high overall.

Prior studies have investigated the general characteristics
of human TSP performance. We attempted to replicate these
findings in a series of follow-up analyses that further informs
the role of clustering. We focused on findings regarding the
near-optimality of human performance. These analyses looked
at participants’ initial solutions of the 32 TSP problems. They
did not include their solutions to these problems on the second
occasion to avoid potential confounds of practice effects.

Percent above optimal We first evaluated whether we repli-
cated the most striking finding in the human TSP literature:
that people produce tours that are within a few percentage
points of optimal, even as the Number Of Points increases.
This trend was observed by Graham et al. (2000) and Dry et
al. (2006), among other studies. We calculated the optimal
solution for each of our 32 problem instances using the Con-
corde TSP solver, which uses linear programming techniques
(Applegate, Bixby, Chvatal, & Cook, 2006). We then used
the following formula to calculate the percent above optimal
(PAO) for participants’ solutions.

PAO = 100× participant tour length−optimal tour length
optimal tour length

Finally, we fit multiple linear mixed effects models predict-
ing the percent above optimal using Number Of Points and
Cluster Structure as independent variables. The best-fitting
model, measured by the lowest AICc value, included both
fixed effects and random effects of Number Of Points and
Cluster Structure along with a random intercept term per par-
ticipant (Relative likelihood = 0.89). The model included a sig-

Figure 2: The effect of Cluster Structure on TSP reliability of
instances of varying Number Of Points. Increasing the num-
ber of points has a minimal effect on reliability for clustered
instances but a deleterious effect for dispersed instances.

nificant effect of Number Of Points (χ2(1)= 58.21, p< 0.001,
β = 0.33) and Cluster Structure (χ2(1) = 14.77, p < 0.001,
β = 1.87). Each point adds 0.33% extra tour length from op-
timality. Additionally, dispersed instances were 1.87% less
optimal than clustered instances (Figure 3).

Thus, we replicated the surprising finding of approximately
optimal human performance on the TSP, a problem that is
computationally intractable. Although the deviation from
optimality increases with the Number Of Points, it is less
than 10% for all trial types except for the dispersed instances
with the maximum number (25) of points. A model with
an interaction term between Cluster Structure and Number
Of Points was eliminated in model selection for having a
low AICc value, suggesting that clustered instances provide
a constant advantage over dispersed instances to participants
across all Number Of Points.
Time taken Another striking finding in the human TSP lit-
erature is the linearity of people’s solution times with the
Number Of Points. We therefore investigated whether the
participants in our study replicated the O(n) algorithmic time
complexity that previous studies (e.g., Graham et al. (2000))
have shown. We also assessed how Cluster Structure impacts
participants’ solution times. This question is critical given
our hypothesis that people solve TSP instances efficiently by
capitalizing on clustering. Model selection using AICc on a
series of linear mixed effects models led to the adoption of
a model with fixed and random effects of Number Of Points
and Cluster Structure, along with the fixed (but not random)
effect for the interaction between number of points and Cluster
Structure (Figure 4). The model included an effect of Number
Of Points (χ2(1) = 300.67, p < 0.001, β = 1093). Each point
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Figure 3: Percent above optimal (PAO) as a function of Clus-
ter Structure and Number Of Points. Each point leads to an
increase of 0.33% in PAO. Dispersed stimuli were 1.87% less
optimal than clustered stimuli.

Figure 4: Time taken to complete the TSP for instances with
different Cluster Structures and Numbers Of Points. Each
additional point lead to a 1093 ms increase in time taken.
There was no effect of Cluster Structure.

was associated with an increase of 1093 milliseconds of prob-
lem solving time. The linear trend in the data explained large
portion of the variance (R2 = 0.33), replicating previous find-
ings in the literature (e.g., Graham et al. (2000)). Contrary to
our expectations, we did not find an effect of Cluster Structure
on the time taken to complete the TSP.

To summarize, the current study demonstrates, once again,
that people are able to generate approximately optimal solu-
tions to TSP problems in time linear in the Number Of Points,
at least for small problems. However, it also demonstrates that
people are flexible in achieving this surprising performance,
perhaps using alternative strategies when clustering is less
available.

Discussion
Prior studies of human solution of the traveling salesperson
problem (TSP) have focused on calculating the percent above
optimal for people’s solutions and the time they take to gen-

erate them. The consistent finding is that people are approxi-
mately optimal in the quality of their tours and approximately
linear in the time they require to generate them, even though
the TSP is a computationally hard problem. These studies
have found mixed evidence for potential strategies involved in
this surprising performance: the convex hull, crossing avoid-
ance (Van Rooij, Stege, & Schactman, 2003), and clustering
hypotheses. Here, we focused on the clustering hypothesis
and provided a stronger test than in past studies.

In prior work, we have found that participants are more reli-
able in their clusterings of a problem instance that is, statisti-
cally speaking, more clustered than more dispersed (Marupudi
et al., in preparation). In this study, we found that participants
produced more reliable TSP solutions for more clustered in-
stances than for more dispersed instances. This similarity in
the performance profiles of participants on the clustering and
TSP tasks is consistent with the proposal that participants first
cluster the points of a TSP instance and then exploit this local
structure to generate a tour.

Increasing the Number Of Points did not affect the relia-
bility of TSP solutions for clustered instances, but did do so
for dispersed instances. This follows directly from our cluster-
ing hypothesis: Dispersed instances have less evident cluster
structure. Thus, people probably generate less consistent (i.e.,
more variable) clusterings of these stimuli, and thus less con-
sistent (i.e., more variable) tours. It is important to note that
the Clustering Structure of instances did not affect the time
participants required to solve TSP instances. This replicates
the null effect of cluster structure previously documented by
Dry et al. (2012). This implies that clustering is not a strat-
egy that people use to save time. Rather, they appear to take
advantage of the Cluster Structure of an instance when it is
evident, and in this way improve the quality of their solution.
This leaves room for alternative strategies (i.e., convex hull,
crossing avoidance, nearest neighbour) that might be used
when the cluster structure of an instance is not evident.

One failed prediction concerned the percent above optimal-
ity (PAO) of TSP solutions. We expected to find an interaction
effect between Number Of Points and Cluster Structure on this
variable. Specifically, we expected that with increasing Num-
ber of Points, participants would deviate less from optimality
for the clustered instances than for the dispersed instances.
This is because the cluster structure of the former would guide
them through the larger problems, while the lack of such struc-
ture in the latter would provide minimal such affordances. This
prediction was not supported, and it is unclear why this was
the case. It is possible that with a greater and greater Numbers
of Points, the benefit of clustering begins to diminish: as the
clusters increase in size, they become difficult TSP problems
in their own right. We are currently running a replication of
this portion of the study to see if this surprising finding persists.
If it does, then this might explain why human performance
eventually deteriorates when the Number Of Points grows suf-
ficiently large: the clusters themselves become problems that
are too large to solve efficiently.
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This study not only successfully replicated effects from
previous studies suggesting clustering as a strategy on the TSP,
but additionally showed that human solutions are sensitive to
the cluster structure of instances, and this can in turn contribute
to the reliability of their problem solving. We are currently
following up this finding in a new study that asks participants
to first cluster a TSP instance and then solve it as a TSP. The
prediction is that the TSP tours they generate will follow the
structure of their clusterings.

It should be acknowledged that the difference in the optimal-
ity with which clustered and dispersed instances are solved,
while present, was low (1.87% percentage above optimal dif-
ference). The advantage might be larger for “more clustered”
instances than the ones used in the present study. We tried to
ensure that the clustered and dispersed instances were not not-
icably different from each other so that participants would not
guess the hypothesis of the experiment. The subtle difference
in the clustering versus dispersion of our stimuli was enough
to find evidence for the various predictions made here. The
use of more clustered instances in a future study might reveal
greater evidence for the role of clustering in TSP problem
solving than was found here.

A limitation of most models of human TSP performance is
that they do not attempt to predict the exact tours that partici-
pants produce on the TSP. Only one prior study has evaluated
how well the tours their model produces correlate with those
that humans produce (Kong & Schunn, 2007). Future research
looking at the fine-grain structure of tours might yield addi-
tional information about whether people apply clustering to
TSP instances in order to produce efficient solutions. It might
also find evidence for the additional strategies that people
employ.

Determining the strategies humans use to solve NP-hard
problems like the TSP is important for our broader understand-
ing of the limits of human problem solving, and may in turn
inform efforts in artificial intelligence (AI). Approximation
algorithms that provide “good enough” solutions to computa-
tionally intractable problems may benefit from adopting the
strategies, clustering and otherwise, that humans use to effi-
ciently solve (small instances of) these problems. This might
result in AI systems that improve upon the current state of the
art.
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