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Recently there has been an increasing number of learning problems arising in complex

data domains, like graph-structured data, such as social networks and knowledge graphs. Various

machine learning approaches have been developed to handle different kinds of data like PointNet

for point clouds and graph neural networks for graph-structured data. At the same time, to

tame the complexity in data, geometry and topology form natural platforms. In particular,

computational geometry and the emerging field of topological data analysis (TDA) have been

effective at capturing hidden structure and shape features from data, as well as providing efficient

algorithms for them. In this thesis, we aim to integrate geometric ideas and topological concepts
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with machine learning pipelines to further augment their power and performance.

In the first part of the thesis, we show how topological ideas, in particular, the so-

called persistent homology, can help with analyzing graph-structured data. Persistent homology

provides a flexible and versatile way to summarize complex shapes (including graphs) by a

simple multiscale summary. In the first line of work, we designed an effective metric learning

approach for persistence-based summaries of graphs, and showed how this improved graph

classification tasks. In the second line, we show how topological summaries can be used to

further improve graph neural networks’ performance.

In the second part, we investigate how geometric algorithmic ideas can be combined with

neural networks (NNs) to tackle hard optimization problems in geometric setting. In recent years,

NNs have shown promise in helping solve combinatorial optimization problems. However, such

approaches often tend to be ad hoc. Instead of solving problems in a completely data-driven

manner using NNs, we propose to design mixed algorithmic-NN frameworks, where NNs are

used as components within an algorithmic framework. In particular, this allows us to leverage

elegant algorithmic ideas for problems in geometric setting to develop learning-based frameworks

solving optimization problems efficiently in practice, but also with theoretical guarantees. We

demonstrate our proposed mixed algorithmic-NN frameworks over two problems: Maximum-

independent set (and several other graph problems) for intersection graphs in Euclidean setting,

and computing (rectilinear) Minimum Steiner Tree for points in Euclidean setting.
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Chapter 1

Introduction

1.1 Problem Statement

Machine learning and neural networks (NNs) have proved their increasing power in

various challenging tasks and achieved remarkable success in many applications, such as im-

age classification, semantic segmentation and object detection [HZRS16, Gir15, HLvdMW17,

RDGF16, RFB15, LSD15, WJQ+17]. Besides image based tasks, they also demonstrate their

great performance in natural language processing tasks like text analysis and machine transla-

tion [SVL14, ZZL15, VSP+17, JSL+17, KT19]. In these tasks, the data fed into the machine

learning pipelines usually has a nice structure: points in Euclidean space, an image (grid-like)

structure or a linear sequence. In such scenarios, it makes sense to design local filters or kernels

to group representations from a neighborhood of pixels, or use a recurrent architecture to process

sequential words embeddings, in an automatic way.

However, in recent years, problems in complex data domains have attracted great attention

in many applications. For example, there are many problems arising in graph structured data,

such as social networks analysis, chemical components structures research and transportation

systems design. These problems require new machine learning approaches which not only can

process features of nodes or point clouds, but also respect or leverage complex structure of

objects. Different machine learning architectures are proposed in order to handle these problems.

For example, graph kernels and embeddings [SSL+11, KGW16, YV15, PARS14, GL16] are

1



(a) (b)

Figure 1.1. When we use persistent homology to describe this curve, we increase its width
gradually. As the width increases, two holes appear and then disappear. Their appearing and
disappearing moments recorded as persistence points in the persistence diagram.

proposed to process graph-structured data, PointNet [QSMG17] and variants are developed to

process a collection of points data directly, and Geodesic Convolution Networks [MBBV15] are

taken to handle 3-D shapes.

In particular, graph neural networks (GNNs) are successful generalizations of NNs

in the graph domain [SGT+09, KW17, HYL17, XHLJ19, GSR+17, VCC+18]. A common

way for GNNs to process node features and graph topology is to replace the local kernels

performing convolutions in grid-structured data by message passing between nodes in graphs

[GSR+17]. Simply speaking, nodes receive messages, such as nodes features and edge features,

from specific neighborhoods. Then they update their features based on received messages.

With carefully designed message functions and update functions, GNNs can learn meaningful

representations of nodes or graphs for a wide range of tasks over graphs, like graph classifications,

node classifications, link predictions, etc. It has proven to be an effective and powerful tool

for analyzing graph-structured data, which are ubiquitous across many application domains in

science and engineering.

At the same time, in a somewhat orthogonal direction of these development, the field

of computational geometry and the rapidly-growing field of topological data analysis (TDA)

[DW22, EH10] can provide effective tools to extract hidden structure and shape information

from complex data. For example, the so-called persistent homology [ELZ02], which is a modern
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much more powerful extension of the classical notion of homology groups, provides us a flexible

way to encode essential features hidden in spaces and functions. It has the ability to produce a

concise and multiscale feature representation for various kinds of complex data, including graphs,

point clouds, shapes, and so on, in a unified framework. Intuitively, the classical homology

can identify different dimensional “holes” in data like connected components in 0-dimension,

loops in 1-dimension, and voids in 2-dimension. Persistent homology instead tracks the creation

and disappearance of topological features through the “evolution” of a domain of interest (see

Figure 1.1); thereby capturing multiscale features simultaneously. We will introduce persistent

homology in detail in Chapter 2. These well-founded mathematical theories and new developed

computational tools can help us to understand, discover, and model complex features hidden in

data.

Given the prevalence of complex types of data in the modern data era, and given the

potential power of geometric algorithms and topological methods in help tame that complexity,

the overarching question that drives my thesis is the following:

Geometric algorithms and topological quantities are effective at capturing hidden
structure and features in data, as well as providing efficient algorithms for them.
How can we combine and integrate such ideas and methods with modern machine
learning pipelines to further augment and enhance power and performance of
these pipelines?

1.2 Contributions

Guided by the overarching question above, this thesis makes contributions along the

following two fronts:

• Part I: Injecting topolgoical persistence ideas to machine learning pipelines; and

• Part II: Integrating geometric algorithms ideas to machine learning architectures and

develop mixed algorithmic-NN frameworks for optimization problems.
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Part I: Injecting topological persistence ideas to machine learning.

As we mentioned earlier, persistent homology gives us a way to generate the so-called

persistence diagram (PD) as a multiscale topological summary of features for an input object

(e.g., for a graph, a surface model, or a point cloud). The PD consists of a multi-set of persistence

points in the plane, where the x- and y-coordinates of each point capture the birth and the death

of some topological features as one scans through the domain of interests via a certain perspective

(called a filtration) – we will see details later in Chapter 2. For example, in Figure 1.1 (b), the two

persistence points record the birth and death of the two holes as we gradually thicken the curve

of interests. In the first part of my thesis, we will investigate how PDs topological summaries

can help us with machine learning tasks to handle in particular graph type of data.

In particular, in Chapter 3, leveraging the power of PD summaries, we aim to use

the space of PD as feature space to carry out machine learning tasks (e.g., clustering and

classification). To do this, we need a metric structure on the space of PDs. Unfortunately, the

classical notion of distances for PDs lack nice structure (e.g., inner-product structure), and cannot

be easily integrated to machine learning methods. Thus in the past few years, there have been

several methods developed to vectorize PD in order to better facilitate their use in machine

learning pipelines [Bub15, AEK+17, RHBK15, KFH18]. In these approaches, when computing

the distance or kernel between persistence summaries, the importance (weight) of different

persistence features are often pre-determined. Commonly, they are treated equally or reweighted

by using “persistence” as importance. However, as recognized by recent studies, topological

features with high persistence doesn’t necessarily mean high importance in the downstream

machine learning tasks. Hence we propose to learn a weight function for persistence points

in feature space in a data driven way. Specifically, we propose a weighted-kernel, WKPI, for

persistence summaries, which we prove to be positive semi-definite and stable to perturbations.

In this kernel, we use a weight function to encode the importance of different locations in the

persistence diagram. We then learn the weight function from a certain function class by a metric

learning problem for persistence summaries. We formulate the metric-learning as an optimization
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problem over a specifically designed cost function. Given a set of objects, we first learn a WKPI-

kernel as described before, and then use the learned WKPI to further classify objects. We apply

our approach in graph classification tasks. Our new persistence summaries based approach

outperforms or achieves similar performance to existing state-of-the-art approaches, such as

graph kernels and graph neural networks, on a wide range of benchmark datasets, validating the

effectiveness of persistence summaries over describing graphs.

In Chapter 4, we show how we leverage persistence summaries to enhance the per-

formance of graph neural networks (GNNs) in node classification tasks. In standard GNNs,

each node aggregates messages, which are often weighted uniformly or by the node’s degree,

from its neighborhood and it then updates its representation based on aggregated messages

[KW17, HYL17, XHLJ19]. This procedure is defined as message passing [GSR+17]. Message

passing GNNs have received tremendous attention and success in the past few years in various

applications. However, it is also known that they have limitations in terms of what they can

capture. For example, it is known that using simple local information as initial node features, the

message passing GNNs cannot capture graph information such as size of (shortest) cycles. To

this end, persistent homology can be effective at capturing local/global structural information

of graphs. Hence we propose to use persistent homology to establish initial node features for

message passing neural networks. Furthermore, we observe that the local topology within a

graph has influence on message passing. Another observation is that persistence summaries

extracted from subgraphs are stable to certain perturbations and can capture sufficient informa-

tion to differentiate local topological structures in a graph. Based on these observations, we

develop a novel graph network architecture, persistence enhanced graph network (PEGN), using

persistence summaries in a data-driven manner. Specifically, we train a separate network to

reweight messages between nodes based on the input persistent homology information extracted

from neighborhood of nodes. This empowers the graph convolution and message passing in

network to be adaptive with different local structures. Our algorithm achieves better performance

than existing GNNs that only use node-feature-based attention in node classification tasks. This
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confirms the power of persistence homology as advanced local structure information in graph

learning.

Part II: Integrating geometric algorithms with designs of neural network architectures
and developing mixed algorithmic-NN frameworks.

We focus on combinatorial optimizatoin problems, such as maximum independent sets,

Steiner minimum tree problems and so on, which have important practical applications. These

optimization problems however are hard to solve or even to approximation in the general setting.

Recently there has been a range of approaches developed to use neural networks to help solve such

optimization problems in a data-driven manner [BLP20]; such as the various GNN architectures

developed to learn graph representations and solve graph optimization problems in an end to

end manner [BPL+17, LCK18, DKZ+17, ASS20]. There have also been several recent lines of

work to tackle the mixed integer linear programming problems [KLBS+16, GCF+19, GGK+20]

Despite the tremendous amount of progress in this direction, the practical performances still have

much space for improvement; the neural networks can often be used in a rather ad hoc manner;

and theoretical understanding is limited. One question is whether a machine learning pipeline

can solve a combinatorial optimization problem exactly or approximately with theoretical

guarantee. [SYK19, Lou20] connect GNNs with distributed local algorithm [Ang80, ÅFP+09]

and show GNNs’ capacity on approximating some graph combinatorial optimization problems

like maximum independent set. However, their capacity is limited to the special family of

constant-degree graphs.

At the same time, in theoretical computer science, many elegant approximation algorithms

or fixed parameter tractable algorithms have been developed for such hard problems in special

settings, especially in the geometric setting that we are interested. Such algorithms often rely

on deep insights of the mathematical structures behind data, and combine that with algorithmic

paradigms such as specialized divide-and-conquer frameworks. A good example in this direction

is Arora’s PTAS (polynomial time approximation scheme) algorithms [Aro98] for a range of

optimization problems in the Euclidean setting. Unfortunately, many such algorithms still have
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not found their way to practices, and remain only of theoretical interests, as their time complexity,

while being polynomial, can still be high (and often depends on some parameters exponentially).

In this second part of this thesis, we investigate how to integrate such beautiful algorithmic

ideas with NN architectures. In particular, the high level idea is that, we will still leverage the

algorithmic framework developed, while use NNs for certain costly components contained inside

in a suitable manner. As we will see below: for two algorithmic paradigms we will consider, our

mixed algorithmic-NN frameworks have the benefit of both worlds: (1) On one hand, the costly

component is now replaced by a learnable NN, which significantly reduces the running time on

test data. (2) On the other hand, the problems are decomposed via the algorithmic ideas, so that

we are in fact learning an algorithmic component that will be applied to problems of bounded

size! This not only means that we only need to train a fixed size NN over data of bounded size,

this also ultimately gives our mixed algorithmic-NN framework the capacity to solve the problem

at hand for input of arbitrary size.

In particular, in Chapter 5, as a warmup, we will introduce our first attempt in this

direction. Our NN-Baker aims to infuse the so-called Baker’s technique with NN architectures

to solve optimization problems such as maximum independent set or minimum vertex cover,

in the geometric setting. That is, we assume that our input graph is the intersection graph of a

set of d-dimensional balls in the Euclidean space Rd . We are inspired by the so-called Baker’s

technique [Bak94] and propose a partition based approximation algorithm, Baker-paradigm. We

prove it gives a bi-criteria approximation with running time linear in the size of input point

set, but exponential to other parameters. Baker-paradigm decomposes the problem into small

sub-problems of fixed size independent of size of input point set, and the final solution is obtained

by merging solutions of these sub-problems. For the family of such fixed-size sub-problems,

we also design neural networks with universal approximation guarantees to solve them. By

replacing the sub-problem component in Baker-paradigm with neural networks, we obtain a

mixed algorithmic-NN framework which we call NN-Baker. NN-Baker has capacity to produce

a bi-criteria approximation of MIS in near linear time. We design two instantiations, CNN-
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Baker and GNN-Baker, according to the neural network we infuse into Baker-paradigm. In

experiments, when the problem size increases, the performance of neural network baselines,

like TGS [LCK18], LwD [ASS20] and Erdős-GNN [KL20], decrease. Our GNN-Baker can

significantly improve their performance as the problem size increases. Part of the reason is our

GNN-Baker only needs to train and validate the GNN component on small graphs of bounded

size.

Our work in Chapter 5 shows promise of mixed algorithmic-NN framework. It however,

leverages a rather simple algorithmic framework (the Baker’s technique), which intuitively has a

flat partition of input problem into a set of smaller instances. In Chapter 6, we will consider a

more sophisticated algorithmic framework: Arora’s PTAS [Aro98] for geometric optimization

problems in the Euclidean setting. We will specifically consider the problem of minimum

(rectilinear) Steiner tree problem, due to the practical importance of this problem in chip design.

Arora’s algorithm makes quadtree decomposition over the input instance into hierarchical sub-

problems according to their geometric distribution and solves sub-problems level by level in a

dynamic programming way. It has been proved to have a constant approximation ratio. However,

this algorithm is also impractical due to the computational expense. In NN-Steiner, we simulate

this dynamic programming procedure by neural networks to make the framework more efficient.

In specific, we develop a bi-directional framework and generate graphs for sub-problems at

different levels. We then design GNN architectures which receive and process knowledge from

the previous level sub-problems and output knowledge for the those at the next level. In the

forward direction, GNNs are used to learn potential Steiner points’ embeddings, while in the

backward direction, they learn potential Steiner points’ distributions. NN-Steiner demonstrates

its better generalization ability in experiments than both state-of-the-art approximation algorithms

and machine learning based baselines. Our two algorithmic-NN frameworks open a new door to

tackle hard combinatorial optimization problems by infusing neural networks as components

into algorithmic structure leveraging geometric ideas and setting.
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Chapter 2

Background

2.1 Persistent homology

Persistent homology (PH) is a powerful tool to capture topological features from objects

like point clouds, shapes, graphs, etc. We first give an informal description of persistent homology

in this section. See [EH10] for more detailed exposition on the subject.

Suppose we are given a shape X . Imagine we inspect X through a filtration of X , which

is a sequence of growing subsets of X : X1 ⊆ X2 ⊆ ·· · ⊆ Xn = X . As we scan X , sometimes

a new feature appears in Xi, and sometimes an existing feature disappears upon entering X j.

Using the topological object called homology classes to describe these features (intuitively

components, independent loops, voids, and their high dimensional counter-parts), the birth

and death of topological features can be captured by the persistent homology, in the form of

a persistence diagram DgX . Specifically, for each dimension k, DgkX consists of a multi-set

of points in the plane (which we call the birth-death plane R2): each point (b,d) in it, called

a persistence-point, indicates that a certain k-dimensional homological feature is created upon

entering Xb and destroyed upon entering Xd . Besides persistence diagram, we also add the points

on the diagonal to the persistence diagram, each with infinite multiplicity. In the remainder of

the thesis, we often omit the dimension k for simplicity: when multiple dimensions are used

for persistence features, we will apply our construction to each dimension and concatenate the

resulting vector representations.
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Figure 2.1. Sweep the curve in increasing f -values, at certain moments 0-th homological features
(connected components) are created or destroyed. For example, a component is created when
passing x4 and killed when passing x6, giving rise to persistence-point ( f4, f6) in persistence
diagram.

A common way to obtain a meaningful filtration of X is via the sublevel-set filtration

induced by a descriptor function f on X . More specifically, given a function f : X → R, let

X≤a := {x ∈ X | f (x) ≤ a} be its sublevel-set at a. Let a1 < a2 < · · · < an be n real values.

The sublevel-set filtration w.r.t. f is: X≤a1 ⊆ X≤a2 ⊆ ·· · ⊆ X≤an; and its persistence diagram is

denoted by Dg f . Each persistence-point p = (ai,a j) ∈ Dg f indicates the function values when

some topological features are created (when entering X≤ai) and destroyed (in X≤a j), and the

persistence of this feature is its life-time pers(p) = |a j −ai|. See Figure 2.1 for a simple example

where X = R. If one sweeps X top-down in decreasing function values, one gets the persistence

diagram induced by the super-levelset filtration of X w.r.t. f in an analogous way. Finally, if

one tracks the change of topological features in the levelset f−1(a), one obtains the so-called

levelset zigzag persistence [CdSM09] (which contains the information captured by the extended

persistence [CSEH09]).

Persistent homology for point clouds

When X is a point cloud, one commonly used approach to obtain persistence summaries is

constructing a so-called Vietoris-Rips filtration. Here, a space is modeled by a simplicial complex

spanned by a vertex set V : Roughly speaking, a k-dimensional simplex is the k-dimensional

generalization of vertices (0-D), edges (1-D) and triangles (2-D simplices). A simplicial complex
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Figure 2.2. Vietoris-Rips filtration on point clouds. (Left): a set of input points in 2D. (Middle-
left): a ball centered at each point in the 2D space with different scales (radius). (Middle-right):
the corresponding Vietoris-Rips complexes as radius increases. (Right): the persistence diagram.

is then simply a union of simplices with the condition that if a simplex is contained in this

complex, then any of its face will also be in the complex.

Given a set of point V ⊆Rn, the Vietoris-Rips complex at scale r consists of all simplices

with diameter less than r:

VRr(V ) = {σ ⊂V | ∀u,v ∈ σ , ||u− v|| ≤ r} (2.1)

In particular, VR0(V ) = {{u}||u ∈V}, and VR∞(V ) consist of all simplices spanned by vertices

in V . By increasing r from 0 to ∞, we obtain a filtration VR0(V ) ⊆ VRr1(V ) ⊆ VRr2(V ) ⊆

...⊆ VR∞(V ) (0 ≤ r1 ≤ r2 ≤ ...). See Figure 2.2 for a 2D example for illustration: The left is

a set of input points in 2D. In the middle-left, we create a ball centered at each point in the

2D space, and the union of balls (shown in orange) can be considered as a thickening of the

space captured by input points at different scales (radius). In the middle-right, the corresponding
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Vietoris-Rips complexes as radius increases. An edge is added whenever two balls intersect,

and whenever there are three edges among three vertices, a triangle is added. In general, if the

balls around k points all have pairwise intersection, then the (k−1)-simplex spanned by these

k points is added into the complex. The sequence of Vietoris-Rips complexes as the radius

increases gives rise to the Vietoris-Rips filtration. The persistence diagram shown in the right

encodes the birth and death of topological features of different dimensions through this filtration.

Blue dots corresponds to dimension-0 homological features, which captures the birth and death

of connected components. It turns out these blue dots capture the single-linkage hierarchical

clustering information. Red dots correspond to the birth and death of 1-dimensional homological

features, which are the creation and death of holes in this 2D example. Intuitively, there are

two holes created during this course, where the persistence (i.e, the life time as computed by

deathtime - birthtime) of the left hole is smaller than that of the right hole. In general, higher-

dimensional persistence diagrams will capture the creation and death of higher-dimensional

voids.

Persistent homology in graph setting

Given a graph G = (V,E), we can view it as a 1-dimensional simplicial complex. A

(descriptor) function f defined on V or E will then induce a filtration as well as its persistence

diagram summary. In particular, suppose f : V → R is defined on the node set of G (e.g, the

degree function). Then we can extend f to edges E of G by setting f (u,v) = max{ f (u), f (v)},

and the sublevel-set at a is defined as G≤a := {σ ∈V ∪E | f (σ)≤ a}. Similarly, if we are given

f : E → R, then we can extend f to V by setting f (u) = minu∈e,e∈E f (e). As we sweep G via

the sublevel-set filtration of f , connected components in the swept subgraphs will be created and

merged, and new cycles will be created. The formal events are encoded in the 0-dimensional

persistence diagram Dg0 f . The the 1-dimensional features (cycles), however, we note that cycles

created will never be killed, as they are present in the total space X = G. To this end, we use the

so-called extended persistence introduced in [CdSM09] which can record information of cycles.
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An example of the persistence diagram induced by a function on graph is given in Figure

2.3. In this example, the descriptor function f : V = {u1, . . . ,u10} → R is the shortest path

distance function to the base point u1; that is, for any ui, f (ui) =−dG(ui,u1) where dG denotes

the shortest path metric on G. Points in the 0-D persistence diagram and the 1-D extended

persistence diagram are shown in Figure 2.3 (c). For example, there are three independent loops

in this graph, and a specific basis (the so-called “thinnest” system of loops) are captured in the

1-D extended persistence diagram (giving rise to three persistence points).

Figure 2.3. (a). A graph whose all edges have weight 1, other than edge (u2,u4) with weight
w(u2,u4) = 2. (b). Re-plot the graph. Height of each node ui equals to descriptor function value
f (ui). (c) 0-D persistence diagram induced by the superlevel-set filtration and 1D extended
persistence diagram.

Metrics for Persistence Diagrams.

Two most common ways to measure distances between persistence diagrams are the

so-called bottleneck distance and the p-th Wasserstein distance. Both of these distances have

been well studied in the literature, including stability results under these distances (e.g, [CSEH07,

CSEHM10, CdSGO16]) and efficient implementations [KMN17, KMN18]. In this thesis, we

focus on the Wassertein distance, which we define below. Recall that all points on the diagonal

of the plane belongs to the persistence diagram with infinite multiplicity.

Definition 2.1.1. Let A1 and A2 be two persistence diagrams. The p-th Wasserstein distance
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between them is defined as:

dW,p(A1,A2)) = inf
γ:A1→A2

[ ∑
x∈A1

||x− γ(x)||p]1/p (2.2)

where the infimum is over all bijections γ : A1 → A2 and the summation is over all points in A1.

2.2 Graph neural networks

With the increasing demands for deep learning techniques over graph-structured data,

graph neural networks have been developed in recent years for various graph learning tasks and

widely applied in fields like social networks, knowledge graphs, chemical molecules, etc.

As the earlier studies generalizing neural networks in graphs, [GMS05, SGT+09] take

recurrent neural networks. They learn nodes’ embeddings by propagating neighbor information

iteratively until reaching a stable fixed point. Encouraged by the power and immense success

of convolutional neural networks on images and texts, different efforts are made to generalize

“convolution” over graphs. Spectral graph convolutional neural networks [BZSL14, DBV16]

apply convolution operations to the spectral domain or the frequency domain of the input graph.

A bottleneck of spectral graph convolution is it suffers the over-smoothing phenomenon and its

performance decreases with the increasing number of hidden convolution layers.

Spatial neural networks take a different way to perform convolution over graphs, which

is commonly formulated as message passing [GSR+17]. In specific, a node in a graph iteratively

receives information from its neighborhood and update its representation or features. These

node and edge representation information transferred between vertices are called messages. A

transformation of the messages and updated representations can be learned through training.

This message passing scheme can be formulated in a more explicit manner. Given an undirected

graph G = (V,E) where V is the node set and E is the edge set, the input to a GNN are node

features h0
u and edge features euv for every u ∈V and (u,v) ∈ E, then in the t-th hidden layer of a
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message passing GNN, the forward convolution consists of two functions:

AGGREGATE mt+1
u = f t(ht

u,euv,{ht
v|v ∈ N(u)})

UPDATE ht+1
u = gt(mt+1

u ,ht
u)

(2.3)

where N(u) is the neighborhood of node u, f (·) and g(·) are message aggregation and update

function respectively. Finally, if the task is on the graph level, there is a readout function r(·) in

the final layer mapping node representations to a graph representation

hG = r({hT
u |u ∈V}) (2.4)

where the T -th layer is the final layer.

Some popular spatial GNNs are GCN [KW17], GraphSAGE [HYL17], GIN [XHLJ19],

GAT [VCC+18], etc. These 1-hop GNNs have the same expressive power as the 1-dimensional

Weisfeiler-Leman (1-WL) graph isomorphism test [WL68] in terms of distinguishing non-

isomorphic graphs. [Lou20, SYK19] present that message passing GNNs are shown to be a

universal approximator under sufficient conditions on depth, width, nodes features, while the

expressive power of GNNs is limited by their width and depth, as they are equivalent to LOCAL

[Ang80, Lin92, NS95], a classical model used in the study the distributed algorithms that is itself

Turing universal.

GNNs introduced above only consider nodes and edges, which may not be sufficient to

handle the complex graph-structured data. Higher-order GNNs are developed to capture higher-

order substructures and their connections, i.e subgraphs consisting of at least 3 nodes, beyond

nodes and edges, so that we have another informative features. For example, (k+ 1)-LGNN

[MBHSL18] and k-FGNN [MBHSL19] can approximate any equivariant function less powerful

than equivariant (k+1)-WL.

15



Chapter 3

Metric Learning for Persistence-based
Summaries and Applications to Graph
Classification

3.1 Introduction

In recent years a new data analysis methodology based on a topological tool called

persistent homology has started to attract momentum. The persistent homology is one of the

most important developments in the field of topological data analysis, and there have been

fundamental developments both on the theoretical front (e.g, [ELZ02, CZ09, CCSG+09, CdS10,

CdSGO16, BCNK18]), and on algorithms / implementations (e.g, [She12, BKRW14, CBGY14,

DSW16, KS17, Bau16]). As we already seen in Chapter 2, intuitively, on the high level, given a

domain X with a function f : X → R on it, the persistent homology summarizes “features” of X

across multiple scales simultaneously in a single summary called the persistence diagram (see

the second picture in Figure 3.1). A persistence diagram consists of a multiset of points in the

plane, where each point p = (b,d) intuitively corresponds to the birth-time (b) and death-time

(d) of some (topological) features of X w.r.t. f . Hence it provides a concise representation of

X , capturing multi-scale features of it simultaneously. Furthermore, the persistent homology

framework can be applied to complex data (e.g, 3D shapes, or graphs), and different summaries

could be constructed by putting different descriptor functions on input data.
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Figure 3.1. A persistence-based data analysis framework.

Due to these reasons, a new persistence-based feature vectorization and data analysis

framework (Figure 3.1) has become popular. Specifically, given a collection of objects, say a set

of graphs modeling chemical compounds, one can first convert each shape to a persistence-based

representation. The input data can now be viewed as a set of points in a persistence-based

feature space. Equipping this space with appropriate distance or kernel, one can then perform

downstream data analysis tasks (e.g, clustering).

The original distances for persistence diagram summaries unfortunately do not lend them-

selves easily to machine learning tasks. Hence in the last few years, starting from the persistence

landscape [Bub15], there have been a series of methods developed to map a persistence diagram

to a vector representation to facilitate machine learning tools [RHBK15, AEK+17, KFH18,

CCO17, LMBB19].

In these approaches, when computing the distance or kernel between persistence sum-

maries, the importance (weight) of different persistence features are often pre-determined.

In persistence images [AEK+17] and PWGK [KFH18], the importance of having a weight-

function for the birth-death plane (containing the persistence points) has been emphasized and

explicitly included in the formulation of their kernels. However, before using these kernels, the

weight-function needs to be pre-set.

On the other hand, as recognized by [HKNU17], the choice of the weight-function

should depend on the nature of the specific type of data at hand. For example, for the persistence

diagrams computed from atomic configurations of molecules, features with small persistence
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could capture the local packing patterns which are of utmost importance and thus should be

given a larger weight; while in many other scenarios, small persistence leads to noise with low

importance. However, in general researchers performing data analysis tasks may not have such

prior insights on input data. Thus it is natural and highly desirable to learn a best weight-function

from labelled data.

Main contributions of Chapter 3.

We study the problem of learning an appropriate metric (kernel) for persistence summaries

from labelled data, and apply the learnt kernel to the challenging graph classification task.

(1) Metric learning for persistence summaries: We propose a new weighted-kernel

(called WKPI), for persistence summaries based on persistence images representations. Our

WKPI kernel is positive semi-definite and its induced distance is stable. A weight-function

used in this kernel directly encodes the importance of different locations in the persistence

diagram. We next model the metric learning problem for persistence summaries as the problem

of learning (the parameters of) this weight-function from a certain function class. In particular,

the metric-learning is formulated as an optimization problem over a specific cost function we

propose. This cost function has a simple matrix view which helps both conceptually clarify its

meaning and simplify the implementation of its optimization.

(2) Graph classification application: Given a set of objects with class labels, we first learn

a best WKPI-kernel as described above, and then use the learned WKPI to further classify objects.

We implemented this WKPI-classification framework, and apply it to a range of graph data sets.

Graph classification is an important problem, and there has been a large literature on developing

effective graph representations (e.g, [HK09, NST+09, BRTH15, KGW16, SSL+11, XJWL15,

NPGK12], including the very recent persistent-homology enhanced WL-kernel [RBB19]), and

graph neural networks (e.g, graph neural networks [YV15, NAK16, XHLJ19, VZ17, LMBB19,

KSP+18]) to classify graphs. The problem is challenging as graph data are less structured. We

perform our WKPI-classification framework on various benchmark graph data sets as well as new
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neuron-cell data sets. Our learnt WKPI performs consistently better than other persistence-based

kernels. Most importantly, when compared with existing state-of-the-art graph classification

frameworks, our framework shows similar or (sometimes significantly) better performance in

almost all cases than the best results by existing approaches.

We note that [HKNU17] is the first to recognize the importance of using labelled data to learn a

task-optimal representation of topological signatures. They developed an end-to-end deep neural

network for this purpose, using a novel and elegant design of the input layer to implicitly learn

a task-specific representation. Very recently, in a parallel and independent development of our

work, Carrière et al. [CCI+19] built an interesting new neural network based on the DeepSet

architecture [ZKR+17], which can achieve an end-to-end learning for multiple persistence

representations in a unified manner. Compared to these developments, we instead explicitly

formulate the metric-learning problem for persistence-summaries, and decouple the metric-

learning (which can also be viewed as representation-learning) component from the downstream

data analysis tasks. Also as shown in Section 3.4, our WKPI-classification framework (using

SVM) achieves better results on graph classification datasets.

Outline of Chapter 3.

This chapter is organized as follows. In Section 3.2, we introduce some concepts and

mathematical tools in the field of persistent homology. In Section 3.3, we present our weighted

kernel, WKPI, and the metric learning framework. We then show experiments on neuron-cell

classifications and graph classifications comparing to other topological based approaches, graph

kernels and graph neural networks in Section 3.4. Finally, we make a conclusion in Section 3.5.

3.2 Persistence-based framework

We have introduced how we can construct a filtration and extract topological information

from an object in Chapter 2. We also show what kinds of information can be encoded by persistent

diagrams. Now given a collection of shapes Ξ, we can compute a persistence diagram DgX for
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(a) (b)

Figure 3.2. (a) shows the graph of a persistence surface (where z-axis is the function ρA), and
(b) is its corresponding persistence image.

each X ∈ Ξ, which maps the set Ξ to a set of points in the space of persistence diagrams. There

are natural distances defined for persistence diagrams, including the bottleneck distance and the

Wasserstein distance, both of which have been well studied (e.g, stability under them [CSEH07,

CSEHM10, CdSGO16]) with efficient implementations available [KMN17, KMN18]. However,

to facilitate downstream machine learning tasks, it is desirable to further map the persistence

diagrams to another “vector” representation. Below we introduce one such representation, called

the persistence images [AEK+17], as our new kernel is based on it.

Persistence images.

Let A be a persistence diagram (containing a multiset of persistence-points). Following

[AEK+17], set T :R2 →R2 to be the linear transformation1 where for each (x,y)∈R2, T (x,y) =

(x,y− x). Let T (A) be the transformed diagram of A. Let φu : R2 → R be a differentiable

probability distribution with mean u ∈ R2 (e.g, the normalized Gaussian where for any z ∈ R2,

φu(z) = 1
2πτ2 e−

∥z−u∥2

2τ2 ).

Definition 3.2.1 ([AEK+17]). Let α : R2 → R be a non-negative weight-function for the persis-

tence plane R2. Given a persistence diagram A, its persistence surface ρA : R2 → R (w.r.t. α) is

defined as: for any z ∈ R2, ρA(z) = ∑u∈T (A)α(u)φu(z).

1In fact, we can define our kernel without transforming the persistence diagram. We use the transformation
simply to follow the same convention as persistence images.
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The persistence image is a discretization of the persistence surface. Specifically, fix a

grid on a rectangular region in the plane with a collection P of N rectangles (pixels). The

persistence image for a diagram A is PIA = { PI[p] }p∈P consists of N numbers (i.e, a vector in

RN), one for each pixel p in the grid P with PI[p] :=
∫∫

p ρA dydx.

Figure 3.2 shows an example of persistence surface and persistence image from generated

from a persistence diagram.

3.3 Metric learning frameworks

Suppose we are given a set of n objects Ξ (sampled from a hidden data space S ),

classified into k classes. We want to use these labelled data to learn a good distance for

(persistence image representations of) objects from Ξ which hopefully is more appropriate at

classifying objects in the data space S . To do so, below we propose a new persistence-based

kernel for persistence images, and then formulate an optimization problem to learn the best

weight-function so as to obtain a good distance metric for Ξ (and data space S ).

3.3.1 Weighted persistence image kernel (WKPI)

From now on, we fix the grid P (of size N) to generate persistence images (so a

persistence image is a vector in RN). Let ps be the center of the s-th pixel ps in P , for

s ∈ {1,2, · · · ,N}. We now propose a new kernel for persistence images. A weight-function refers

to a non-negative real-valued function on R2.

Definition 3.3.1. Let ω : R2 → R be a weight-function. Given two persistence images PI

and PI′, the (ω-)weighted persistence image kernel (WKPI) is defined as: kw(PI,PI′) :=

∑
N
s=1 ω(ps)e

− (PI(s)−PI′(s))2

2σ2 .

Remark 0: We could use the persistence surfaces (instead of persistence images) to define the

kernel (with the summation replaced by an integral). Since for computational purpose, one still

needs to approximate the integral in the kernel via some discretization, we choose to present our
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work using persistence images directly. Our Lemma 3.3.2 and Theorem 3.3.4 still hold (with

slightly different stability bound) if we use the kernel defined for persistence surfaces.

Remark 1: One can choose the weight-function from different function classes. Two popular

choices are: mixture of m 2D Gaussians; and degree-d polynomials on two variables.

Remark 2: There are other natural choices for defining a weighted kernel for persistence images.

For example, we could use k(PI,PI′) = ∑
N
s=1 e−

ω(ps)(PI(s)−PI′(s))2

2σ2 , which we refer this as altWKPI.

Alternatively, one could use the weight function used in PWGK kernel [KFH18] directly. Indeed,

we have implemented all these choices, and our experiments show that our WKPI kernel leads to

better results than these choices for almost all datasets (see Appendix Section A.2). In addition,

note that PWGK kernel [KFH18] contains cross terms ω(x) ·ω(y) in its formulation, meaning

that there are quadratic number of terms (w.r.t the number of persistence points) to calculate the

kernel, making it more expensive to compute and learn for complex objects (e.g, for the neuron

data set, a single neuron tree could produce a persistence diagrams with hundreds of persistence

points).

Lemma 3.3.2. The WKPI kernel is positive semi-definite.

The rather simple proof of the above lemma is in Appendix Section A.1.1. By Lemma

3.3.2, the WKPI kernel gives rise to a Hilbert space. We can now introduce the WKPI-distance,

which is the pseudo-metric induced by the inner product on this Hilbert space.

Definition 3.3.3. Given two persistence diagrams A and B, let PIA and PIB be their corresponding

persistence images. Given a weight-function ω : R2 → R, the (ω-weighted) WKPI-distance is:

Dω(A,B) :=
√

kw(PIA,PIA)+ kw(PIB,PIB)−2kw(PIA,PIB).

Stability of WKPI-distance.

Given two persistence diagrams A and B, two traditional distances between them are

the bottleneck distance dB(A,B) and the p-th Wasserstein distance dW,p(A,B). Stability of these
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two distances w.r.t. changes of input objects or functions defined on them have been studied

[CSEH07, CSEHM10, CdSGO16]. Similar to the stability study on persistence images, below

we prove WKPI-distance is stable w.r.t. small perturbation in persistence diagrams as measured

by dW,1. (Very informally, view two persistence diagrams A and B as two (appropriate) measures

(with special care taken to the diagonals), and dW,1(A,B) is roughly the “earth-mover” distance

between them to convert the measure corresponding to A to that for B.)

To simplify the presentation of Theorem 3.3.4, we use unweighted persistence images

w.r.t. Gaussian, meaning in Definition 3.2.1, (1) the weight function α is the constant function

α = 1; and (2) the distribution φu is the Gaussian φu(z) = 1
2πτ2 e−

∥z−u∥2

2τ2 . (Our result below can be

extended to the case where φu is not Gaussian.) The proof of the theorem below follows from

results of [AEK+17] and can be found in Appendix Section A.1.2.

Theorem 3.3.4. Given a weight-function ω : R2 → R, set cw = ∥ω∥∞ = supz∈R2 ω(z). Given

two persistence diagrams A and B, with corresponding persistence images PIA and PIB, we have

that: Dω(A,B)≤
√

20cw
π

· 1
σ ·τ ·dW,1(A,B), where σ is the width of the Gaussian used to define

our WKPI kernel (Def. 3.3.1), and τ is that for the Gaussian φu to define persistence images

(Def. 3.2.1).

Remark 3: We can obtain a more general bound for the case where the distribution φu is not

Gaussian. Furthermore, we can obtain a similar bound when our WKPI-kernel and its induced

WKPI-distance is defined using persistence surfaces instead of persistence images.

3.3.2 Optimization problem for metric-learning

Suppose we are given a collection of objects Ξ = {X1, . . . ,Xn} (sampled from some

hidden data space S ), already classified (labeled) to k classes C1, . . . ,Ck. In what follows, we

say that i ∈ C j if Xi has class-label j. We first compute the persistence diagram Ai for each

object Xi ∈ Ξ. (The precise filtration we use to do so will depend on the specific type of objects.

Later in Section 3.4, we will describe filtrations used for graph data). Let {A1, . . . ,An} be the
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resulting set of persistence diagrams. Given a weight-function ω , its induced WKPI-distance

between Ai and A j can also be thought of as a distance for the original objects Xi and X j; that

is, we can set Dω(Xi,X j) := Dω(Ai,A j). Our goal is to learn a good distance metric for the

data space S (where Ξ are sampled from) from the labels. We will formulate this as learning

a best weight-function ω∗ so that its induced WKPI-distance fits the class-labels of Xi’s best.

Specifically, for any t ∈ {1,2, · · · ,k}, set:

costω(t, t) = ∑
i, j∈Ct

Dω
2(Ai,A j); and costω(t, ·) = ∑

i∈Ct , j∈{1,2,··· ,n}
Dω

2(Ai,A j).

Intuitively, costω(t, t) is the total in-class (square) distances for Ct ; while costω(t, ·) is the total

distance from objects in class Ct to all objects in Ξ. A good metric should lead to relatively

smaller distance between objects from the same class, but larger distance between objects from

different classes. We thus propose the following optimization problem, which is related to k-way

spectral clustering where the distance for an edge (Ai,A j) is D2
ω(Ai,A j):

Definition 3.3.5 (Optimization problem). Given a weight-function ω : R2 → R, the total-cost of

its induced WKPI-distance over Ξ is defined as: TC(ω) := ∑
k
t=1

cost(t,t)
cost(t,·) . The optimal distance

problem aims to find the best weight-function ω∗ from a certain function class F so that the

total-cost is minimized; that is: TC∗ = minω∈F TC(ω);

and ω∗ = argminω∈F TC(ω).

Matrix view of optimization problem.

We observe that our cost function can be re-formulated into a matrix form. This provides

us with a perspective from the Laplacian matrix of certain graphs to understand the cost function,

and helps to simplify the implementation of our optimization problem, as several programming

languages popular in machine learning (e.g Python and Matlab) handle matrix operations more

efficiently (than using loops). More precisely, recall our input is a set Ξ of n objects with labels
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from k classes. We set up the following matrices:

L = G−Λ; Λ =
[
Λi j

]
n×n, where Λi j = Dω

2(Ai,A j) for i, j ∈ {1,2, · · · ,n};

G =
[
gi j

]
n×n, where gi j =


∑

n
ℓ=1 Λiℓ if i = j

0 if i ̸= j

H =
[
hti
]

k×n where hti =


1√

costω (t,·)
i ∈ Ct

0 otherwise

Viewing Λ as distance matrix of objects {X1, . . . ,Xn}, L is then its Laplacian matrix. We

have the following main theorem, which essentially is similar to the trace-minimization view of

k-way spectral clustering (see e.g, Section 6.5 of [KCS11]). The proof for our specific setting is

in Appendix A.1.3.

Theorem 3.3.6. The total-cost can also be represented by TC(ω) = k−Tr(HLHT ), where Tr(·)

is the trace of a matrix. Furthermore, HGHT = I, where I is the k× k identity matrix.

Note that all matrices, L,G,Λ, and H, are dependent on the (parameters of) weight-

function ω , and in the following corollary of Theorem 3.3.6, we use the subscript of ω to

emphasize this dependence.

Corollary 3.3.7. The Optimal distance problem is equivalent to

min
ω

(
k−Tr(HωLωHT

ω )
)
, subject to HωGωHT

ω = I.

Solving the optimization problem.

In our implementation, we use (stochastic) gradient descent to find a (locally) optimal

weight-function ω∗ for the minization problem. Specifically, given a collection of objects Ξ

with labels from k classes, we first compute their persistence diagrams via appropriate filtrations,

and obtain a resulting set of persistence diagrams {A1, . . . ,An}. We then aim to find the best
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parameters for the weight-function ω∗ to minimize Tr(HLHT )=∑
k
t=1 htLhT

t subject to HGHT =

I (via Corollary 3.3.7). For example, assume that the weight-function ω is from the class F of

mixture of m number of 2D non-negatively weighted (spherical) Gaussians. Each weight-function

ω : R2 → R ∈ F is thus determined by 4m parameters {xr,yr,σr,wr | r ∈ {1,2, · · · ,m}} with

ω(z) = wre
− (zx−xr)2+(zy−yr)2

σ2r . We then use (stochastic) gradient decent to find the best parameters

to minimize Tr(HLHT ) subject to HGHT = I. Note that the set of persistence diagrams / images

will be fixed through the optimization process.

From the proof of Theorem 3.3.6 (in Appendix A.1.3), it turns out that condition

HGHT = I is satisfied as long as the multiplicative weight wr of each Gaussian in the mix-

ture is non-negative. Hence during the gradient descent, we only need to make sure that this

holds 2. It is easy to write out the gradient of TC(ω) w.r.t. each parameter {xr,yr,σr,wr | r ∈

{1,2, · · · ,m}} in matrix form. For example, ∂TC(ω)
∂xr

= −(∑k
t=1

∂ht
∂xr

LhT
t + ht

∂L
∂xr

hT
t + htL

∂hT
t

∂xr
);

where ht =
[
ht1,ht2, ...,htn

]
is the t-th row vector of H. While this does not improve the asymp-

totic complexity of computing the gradient (compared to using the formulation of cost function in

Definition 3.3.5), these matrix operations can be implemented much more efficiently than using

loops in languages such as Python and Matlab. For large data sets, we use stochastic gradient

decent, by sampling a subset of s << n number of input persistence images, and compute the

matrices H,D,L,G as well as the cost using the subsampled data points. The time complexity of

one iteration in updating parameters is O(s2N), where N is the size of a persistence image (recall,

each persistence image is a vector in RN). In our implementation, we use Armijo-Goldstein

line search scheme to update the parameters in each (stochastic) gradient decent step. The

optimization procedure terminates when the cost function converges or the number of iterations

exceeds a threshold. Overall, the time complexity of our optimization procedure is O(Rs2N)

where R is the number of iterations, s is the minibatch size, and N is the size (# pixels) of a single

persistence image.

2In our implementation, we add a penalty term ∑
m
r=1

c
exp(wr)

to total-cost k−Tr(HLHT ), to achieve this in a
“soft” manner.
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3.4 Experiments

We show the effectiveness of our metric-learning framework and the use of the learned

metric via graph classification applications. In particular, given a set of graphs Ξ = {G1, . . . ,Gn}

coming from k classes, we first compute the unweighted persistence images Ai for each graph Gi,

and apply the framework from Section 3.3.1 to learn the “best” weight-function ω∗ : R2 → R

using these persistence images {A1, . . . ,An} and their labels. We then perform graph classification

using kernel-SVM with the learned ω∗-WKPI kernel. We refer to this framework as WKPI-

classification framework. We show two sets of experiments. Section 3.4.1 shows that our

learned WKPI kernel significantly outperforms existing persistence-based representations. In

Section 3.4.2, we compare the performance of WKPI-classification framework with various

state-of-the-art methods for the graph classification task over a range of data sets. More details /

results can be found in Appendix Section A.2.

Setup for our WKPI-based framework.

In all our experiments, we assume that the weight-function comes from the class F of

mixture of m 2D non-negatively weighted Gaussians as described in the end of Section 3.3.2.

We take m and the width σ in our WKPI kernel as hyperparameters: Specifically, we search

among m ∈ {3,4,5,6,7,8} and σ ∈ {0.001,0.01,0.1,1,10,100}. The 10∗10-fold nested cross

validation are applied to evaluate our algorithm: There are 10 folds in outer loop for evaluation

of the model with selected hyperparameters and 10 folds in inner loop for hyperparameter tuning.

We then repeat this process 10 times (although the results are extremely close whether repeating

10 times or not). Our optimization procedure terminates when the change of the cost function

remains ≤ 10−4 or the iteration number exceeds 2000.

One important question is to initialize the centers of the Gaussians in our mixture. There

are three strategies that we consider. (1) We simply sample m centers in the domain of persistence

images randomly. (2) We collect all points in the persistence diagrams {A1, . . . ,An} derived from

the training data Ξ, and perform a k-means algorithm to identify m means. (3) We perform a
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Table 3.1. Classification accuracy on neuron dataset. Our results are WKPI-km and WKPI-kc.

Datasets Existing approaches Alternative metric learning
PWGK SW PI-PL altWKPI trainPWGK

NEURON-BINARY 80.5±0.4 85.3±0.7 83.7±0.3 82.1±2.1 84.6±2.4
NEURON-MULTI 45.1±0.3 57.6±0.6 44.2±0.3 54.3±2.3 49.7±2.4

Average 62.80 71.45 63.95 68.20 67.15
Datasets Our WKPI framework

WKPI-km WKPI-kc
NEURON-BINARY 89.6 ±2.2 86.4±2.4
NEURON-MULTI 56.6±2.7 59.3±2.3

Average 73.10 72.85

k-center algorithm to those points to identify m centers. Strategies (2) and (3) usually outperform

strategy (1). Thus in what follows we only report results from using k-means and k-centers as

initialization, referred to as WKPI-kM and WKPI-kC, respectively.

3.4.1 Comparison with other persistence-based methods

We compare our methods with state-of-the-art persistence-based representations, includ-

ing the Persistence Weighted Gaussian Kernel (PWGK) [KFH18], original Persistence Image

(PI) [AEK+17], and Sliced Wasserstein (SW) Kernel [CCO17]. Furthermore, as mentioned in

Remark 2 after Definition 3.3.1, we can learn weight functions in PWGK by the optimizing the

same cost function (via replacing our WKPI-distance with the one computed from PWGK kernel);

and we refer to this as trainPWGK. We can also use an alternative kernel for persistence images

as described in Remark 2, and then optimize the same cost function using distance computed

from this kernel; we refer to this as altWKPI. We will compare our methods both with existing

approaches, as well as with these two alternative metric-learning approaches (trainPWGK and

altWKPI).

Description of neuron datasets.

Neuron cells have natural tree morphology (see Figure 3.3 (a) for an example), rooted at

the cell body (soma), with dentrite and axon branching out. Furthermore, this tree morphology
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is important in understanding neurons. Hence it is common in the field of neuronscience to

model a neuron as a (geometric) tree (see Figure 3.3 (b) for an example downloaded from

NeuroMorpho.Org[ADH07]).

Our NEURON-BINARY dataset consists of 1126 neuron trees classified into two (pri-

mary) classes: interneuron and principal neurons (data partly from the Blue Brain Project

[MMR+15] and downloaded from http://neuromorpho.org/). The second NEURON-MULTI

dataset is a refinement of the 459 interneuron class into four (secondary) classes: basket-large,

basket-nest, neuglia and martino.

(a) (b)

Figure 3.3. (a) An neuron cell (downloaded from Wikipedia)and (b) an example of a neuron tree
(downloaded from NeuroMorpho.Org).

Generation of persistence diagrams.

Given a neuron tree T , following [LWA+17], we use the descriptor function f : T → R

where f (x) is the geodesic distance from x to the root of T along the tree. To differentiate the

dendrite and axon part of a neuron cell, we further negate the function value if a point x is in the

dendrite. We then use the union of persistence diagrams AT induced by both the sublevel-set

and superlevel-set filtrations w.r.t. f . Under these filtrations, intuitively, each point (b,d) in the

birth-death plane R2 corresponds to the creation and death of certain branch feature for the input

neuron tree. The set of persistence diagrams obtained this way (one for each neuron tree) is the

input to our WKPI-classification framework.
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Results on neuron datasets.

Neuron-Binary dataset consists of 1126 neuron trees from two classes; while Neuron-

Multi contains 459 neurons from four classes. As the number of trees is not large, we use all

training data to compute the gradients in the optimization process instead of mini-batch sampling.

Persistence images are both needed for the methodology of [AEK+17] and as input for our

WKPI-distance, and its resolution is fixed at roughly 40×40 (see Appendix Section A.2.1 for

details). For persistence image (PI) approach of [AEK+17], we experimented both with the

unweighted persistence images (PI-CONST), and one, denoted by (PI-PL), where the weight

function α : R2 →R is a simple piecewise-linear (PL) function adapted from what’s proposed in

[AEK+17]; see Appendix Section A.2.1 for details. Since PI-PL performs better than PI-CONST

on both datasets, Table 3.1 only shows the results of PI-PL. The classification accuracy of various

methods is given in Table 3.1. Our results are consistently better than other topology-based

approaches, as well as alternative metric-learning approaches; not only for the neuron datasets as

in Table 3.1, but also for graph benchmark datasets shown in Table A.2 of Appendix Section

A.2.2, and often by a large margin. In Appendix Section A.2.2, we also show the heatmaps

indicating the learned weight function ω : R2 → R.

3.4.2 Graph classification task

We use a range of benchmark datasets: (1) several datasets on graphs derived from small

chemical compounds or protein molecules: NCI1 and NCI109 [SSL+11], PTC [HKKS01],

PROTEIN [BOS+05], DD [DD03] and MUTAG [DLdCD+91]; (2) two datasets on graphs

representing the response relations between users in Reddit: REDDIT-5K and REDDIT-12K

[YV15]; and (3) two datasets on IMDB networks of actors/actresses: IMDB-BINARY, and

IMDB-MULTI. Their statistics are shown in Table 3.2. See Appendix Section 2.2 for descrip-

tions of these datasets.

Many graph classification methods have been proposed in the literature, with differ-

ent methods performing better on different datasets. Thus we include multiple approaches to
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Table 3.2. Statistics of the benchmark graph datasets

Dataset #classes #graphs average #nodes average #edges
NCI1 2 4110 29.87 32.30

NCI109 2 4127 29.68 31.96
PTC 2 344 14.29 14.69

PROTEIN 2 1113 39.06 72.82
DD 2 1178 284.32 715.66

IMDB-BINARY 2 1000 19.77 96.53
IMDB-MULTI 3 1500 13.00 65.94
REDDIT-5K 5 4999 508.82 594.87

REDDIT-12K 11 12929 391.41 456.89

compare with, to include state-of-the-art results on different datasets: Weisfeiler-Lehman ker-

nel (WL)[SSL+11], Weisfeiler-Lehman optimal assignment kernel (WL-OA)[KGW16], Deep

Graphlet kernel (DGK)[YV15], the very recent persistent Weisfeiler-Lehman kernel (P-WL-

UC) [RBB19], Sliced Wasserstein kernel [CCO17], and Persistence Fisher kernel[LY18]; two

graph neural networks: PATCHYSAN (PSCN) [NAK16] and Graph Isomorphism Network

(GIN)[XHLJ19]. We also compare trainPWGKand altWKPIas we introduced above.

Classification results.

To generate persistence summaries, we need a meaningful descriptor function on input

graphs. We consider two choices: (a) the Ricci-curvature function fc : G → R, where fc(x)

is the discrete Ricci curvature for graphs as introduced in [LLY11]; and (b) Jaccard-index

function fJ : G → R which measures edge similarities in a graph. See Appendix Section A.2.2

for details. Graph classification results are in Table 3.3: Ricci curvature function is used for the

small chemical compounds datasets (NCI1, NCI9, PTC and MUTAG), while Jaccard function

is used for proteins datasets (PROTEIN and DD) and the social/IMDB networks (IMDB’s and

REDDIT’s). Results of previous methods are taken from their respective papers. Comparisons

with more methods (including with other topology-based methods such as SW [CCO17]) are in

Appendix Section A.2.2. We rerun the two best performing approaches GIN and RetGK using
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Table 3.3. Graph classification accuracy.

Dataset Graph kernel and GNN approaches
RetGK WL DGK P-WL-UC PSCN GIN

NCI1 84.5 85.4 80.3 85.6 76.3 82.7
NCI109 - 84.5 80.3 85.1 - -

PTC 62.5 55.4 60.1 63.5 62.3 66.6
PROTEIN 75.8 71.2 75.7 75.9 75.0 76.2

DD 81.6 78.6 - 78.5 76.2 -
MUTAG 90.3 84.4 87.4 85.2 89.0 90.0

IMDB-BINARY 71.9 70.8 67.0 73.0 71.0 75.1
IMDB-MULTI 47.7 49.8 44.6 - 45.2 52.3
REDDIT-5K 56.1 51.2 41.3 - 49.1 57.5

REDDIT-12K 48.7 32.6 32.2 - 41.3 -
Dataset Existing TDA approaches Alternative metric learning Our approaches

SW PF trainPWGK altWKPI WKPI-kM WKPI-kC
NCI1 80.1 81.7 76.5 77.4 87.5 84.5

NCI109 75.5 78.5 77.2 81.2 85.9 87.4
PTC 64.5 62.4 62.5 64.2 61.7 68.1

PROTEIN 76.4 75.2 74.8 75.1 78.5 75.2
DD 78.9 79.4 76.4 72.5 82.0 80.3

MUTAG 87.1 85.6 86.4 88.5 85.8 88.3
IMDB-BINARY 69.6 71.2 71.8 67.3 70.7 75.4
IMDB-MULTI 48.7 48.6 45.8 45.3 46.4 49.5
REDDIT-5K 53.8 56.2 53.5 54.7 59.1 59.5

REDDIT-12K 48.3 47.6 43.7 42.1 47.4 48.4
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the exactly same nested cross validation setup as ours. The results are also in Appendix Section

A.2.2, which are similar to those in Table 3.3. Except for MUTAG and IMDB-MULTI, the

performances of our WKPI-framework are similar or better than the best of other methods. Our

WKPI-framework performs well on both chemical graphs and social graphs, while some of the

earlier work tend to work well on one type of the graphs. Furthermore, note that the chemical /

molecular graphs usually have attributes associated with them. Some existing methods use these

attributes in their classification [YV15, NAK16, ZWX+18]. Our results however are obtained

purely based on graph structure without using any attributes.

3.5 Conclusion

This chapter introduces a new weighted-kernel for persistence images (WKPI), together

with a metric-learning framework to learn the best weight-function for WKPI-kernel from

labelled data. We apply the learned WKPI-kernel to the task of graph classification, and show

that our new framework achieves similar or better results than the best results among a range of

previous approaches.

In our current framework, only a single descriptor function of each input object is used

to derive a persistence-based representation. It will be interesting to extend our framework to

leverage multiple descriptor functions (so as to capture different types of information) effectively.

Recent work on multidimensional persistence would be useful in this effort. Another interesting

question is to study how to incorporate categorical attributes associated to graph nodes effec-

tively. Real-valued attributed can be used as a descriptor function to generate persistence-based

summaries. But the handling of categorical attributes via topological summary is much more

challenging, especially when there is no (prior-known) correlation between these attributes (e.g,

the attribute is simply a number from {1,2, · · · ,s}, coming from s categories. The indices of

these categories may carry no meaning).

This Chapter 3, in full, is a reprint of the material as it appears in Learning Metric for
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Persistence-based Summaries and Applications for Graph Classification, 2019. Zhao, Qi; Wang,

Yusu. Conference on Neural Information Processing System (NeurIPS), 2019. The dissertation

author was the primary investigator and author of this paper.
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Chapter 4

Persistence Enhanced Graph Neural Net-
work

4.1 Introduction

Deep learning methods have achieved immense success in different domains such as

computer vision and natural language processing [GBC16]. While deep neural networks have

shown strong performance on image or text data, their learning power is yet to be fully exploited

on graph-structured data. At the same time, data with a latent graph structure is ubiquitous in

modern data science. It is highly desirable to develop deep learning techniques that best suite

graph structures, such as social network, knowledge network, brain connectivity network, etc.

Earlier works on Graph Neural Networks (GNNs) [GMS05, SGT+09] use recursive

networks. Those GNNs process the graph using a set of neurons, each corresponding to a node

in the graph. The neurons update nodes representation and exchange information from linked

neighbor nodes iteratively until reaching equilibrium.

Inspired by the power of convolutional networks on image and text data, different ideas

have been proposed to implement the “convolution” on graph structures. There are two main

directions, spectral convolutions and spatial convolutions. Spectral convolutional networks

[BZSL14, DBV16] apply convolutions to the spectral domain or the frequency domain of the

input graph. These methods tend to be efficient, but are highly graph-dependent.

In a more explicit manner, spatial convolutional networks implement convolutions on
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graphs. The feature representation of each node is iteratively updated by aggregating information

from immediate neighbors [HYL17, XHLJ19] or a receptive field determined by special methods

[NAK16]. A transformation of the information from neighbors - either linear or non-linear - can

be learned through training. The node representation information transferred between vertices

are called messages. [VCC+18] used self-attention mechanism to further refine the messages

based on local information, namely, features of source and target nodes.

In spatial convolutions, it is essential to have shared filter parameters across different

parts of the graph. However, it has been observed that the filters should be adaptive to different

local graph structures. In particular, node degrees have been used to reweight the messages

or as additional features of node representations [KW17, MBM+17]. This way, messages

relevant to hub nodes with high degrees will be different from messages between normal nodes.

However, node degree is only the simplest graph structural property. There are much richer and

advanced structural information that should be exploited in order to develop structure-adaptive

convolutional filters.

v v

Figure 4.1. A node v is critical in a tree-structured neighborhood with no loops (left). But it is
dispensable in a clique-structured neighborhood with 10 triangular loops containing v (right).

In this chapter, we propose a novel and principled approach to maximally leverage the

structural information in spatial graph convolution. In particular, for a node of the graph, we are

interested in the loopiness of its neighborhood, i.e., how well its neighbors are inter-connected.

Such structural property measures how critical the center node, v, is in information flow. At

one extreme, if the neighborhood forms a loop-free tree, v is indispensable as any information
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between these neighbors has to pass v locally.1 At another extreme, a clique neighborhood

with Nv neighbors has
(Nv

2

)
= Nv(Nv −1)/2 many triangular loops that contain v. In such case,

any two neighbors can easily exchange information without going through v. See Figure 4.1

for illustrations. Such loopiness measure of a neighborhood should be fully exploited in graph

learning, as it measures the information transmission efficiency of each node.

However, a direct cycle-counting within the neighborhood of v is insufficient. One major

challenge is how to generalize to the cases when a graph is endowed with a metric, i.e., edges are

annotated with different weights. These edge weights may come as part of the input information,

e.g., frequency of communication between nodes in a social network, distance between nodes in

a traffic network, etc. In other cases, these edge weights may be derived directly from the graph

structural information. We need a robust ‘cycle-counting’ measure which should be stable to

such graph metrics, i.e., does not change much when a metric is slightly perturbed.

To this end, we will use a principled mathematical tool, persistent homology, as a novel

structural information measurement for graph convolutional networks. Persistent homology

[ELZ02, EH10], as a modern adaption of the classic algebraic topology, can measure topological

information carried in a metric space. As we introduced in Chapter 2, in graph context, persistent

homology not only counts the number of loops, but also measures the saliency of all loops in

view of a given metric. The result of [CSEH07, CSEHM10] shows that the structural information

captured in persistent homology is stable with regard to certain perturbation of the underlying

metric.

Main contributions of Chapter 4.

Our contribution in this chapter is two-fold.

A graph neural network architecture leveraging persistent homology information: We

propose Persistence Enhanced Graph Network (PEGN), a novel network architecture for graphs,

that uses persistent homology information in a data-driven manner. Based on the input persistent

1The neighbors may communicate through other parts of the graph, but at a higher expense (longer route).
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homology information of different neighborhoods, we train a separate network to reweight

messages between nodes. This empowers the spatial graph convolution to be highly adaptive

with regard to different local structures.

Node classification application: We validate our proposed network on a broad spectrum

of synthetic and real world graph datasets. Our method outperforms existing methods that

only use node-feature-based attention or node degree information. This confirms the power of

advanced structural information, i.e., persistent homology, in graph learning.

To the best of our knowledge, we are the first to exploit advanced topological information

beyond node degrees in spatial convolutional graph networks. Note that spectral convolution

methods, which run convolutions on the spectral or Fourier space, indirectly use advanced

structural information. But for these methods, it is much harder to control the convolution with

regard to different local structures as we do.

More on related Work.

Persistent homology plays a crucial role in topological data analysis, which extracts topo-

logical information from various geometric objects such as shapes, images or point clouds. Much

progress has been made both on the theoretical front (e.g, [ELZ02, CZ09, CCSG+09, CdS10,

CdSGO16]) and the computational efficiency (e.g, [She12, BKRW14, CBGY14, DSW16, KS17,

Bau16]). The extracted topological information has been used as powerful features in various

contexts [HKNU17, AEK+17, CCO17, KFH18]. Advanced topological methods have been de-

veloped for image segmentation [WCW+17, HLSC19], clustering [NQWC17] and regularization

of classifiers [CNBW19].

For graphs, persistent homology information has been used as a global structural signature

for whole graph classification [RBB19, LWA+17, ZW19]. But no existing methods use such

information as a local structural information to improve the adaptability of graph convolutional

networks.

38



Outline of Chapter 4.

This chapter is organized as follows. We first introduce what information a persistence

diagram of a subgraph can capture from a local view in Section 4.2. Inspired by these information,

we propose the Persistence Enhanced Graph Network (PEGN). We present details of the network

architecture in Section 4.3. Then in Section 4.4, we show that our approach has achieved or

matched the state-of-the-art across various graph benchmark datasets, in particular on larger

and denser graphs. Finally, we introduce an application of graph neural networks enhanced by

geometry and topology on material discovery in Section 4.5.

4.2 Persistence diagrams from subgraphs

In this section, we discuss what kinds of meaningful information we can capture from

a specific kind of persistence diagrams generated from subgraphs. Given a graph G(V,E), a

subgraph Gu can be picked around a node u ∈ V by selecting a set of nodes closed to u. One

method is to pick its q− hop neighbourhood (q ≥ 1) and another is to apply a random walk

starting from u. The filtration function f defined over node set included in Gu is the minimum

geodesic distance dux between a node x and u. Naturally, a persistence diagram can be computed

as illustrated in Chapter 3. The condition of edges is a little bit more complicated. The subgraph

Guv around an edge (u,v) can be constructed from the union or intersection of Gu and Gv, and

the filtration function f over node set Vuv of Guv can be defined as

f (x) = min{dxu,dxv}, or

f (x) = max{dxu,dxv}
(4.1)

where x ∈ Guv. Or more simply, f (x) can be defined as dxu or dxv directly.

In Chapter 2, we have introduced global topological information extracted by persistent

homology from graphs. In this section, we focus on the local homological features within

subgraphs. Define a level-r graph node to node u in graph G if its distance to u is r. From DgqGu,
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the persistence diagram generated from q-hop neighborhood subgraph of node u as illustrated

above, we can recover numerous local topology information of u as indicated in the Appendix of

[TW19]:

• Degree of u, number of triangles incident on u, clustering coefficient at u.

• For any r ≤ q, the number of level-r nodes to u.

• For any r < q, the number of crossing edges from level-r to level-(r+1).

• For any r ≤ q, the number of edges among level-r nodes.

• For any r ≤ q, the persistence diagram DgrGu.

• The sequence of lengths of shortest system of loops passing through u.

• ...

Simply speaking, this subgraph persistence diagram provides us sufficient local topology in-

formation about a node and how it interacts with nodes within its q-hop neighborhood. This

observation encourages us to develop a graph neural network leveraging subgraph persistence

diagrams.

4.3 Persistence enhanced graph network

A Persistence Enhanced Graph Network (PEGN) is a spatial GNN. As we introduced

in Chapter 2, the convolution can be viewed as a message passing framework. Messages are

passed between nodes in order to update their feature representation. After a fixed number of

iterations, the feature representation of each node is used for classification or other tasks. Here

we focus on a node classification task, in which node representations are used to predict labels of

all nodes. In a graph classification task, these node representations can be aggregated to a graph

representation and be fed into a classifier.
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To effectively incorporate structural information into the framework, we propose a

separate network, Persistence Image Network (PIN), converting persistent homology information

into message reweighting vectors. These vectors are used to reweight messages and to effectively

improve the graph convolution performance. See Figure 4.2 for the architecture of our network.

We first describe details of PEGN, such as how messages are computed and passed

between nodes, and how the messages are reweighted. Next, we show how persistent homology

information are converted into message reweighting vectors by PIN.

4.3.1 PEGN: Message reweighting graph convolution

A graph neural network with L layers updates node feature representations for L times.

Together with the input node features, we have L + 1 node feature representations, Hℓ =

[h⃗ℓ1, h⃗
ℓ
2, · · · , h⃗ℓN ], h⃗ℓn ∈ Rdℓ , ℓ = 0, · · · ,L. Here N is the number of nodes in the graph. dℓ is

the feature dimension for the ℓ-th layer representation. We denote by H0 the input node features.

HL is the final layer feature representations and will be used for prediction.

A convolutional layer generates the ℓ-th layer representation using the (ℓ−1)-th layer

representation. To compute the representation of node u, h⃗ℓu, we use the previous layer repre-

sentations of u and its immediate neighbors, N (u) = {u}∪N (u). These representations are

transformed using a transformation matrix W ℓ and are aggregated, formally,

h⃗ℓu = σ

(
∑v∈N (u)W

ℓ⃗hℓ−1
v

)
. (4.2)

The transformation matrix W ℓ for the ℓ-th layer is learned in training. The additional function

σ is the nonlinear transformation, e.g., ReLU. The transformed representation W ℓ⃗hℓ−1
v is the

message passed from node v to node u. Note that all messages share a same transformation

matrix W ℓ.

To incorporate structural information, we introduce additional message reweighting

vectors, τℓv→u. Reweighting vectors have the same length as the number of channels of a message.
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They are different for different edges, depending on the structural information associated with

the edge. Formally, we write the representation updating equation as

h⃗ℓu = σ

(
∑v∈N (u) diag(τℓv→u)W

ℓ⃗hℓ−1
v

)
. (4.3)

Node degree and self-attention mechanism have been applied to reweight messages.

However, the structural information is much richer than simply node degree.

We propose to use persistent homology describing topology of local neighborhood graphs

of u and v to generate the reweighting vector τℓv→u. It remains to explain how persistent homology

information, namely, persistence diagrams can be transformed into the reweighting vector using

our Persistence Image Network (PIN). See Figure 4.3 for the architecture. First, it converts a

persistence diagram into a fixed-length vector, called the persistence image. Second, it converts

persistence images of u and v into a reweighting vector using a multilayer perceptron (MLP).

Figure 4.2. The framework of Persistence Enhanced Graph Network
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Figure 4.3. The framework of Persistence Image Network

4.3.2 Persistence images from subgraphs

We describe how the demanded persistence images are generated in this section. We

have introduced how we can generate a persistence diagram for a q-hop neighborhood subgraph

for each node and what kinds of information we can discover from it in Section 4.2.

Next, we need to vectorize the persistence diagrams extracted from neighborhoods to

facilitate the neural networks frameworks we will introduce later. Recall what we introduced in

Chapter 3, the persistence image is a stable vectorization of a persistence diagram to perturbations

under 1-Wasserstein distance dW,1. If we extract topological features from edge-wise subgraph

Guv, denote its corresponding persistence images as PI(u,v). If we extract those from node-wise

subgraph Gu, then the persistence image is denoted as PI(u). Define the persistence information

vector of any edge (u,v) as

ψuv =


PI(u,v) in edge-wise subgraph

(PI(u),PI(v)) in node-wise subgraph
(4.4)

where (·, ·) is the simple concatenation.

4.3.3 How persistence images improve GNNs

A common way to utilize the neighborhood subgraph persistence image PI(u) in GNN is

to take it as part of node features of u. In other words, we can take the neighborhood topology
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information as the feature of a node itself. However, as we indicated in Section 4.1, these local

topology in subgraphs have notable influence on interactions and message passing between

nodes. Hence we focus on exploring how we can augment message passing between nodes by

local persistence summaries instead of taking them as node features.

Next we present how ψuv acts on the reweighting parameter τk
uv in graph convolution

processes and promotes the performance of GNNs. See Figure 4.2 for an illustration of our

framework.

Start from the setup that τk
uv is a scalar, there is a function f k : Rl → R mapping ψuv

to τk
uv where l is the dimension of persistence information vectors. It is desirable that f k is

a learnable parametric function with the idea of data-driven mechanism. As the multi-layer

perceptrons (MLPs) are universal function approximators shown by Cybenko’s theorem [Cyb89]

and easily carried into more complicated neural network models, we adopt MLPs to approximate

the mapping function f k. Notice the aggregations of messages are probably large arbitrarily,

softmax functions are supposed to be applied for normalization after the MLPs processing. More

exactly, denote the MLP and softmax function in the kth layer as gk and sk respectively, the

function approximating τk
uv is

f k(ψuv) = sk(gk(ψuv))

=
exp(gk(ψuv))

∑x∈N (u) exp(gk(ψux))

(4.5)

Recall that in the kth layer, the messages passing through edges are Fk dimensional, it is intuitive

that a scalar form of τk
uv cannot exert all effects of persistence information vector ψuv. In other

words, it is not necessary that reweighting parameters for different dimensions of features keep

uniform. Instead a reweighting vector in Fk dimensions is cast to function f k : Rl → RFk
.

f k(ψuv) = Sk(gk(ψuv)) (4.6)

44



If we view each dimension of ψuv as a channel, then Sk is channel-wise softmax function and gk

is an MLP outputting a Fk-dim vector. Notice that τk
uv is a Fk-dimensional vector rather than

a scalar. Look back the messages aggregation and features update function (4.3), embed the

persistence reweighting function into it, the convolution layer of PEGN is

h⃗k
u = σk−1( ∑

v ¯∈N (u)

diag(τk−1
uv )W k−1⃗hk−1

v )

= σk−1( ∑
v∈ ¯N (u)

diag(Sk−1(gk−1(ψuv)))W k−1⃗hk−1
v )

(4.7)

where diag(τk−1
uv ) is the diagonal matrix whose main diagonal entries are elements of τk−1

uv .

From layers above, we see the reweighting parameters τk
uv can even be a higher dimen-

sional matrix, say RFk ×RFk
dimensions. However, the increasing of learnable parameters

without significant mathematical meaning is not necessarily positive. In our experiments, the

Fk-dimension vector formed τk
uv works well sufficiently.

4.4 Experiments

We have compared our Persistence Enhanced Graph Network against a couple of popular

and strong baselines across two categories of graph benckmark datasets. In this section, we

introduce these datasets and baselines. We summarize our experimental setup and discuss results.

We show that our model has achieved or matched the state-of-the-arts in these node classification

benckmarks.

Datasets.

We evaluate our graph network on three standard and widely used citation network

benchmarks: Cora, Citeseer and Pubmed [SNB+08]. We also use graph benchmarks such

as Coauthor-CS, Coauthor-Physics, Amazon-Computers and Amazon-Photo [SMBG18]. The

detailed introduction of these datasets are listed Appendix B. Pubmed, Coauthor and Amazon are

larger and denser. Their detailed statistics are shown in Table 4.1. Some of them consist of over
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10,000 nodes and 200,000 edges with higher average node degrees. They are more challenging

in node classification tasks.

Table 4.1. Statistics of experimental benchmark datasets

#Classes #Features #Nodes #Edges Edge density Label rate

Cora 7 1433 2708 5429 0.0014 0.036
Citeseer 6 3703 3327 4732 0.0008 0.052
Pubmed 3 500 19717 44338 0.0002 0.003

Coauthor-CS 15 6805 18333 81894 0.0005 0.016
Coauthor-Physics 5 8415 34493 247962 0.0005 0.003

Amazon-Computers 10 767 13381 245779 0.0027 0.015
Amazon-Photo 8 745 7487 119043 0.0042 0.021

Experimental setup.

We compare our Persistence Enhanced Graph Network with a list of baselines: GCN

[KW17] reweighting messages according to node degrees, GraphSAGE [HYL17] with mean

aggregation of messages received within a sampled neighbourhood which works well in large

graphs, MoNet [MBM+17], Graph U-Net [GJ19], GAT [VCC+18] adopting self-attention

methods to reweight node features, and WLCN [MRF+19] also taking subgraph structures

information. In addition, we provide the node classification performance for all datasets of MLP

which does not incorporate any graph structure information.

In the practical experiments, as the graph is unweighted, we apply Ollivier’s Ricci

curvature [NQWC17] as the weight function in graphs, and construct subgraphs by picking

1− hop and 2− hop neighbourhoods around each node. Denote them as PEGN-RC-1 and

PEGN-RC-2 respectively. All persistence images in the experiments are 25-dimension. A

two-layer graph network model is evaluated. The first layer makes a linear transformation over

the input node representations, and then reweights the output feature vectors by pairing with a

vector computed from three layer MLP. The non-linear function σ0 is an exponential linear unit

function. The second layer has the same structure with the first layer except the dimension of

output feature vector is the number of classes, namely the second layer is for classification.
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Table 4.2. Classification Accuracies on Benchmark Datasets

Method Cora Citeseer PubMed Coauthor Coauthor Amazon Amazon
CS Physics Computer Photo

MLP 58.2 59.1 70.0±2.1 88.3±0.7 88.9±1.1 44.9±5.8 69.6±3.8
MoNet 81.7 71.2 78.6±2.3 90.8±0.6 92.5±0.9 83.5±2.2 91.2±1.3

GraphSAGE 79.2 71.2 77.4±2.2 91.3±2.8 93.0±0.8 82.4±1.8 91.4±1.3
U-Net 82.5 72.0 78.9 92.7 94.0 86.0 91.9

WLCN 78.9 67.4 78.1 89.1 90.7 67.6 82.1
GCN 81.5 70.9 79.0±0.3 91.1±0.5 92.8±1.0 82.6±2.4 91.2±1.2
GAT 83.0 72.5 79.0±0.3 90.5±0.6 92.5±0.9 78.0±19.0 85.1±20.3

PEGN-RC-2 82.7 71.9 79.4±0.7 92.9±0.3 94.1±0.3 84.2±1 91.7±0.5
PEGN-RC-1 82.6 71.7 78.8±0.5 92.7±0.3 94.2±0.2 86.3±0.6 92.5±0.4

The train-validation-test split policy is exactly the same as that of GCN and GAT in

[KW17, VCC+18]. Train graph networks with 20 nodes from each class, validate the algorithms

on 500 nodes and test them on 1000 nodes. Models are initialized by Glorot initialization and

the cross-entropy losses are minimized by Adam SGD optimizier with learning rate r = 5e−3.

Additionally, we use L2 regularization with λ = 5e−4 and early stopping based on the validation

accuracy within 200 epochs.

The average classification accuracy and standard deviation are reported in Table 4.2

coming from 50 runs. We also collect the performances of baselines from [MBM+17, SMBG18,

VCC+18].

Persistence Enhanced Graph Network is comparable with the state-of-the-art in the two

small datasets, Cora and Citeseer, and outperforms baselines in other datasets, the larger and

denser ones. Notice that although the performances of PEGN-RC-1 are slightly worse than

PEGN-RC-2 on several datasets, it achieves higher average accuracy on dense Amazon graphs.

Compared to GraphSAGE and U-Net aggregating information from multi-hop neighborhood

and WLCN also taking subgraph structures information, it is fair to claim advanced topological

structure information captured by persistence images indeed improve the performance of GNN

in general, as the architecture of PEGN without reweighting mechanism is similar to that in GCN.
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We also provide the experiment results taking Jaccard index as the weight function in Appendix

Section B.1.2, which is similar to PEGN-RC. What’s more, although multi-hop neighbourhood

catches topological features from a wider range, it is not necessarily as distinguished as 1-hop

neighbourhood in dense graphs. In particular, almost all of the 2-hop neighbourhood subgraphs

in Amazon-Computers have more than 3000 nodes, which are considerably large parts of the

entire graph. In other words, the topological features in 2-hop neighbourhood are not “local”

sufficiently. Hence, multi-hop messages converge fast and are averaged out over the whole graph

and produce similar node representations.

4.5 Application on material discovery

4.5.1 Introduction to carbon nanotubes data

Carbon fiber is among the most promising engineering materials for the 21st century

due to superior tensile strength and modulus relative to low weight. It is extensively used in

the automotive, aviation, and aerospace industry. Carbon fiber, for example, in the form of

high-strength yarn, is composed of carbon nanotubes (CNTs), graphitic layers, and sometimes

polymer binders [MRM+12, KWPB12]. One of the major challenges in the research about

CNTs data is finding the relationship between the current mechanical properties, like tensile

modulus and tensile strength, and their structure features.

Tensile modulus and tensile strength of a CNT bundle can be obtained from precise

reactive molecular dynamics simulations as shown in Figure 4.4. The simulations used the

reactive Interface Force Field (IFF-R), which quantitatively reproduces pi-pi stacking, surface

and interfacial energies, Young’s moduli and tensile strength of CNTs, graphene, and graphite

in agreement with experiments, and can also be utilized for solvent and polymer interfaces

[PJG+19]. These tensile properties are important in applications because they show how the

shape of a CNT bundle changes under certain thermodynamics conditions. The structure features

have potential influence on tensile properties including atoms density, structure defects such as

48



pristine, missing atoms, discontinuities or fracture defects, and complex configurations such as

deformed and rearranged CNT lattices.

In this section, we apply our graph neural network framework, HS-GNN, augmented by

local topological information for the task predicting CNTs’ tensile modulus and strength with

their structures.

Figure 4.4. (a), (b), (c) are CNT structures with 1, 2, 3 walls. (d) shows how we obtain tensile
modulus and strength from the shape of a CNT changes with increasing stress.

4.5.2 Neural network pipeline

The high level framework of our machine learning pipeline, called HS-GNN (Hierarchical

Spatial Graph Neural Networks), for mechanical property predictions is shown in Figure 4.5. The

input to the HS-GNN is the initial atomic structure S of a CNT configuration. Novel features of

our HS-GNN architecture include: a heterogeneous graph representation of input, a hierarchical

neural network model to capture large-scale interaction among different parts of the CNT bundle,

and the injection of local geometric and topological features to better encode the shape of CNT

bundle into the neural network via attention mechanism. These key components are briefly

described in the following.

Heterogeneous Graph.

It is common to use a bond-graph GbondS to represent S, where each node corresponds to

an atom, and there is an edge between two nodes if the corresponding atoms form a covalent

bond. We go beyond the bond-graph and generate a heterogeneous graph GS with multiple types
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Figure 4.5. HS-GNN applies message passing, where persistence summaries and geometric
features are used. (a) The pipeline to predict mechanical properties of CNTs. (b) Construction
of the hierarchical graph series. (c) Illustration of the message-passing workflow of GNN in
Level-2 and Level-3.
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of edges among nodes from the initial atomic structure S. In particular, we add edges between

nodes if corresponding atoms are spatially close (i.e, atoms from different nanotubes within

6Å distance) or if the so-called effective resistance distance between these two nodes is small.

Effective resistance distance between two nodes is a geometric property measuring connectivity

between these two nodes. We also connect nodes whose corresponding atoms form a dihedral

angle, the angle of two planes formed by four sequentially bonded atoms rotated about a central

bond. This heterogeneous graph is then fed to a hierarchical GNN.

Hierarchical GNN Model.

It is known that GNNs tend to have an oversmoothing issue [LHW18] and often cannot go

very deep, thus limiting the aggregation of information from long range interactions. To address

this issue, we use a hierarchical GNN that process the input graph GS at multiple resolutions

(three in our algorithm, Figure 4.5 a, b). Different from earlier hierarchical GNN approaches

[YYM+18, HLL+19], HS-GNN finds hierarchies by spatial geometry information instead of

graph topology or nodes features. The lowest level L1 operates on input graph GS; while in a

higher level Li, each node corresponds to a cluster of nodes of level Li−1 and we can call such a

node a super-node. The feature vector associated to each super-node is obtained by a pooling

layer on level Li−1 graphs. Within each resolution level Li, we use several GNN aggregation

layers, which we refer to as micro-layers (Figure 3 c). In the end, a last pooling layer is applied

so as to obtain graph-level prediction. See Figure 4.5 and Appendix Section B.2 for more details.

Encoding Local Geometry and Topology.

The shape of nanotubes and the spatial relation among neighboring tubes/sheets impact

the final property. To encode local geometry, we use Principle Component Analysis (PCA)

to capture a “curvature”-like quantity for each resolution level Li(i > 1). To encode local

interactions among spatially close atoms, from potentially different nanotubes, we use the

persistent homology to characterize the spatial distribution of points within each cluster in each

level.
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Node Features and Edge Attention.

The above information is incorporated into our HS-GNN via node features and via the

edge attention mechanisms. Given any graph node va corresponding to atom a, our initial node

feature vector µ(0)(va) in level L1 includes the degree of va in the bond graph, measuring local

defects, the 3D coordinates of atom a, as well as random generated features. For the higher level

GNNs, the persistence summary of a cluster is included in the features of the corresponding

super-node to encode the shape of the configuration formed by all atoms in each super-node.

Node features are transformed and aggregated through the neural networks. The edge-attention

mechanism intuitively allows one to compute the ”differential” of information at two endpoints

va,vb of an edge (va,vb) (va and vb will be super-nodes/clusters in L j( j > 1) level HS-GNN). This

information is used to weight this connection (edge) (va,vb) when aggregating information for

node va from its neighbors. We use the two major principal vectors and the norm vector in local

Principal Component Analysis (PCA) of points in each cluster to incorporate the edge-attention

in level L j of the HS-GNN.

4.5.3 Experiments

Dataset

Using the data set of 1159 tensile simulations of CNT bundles and graphitic structures,

we trained and test the HS-GNN with split ratio 9:1. The distribution of tensile strengths within

the training set is between 0-120 GPa, and the distribution of tensile moduli is between 0-1000

GPa. Few CNT bundles had strength and modulus values at the upper and lower limits, which

correspond to pristine or completely fractured structures respectively.

An interesting aspect is also computing time. Using a server with 24 CPU cores and

1 RTX A6000 GPU, the HS-GNN requires about 420 minutes to compute the persistence

summaries and PCA information of CNT bundles in the entire training set to train the model.

The prediction (inference) process to obtain the predicted tensile strength and modulus for

one bundled CNT nanostructure takes only about 2 minutes. The IFF-R simulation of the full
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stress-strain curve for the same bundled CNT nanostructure takes about 30 minutes using 24

CPU cores. The improvement in speed is at least a factor of 10, and could be as high as 100 or

more if the MD simulations were performed at lower strain rates.

Results

The ML pipeline and predictions are a first attempt at efficiently predicting mechanical

properties of carbon nanostructures. We compared the performance of the HS-GNN to 6 other

baseline machine learning models and linear regression (LR) based on global features of CNT

bundles, PointNet [QSMG17] and RS-CNN [LFXP19] on point cloud formation CNT bundles,

and three GNN models, GCN [KW17], MPNN [GSR+17] and DimeNet [KGG20]. Compared

to graph based pipelines, the two point cloud based approaches may loss important information

like chemical bonds between nodes. Among these baselines, DimeNet has been considered to be

state-of-the-art in property predictions of molecular structures.

Our ML method using the HS-GNN was tested in 3 ways: HS-GNN-A excludes any

tensile property predictions as input features, HS-GNN-B uses the predicted strength to predict

modulus, and HS-GNN-C uses the predicted strength and a pretrained model to predict modulus.

See Table 4.3, HS-GNN significantly outperforms all 6 baselines in predicting tensile strength

and modulus of CNT bundles. The HS-GNN is 2 to 5 times more accurate including larger

structures not included in the training set. Uncertainties under approximately 10% can be

considered of quantitative value relative to experimental measurements, which often have similar

errors. In particular, the Mean Squared Errors (MSE) of our new HS-GNNs are only around half

of those for the best prior method DimeNet, i.e, the errors of DimeNet almost double the errors

of our proposed methods. What’s more, we also test HS-GNN and these baselines on 16 large

instances containing more than 20000 atoms. Our approach also achieves better generalization

performance.
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Table 4.3. MSE in prediction of strength and modulus of CNT by different machine learning
pipelines. Prediction errors for larger structures (L) not included in the data set are also given.

Prediction error LR PointNet RS-CNN GCN MPNN DimeNet
Strength (%) 21.3 15.2 11.6 14.5 12.0 8.6
Modulus (%) 37.4 30.0 20.6 31.2 19.7 16.4

Strength (L) (%) 41.5 32.3 24.5 35.0 27.2 20.9
Modulus (L) (%) 42.1 37.4 30.5 40.9 34.8 23.5

HS-GNN-A HS-GNN-B HS-GNN-C
Strength (%) 4.2 4.2 4.2
Modulus (%) 8.8 8.4 7.8

Strength (L) (%) 12.7 12.7 12.7
Modulus (L) (%) 17.6 15.8 15.3

Further Sensitivity Analysis by Ablation.

Besides the GNN-based baselines (e.g, dimeNet, GCN, and MPNN) and our new HS-

GNN models, we also evaluate two other GNN setups containing only partial components from

our new HS-GNN models to evaluate the sensitivity. In particular, in the first setup, we remove

the topological and geometric information from our HS-GNN-A model: This is to study the

effect of adding hierarchies in our architectures. In this case, the prediction error for test datasets

for strength and modulus increases to 7.4% and 14.6%, respectively. In the second setup, we

use a non-hierarchical GNN setup, but with topological and geometric information used as node

features and edge attention. The goal here is to study the effect of adding hierarchical levels in

the neural network model. The prediction error for test datasets for strength and modulus then

increase to 10.7% and 19.5%, respectively. Compared to performances of GCN (with prediction

error 14.5% and 31.2%, respectively), we note that both hierarchical design (to capture long

range interactions among atoms) and local topological and geometric information can reduce

the prediction error significantly. Compared to the performance of our HS-GNN model with

prediction errors 4.2% and 8.8%, respectively (HS-GNN-A), we note that the two strategies are

somewhat complementary and using both reduced the prediction error to approximately half.
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4.6 Conclusion

In this chapter, we present Persistence Enhanced Graph Network, a novel architecture

leveraging topological structure information with persistence images, a stable vectorized rep-

resentation of persistence diagrams. Experiments show the scheme that passing messages are

reweighted in accordance with topological features achieves or matches state-of-the-art across

node classification benchmarks. One potential improvement comes from more elaborately de-

signed subgraphs around nodes or edges and filtration functions. Moreover, extending Persistence

Enhanced Graph Network to graph classification tasks would be an interesting research direction.

In the end, we also apply our idea of augmenting GNNs by local topological information on

material discovery task. Experiments show that with the help of persistence summaries over

local sub-structures, GNNs can predict carbon nanotubes’ tensile properties with higher accuracy

based on their micro-structures.

This Chapter 4, in part, is a reprint of the material as it appears in Persistence Enhanced

Graph Neural Network, 2020. Zhao, Qi; Ye, Ze; Chen, Chao; Wang, Yusu. International

Conference on Artificial Intelligence and Statistics (AISTATS), 2020. The dissertation author

was the primary investigator and author of this paper.

This Chapter 4, in part, is a reprint of the material as it appears in Prediction of Carbon

Nanostructure Mechanical Properties and Role of Defects Using Machine Learning, 2021.

Winetrout, Jordan; Zhao, Qi; Xu, Yanxun; Heinz, Hendrik; Wang, Yusu, arXiv, 2021. The

dissertation author was the primary investigator and author of this paper.
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Chapter 5

NN-Baker: An Algorithmic NN Frame-
work for Optimization Problems on Geo-
metric Intersection Graphs

5.1 Introduction

Many tasks in science and engineering can be naturally modeled by combinatorial

optimization problems over graphs, such as maximum independent set, minimum vertex cover,

minimum multi-way cut, maximum clique, and so on. These problems are often NP-hard. Hence

there has been great effort devoted to developing efficient approximation algorithms. However,

many such problems are hard to approximate in the general setting as well: for example, it

is known that the maximum independent set problem is NP-hard, and it is even NP-hard to

approximate within n1−ε on n-vertex graphs, for any fixed ε > 0 [Hås99].

On the other hand, many of these hard problems admit PTAS in the geometric setting

when the graphs are assumed to be induced by points in fixed-dimensional Euclidean space. Here,

a PTAS (polynomial-time approximation scheme) is a polynomial time algorithm which for any

fixed ε > 0, can approximate a maximization problem within a factor of (1+ε) (or within a factor

of (1− ε) for a minimization problem). One most prominent example is the travelling salesman

problem (TSP), where in general there is no PTAS available (and currently the best known

approximation algorithm achieves a factor of 3/2−α , for some α > 10−36 [KKG20]). However

56



a PTAS, more specifically in this case a near linear time (1+ ε)-approximation algorithm, was

developed for the Euclidean TSP problem in a ground breaking work by Arora [Aro98]. The

maximum independent set problem is known to remain NP-hard in the geometric setting [FPT81],

but it is known that it also admits a PTAS [Cha03, EJS05, CHP12].

Nevertheless, for problems of large size, even these PTAS are still not practical, especially

since many of them involve large constants that are exponential in some fixed parameter (e.g,

having a term like n
1
ε where (1+ ε) is the approximation factor). In applications, practitioners

often rely on handcrafted heuristic search strategies to find high-quality solutions.

Recently, there has been a surge on using machine learning (ML) for combinatorial

optimization problems; see the review paper by Bengio et al. [BLP20] which also provides

a nice categorization of different ways that a ML component may contribute to the combina-

torial optimization problems. Earlier such approaches focus on several graph combinatorial

optimization problems, including TSP, minimum vertex cover and maximum independent sets;

see e.g., [VFJ15, BPL+17, DKZ+17, LCK18, SYK19, BCFL20, KL20, ASS20]. More recently,

there has been a range of approaches developed to tackle more general mixed integer linear

programming problems (MILP); e.g, [KLBS+16, GCF+19, FWDT20, GGK+20, NBG+20].

See Section 5.1 for more detailed description of some related work.

In general, an ML framework can be trained to solve an optimization problem in an

end-to-end manner (e.g, [BPL+17, DKZ+17, LCK18, KL20, ASS20]). Alternatively, many

recent approaches use ML module as a component within a specific algorithmic framework to

help make hopefully better (either in terms of quality or efficiency) decisions during the execution

of this algorithm: such as using imitation learning or reinforcement learning to learn a good

policy to decide which variable to branch in a branch-and-bound algorithm [GCF+19, GGK+20].

Despite the tremendous progress in combining ML with optimization problems, theoretical

understanding remains limited: Does a proposed ML pipeline have the expressiveness capacity

to solve the combinatorial optimization problem exactly or approximately? What is a suitable

model for input data distribution to talk about generalization?
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Consider the capacity question: While neural networks are known to have many universal

approximation results for real or complex valued continuous functions (or some other special fam-

ilies of functions), e.g, [Cyb89, Pin99, SGT+08, PMB18], combinatorial optimization problems,

say finding the maximum independent set, cannot be easily modeled to fit into such function

approximation frameworks. Nevertheless, a very interesting recent work [SYK19] shows that

for graph combinatorial optimization problems, the so-called vector-vector consistent graph

neural networks (VVC-GNNs), can solve the same family of problems as the distributed local

algorithms in the so-called port-numbering models. Leveraging the literature in distributed local

algorithms [Ang80, ÅFP+09], this leads to several positive results on the capacity of GNNs for

approximating minimum vertex cover or maximum matching problems with certain constant

factors, however only for graphs with bounded degrees – intuitively, the depth of the GNN

will depend on the bound ∆ on the maximum node degree of input graphs. Unfortunately, the

connection to distributed local algorithms also leads to negative results: roughly speaking, these

constant factor approximations for the special family of constant-degree graphs are the best

that a GNN can do for these graph optimization problems. See [SYK19] for details.

Main contributions of Chapter 5.

The aforementioned results (on the capacity of GNNs) are for the case where GNNs are

used to solve an optimization problem in an end-to-end manner, and other than the bound on

max-degree, the input graphs are abstract graphs. In this chapter, we advocate the study of using

ML for optimization problems in the geometric setting where (graph) optimization problems

are induced by points in a fixed dimensional Euclidean space Rd . This is a rather common

scenario in practice, such as solving TSP in road networks spanned by cities in R2, or solving

maximum independent set in a communication network spanned by sensor nodes in R2/R3 (i.e,

the unit-ball model that we will introduce in Section 5.2.1). Such graphs can also be the result

of an embedding of an input arbitrary graph into a certain latent space. At the same time, the

geometric setting brings special structures to the problem at hand, which an algorithm and also
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ML can then leverage.

In particular, using the maximum independent set (MIS) problem as an example, we first

propose what we call the Baker-paradigm in Section 5.2, which is an approximation framework

for geometric optimization problems inspired by Baker’s work in [Bak94]. We show that the

Baker-paradigm gives a bi-criteria approximation for the MIS in the Euclidean setting (Theorem

5.2.1). The running time is only linear in the size of input point set, but exponential in terms

of the parameters. This framework is general and can be extended to several other geometric

optimization problems (Section 5.2.3).

A key advantage of our Baker-paradigm is that it decomposes the problem into (at most a

linear number of) small sub-problems of fixed size (independent of size of input graphs). For

the family of such fixed-size sub-problems, we can now design neural networks with universal

approximation guarantees to solve them. Using such a neural network to replace (Step-2) of

our Baker-paradigm, we then obtain a mixed algorithmic-ML framework, which we refer to

as NN-Baker, that has the capacity to produce a bi-criteria approximation of MIS within any

constant factor in near linear time (i.e, a bi-criteria PTAS); see Section 5.3.1 and Theorem 5.3.2.

Note that while Theorem 5.2.1 already gives a near-linear time bi-criteria PTAS for MIS, the

constant involved in the time complexity is exponential in the approximation parameters, making

it inefficient in practice. In contrast, the NN-Baker will replace the costly component by a neural

network component, and only call this neural network at most n times. Other than calls to neural

networks, the time needed is Θ(n) where the constant contains only terms polynomial in the

approximation paramters. The resulting mixed algorithmic-ML framework is very efficient, as

we show in Section 5.4.

In Section 5.3.2, we provide an instantiation of the NN component for our NN-Baker

based on GNN. We present a range of experimental results in Section 5.4 to show the effectiveness

the GNN-Baker frameworks. Note that our NN-Baker can be used together with other SOA

NN framework to solve combinatorial optimization problems and to further improve them

(sometimes significantly). For example, we deploy different SOA GNNs for graph optimization
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problems to instantiate (Step-2) in NN-Baker, including TGS of [LCK18] in the supervised

setting, LwD of [ASS20] in the reinforcement learning setting, as well as Erdős-GNN [KL20] in

the unsupervised setting. We show that as the problem size increases, the performance of each

original GNN decreases (the GNN is always trained and tested on problems of similar sizes).

However, using GNN-Baker significantly improves the performance of the original GNN as the

problem size increases – This is partly because, independent of the problem size, in (Step 2) our

GNN-Baker only needs to train and test the GNN component on a small graph (of bounded size).

Thus the trained GNN can adapt to the problem structure much better and require much fewer

training samples.

Our NN-Baker is, to our best knowledge, the first (bi-criteria) PTAS for a combinatorial

problem for an ML-based approach (in terms of expressiveness). The recent line of work of

using a ML component (e.g a GNN trained by imitation learning) to make branching decisions

within the branch-and-bound algorithmic framework [GCF+19, GGK+20] may solve the exact

problem given enough running time. However, the number of times the algorithm calls the NN

component may be exponential in the input size. Instead, our NN-Baker framework calls the

neural network (which has a bounded size) only a linear number of times. Our approach can open

new directions to design NN-infused algorithmic frameworks with theoretical guarantees, by for

example, leveraging divide and conquer paradigm and replacing certain algorithmic components

by neural components.

More on related work.

The idea of using neural networks to tackle optimization problems traces back to the

1980’s. One of the most important frameworks in this direction is the Hopfield Neural Network

(HNN) [Hop82, HT85]. In particular, the HNN is a feedback neural network with pre-specified

weights (whose assignments depend on the optimization problem at hand), which encodes a

dynamic system whose associated energy function characterize the optimization problem to be

solved. To use it to solve an optimization problem, one starts with an initial state, and iterates till
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convergence.

As branch-and-bound (B&B) has been proven to be a powerful framework in solving

optimization problems, especially in MILP (mixed integer-linear programing) problems, re-

searchers proposed different machine learning algorithms to boost B&B. [KLBS+16] provided

a list of features of variables and designed a learning-to-rank model on selecting branching

variables. [GCF+19, GGK+20, NBG+20] developed GNN approaches to learn the policy of

choosing branching variables after formulating MILP problems as graphs by imitation learning or

reinforcement learning. Besides MILP problems, GNNs are also applied on graph combinatorial

optimization problems. [VFJ15] encodes the input graphs as sequences and takes an attention

RNN to process the sequences. It can be used to compute convex hulls or solve problems like

TSP. [BPL+17, DKZ+17, DCL+18, PAL+19, ASS20] takes reinforcement learning on graphs

to solve routing problems like TSP, and other problems like maximum independent set. [LCK18]

solves graph theory problems by supervised learning setup after solving a set of cases as training

set by existing solvers, while [KL20] introduces unsupervised approaches by designing loss

function and training setup based on objective functions and variables constraints. In addition,

there are works [SYK19, XLZ+20, Lou20] that study the power of GNN on solving different

kinds of combinatorial optimization problems.

Outline of Chapter 5.

This chapter is organized as follows. We first introduce the Baker-paradigm solving

problems like MIS on intersection graphs in Section 5.2. We then present the algorithmic-NN

framework, NN-Baker, and its instantiation in Section 5.3. In Section 5.4, we show experiments

of our NN-Baker and other GNN baselines in solving MIS problems for different dimensional

data. Finally, we make conclusions about our NN-Baker in Section 5.5.
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5.2 The Baker-paradigm

We now propose a framework to obtain approximation algorithms for certain geometric

optimization problems based on the work of Baker [Bak94]. Baker’s technique has been applied

successfully to a plethora of optimization problems on planar graphs, including Maximum

Independent Set, Minimum Vertex Cover, Minimum (Edge) Dominating Set, Maximum Triangle

Matching, Maximum H-Matching, TSP, and many others. Furthermore, the technique has been

adapted to the geometric setting (see [Aro03] for a survey). From the geometric setting, the

most relevant work to ours is [HM85], where the authors obtain approximation algorithms for

maximum independent set and minimum vertex cover on unit disk graphs. We will show in

the next section how neural networks can be used to obtain efficient algorithms within this

framework. We begin with some definitions.

5.2.1 Preliminaries

We consider the geometric setting: i.e., combinatorial optimization problems on geomet-

ric intersection graphs. We present our methods for the case when the input is a unit-ball graph,

which is the intersection graph of unit balls in Rd . Specifically, graph nodes correspond to a set

of balls of unit radius in Rd , and two nodes are connected by an edge iff the two balls intersect.

Our approach can be extended to intersection graphs of several other geometric objects such as

unit hypercubes, ellipsoids of bounded aspect ratio, and so on. For the sake of succinctness, we

focus on the case of unit balls.

Approximations and bi-criteria relaxations.

The algorithms we will develop are bi-criteria approximations. The precise definition of a

bi-criteria optimization problem depends on the space of feasible solutions. For concreteness, let

us focus on the d-dimensional Maximum Independent Set of Unit Balls problem (denoted by d-

MIS), for some fixed dimension d ∈N: The input to the d-MIS problem is a set of points X ⊂Rd ,

which corresponds to the set of centers of unit balls. Let GX = (X ,E) denote the intersection
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graph spanned by points in X , where (x,x′) ∈ E if the unit balls ball(x,1) and ball(x′,1) intersect

(meaning that ∥x− x′∥ ≤ 2). The goal is to find the maximum independent set of GX , which

is equivalent to finding some maximum cardinality subset of disjoint balls centered at X . Let

OPT(X) denote the size of a maximum independent set for GX . For any α > 0, an algorithm is

an α-approximation for d-MIS if on any input X ⊂ Rd , it outputs some independent set Y ⊆ X ,

with OPT(X)/α ≤ |Y | ≤ OPT(X).

The bi-criteria version of the problem is defined as follows. Let ε > 0. We say that

some Y ⊆ X is (1+ ε)-independent if the balls of radius 1/(1+ ε) centered at the points in

Y are disjoint; that is, for all p,q ∈ Y , we have ∥p− q∥2 > 2/(1+ ε). We denote the size of

the maximum (1+ ε)-independent subset of X by OPT1+ε(X). For any α ≥ 1, β ≥ 1, We say

that an algorithm is (α,β )-bi-criteria approximation if on any input X ⊂ Rd , outputs some

β -independent set Y ⊆ X , with OPT(X)/α ≤ |Y | ≤ OPTβ (X).

Randomization.

The algorithms we present for d-MIS are randomized, and thus the size of the output is a

random variable. We use the following standard extensions of the above definitions in this setting.

We say that a randomized algorithm is α-approximation in expectation if on any input X it

outputs a solution Y with OPT(X)/α ≤ E[|Y |]≤ OPT(X). We say that a randomized algorithm

is (α,β )-bi-criteria approximation in expectation if on any input X it outputs a solution Y with

OPT(X)/α ≤ E[|Y |]≤ OPTβ (X).

5.2.2 Baker’s paradigm for d-MIS

In this section, we describe our Baker-paradigm to obtain an approximation algorithm

for d-MIS. We will later see that the same method can be extended to several other optimization

probelms on geometric intersection graphs. Let ε > 0 be arbitrarily small but fixed. The algorithm

proceeds in the following steps: See Figure 5.1 for an illustration.

Algorithm Baker-MIS: The input is a set of points X ⊂ Rd , with |X |= n, where each
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Input points X

A cell C and XC discretization into pixels solve MIS ŶC on G
X̂C

MIS YC ⊆ XC

(Step 1) (Step 2) of Baker’s paradigm for each cell

Figure 5.1. Illustration of Baker-paradigm in 2D. First we put a randomly shifted grid on input
points X . Consider a cell C, we then solve sub-problems in it after a second level partition and
got solution YC. In (Step 3), the union of all YC for all cells is returned as the final MIS.

point in X is the center of a unit ball. The algorithm has three steps.

Step 1: The randomly shifted grid.

Let Γ be an axis-parallel hyper-grid, where each cell is a d-D axis-parallel hypercube of

side-length r = 2d
ε

. Specifically, let Γ =
⋃d

i=1
⋃

j∈Z{hi + j 2d
ε

ei}, where e1, . . . ,ed is the standard

orthonormal basis, and for i ∈ [1,d], hi is the (d-1)-D hyperplane that passes through the origin

and is orthogonal to ei. Pick τ ∈ [0,2d/ε)d uniformly at random. Let Γ+ τ denote the grid

obtained by shifting Γ by the vector τ .

Step 2: Bi-criteria solution for the problem locally on each cell.

Now given a cell C of Γ+ τ , for any P ⊂ Rd , let PC = P∩C denote the restriction of P

within C. Let X ′ be the set of centers of the unit balls in X that intersect the shifted grid Γ+ τ

(i.e., these are points within distance-1 to the hyperplanes (or gridlines for the 2D case) in the

grid). Let δ > 0, and set δ ′ = δ/
√

d. We partition each cell C of Γ+ τ to a d-dimensional grid

of pixels, where each pixel is a d-dimensional hypercube of side length δ ′. We snap each point

in X \X ′ to the corner of the pixel containing it that is closest to the origin, thus obtaining the set

X̂ , ignoring multiplicities; that is

X̂ =
⋃

(p1,...,pd)∈X\X ′
{(δ ′⌊ p1

δ ′ ⌋, . . . ,δ
′⌊ pd

δ ′ ⌋)}.
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Now for each cell C of Γ+ τ , X̂C (the restriction of X̂ to C) consists of the bottom-left corners

of those pixels containing some points in XC \X ′
C. Let GX̂C

be the intersection graph of the

radius-(1−δ ) balls with centers in X̂C. Note that the size of X̂C is at most ( 2d
εδ ′ )

d , and thus the

graph GX̂C
is of bounded size. Furthermore, note that any independent set of GX̂C

can be of

size at most s = Vd(
2d
ε
)d (due to a simple packing argument), where Vd denotes the volume

of the d-dimensional ball of radius (1−δ ). We can then compute the maximum independent

set ŶC ⊆ X̂C in GX̂C
by a brute-force enumeration of all subsets of X̂C of cardinality at most s,

and returning the maximum cardinality subset that is independent in GX̂C
. Finally, we compute

YC ⊆ XC by mapping each point p̂ ∈ ŶC to an arbitrary point p ∈ XC \X ′
C that lies in the pixel that

p̂ represents.

Step 3: The final solution.

The final solution is Y =
⋃
CYC, the union of MIS returned within all non-empty cells.

The proof of the following theorem can be found in Appendix Section C.1.1.

Theorem 5.2.1. Let ε,δ > 0. The algorithm Baker-MIS is a (1+Θ(ε),1+Θ(δ ))-bi-criteria

approximation in expectation for MIS. On input a set of size n, the algorithm runs in time

(1/(εδ ))(d/ε)O(d)
n.

Recall that our algorithm removes those points X ′ within distance 1 to the grid. Intuitively,

we need randomly shifted grid so that this X ′ does not contain too many points from an optimal

maximum independent set in expectation. Note that in practice, we can further improve the

quality of the output: Specifically, currently, all points within distance 1 to the shifted grid Γ+ τ

(i.e, X ′ ⊆ X) are removed. The reason is to ensure that solutions (max-independent sets) of

neighboring cells do not conflict each other. We can add some of those points from X ′ back to

the solution Y as long as they do not cause conflict (i.e, within distance 2) to any points in Y . We

can do so in a greedy manner in practice to obtain an even better solution. Our theorem above

holds for this greedily improved solution as it remains an independent set and is a superset of Y .
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Removing the Bi-Criteria Condition.

We remark that directly using the original Baker idea one can in fact obtain a (1+ ε)-

approximation for MIS (instead of a bi-criteria approximation), by not having a second-level

discretization in each cell in (Step 2). This is effectively a randomized version of the algorithm

from [HM85]. The standard details can be found in Appendix Section C.1.2. As shown in the

following theorem, the price to pay is that the dependency of time complexity on n increases

from previous n (i.e, linear) to n(1/ε)O(d)
, which is significant.

Theorem 5.2.2. We can modify Baker-paradigm to provide a (1+Θ(ε))-approximation in

expectation for MIS. On input a set of size n, this modified algorithm runs in time n(1/ε)O(d)
.

5.2.3 Other graph optimization problems

We now briefly discuss how the above general framework can be extended to other

problems on unit ball graphs, with only minor modifications. We describe some representative

such problems.

Minimum vertex cover. In the Minimum Vertex Cover (MVC) problem, we are given a

graph G and the goal is to find a minimum cardinality set U ⊆V (G), such that all edges in G

have at least one endpoint in U . In the case were G is a unit ball graph in Rd , this problem can

be solved by modifying the Baker paradigm as follows. In Step 2, we enlarge each cell C of

Γ+ τ by increasing its side length to 2+2d/ε . Thus, any two adjacent cells have an intersection

of width 2, and some points in X may fall in multiple cells. By the linearity of expectation, it

follows that the expected number of points in any optimal solution that fall in multiple cells

(counting multiplicities) is at most ε|OPT(X)|. Therefore, by solving the problem independently

on each cell and taking the union of all the solutions we obtain a (1+ ε)-approximate solution

for the initial problem X . Discretizing each cell into further pixels gives rise to a more efficient,

but bi-criteria approximation.

Maximum Acyclic Subgraph, Planar Subgraph, and F -Minor Free Subgraph. In

the Maximum Acyclic Subgraph problem we are given a graph G and the goal is to compute a
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subgraph of G with a maximum number of vertices that is acyclic. It follows by the linearity of

expectation, that the expected number of balls in any optimal solution that intersect the randomly

shifted grid is at most ε|OPT(X)|. Thus, solving the problem on each cell and taking the union

of all the acyclic subgraphs found, results in a (1+ ε)-approximate optimal acyclic subgraph of

the input. (Similar to MVC, discretizing each cell into further pixels gives rise to a more efficient,

but bi-criteria approximation.) The exact same argument works also for the Maximum Planar

Subgraph problem, where the goal is to find a subgraph with a maximum number of vertices

that is planar. Finally, the same argument extends to the case of the more general Maximum

F -Minor Free Subgraph problem, where the goal is to find a subgraph with a maximum number

of vertices that does not contain as a minor any of the graphs in a fixed family F . We note

that this problem generalizes the Maximum Acyclic Subgraph problem (when F contains the

triangle graph) and the Maximum Planar Subgraph problem (when F contains K5 and K3,3).

5.3 A NN-Baker framework

5.3.1 Infusing neural network inside the Baker-paradigm

Instead of solving (Step 2) of Baker-paradigm in a brute-force manner, we can replace

it by a neural network, and we refer to the resulting generic paradigm as NN-Baker. Roughly

speaking, we will replace the exact computation of a MIS in Step 2 of algorithm Baker-MIS by a

neural network. More specifically, consider the following:

Step 2’.

We follow the same notations as in Step 2 of algorithm Baker-MIS. For each cell C of

the grid Γ+ τ , we proceed as follows. Recall X̂C is a set of corners of all non-empty pixels

(i.e, containing some point from X \X ′) in C. Let WC be the set of all pixels in C, and let

PC be the powerset of WC. Let fMIS : PC → PC be such that for all Z ∈ PC, fMIS(Z) is

some optimal solution to the MIS problem on input Z w.r.t. radius (1−δ ); that is, fMIS maps

an instance to an optimal MIS solution for the intersection graph formed by radius (1− δ )
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balls. Since every point in XC \X ′
C is at distance at most δ from some point in X̂C, it follows

that fMIS(X̂C) is a (1,1+Θ(δ ))-bi-criteria solution for the set of points in XC \X ′
C (see the

argument in the proof of Theorem 5.2.1 in Appendix). We can view fMIS as a mapping between

indicator vectors of subsets of WC; i.e. fMIS : {0,1}k → {0,1}k, where k = |PC|= 2(2d/(εδ ))d
.

Let f̂MIS : [0,1]k → [0,1]k be any continuous extension of fMIS. We then approximate f̂MIS by a

function gN : [0,1]k → [0,1]k as computed by a neural network N . We round coordinate-wise

the output of gMIS to a vector in {0,1}k, by setting every value greater than 1/2 to 1, and all other

values to 0. We thus obtain the indicator vector of some YC ⊂WC. Alternatively, we can produce

a discrete solution by the following greedy strategy: We sort the points in WC in non-increasing

order of their values in the vector gN (X̂C), and we take ŶC to be a maximal prefix of this sorted

order that forms an (1+Θ(δ ))-independent set in GX̂C
. Finally, we compute YC ⊆ XC \X ′

C by

mapping each point p̂ ∈ ŶC to any point p ∈ XC within the pixel represented by p̂.

Universal-Baker.

We now give a theoretical instantiation of NN-Baker using the neural network obtained

by the following universal approximation result.

Theorem 5.3.1 (Cybenko [Cyb89]). Let σ be any continuous sigmoidal function. Let m ∈ N,

and let C be a compact subset of Rm. Let f : C → R be a continuous function, and γ > 0. Then,

there exists N ∈ N, a1, . . . ,aN ∈ R, y1, . . . ,yN ∈ Rm, and θ1, . . . ,θN ∈ R, such that the function

g : C → R, with g(x) = ∑
N
i=1 aiσ(yT

i x+θi), satisfies supx∈C |g(x)− f (x)|< γ.

Using the neural network given by the above result, we can then argue that our NN-Baker

has the capacity (expressiveness) of solving MIS problem (for unit-ball graphs) in a bi-criteria

approximation. The simple proof of this theorem can be found in Appendix Section C.1.3.

Theorem 5.3.2. Let ε,δ > 0. There exists N = N(ε,δ ,d), such that the following holds. Suppose

that the function gN ∗ in Step 2’ of the NN-Baker framework is computed by the neural network

N ∗ given by Theorem 5.3.1, with a single hidden layer of size N. Then, the resulting algorithm
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GNN model

µ0(u)

µ0(v)

0.9

µL(v) = 0.75

0.7 0.6

0.75

0.950.95
0.4

0.6

0.7

G
X̂C

initial node features last layer node features Z ′ = ŶC
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Figure 5.2. Given the set of points XC \X ′
C contained in cell C, the top row shows the processing

of it by a CNN component as in CNN-Baker, while the bottom row shows it for a GNN component
as in GNN-Baker. ŶC in the figure corresponds to the set of pixels containing points from YC.

is a (1+Θ(ε),1+Θ(δ ))-bi-criteria approximation in expectation for d-MIS, and it will call

this (same) neural network at most n times where n is the number of points generating the input

graph.

Remark 5.3.1. A similar statement to Theorem 5.3.2 holds for the Vertex Cover problem, yielding

a (1+Θ(ε),1+Θ(δ ))-bi-criteria approximation using the modifications discussed in Section

5.2.3.

5.3.2 Instantiation of NN-Baker

Above we introduce a generic NN-Baker framework and a theoretical instantiation. We

now provide a specific practical instantiations of this framework: GNN-Baker where (Step 2’)

of NN-Baker (or equivalently, (Step 2) of our Baker-paradigm) is implemented by a specific

GNN. We provide details below. Specifically, recall that the input is a set of points X ⊂ Rd , and

for a randomly shifted grid Γ+ τ , let us focus on a specific grid cell C ∈ Γ+ τ . Recall that in

NN-Baker, given C and X̂C, we will use a neural network to compute a subset of ŶC which ideally

approximates a maximum independent set of the (unit-ball) geometric intersection graph GX̂C

spanned by X̂C. The set ŶC (of pixels) is further relaxed to a subset YC ⊂ XC as an independent

set solution within cell C.
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GNN-Baker.

In GNN-Baker, we instead directly use the unit-ball graph GX̂C
as input, with the initial

node feature µ0(v). At the last L-th layer, the node feature µL(v) gives the likelihood that v is in

the maximum independent set. We then retrieve an independent set YC by a greedy approach

introduced in Paragraph 5.3.2. For the specific choice of the GNN architecture, we can use any

of the existing models, such as GCN [KW17], GraphSAGE [HYL17], GIN [XHLJ19], GAT

[VCC+18], and VVC-GNN [SYK19]. In our later experiments, we will use TGS [LCK18] and

LwD [ASS20] in our GNN-Baker framework, as these are state-of-the-art (SOA) approaches

specifically designed for graph combinatorial problems. (Our experiments show that using a

general purpose GNN has much worse performance than TGS and LwD.) In particular, TGS,

a supervised learning approach, takes GCN to process reduced graphs and use a tree search

approach to label nodes whether they are in an independent set or not. LwD is reinforcement-

learning based, and designs a policy network and value network on each MIS problem state with

GraphSAGE architecture. We will also use the Erdős-GNN [KL20], designed for optimization

problems in the unsupervised setting. Erdős-GNN takes multiple GIN layers followed by a GAT

layer to learn graphs’ distribution. It designs a differentiable loss function based on expectations

of optimization problems objective functions and a probabilistic penalty function.

Besides GNN-Baker, we can also implement NN-Baker in Step 2’ by a CNN and develop

a resulting CNN-Baker. One can find details of CNN-Baker in our paper [MZSW21]. However,

GNN-Baker has a better flexibility to extend to high dimensional cases.

Retrieve method.

In (Step 2’) of NN-Baker, we describe an alternative greedy approach to convert this

likelihood map to a subset of points YC ⊂ XC \X ′
C as the output MIS. However, in our implemen-

tation for both CNN-Baker and GNN-Baker, we will make a slight modification: In particular,

note that the output from (Step 2’) will be a (1+Θ(δ ))-independent subset of XC. In practice,

we would like to guarantee that we output a valid MIS for XC (i.e, any two points in our output
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YC should be at least distance 2 apart). We thus follow the greedy approach as outlined in (Step

2’) but with a small modification: We sort all pixels in Z = X̂C in decreasing order of their pixel

values, and assume Z = {z1, . . . ,zℓ} is this sorted list. We then inspect them one-by-one in order.

At the beginning, initialize an output set Y ′ to be empty. Then in the i-th iteration, let yi be any

point from XC \X ′
C in pixel zi. If yi is independent to all points in Y ′ (i.e, it is more than 2 away

for all points in Y ′), add yi to Y ′; and otherwise, do nothing. In the end after ℓ iterations, we

obtain a set of Y ′ ⊆ XC \X ′
C points (not pixels) which is guaranteed to be an independent set for

the unit-ball graph spanned by points in XC. Set YC = Y ′ and return it as the independent set for

this call C. This will further guarantee that the final output
⋃
CYC computed by our CNN-Baker

will be a valid MIS for the unit-ball graph spanned by input points X .

5.4 Experimental results

We present results for d-MIS here. We also report the generalization results of NN-Baker

and its performance on solving minimum vertex cover problems in this section. More results

can be found in Appendix Section C.2. We consider 5 families of unit-ball graphs: (2D-dense)

consists of a set of graphs, each with points distributed uniformly on a 2D rectangular region

with around 40K – 50K points. (2D-sparse) consists of a set of graphs, each with 40k – 50k

points distributed uniformly on a 2D rectangular region four times larger than the dense region

. (2D-Gaussian) consists of graphs each spanned by points sampled from a Gaussian-mixture

distribution with 40K – 50K points over the same region size as the dense region. (3D) consists

of graphs each spanned by points sampled from a 3D region. (Torus-4D) consists of graphs each

spanned by points sampled from a torus embedded in R4 (see Appendix Section C.2 for details).

First, we note both CNN-Baker and GNN-Baker return valid MIS for the input unit-ball

intersection graphs (as detailed in the implementation of CNN-Baker). To report accuracy, we

will need ground truth solutions. However, computing exact solutions for all our test cases is

computationally intractable. Instead, we use the output of a SOA solver KaMIS [LSS+17] as the
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Figure 5.3. Results of Erdos-GNN, TGS and LwD on MIS problems with different sizes of
graphs in 2D setting. We report the ratio to ground truth computed by KaMIS.

ground truth solutions, and report the average ratio of MIS obtained over this ground-truth MIS

sizes as a metric for accuracy (so the larger this ratio is the better). To validate the accuracy of

KaMIS on our training and test data, we compared against an exact solution [XN17] for 20 test

sets and found that the accuracy of KaMIS exceeded 99.9% of the optimal solution in all cases.

On the other hand, regardless the accuracy of KaMIS, since we are taking the ratio as the metric

for accuracy, higher ratio is always better.

Before we show results of CNN-Baker and GNN-Baker, we first show how the SOA

GNN-based approaches, TGS [LCK18], LwD [ASS20] and Erdős-GNN [KL20], all of which

are specifically designed for graph optimization problems (see discussions in Section 5.3.2),

perform as the size of graph increases. Here for each target size, 1000 graphs spanned by points

sampled from the same dense distribution in 2D space are used for training, then tested on 100

graphs of roughly the same target size. As shown in Figure 5.3, the accuracy of these approaches

decreases as the size of (geometric) graphs increases.

NN-Baker setup. For each of the five setups, we train on 1000 graphs and test on 200

graphs each containing between 40k - 50k points. However, inside our NN-Baker framework,

the input domain is partitioned into cells of side-length 12.8, and each cell is further partitioned

into 128× 128 pixels (each with side-length = 0.1). In other words, each cell can be viewed

a 128x128 image. This means that the training set for the NN component involved contains
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Table 5.1. The ratio of MIS results from different GNNs, GNN-Baker approaches and K-Baker
approach to ground truth. (Larger values are better.)

UNetBaker Erdős ErdősBaker TGS TGSBaker LwD LwDBaker

2D-dense 0.915 0.834 0.923 0.915 0.936 0.917 0.955
2D-sparse 0.919 0.822 0.917 0.909 0.931 0.908 0.926

2DGaussian 0.917 0.769 0.848 0.905 0.927 0.911 0.925
3D - 0.856 0.930 0.924 0.948 0.902 0.954

Torus-4D - 0.812 0.926 0.923 0.937 0.910 0.937

only small graphs restricted to such cells. In the end, each training graph consists of around 400

points for the cases of (2D-dense), (3D) and(Torus-4D), and around 100 to 125 points for the

case of (2D-sparse). The size of each small training graph for Gaussian case is non-uniform. For

CNN-Baker, we apply a UNet which reduces the input 128x128 image to an 8x8 image after 4

down-scaling layers, each of which consists of two convolutional layers, a dropout layer and a

max pooling layer. From the 8x8 image, there are then 4 upsampling/concatenation layers to

bring the size back to 128x128. This model is denoted by UNet-Baker in Table 5.1. For GNN-

Baker, as mentioned in Section 5.3.2, we test TGS-Baker, LwD-Baker, and Erdős-Baker. For

each individual neural network involved, we use the same training setup and hyperparameters as

those in their official implementations. For LwD and Erdős-GNN, we use node degree as initial

node features, while for TGS, we simply use a constant vector. The accuracy of these different

methods over the 5 families of graphs are shown in Table 5.1. The number of parameters for

these GNN-Bakers range from 50K to 600K, while the UNet-Baker uses around 80M parameters.

As shown in Table 5.1, using Baker framework consistently improves the performance of

these SOA neural networks on geometric MIS problems. The improvement over the unsupervised

Erdős-GNN (i.e, Erdős-Baker vs. Erdős-GNN) is particularly significant. We remark that we

have also experimented with using a simple multi-layer fully connected NN (i.e., a multi-layer

version of the NN used in Theorem 5.3.2) to instantiate our NN-Baker, and the performance

(under similar number of parameters as our UNet-Baker) is much worse, between 70%-80%.

To show the generalization power of the NN-Baker models, we tested our models on data

73



with different distributions than the data was trained. For these, we used the data same three 2D

distributions as our other results. We observe that accuracy decreases but still improves over the

non-Baker version. We report the ratio of MIS results from these generalized models to ground

truth in Table 5.2.

Table 5.2. The ratio of MIS results from generalized models to ground truth

Train Test UNetBaker ErdősBaker TGSBaker LwDBaker

2D-dense
2D-sparse 0.910 0.901 0.925 0.914

2DGaussian 0.912 0.832 0.912 0.915

2D-sparse
2D-dense 0.915 0.908 0.926 0.936

2DGaussian 0.917 0.825 0.919 0.908

Timing. To show that the NN-Baker is more efficient compared to a traditional Baker

paradigm, we compare the runtime of our models against a non-neural network based approach.

For this, we use KaMIS as our solver for each cell, and call the resulting framework K-Baker.

In Table 5.3, we show the average time (in seconds) taken to solve a problem with 40k-50k

points. We show the runtime of K-Baker set to achieve similar performances to UNetBaker in

the table. If we set a similar runtime to our UNetBaker, then performances of K-Baker on dataset

2D-dense, 2D-sparse and 2DGaussian are 0.753, 0.672 and 0.674, which are much poorer than

our NN-Baker.

Table 5.3. Average solve times of KaMIS, NN-Baker and K-Baker (seconds)

KaMIS K-Baker UNetBaker ErdősBaker TGSBaker LwDBaker

2D-dense 3385.1 415.19 18.06 32.36 15.72 44.55
2D-sparse 2468.8 402.57 59.97 68.95 33.74 81.06

2DGaussian 3166.7 420.83 58.05 47.45 28.38 62.59

MVC problems. We also evaluate the performance of CNN-Baker and GNN-Baker on

solving minimum vertex cover (MVC) problems. The training and test dataset is the same as

what we take in MIS problems, and the ground truth is computed by KaMIS. We report the

ratio of MVC results from different approaches to ground truth in Table 5.4. Since this is a

74



minimization problem, results closer to 1.0 are more optimal.

Table 5.4. The ratio of MVC results from different approaches to ground truth.

UNetBaker Erdős ErdősBaker TGS TGSBaker LwD LwDBaker

2D-dense 1.210 1.141 1.066 1.072 1.054 1.071 1.038
2D-sparse 1.301 1.531 1.248 1.271 1.206 1.274 1.221

2DGaussian 1.234 1.203 1.133 1.084 1.064 1.078 1.066

5.5 Conclusion

The advancement in neural network architectures and their potential to adapt to the

structure and input distribution of a problem in a data-driven manner, have brought new ways

to tackle traditionally challenging tasks, such as graph optimization problems. In this chapter,

we advocate two points of view: (1) Problems in geometric settings can provide structures that

both algorithms and neural networks can leverage; for example, they can help to decompose

problems into local versions of bounded size and thus lead to more effective NN components. (2)

Infusing NN + learning into an algorithmic paradigm can lead to a more powerful framework for

hard problems, potentially with theoretical guarantees. While the latter is a view that has already

attracted momentum in recent years, our work provides new perspectives (e.g, the decomposition

into bounded-size sub-problems) together with some theoretical guarantees, and we show that

the resulting method is indeed more powerful empirically too. Our present algorithms currently

apply to only geometric intersection graphs. Nevertheless, we believe that such ideas go beyond

the geometric setting which we hope to explore in the future, such as to frameworks to obtain

algorithms for graphs with bounded tree-width. Indeed, the algorithms and theoretical computer

science community has developed many beautiful algorithmic paradigms that may be suitable to

be infused with NN+ML ideas.

This Chapter 5, in full, is a reprint of the material as it appears in NN-Baker: A Neural-

network Infused Algorithmic Framework for Optimization Problems on Geometric Intersection

Graphs, 2021. McCarty, Evan; Zhao, Qi; Sidiropoulos, Anastasios; Wang, Yusu. Conference on
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Neural Information Processing System (NeurIPS), 2021. The dissertation author was the primary

investigator and author of this paper.
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Chapter 6

NN-Steiner: Algorithmic NN Framework
for Rectilinear Steiner Minimum Tree

6.1 Introduction

Given a set of points V in Rd , a Steiner tree spanning V is a tree whose vertex set is V

together with a set of additional points S ⊂ Rd called Steiner points. A rectilinear Steiner tree is

a Steiner tree where all edges are axis-parallel. Given V , the rectilinear Steiner minimum tree

(RSMT) problem aims to compute the rectilinear Steiner tree spanning V with smallest possible

cost (defined as the total length of all edges in the tree). The (rectilinear) Steiner minimum tree

problem has important applications in Chip design. However, while its formulation is similar to

that of the classical problem of minimum spanning tree, allowing the use of Steiner points makes

the problem computationally much harder: Indeed, the RSMT problem is NP-hard to solve.

There are simple algorithms to approximate this problem within a constant factor (e.g., factor 3/2

[Hwa76, KR92] and 5/4 [BFK+94] ). Theoretically the best known approximation algorithm

for RSMT in fixed-dimensional Euclidean space is obtained via the PTAS (polynomial-time

approximation scheme) proposed by Arora [Aro98] (which can provide (1+ ε)-approximation

for a range of optimization problems, such as TSP, in addition to RSMT). Unfortunately, while

this algorithm runs in polynomial time, the time complexity depends exponentially on 1
ε

and

has not yet found its way to practice. In practice especially in chip design, a range of heurstic

strategies to balance the tradeoff between time complexity and practical performance.
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On the other hand, as we have introduced in Chapter 5, with the recent success of deep

neural networks in many applications, there has been a surge on using neural networks to help

tackle combinatorial optimization problems [BLP20, KLBS+16, LCK18, SLB+18, GCF+19,

SYK19], such as to solve travelling salesman problems (TSP) or some other routing related

problems with reinforcement learning [VFJ15, BPL+17, DCL+18, PAL+19]. Very recently,

[LCY21] developed the first neural-network based approach for RSMT by finding the so-called

rectilinear edge sequences using reinforcement learning. [CKL+22] designed a reinforcement

learning framework to solve obstacle avoiding Steiner tree problem.

While there has been some progress in this direction, the significant challenges we

mentioned in Chapter 5 remain : Neural networks are often used in an ad hoc manner and our

theoretical understanding of the resulting framework is limited. For example, one question

is whether a proposed machine learning pipeline has the expressive capacity to solve RSMT

problem exactly or approximately. In general, how does the architecture design reflects or

leverages the mathematical structure behind RSMT at hand?

One idea to further inject theoretical justification to a principled design of neural ap-

proaches for these problems is by leveraging the vast literature on (approximation) algorithms

developed as we presented in Chapter 5. In particular, instead of using a neural network to solve

RSMT in an end-to-end manner, one can instead use neural components within a high-level

algorithmic framework. We have introduced examples in this direction, the line of work using

NNs to learn better variable selection decisions within a branch-and-bound (B&B) framework to

solve, say, MILP (mixed integer-linear programming) problems [GCF+19, GGK+20, NBG+20].

We also developed this mixed algorithmic-NN framework further in Chapter 5 to solve problems

such as maximum independent set in the geometric setting, by first using the Baker’s technique

to decompose input problems to small instances of bounded sizes, and then train a single neural

network to solve these instances.

In this chapter, we follow the direction initialized in Chapter 5 and develop an effective

mixed neural-algorithmic framework for solving RSMT in Rd . (We will use R2 to describe the
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algorithm below, but it can be extended to Rd for a constant value of d.) In particular, we develop

NN-Steiner, which is a mixed neural-algorithmic framework that leverages the ideas behind

Arora’s PTAS for RSMT [Aro98]. At a high level, Arora’s PTAS partitions the input domain into

squares in a hierarchical manner via a shifted quadtree, then solves the problem via a bottom-up

dynamic programming (DP) procedure. One key result of [Aro98] is that for each square, the DP

step only involves assembling partial solutions (of bounded number) from the four child-square

of the present square. In practice, this DP step, while can be implemented in polynomial time,

is not practical. In Section 6.3.2, we develop a bi-directional neural-algorithmic approach to

simulate the DP. See Figure 6.5 for a high-level illustration. The costly DP step will be replaced

by a single neural network component which outputs a learned embedding of partial solutions.

Another neural network component will simulate the backward retrieval of Steiner points in a

top-down manner. A key advantage is that all the neural network components involved only need

to process instances of bounded size, no matter how large the input problem size is.

Main contributions of Chapter 6.

We show that our NN-Steiner achieves the best of both worlds: On the theoretical front,

we show in Section 6.3.1 that this framework has the capacity to produce an approximate solution

for RSMT using only neural networks of bounded complexity. On the practical front, it uses

neural networks to replace a key but also most costly component in Arora’s PTAS, thereby

leading to an efficient architecture. Furthermore, since the neural component only needs to

handle instances of fixed size, the training is more effective. It is also important to note that as the

neural component is learning an algorithmic component which remains the same no matter how

big the input problem size is, once trained, the entire NN-Steiner generalizes well to problems of

much larger sizes which we demonstrate in Section 6.4. Indeed, extensive experimental results

in Section 6.4 show that our NN-Steiner achieve better performance than various NN-based or

non-NN-based SOA methods.

In summary, we propose NN-Steiner, a novel neural-algorithmic framework to solve the
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RSMT problem leveraging the algorithmic idea of Arora’s PTAS (which is the theoretically best

approximation algorithm for RSMT). This, to our best knowledge, is the first neural architecture

of bounded size that has the capacity to approximately solve RSMT. More importantly, the

algorithmic alignment of our NN-Steiner also leads to better practical performance than existing

SOA methods, especially for large datasets (of more than 1000 points in practice). Finally, we

note that the methodology behind our NN-Steiner framework can be extended to handle obstacle

avoiding RSMT which we aim to explore as a next step.

Outline of Chapter 6.

This chapter is organized as follows. We first introduce RSMT problems and the Arora’s

algorithm solving them approximately in Section 6.2. We then present the algorithmic-NN

framework, NN-Steiner, and its approximated instantiation in Section 6.3. In Section 6.4, we

show experimental results of our NN-Steiner and approximation algorithms or other machine

learning baselines. Finally, we make conclusions about our NN-Steiner in Section 6.5.

6.2 Preliminaries

We now introduce the RSMT problem. We will then briefly describe Arora’s PTAS

for RSMT [Aro98]. For simplicity of presentation, we will assume input points lie in R2; the

definitions and Arora’s algorithm can both be extended to Rd .

First, given a set of points P in the plane, a spanning tree T for P is a tree connecting P

by a set of line segments (tree edges). If we use L1 distance (also called rectilinear distance) to

measure the distance between two nodes as weights of the edges in the tree, then the resulting

tree is called a rectilinear tree. Equivalently, we can think that we connect two points p1 = (a,b)

and p2 = (c,d) by a monotone path where each edge is axis parallel. Then the rectilinear

distance between p1 and p2 is the (Euclidean) length of such a path; see Figure 6.1. The cost of

a rectilinear tree T , denoted by cost(T ), is the total weights of all edges.

Definition 6.2.1 (RSMT). Given a set of points V ⊂ R2, the rectilinear Steiner minimum tree
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(RSMT) for V is a rectilinear tree T ∗ with vertex set V ∪S with minimum cost among all possible

choices of S (which could empty). The set S is referred to as Steiner points.

See Figure 6.1 for some simple examples.

Figure 6.1. (Left) a rectilinear tree spanned by blue points. (Right) a rectilinear Steiner tree,
where red points are Steiner points.

Arora’s PTAS

We now briefly describe the high-level idea behind Arora’s polynomial time approxima-

tion algorithm, which we refer to as Arora-PTAS from now on. First, for simplicity of exposition,

we assume that the input points V ⊂ R have integral coordinates, and that the diameter of point

set V is O(n) with n = |V |. (A perturbation process is given in [Aro98] to round input points so

that this assumption holds without changing the theoretical guarantee of the algorithm.) W.o.l.g

suppose input points V are contained in a bounding box of size length L = O(n).

Step 1: Construct a shifted quartree.

Randomly pick 0 < a,b < L, and then translate the point set by vector (a,b) in the plane.

We then compute a quadtree after the shift, where the splitting of quadtree cells terminate the

first time the side-length becomes less than 1. In other words, the quadtree T is a tree where

each internal node has degree 4. The root has level 0, and is associated with a square of side

length L. Any node v ∈ T at level i is associated with a square (quadtree cell) □v of size (i.e.,

side length) L
2i . Splitting the horizontal and vertical sides in the middle decomposes □v into

four child-quadtree cells (squares) each of size L
2i+1 , corresponding to the four children nodes of

v ∈ T at level i+1. As all points have integer coordinates, each leaf cell can contain at most 1

point. As the bounding box side length is L = O(n), the height (max-level) of quadtree is thus

81



hT = O(logL), the total number of nodes in T (and thus the number of cells across all levels) is

bounded by O(n logL).

(a) A quadtree decomposition of the input points (b) A (2,1)-light rectilinear
Steiner tree

Figure 6.2. (a) shows a two-level quadtree over the input points (black dots). Each side of
quadtree cell has 2 portals. (b) gives an example of a (2,1)-light rectilinear Steiner tree.

We will now consider a special families of (rectilinear) Steinter trees, which intuitively

can cross any quadtree cell (at any level) only a bounded number of times.

Definition 6.2.2. Let m,r be positive integers. An m-regular set of portals for a shifted quadtree

is a set of points on the sides of cells in the quadtree, such that each cell (square) has a portal at

each of its 4 corners and m other equally-spaced portals on each of its four sides. A Steiner tree

is (m,r)-light if it crosses each edge of each square at most r times and always at a portal.

See Figure 6.2 for an example of quadtree decomposition and a (m,r)-light rectilinear

Steiner tree.

Step 2: Dynamic programming (DP)

It is shown in [Aro98] that there exists (m,r)-light rectilinear Steiner trees whose cost

approximate the optimal cost of RSMT. Hence our goal now is to compute such a good (m,r)-

light rectilinear Steiner tree. In particular, Arora’s proposed to use a dynamic programming to

construct it in a bottom-up manner. We sketch the idea here.

We process all quadtree cells in bottom-up manner. For a fixed quadtree cell A, consider

a (m,r)-light Steiner tree T restricted to A: this will give rise to some Steiner forest TA in A
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which can exit this cell only via portals on its four sides. In particular, the portion of the Steiner

tree outside this cell A can be solved independently as long as we know the following portal-

configuration: (i) the set of exiting-portals on the side of this cell that will be used by T (which

connect points outside A with those inside), and (ii) how these exiting-portals are connected by

trees in the Steiner forest TA. In other words, a portal-configuration is the “boundary” of the

Steiner forest TA on the side of A.

Let ΞA be the set of portal-configurations for a cell A, and set D = |Ξ|. It is easy to

show that D ≤ (4m+4)4rBell(4r)≤ (4m+4)8r, where Bell(k) is the so-called Bell number that

gives the number of possible partitions of a set of cardinality k. Our goal now is to compute,

for each portal configuration σ ∈ Ξ, the minimum cost cost(σ) of any rectilinear Steiner-forest

within A that gives rise to this boundary condition. Overall, assuming an arbitrary but fixed

order of portal-configurations in Ξ = {σ1, . . . ,σD}, the costs of all portal-configurations can then

be represented by a vector C⃗A ∈ RD, where C⃗A[i] = cost(σi). We call C⃗A the cost-vector for A,

which stores costs of all possible partial solutions for points of P contained within cell A. We

now describe the DP algorithm to compute this cost-vector for all cells in a bottom-up manner

in decreasing order of levels. Given σ ∈ Ξ, we also abuse the notation and use C⃗A[σ ] to denote

C⃗A[i] if σ = σi.

Base case: A is a leaf cell. In this case, there is at most one point p from P contained in

A. Since only portals can be used as Steiner points, we can thus simply enumerate all possible

ways p can be connected to the chosen portals in the portal-configuration.

Inductive step: A is not a leaf cell. The four child-cells A1, . . . ,A4 of A are from the

level below A and thus by inductive hypothesis we have already computed the the cost-vectors

C⃗Aks for each of them, for k = 1, . . . ,4. Consider any portal-configuration σ ∈Ξ. We simply need

to enumerate all choices of portal-configurations τ1, . . . ,τ4 for child-cell A1, . . . ,A4 respectively

that are consistent with σ , meaning that their portals along common sides are the same, and the

connected components of portals from 4 child-cells don’t form cycles (thus is still induced by a
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valid Steiner forest). We then have that

cost(σ) = min
τ1,...,τ4 consistent with σ

C⃗A1[τ1]+ C⃗A2[τ2]+ C⃗A3[τ3]+ C⃗A4 [τ4]. (6.1)

The choices of τ1, . . . ,τ4 that give rise to the minimum cost cost(σ) above is called

the set of child-cell portal configurations generating σ . See Figure 6.3 for an example of the

inductive step.

(a) (b) (c)

Figure 6.3. To compute cost of (4,2)-Steiner tree with the 3 chosen portals in figure (a), we
first solve sub-problems in the 4 child-cells. Specifically, we find (4,2)-Steiner forests with all
portals combination in child-cells consistent with interfaces as shown in figure (b). Figure (c) is
an invalid example.

Final construction of approximate RSMT. At the end of DP, after we compute the

cost-vector for the root cell (which contains all input points P inside), we identify the portal-

configuration σ∗ ∈ Ξ that has the lowest cost. To obtain the corresponding rectilinear Steiner tree

whose cost is cost(σ∗), we need to now perform a top-down back-propagation: in particular,

from σ∗ for the root cell we can then retrieve the set of child-cell portal-configurations τ∗1 , . . . ,τ
∗
4

(from the four children of the root cell) generating σ∗. Repeat this process till we reach all

leaf cells. Let S denote the union of all portals chosen in these optimal portal-configurations

for all cells; these will serve as the Steiner points that we need to add. In other words, we now

simply compute an optimal rectilinear minimum spanning tree T ∗ for the point set P∪S, which

can be done in O(m logm) time where m = |P∪S|. The following theorem guarantees the T ∗
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constructed above indeed is an approximate RSMT. See Appendix D for the proof of this theorem

following from [Aro98].

Theorem 6.2.3. Structure Theorem. If the shifts 0 ≤ a,b < L are chosen uniformly randomly

in range [0,L], then with probability at least 1/2, the rectilinear Steiner tree T ∗ computed above

has a cost that is at most
(
1+ 8

r +O(4logL
m )

)
OPT, where OPT is the cost of the optimal RSMT.

6.3 NN-Steiner

Although the running time of Arora’s algorithm is polynomial in theory, its computation

is very expensive in practice as we need to find all possible combinations of r portals from m

portals on each side of square. Instead of enumerating all portal-configurations in dynamic

programming in a brute-force manner, we propose an algorithmic-NN framework, NN-Steiner,

infusing neural networks (NNs) into Arora’s algorithm, to help us select Steiner points from the

set of portals to build the output Steiner tree. In particular, in Section 6.3.1, we first show that in

fact, the key components within the DP algorithm can be simulated exactly (not approximated) by

certain neural networks. However, such neural networks are not efficient either. Then in Section

6.3.2, we show a practical instantiation of NN-Steiner and we will demonstrate its practical

performance in Section 6.4.

6.3.1 Theoretical NN-Steiner to simulate Arora’s PTAS

We can simulate key components in the the dynamic programming step of Arora’s

PTAS. In particular, we will use four neural networks: NNbase and NNDP to implement the

base case and inductive step of the DP, respectively, to compute encoding of cost-vectors for

all quadtree cells in a bottom-up manner, and then NNtop and NNretrieve to obtain the top level

optimal portal-configuration, as well as backtrack that choice to all cells in the tree to retrieve

optimal portal-configurations from all cells in a top down manner. Once portals used in all

cells are retrieved, we use the union of them as the set of Steiner points and compute the

85



Figure 6.4. A neural network NNDP simulating function fDP for dynamic programming.

minimum rectilinear spanning tree spanned by original points and these Steiner points as the

output rectilinear Steiner tree.

It turns out that there exist designs and parameters of these four neural networks so that

they simulate Arora’s DP algorithm exactly; and also these NNs are each of only bounded size

independent of n (only depending on parameters m and r, which we set to be large constant in

practice). More specifically, we describe how to construct the neural network NNDP to simulate

one inductive step in the DP algorithm.

First, recall that the inductive step of the DP algorithm can be rewritten as applying a

function fDP : (RD)4 → RD. In particular, for any quadtree cell A with child-cells A1, . . . ,A4,

the input to fDP will be the four cost-vectors (⃗CA1, C⃗A2, C⃗A3, C⃗A4) ∈ (RD)4, and the output is the

cost-vector C⃗A ∈ RD.

Note that Eqn (6.1) gives how to compute each entry in output vector fDP(⃗CA1, . . . , C⃗A4).

In other words, fDP has a simple form, which can be modeled as a certain linear functions
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followed by a min-pooling, which can be easily simulated by a neural network as shown in

Figure 6.4. In particular, to compute the C⃗A[i] (corresponding to the cost of portal-configuration

σi), each neuron cℓ takes in a set of four portal-configurations τ j ∈ A j, j = 1, . . . ,4, that are

consistent with σi, and it simply does a sum operation. Then the output will take a min-pooling

of all values at cℓs. Given that there are at most D4 number of such four portal-configurations for

each σi, the entire model has complexity Θ(D5) (where recall D ≤ (4m+4)8r is independent of

the input point set size n). In other words, there is a NNDP of bounded complexity that simulate

the DP step exactly. We summarize with the following theorem for the existence of NNs to

implement Arora’s PTAS:

Theorem 6.3.1. There exist four neural networks, each of only bounded size depending only on

m and r, that can simulate the dynamic programming algorithm of Arora’s PTAS, such that the

resulting algorithm can find an
(
1+ 8

r +O(4logL
m )

)
-approximate rectilinear Steiner tree (i.e., its

cost is at most
(
1+ 8

r +O(4logL
m )

)
OPT). The entire framework will call these neural networks

only O(n logL) = O(n logn) times.

6.3.2 Practical Instantiation of NN-Steiner

We introduce our NN-Steiner framework and show that in theory, there exists simple NNs

that can exactly simulate key components in Arora’s dynamic programming. That theoretical

instantiation however is not practical as it essentially is still explicitly encoding the exponential

number of portal-configurations (exponential in m,r, but not n). In what follows, we present

a practical instantiation of this framework in which the four aforementioned neural networks

are implemented by variants of graph neural networks (GNNs). See Figure 6.5 for a high-level

overview of our NN-Steiner pipeline.

Forward pass.

The forward processing involves two neural networks GNNbase and GNNDP, and call

the GNNDP in bottom-up manner to compute implicit encoding of costs of possible portal-

configurations.
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Base case neural network GNNbase.

At the leaf level of Arora’s algorithm, each cell contains at most 1 point. In practice we

terminate the quadtree decomposition when a cell contains no more than kb points, where kb is a

hyperparameter. Given a leaf cell A with PA ⊂ P being the set of input points contained in A,

ideally, the neural network GNNbase should take some representations of A,PA, as well as the set

of 4m+4 portals on the side of this cell as input, and output a dc-dimensional vector (in Rdc) as

an implicit encoding of cost-vector C⃗A ∈ RD; note dc << D in practice.

However, to better encode the relative relations among portals, we will use a graph to

encode the input entities, and instead of outputing a graph-level representation, we will use

node-features which can be used for the later inductive step neural network GNNDP.

More specifically, first, we solve RSMT TA for points PA within this leaf cell A – we

can afford to do so as the size |PA| ≤ kb is supposed to be a small constant, and we use the

state-of-the-art solver GeoSteiner [JWWZ18] to solve it. We then connect each portal on the

side of A to its closet point in TA to form a graph ĜA, which the graph neural network GNNbase

operates on. Specifically, we take a variant of GIN [XHLJ19] taking edge features into the

message function as the GNNbase in practice. The relative coordinates of all points (including

portals) are used as part of the node features, which is generated by shifting the cell so that its

left-bottom vertex is at origin (0,0). The rectilinear distance between nodes are used as edge

features. At the output layer, each graph node is associated with a Rdc-vector as node features,

and the collection of them over all portals form an implicit encoding of the cost-vector for all

portal-configurations of this cell.

The advantage of terminating with kb points in a cell is two-fold: (1) For a quadtree

cell with very few points, it is harder to learn a meaningful encoding of portal-configurations.

However, if kb is small, then majority of cells in a quadtree will have few points inside (note that

a complete degree-4 tree will have around 75% nodes at the leaf level!). Hence training on such

collection of cells tend to provide bad supervision which affect the effectiveness of learning. (2)

Furthermore, with larger kb we have fewer number of cells to train on, which improves efficiency
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too. On the other hand, as the kb increases, the base case deviates further from Arora’s PTAS,

and that affects the performance of the framework too. In our experiments kb is a hyperparameter

(see Section 6.4 for its effect and choice).

DP inductive step neural network GNNDP.

Next, we use another graph neural network GNNDP to simulate the function fDP which

as mentioned in Section 6.3.1 is equivalent to the DP step in Arora’s PTAS. More specifically,

given a cell A at level i, let A1, . . . ,A4 be its 4 child-cells at level (i+1) in fixed order. Intuitively,

GNNDP will take the current implicit encoding of cost-vectors for each child cell, and generate a

implicit encoding for the parent cell A. Again, to better leverage relations among portals, instead

of using MLP, we use a graph neural network, GIN, to implement GNNDP. First, we construct

a graph ĜA, where the node set is the set of portals at level i+ 1 and level i on sides of cell

A, A1, . . . ,A4. We connect each portal to its neighbor portals along the cell sides. Besides, we

connect each level i+1 portal on sides of Ai to all level i portals also appearing on sides of Ai.

The initial node features are setup as follows: portals at level i take their relative coordi-

nates as node features. Portals at level i+1 have multiple dc-dimensional node feature vectors

from different child-cells. We input them into MLPs and take the output dc-dimensional vector

as initial node features of portals at level i+1.

Similar to the base NN GNNbase, at the output layer, each graph node has a dc-dimensional

node feature vector as an encoding for partial solutions for A. The same NN GNNDP will be

applied once for every internal nodes of the quadtree in a bottom-up manner.

Backward pass.

As described above, the forward pass will apply the base NN GNNbase to all leaf cells,

and then GNNDP to all internal nodes, to simulate the bottom-up DP algorithm of Arora’s PTAS.

Now that we have the encoding of partial solutions for all cells, we use two more neural networks

to simulate the backtracking stage of the DP algorithm.
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Root-level retrieval GNNtop.

The goal of GNNtop is to map the current encoding of cost-vector for the root cell A to a

likelihood map on all portals ρA : Portals(A)→ R, which encodes how likely a portal is chosen

as a Steiner point; here, Portals(A) denote the set of portals on the sides of A. This is easily

achieved by a GIN over a graph Ĝ′
A connecting portals as follows: connecting each portal at

the root level to its neighbor portals at the same level, and set the initial node features as those

from the output after running GNNDP for this root cell. The output is a likelihood value ρA(p)

for each portal p. Note that fA can be thought of as the restriction of the portal-likelihood map

ρ : P → R to only the set of portals Portals(A); where P denotes the set of all portals across

all levels.

Iterative backward retrieval step GNNretrieve.

Next, using the portal-likelihood map ρA, we wish to induce portal-likelihood maps for

portals from its children, and repeat this process till we compute the likelihood f for all portals.

This is achieved by using a neural network GNNretrieve repeatedly to all internal quadtree nodes.

In particular, for each node A with child-cells A1, . . . ,A4, suppose we have already computed

the likelihood for portals on the side of this cell. GNNretrieve will operate on the same graph Ĝ

as constructed for GNNDP. The difference from GNNDP is the design of node features. We use

the likelihood of portals from the parent cell A as their node features, while the node features of

portals from child-cells are their encodings computed in the forward pass. In the final output

layer, all nodes has a single value as its feature, which is the likelihood value.

Retrieval of Steiner points.

After the downward pass, we have a portal-likelihood map ρ : P → R over all portals.

We use an iterative algorithm (shown in Algorithm 1) to choose the final set of Steiner points

from portals, as well as construct a rectilinear Steiner tree. Intuitively, since in general we do not

have a good threshold for choosing portals, Algorithm 1 keeps lowering the threshold to choose

Steiner points as long as the cost of the resulting rectilinear Steiner tree is still decreasing, and
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stops till it starts to increase. We also point out that when we construct a rectilinear Steiner tree

with picked portals, Steiner points with degree less than 3 are removed (as they are redundant).

Figure 6.5. Pipeline of a NN-Steiner instantiation

Algorithm 1. Iterative retrieving algorithm
Input:

The set of portals with likelihood
Hyperparameters t0 and δt

Output:
A rectilinear Steiner tree
Take all portals with likelihood ≥ t0 as Steiner points, construct rectilinear Steiner tree T0,
compute cost c0
for i = 1; i < t0/δt ; i++ do

ti = ti−1 −δt
Take all portals with likelihood ≥ ti as Steiner points, construct rectilinear Steiner tree Ti,
compute cost ci
if ci > ci−1 then

Set j∗ = i−1, break the loop
end if

end for
return Tj∗

A further improvement in architecture.

In the instantiation of the four neural networks above, we note that information about

input points were only directly used by GNNbase for leaf cells. Later in GNNDP, such information

was only implicitly used as in encoding at portals. Here we hope add stronger supervision of

points’ spatial distributions more directly. Specifically, in GNNbase, we use another GNN over the

91



Figure 6.6. Besides portals’ feature vector, we also pass points encoding vector in GNNDP. In
(a), the points encoding vector vA of cell A obtained by infusing those of 4 child-cells of A with
a neural network. In (b), vA is used to update portals’ feature vectors on sides of A.

computed RSMT of points (not portals) within this cell to obtain a fixed dimensional dc
′-vector

as the encoding of points in this cell. Then in GNNDP, when we process A with child-cells

A1, . . . ,A4, each child cell already has a dc
′-vector as encoding of points inside. We first use

another neural network (a simple MLP) to fuse those four dc
′-vectors into a single dc

′-vector vA

to encode points information in the parent cell A. This vector is used during the message passing

stage of GNNDP to update the node features for each portal. In specific, we create a new node in

graph ĜA connecting to all portals on sides of A with initial node feature vA. This node passes

its feature to portals in GNNDP. We refer to this setup with improvement as NN-Steiner-II. See

Figure 6.6 for a simple illustration.

6.4 Experimental performance

In this section, we present experimental results of baselines and NN-Steiner on 2d RSMT.

Point sets are sampled from a mixture of uniform and Gaussian distribution on the 2d-plane.

We consider 4 different sizes of point sets: Dataset-i (i = 1,2,3,4). The point sets in 4 datasets

consists of about 500, 1500, 2500 or 5000 points respectively. Each dataset consists of 3000

point sets. See Appendix D for the point generation method in details.
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In our experiments, we use the output of a state-of-the-art RSMT solver Geosteiner

[JWWZ18] as ground truth solutions and report accuracies of different approaches based on

this. In order to train our NN-Steiner framework, we need supervision about portals selection.

Instead of collecting training labels by really solving RSMT with Arora-PTAS, we turn to the

shifted-Groundtruth. Specifically, we first make quadtree decomposition and portals picking

over the input point sets as what Arora-PTAS does. We then solve RSMT problems over point

sets by Geosteiner and output ground truth solutions. The shifted-Groundtruth is obtained by

shifting Steiner points found in ground truth to the portals most closed to them. We take the

cross-entropy between the likelihood learned by NN-Steiner and shifted-Groundtruth as the

training loss function. NN-Steiner models are initialized by Glorot initialization and trained with

batch size 64 and 1000 epochs. The cross-entropy losses are minimized by Adam optimizer

to train our model with learning rate of 3.0×10−4. The learning rate will decay by 0.96 after

each 100 epochs. To tune the two hyperparameters, the size of a base cell kb and the number of

portals on each side of a cell m, we explore our NN-Steiner for kb ∈ {20,30,40,50,60,80,100}

and m ∈ {10,20,30,50,70,100} by grid search. When testing, we set t0 = 0.6 and δt = 0.05

in the Steiner points iterative retrieving algorithm (Algorithm 1). We compare our NN-Steiner

to two approximation algorithms, PD-II+HVW+DAS [ACH+18] and FLUTE [CW07]. In PD-

II+HVW+DAS, we set the hyperparameter α = 0 to obtain a solution with minimum edge length.

For FLUTE, we solve problems with 3 different settings, A = 3 (default setting), A = 10 and

A = 18 (the most accurate setting). We also compare to a machine learning based approach,

REST[LCY21], in which we set the transformation hyperparamter T = 18 to get the minimum

cost.

We train and test REST, NN-Steiner and NN-Steiner-II on Dataset-i (i = 1,2,3) respec-

tively and obtain their average accuracies by 10 folds cross validation. In order to measure the

generalization performances of REST and our two NN-Steiner frameworks, we take their models

trained on Dataset-3 and test their accuracies on Dataset-4. We report the accuracies and percent-

ages of “wins” of baselines, NN-Steiner and NN-Steiner-II on the 4 datasets in Table 6.1. As
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shown in the table, NN-Steiner-II achieve higher accuracies than both approximation algorithms

and machine learning baselines in all datasets except Dataset-1 in which point sets have the

smallest size. The empirical results indicate our NN-Steiner-II approach has better performance

on large instances. The comparison between NN-Steiner and NN-Steiner-II indicates that the

direct encoding of points distribution is significant in neural network framework. We report the

average training time of REST and NN-Steiner-II on 2700 instances and average test time on 300

instances in Table 6.2. We also present the average running time of FLUTE-10 and FLUTE-18

on solving 300 instances in Table 6.2.

Table 6.1. Accuracy and winning rate of baselines and NN-Steiner frameworks

Methods Dataset-1 Dataset-2 Dataset-3 Dataset-4

FL-3 1.109 /5.5% 1.132 /0.8% 1.163 /0.2% 1.161 /0.6%
FL-10 1.097 /37.4% 1.121 /8.6% 1.124 /6.1% 1.123 /9.5%
FL-18 1.095 /58.4% 1.114 /38.6% 1.116 /36.5% 1.119 /40.8%
PD-II 1.108 /8.3% 1.136 /0.4% 1.140 /0.7% 1.143 /1.2%
REST 1.102 /30.5% 1.119 /11.6% 1.122 /9.4% 1.135 /3.4%

NNSt 1.119 /0.0% 1.123 /6.2% 1.125 /3.6% 1.129 /5.2%
NNSt-II 1.115 /2.8% 1.110 /49.8% 1.111 /53.1% 1.114 /54.9%

Table 6.2. Training and test / running time (minutes)

Dataset FL-10 FL-18 REST NNSt-II

Dataset-1
Training - - 192.3 216.8

Test (running) 4.2 11.5 1.4 1.6

Dataset-2
Training - - 211.4 253.6

Test (running) 11.3 56.2 2.3 2.8

Dataset-3
Training - - 268.5 334.7

Test (running) 24.6 97.2 3.5 5.4

Dataset-4 Test (running) 43.1 198.8 5.6 7.5

To further compare the generalization capability of REST and NN-Steiner framework,

we train and test the machine learning models on different dataset, and report their performance

in Table 6.3. Besides, we test REST and NN-Steiner-II models trained on Dataset-3 over
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increasingly larger point sets to explore their performances on large instances. Each large test

dataset consists of 300 point sets. We present the test results in Figure 6.7. As shown in Table

6.3 and Figure 6.7, NN-Steiner-II has consistently better generalization performance than REST

in large point sets.

Table 6.3. Generalization performances (accuracy and winning rate) of REST and NN-Steiner-II

Training set Test set REST NN-Steiner-II

Dataset-2
Dataset-1 1.098 /79.7% 1.113 /20.3%
Dataset-3 1.136 /12.5% 1.115 /87.5%
Dataset-4 1.144 /7.6% 1.118 /92.4%

Dataset-3
Dataset-1 1.096 /78.5% 1.110 /21.5%
Dataset-2 1.115 /23.6% 1.103 /76.4%
Dataset-4 1.135 /9.8% 1.114 /90.2%

Figure 6.7. Performance of baselines and NN-Steiner-II on large instances.

Finally, we discuss the influence of two hyperparameters, base cell size kb and portal

number on each cell side m. We fix m = 50, train and test our NN-Steiner-II models with kb

increasing from 10 to 100. We also fix kb = 30, and explore the performance of NN-Steiner-II

with m ranging from 20 to 100. As shown in Figure 6.8, a small kb is insufficient to learn a

meaningful encoding of points distribution and portals configuration as we mentioned in Section
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(a) (b)

Figure 6.8. Performance of NN-Steiner-II with different kb and m.

6.3.2, while a large kb increases the complexity of base case solving. Besides, it is not necessary

that performance of NN-Steiner-II improves as m becomes larger, because a large m increases

the complexity of models.

6.5 Conclusion

The development of solving combinatorial optimization problems and routing problems

by neural networks require more theoretical understanding, especially the expressive capabilities

of neural networks. Our NN-Steiner extends the scope of algorithmic-NN framework of NN-

Baker to Steiner-like problems such that geometric setting of path-wise problems can also

provide structures that both algorithms and neural networks can leverage. Specifically, RSMT

can be decomposed into hierarchical sub-problems and solved by approximation algorithms with

dynamic programming. Infusing neural networks into the algorithmic structure to simulate the

dynamic programming leads to an efficient and effective framework with theoretical guarantees.

Our NN-Steiner works on R2 RSMT problems well, but it has potential to be extended in

higher dimensional Steiner minimum tree problems or obstacle avoiding Steiner minimum tree

problems.

This Chapter 6, in full, has been submitted for publication of the material as it may
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appear in NN-Steiner: A Mixed Neural-algorithmic Approach for Minimum Rectilinear Steiner

Tree Problem, 2022. Zhao, Qi; Wang, Yusu; Kahng, Andrew; Sidiropoulos, Anastasios. Interna-

tional Conference on Computer-Aided Design, 2022. The dissertation author was the primary

investigator and author of this paper.

97



Chapter 7

Conclusions and Future Work

Starting from our overarching question,

Geometric algorithms and topological quantities are effective at capturing hidden
structure and features in data, as well as providing efficient algorithms for them.
How can we combine and integrate such ideas and methods with modern machine
learning pipelines to further augment and enhance power and performance of
these pipelines?

we present four different works augmenting machine learning pipelines with topological persis-

tence ideas or integrating geometric algorithms with neural networks.

First, we proposed a new weighted-kernel for persistence-based summaries, WKPI, for

classification tasks. We proved this kernel is positive semi-definite and its induced metric is stable

to perturbations. We also designed a metric learning approach to learn the best weight function

for WKPI-kernel from labelled data that can encode the importance of different locations in the

persistence diagram. We applied our learned WKPI-kernel to the task of neuron-cell classification

and graph classification. Our approach performs consistently better than other persistence-based

kernels. Most importantly, comparing to graph kernels and graph neural networks baselines, our

new framework achieves similar or better results among benchmarks from social networks and

chemical components. Considering that our approach is purely based on graph structure without

any attributes, these results are more meaningful.

Second, we presented a new graph neural network architecture, PEGN, leveraging

topological structure information with persistence images. We provided the intuition about
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the power of local persistence images from specific subgraphs, say neighborhood of nodes, on

differentiating nodes in graphs from a theoretical view. Then we incorporated local topological

information into message passing of graph neural networks in an attention manner. In our

experiments, baselines include approaches using multi-hop neighborhood information or node-

feature-based attention. Experimental results show that PEGN performs similarly or outperforms

state-of-the-art graph neural networks in node classification tasks.

Third, we designed a novel algorithmic-NN framework, NN-Baker, solving combinatorial

optimization problems in geometric setting. We showed that problems in geometric setting had

structures that both approximation algorithms and neural networks can leverage, thus infusing

neural networks into an algorithmic paradigm had the potential to lead to a more powerful

frameworks for higher efficiency and theoretical guarantees. In specific, our NN-Baker was

developed by infusing neural networks into Baker-paradigm, a partitioning based polynomial

approximation scheme. We applied NN-Baker to solve maximum independent set problem, a

classic combinatorial optimization problem known as NP-hard, on geometric intersection graphs.

In experiments, our approach improves the performance of existing graph neural network based

baselines on large instances by a large margin. Notice that our Baker-paradigm and NN-Baker

can also solve some other combinatorial optimization problems in geometric setting.

Finally, we developed a second algorithmic-NN framework, NN-Steiner, solving rec-

tilinear Steiner minimum tree problems. Similar to problems in geometric setting, problems

connecting points on a plane like TSP and SMT also had a nice structure beneficial to both

algorithms and neural networks. Specifically, we simulated the dynamic programming procedure

in Arora’s algorithm, a polynomial approximation algorithm, by a series of neural networks.

Our approach outperforms both approximation algorithms and machine learning based baselines

and has better generalization ability in experiments. This work is the first supervised learning

approach solving RSMT problems and demonstrates that algorithmic-NN idea is not restricted in

node-wise problems.
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Future directions.

We first discuss future work in leveraging topological ideas. To design GNNs with

stronger expressive power, we have to encode higher order information in message passing. We

have discovered fruitful features with 0-dim and 1-dim extended persistence diagrams from

graphs. In the future, one can investigate higher dimensional homological features spanning more

than 2 nodes in graphs, and inject them into message passing. There has benn some extension

of GNNs to high-order GNNs. However, the investigation has been limited. We would like

to understand among which potential simplices messages should pass, and how the messages

should be processed more effectively across them. Specifically, we can explore how we can learn

constructing simplices from input graphs in a more intelligent and data-driven way according to

their topological properties, which allows nodes or other simplices not connected by edges to

transit features in a more meaningful way. This direction has a potential capacity to alleviate or

even overcome the over-smoothing and un-reach problems of GNNs.

Then we discuss future work in solving geometric problems. We infused neural networks

into Baker’s paradigm and Arora’s algorithm to solve node-wise and routing like problems

respectively. Notice that in the past decades, there has been a huge literature in theoretical

computer science field about approximation algorithms. One can explore the literature and find

more powerful and efficient algorithmic structures for combinatorial optimization problems,

problems in high dimensional space especially, and infuse neural networks into them. For

example, our NN-Steiner and some other machine learning approaches focuses on solving

routing like problems on 2-d planes. One can investigate an algorithmic-NN approach to solve

those problems in 3-d or even higher dimensional spaces. There are also some other interesting

problems like convex hull and Delaunay triangulation. Moreover, another interesting direction is

to generalize this algorithmic-NN idea beyond geometry setting. For example, we would like to

infuse neural networks into approximation algorithms solving MIS problems on general graphs.
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Appendix A

Chapter 3: Appendix

A.1 Missing proofs

A.1.1 Proof of Lemma 3.3.2

Consider an arbitrary collection of n persistence images {PI1, . . . ,PIn} (i.e, a collection

of n vectors in RN). Set K = [ki j]n×n to be the n×n kernel matrix where ki j = kw(PIi,PI j). Now

given any vector v = (v1,v2, ...,vn)
T , we have that:

vT Kv =
n

∑
i, j=1

viv jki j

=
n

∑
i, j=1

viv j

m

∑
s=1

ω(ps)e
−

(PIi(s)−PI j(s))
2

2σ2

=
m

∑
s=1

ω(ps)
n

∑
i, j=1

viv je
−

(PIi(s)−PI j(s))
2

2σ2 .

Because Gaussian kernel is positive semi-definite and the weight-function ω is non-negative,

vT Kv ≥ 0 for any v ∈ RN . Hence the WKPI kernel is positive semi-definite.
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A.1.2 Proof of Theorem 3.3.4

By Definitions 3.3.1 and 3.3.3, combined with the fact that 1− e−x ≤ x for any x ∈ R,

we have that:

Dω
2(A,B) = kw(PIA,PIA)+ kw(PIB,PIB)−2kw(PIA,PIB)

= 2
N

∑
s=1

ω(ps)−2
n

∑
s=1

ω(ps)e
− (PIA(s)−PIB(s))

2

σ2

= 2
N

∑
s=1

ω(ps)(1− e−
(PIA(s)−PIB(s))

2

σ2 )

≤ 2cw

N

∑
s=1

(1− e−
(PIA(s)−PIB(s))

2

σ2 )

≤ 2
cw

σ2

n

∑
s=1

(PIA(s)−PIB(s))2

≤ 2
cw

σ2 ||PIA −PIB||22

Furthermore, by Theorem 10 of [AEK+17], when the distribution φu to in Definition 2.1

is the normalized Gaussian φu(z) = 1
2πτ2 e−

∥z−u∥2

2τ2 , and the weight function α = 1, we have that

∥PIA −PIB∥2 ≤
√

10
π
· 1

τ
·dW,1(A,B). (Intuitively, view two persistence diagrams A and B as two

(appropriate) measures, and dW,1(A,B) is then the “earth-mover” distance between them so as to

convert the measure corresponding to A to that for B, where the cost is measured by the total

L1-distance that all mass have to travel.) Combining this with the inequalities for Dω
2(A,B)

above, the theorem then follows.

A.1.3 Proof of Theorem 3.3.6

We first show the following properties of matrix L which will be useful for the proof

later.

Lemma A.1.1. The matrix L is symmetric and positive semi-definite. Furthermore, for every
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vector f ∈ Rn, we have

f T L f =
1
2

n

∑
i, j=1

Λi j( fi − f j)
2 (A.1)

Proof. By construction, it is easy to see that L is symmetric as matrices Λ and G are. The positive

semi-definiteness follows from Eqn (A.1) which we prove now.

f T L f = f T G f − f T
Λ f =

n

∑
i=1

f 2
i gii −

n

∑
i, j=1

fi f jΛi j

=
1
2
( n

∑
i=1

f 2
i gii +

n

∑
j=1

f 2
j g j j −

n

∑
i, j=1

2 fi f jΛi j
)

=
1
2
( n

∑
i=1

f 2
i

n

∑
j=1

Λi j +
n

∑
j=1

f 2
j

n

∑
i=1

Λ ji

−
n

∑
i, j=1

2 fi f jΛi j
)

=
1
2

n

∑
i, j=1

Λi j · ( f 2
i + f 2

j −2 fi f j)

=
1
2

n

∑
i, j=1

Λi j( fi − f j)
2

The lemma then follows.

We now prove the statement in Theorem 3.3.6. Recall that the definition of various

matrices, and that ht’s are the row vectors of matrix H. For simplicity, in the derivations below,

we use D(i, j) to denote the ω-induced WKPI-distance Dω(Ai,A j) between persistence diagrams

Ai and A j. Applying Lemma A.1.1, we have:

Tr(HLHT ) =
k

∑
t=1

(HLHT )tt =
k

∑
t=1

htLhT
t

=
k

∑
t=1

1
2
·

n

∑
j1, j2=1

D2( j1, j2)(ht, j1 −ht, j2)
2

=
k

∑
t=1

1
2
·

n

∑
j1, j2=1

D2( j1, j2)(h2
t, j1 +h2

t, j2 −2ht, j1ht, j2).

(A.2)
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Now by definition of hti, it is non-zero only when i ∈ Ct . Combined with Eqn (A.2), it then

follows that:

Tr(HLHT ) =
k

∑
t=1

1
2
·
(

∑
j1∈Ct , j2∈[1,n]

D2( j1, j2)
costω(t, ·)

+ ∑
j1∈[1,n], j2∈Ct

D2( j1, j2)
costω(t, ·)

−2 ∑
j1, j2∈Ct

D2( j1, j2)
costω(t, ·)

)
=

k

∑
t=1

1
2
(

∑
j1∈Ct , j2 /∈Ct

D2( j1, j2)
costω(t, ·)

+ ∑
j1 /∈Ct , j2∈Ct

D2( j1, j2)
costω(t, ·)

)
=

k

∑
t=1

∑
j1∈At , j2 /∈At

D2( j1, j2)
costω(t, ·)

=
k

∑
t=1

costω(t, ·)− costω(t, t)
costω(t, ·)

= k−TC(ω)

This proves the first statement in Theorem 3.3.6. We now show that the matrix HGHT is the

k× k identity matrix I. Specifically, first consider s ̸= t ∈ [1,k]; we claim:

(HGHT )st = hsGhT
t =

n

∑
j1, j2=1

hs j1G j1 j2ht j2 = 0.

It equals to 0 because hs j1 is non-zero only for j1 ∈ Cs, while ht j2 is non-zero only for j2 ∈ Ct .

However, for such a pair of j1 and j2, obviously j1 ̸= j2, which means that G j1 j2 = 0. Hence the

sum is 0 for all possible j1 and j2’s.
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Now for the diagonal entries of the matrix HGHT , we have that for any t ∈ [1,k]:

(HGHT )tt = htGhT
t =

n

∑
j1, j2=1

ht j1G j1, j2ht j2

= ∑
j1, j2∈Ct

G j1 j2
costω(t, ·)

= ∑
j1∈Ct

G j1 j1
costω(t, ·)

= ∑
j1∈Ct

∑
n
ℓ=1 D2( j1, ℓ)
costω(t, ·)

=
∑ j1∈Ct ,ℓ∈[1,n]D

2( j1, ℓ)
costω(t, ·)

=
costω(t, ·)
costω(t, ·)

= 1.

This finishes the proof that HGHT = I, and completes the proof of Theorem 3.3.6.

A.2 More details for experiments

A.2.1 More on neuron experiments

Setup for persistence images.

Persistence-images are both needed for the methodology of [AEK+17] and as input

for our WKPI-distance. For each dataset, the persistence image for each object inside is

computed within the rectangular bounding box of the points from all persistence diagrams of

input trees. The y-direction is then discretized to 40 uniform intervals, while the x-direction

is discretized accordingly so that each pixel is a square. In our experiments, the choice of

discretization (to obtain persistence images) does not seem to have a significant effect on the

final results. For persistence image (PI) approach of [AEK+17], we show results both for the

unweighted persistence images (PI-CONST), and one, denoted by PI-PL, where the weight

function α : R2 → R (for Definition 2.1) is the following piecewise-linear function (modified

from one proposed by Adams et al. [AEK+17]) where b the largest persistence for any persistent-
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point among all persistence diagrams.

α(x,y) =



|y−x|
b |y− x|< b and y > 0

|−y−x|
b |− y− x|< b and y < 0

1 otherwise

(A.3)

Weight function learnt.

In Figure A.1 we show the heatmaps of the learned weight-function ω∗ for both datasets.

Interestingly, we note that the important branching features (points in the birth-death plane

with high ω∗ values) separating the two primary classes (i.e, for Neuron-Binary dataset) is

different from those important for classifying neurons from one of the two primary classes (the

interneuron class) into the four secondary classes (i.e, the Neuron-Multi dataset). Also high

importance (weight) points may not have high persistence. In the future, it would be interesting

to investigate whether the important branch features are also biochemically important.

Figure A.1. Heatmaps of learned weight-function ω∗ for Neuron-Binary (left) and Neuron-Multi
(right) datasets. Each point in this plane indicates birth-death of some branching feature. Warmer
color indicates higher ω∗ value. x- and y-axies are birth / death time.
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A.2.2 More on graph classification experiments

Benchmark datasets for graph classification.

Below we first give a brief description of the benchmark datasets we used in our experi-

ments. These are collected from the literature.

NCI1 and NCI109 [SSL+11] consist of two balanced subsets of datasets of chemical

compounds screened for activity against non-small cell lung cancer and ovarian cancer cell lines,

respectively.

PTC [HKKS01] is a dataset of graph structures of chemical molecules from rats and

mice which is designed for the predictive toxicology challenge 2000-2001.

DD [DD03] is a data set of 1178 protein structures. Each protein is represented by a

graph, in which the nodes are amino acids and two nodes are connected by an edge if they are

less than 6 Angstroms apart. They are classified according to whether they are enzymes or not.

PROTEINS [BOS+05] contains graphs of protein. In each graph, a node represents

a secondary structure element (SSE) within protein structure, i.e. helices, sheets and turns.

Edges connect nodes if they are neighbours along amino acid sequence or neighbours in protein

structure space. Every node is connected to its three nearest spatial neighbours.

MUTAG [DLdCD+91] is a dataset collecting 188 mutagenic aromatic and heteroaro-

matic nitro compounds labelled according to whether they have a mutagenic effect on the

Gramnegtive bacterium Salmonella typhimurium.

REDDIT-5K and REDDIT-12K [YV15] consist of graph representing the discussions

on the online forum Reddit. In these datasets, nodes represent users and edges between two nodes

represent whether one of these two users leave comments to the other or not. In REDDIT-5K,

graphs are collected from 5 sub-forums, and they are labelled by to which sub-forums they

belong. In REDDIT-12K, there are 11 sub-forums involved, and the labels are similar to those in

REDDIT-5K.

IMDB-BINARY and IMDB-MULTI [YV15] are dataset consists of networks of 1000
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actors or actresses who played roles in movies in IMDB. In each graph, a node represents an

actor or actress, and an edge connects two nodes when they appear in the same movie. In

IMDB-BINARY, graphs are classified into Action and Romance genres. In IMDB-MULTI, they

are collected from three different genres: Comedy, Romance and Sci-Fi.

In our experiments, for REDDIT-12K dataset, due to the larger size of the dataset

(with about 13K graphs), we deploy the EigenPro method ([MB17], code available at https:

//github.com/EigenPro/EigenPro-matlab), which is a preconditioned (stochastic) gradient descent

iteration) to significantly improve the efficiency of kernel-SVM.

Persistence generation.

To generate persistence diagram summaries, we want to put a meaningful descriptor

function on input graphs. We consider two choices in our experiments: (a) the Ricci-curvature

function fc : G → R, where fc(x) is a discrete Ricci curvature for graphs as introduced in

[LLY11]; and (b) Jaccard-index function fJ : G → R.

Then Ollivier’s Ricci curvature between two nodes u and v is

κ
α
uv = 1−W (mα

u ,m
α
v )/d(u,v) (A.4)

where W (·, ·) is Wasserstein distance between two measures and d(u,v) is the distance between

two nodes, and probability measure mα
u around node u is defined as

mα
x (x) =


α x = u

(1−α)/nu x ∈ N (u)

0 otherwise

(A.5)

nu = |N (u)| and α is a parameter within [0,1]. In our experiments, we set α = 0.5.

In particular, the Jaccard-index of an edge (u,v) ∈ G in the graph is defined as ρ(u,v) =

|NN(u)∩NN(v)|
|NN(u)∪NN(v)| , where NN(x) refers to the set of neighbors of node x in G. The Jaccard index
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has been commonly used as a way to measure edge-similarity1. As in the case for neuron data

sets, we take the union of the 0-th persistence diagrams induced by both the sublevel-set and the

superlevel-set filtrations of the descriptor function f , and convert it to a persistence image as

input to our WKPI-classification framework 2.

In all results reported in main text and in Table A.1, Ricci curvature function is used

for the small chemical compounds data sets (NCI1, NCI9, PTC and MUTAG), while Jaccard

function is used for the two proteins datasets (PROTEIN and DD) as well as the social/IMDB

networks (IMDB’s and REDDIT’s). Both 0-dim and 1-dim extented persistence diagrams are

employed. In general, we observe that Ricci curvature is more sensitive to accurate graph local

structure, while Jaccard function is better for noisy graphs (with noisy edge). In Figure A.2, we

show the heatmaps of the weight function before and after our metric learning for NCI1 and

REDDIT-5K datasets. In particular, the left column shows the heatmaps of the initialized weight

function, while the right column shows the heatmaps of the optimal weight function as learned

by our algorithm.

Additional results.

Many graph classification methods have been proposed in the literature. We com-

pare our results with a range of existing approaches, which includes state-of-the-art results

on different datasets: six graph-kernel based approaches: RetGK[ZWX+18], FGSD[VZ17],

Weisfeiler-Lehman kernel (WL)[SSL+11], Weisfeiler-Lehman optimal assignment kernel (WL-

OA)[KGW16], Deep Graphlet kernel (DGK)[YV15], and the very recent persistent Weisfeiler-

Lehman kernel (P-WL-UC)3 [RBB19]; two graph neural networks: PATCHYSAN (PSCN)

[NAK16], Graph Isomorphism Network (GIN)[XHLJ19]; as well as the topology-signature-

based neural network (DL-TDA) [HKNU17].
1We modify our persistence algorithm slightly to handle the edge-valued Jaccard index function
2We expect that using the 0-th zigzag persistence diagrams will provide better results. However, we choose to

use only 0-th standard persistence as it can be easily implemented to run in O(n logn) time using a simple union-find
data structure.

3Note that results for three version of persistent WL kernels are reported in their paper. We take the one
(P-WL-UC, with uniform node labels) that performs the best from their Table 1.
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Table A.1. Classification accuracy on graphs. Our results are in columns WKPI-kM and WKPI-
kC.

Dataset Previous approaches Our appraches
RetGK WL DGK FGSD PSCN GIN P-WL-UC WKPI-kM WKPI-kC

NCI1 84.5 85.4 80.3 79.8 76.3 82.7 85.6 87.5 84.5
NCI109 - 84.5 80.3 78.8 - - 85.1 85.9 87.4

PTC 62.5 55.4 60.1 62.8 62.3 66.6 63.5 62.7 68.1
PROTEIN 75.8 71.2 75.7 72.4 75.0 76.2 75.9 78.5 75.2

DD 81.6 78.6 - 77.1 76.2 - 78.5 82.0 80.3
MUTAG 90.3 84.4 87.4 92.1 89 90 85.2 85.8 88.3
IMDB-BINARY 71.9 70.8 67.0 71.0 71.0 75.1 73.0 70.7 75.4
IMDB-MULTI 47.7 49.8 44.6 45.2 45.2 52.3 - 46.4 49.5
REDDIT-5K 56.1 51.2 41.3 47.8 49.1 57.5 - 59.1 59.5

REDDIT-12K 48.7 32.6 32.2 - 41.3 - - 47.4 48.4
Average - 66.39 - - - - - 69.99 71.66

Initial weight function Learnt weight function

Figure A.2. Heatmap of initialized weight function (left column) and that of the learnt weight-
function ω∗ (right column). Top row shows results for NCI1 data set; while bottom row contains
those for REDDIT-5K data set.
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Additional results of comparing our results with more existing methods are given in Table

A.1. The results of DL-TDA (topological signature based deep learning framework) [HKNU17]

are not listed in Table A.1, as only the classification accuracy for REDDIT-5K (accuracy 54.5%)

and REDDIT-12K (44.5%) are given in their paper (although their paper contains many more

results on other objects, such as images). While also not listed in this table, we note that our

results also outperform the newly independently proposed general neural network architecture

for persistence representations reported in the very recent preprint [CCI+19]. Comparison with

other topological-based non-neural network approaches are given below.

Topological-based methods on graph data.

Here we compare our WKPI-framework with the performance of several state-of-the-art

persistence-based classification frameworks, including: PWGK [KFH18], SW [CCO17], PI

[AEK+17] and PF [LY18].

Table A.2. Classification accuracy on graphs for topology-based methods.

Datasets Existing TDA approaches Our WKPI framework
PWGK PI-CONST PI-PL SW PF deWKPI-kM deWKPI-kC

NCI1 73.3 72.5 72.1 80.1 81.7 87.2 84.7
NCI109 71.5 74.3 73.1 75.5 78.5 85.5 86.9

PTC 62.2 61.3 64.2 64.5 62.4 61.1 64.3
PROTEIN 73.6 72.2 69.1 76.4 75.2 77.4 75.6

DD 75.2 74.2 76.8 78.9 79.4 79.8 79.1
MUTAG 82.0 85.2 83.5 87.1 85.6 85.5 88.0

IMDB-BINARY 66.8 65.5 69.7 69.6 71.2 70.6 75.4
IMDB-MULTI 43.4 42.5 46.4 48.7 48.6 47.1 48.8
REDDIT-5K 47.6 52.2 51.7 53.8 56.2 58.7 59.3

REDDIT-12K 38.5 43.3 45.7 48.3 47.6 45.2 44.5
Average 63.41 64.3 65.23 68.29 68.64 69.81 70.66

We use the same setup as our WKPI-framework to train these two metrics, and use

their resulting kernels for SVM to classify the benchmark graph datasets. WKPI-framework

outperforms the existing approaches and alternative metric learning methods on all datasets

except MUTAG. WKPI-kM (i.e, WKPI-kmeans) and WKPI-kC (i.e, WKPI-kcenter) improve
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Table A.3. Graph classification accuracy of GIN and RetGK on graph benchmarks with the same
nested cross validation setup

NCI1 NCI109 PTC PROTEIN DD
RetGK 84.5±0.2 84.8±0.2 62.9±1.6 75.4±0.6 81.6±0.4

GIN 82.4±1.6 86.5±1.5 67.8±6.5 76.7±2.6 81.1±2.5
MUTAG IMDB-BIN IMDB-MULTI Reddit5K Reddit12K

RetGK 90.0±1.1 72.3±1.0 47.7±0.4 55.8 ±0.5 48.5± 0.2
GIN 89.0±7.5 75.6±5.3 52.4±3.1 57.2±1.5 47.9± 2.1

the accuracy by 3.9%− 11.9% and 5.4%− 13.5%, respectively. Besides, we show results by

another experimental setup. In 10-fold cross validation, choose m and σ leading to the smallest

cost function value, then evaluate the classifier on the test set. Repeat this process 10 times. That

is, m and σ are not the hyperparameters of the SVM classifiers, but are determined by the metrics

learning. We refer to these two approaches as deWKPI-kM and deWKPI-kC in accordance with

the initialization methods. The classification accuracy of all these methods are reported in Table

A.2.
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Appendix B

Chapter 4: Appendix

B.1 More details for experiments

B.1.1 More on datasets

Cora, Citeseer and Pubmed are citation graphs in which nodes represent documents and

edges represent the undirected citation relations. Node features are elements of a bag-of-words

representations of documents. In two Coauthor graphs, nodes represent authors which are

connected by an edge if they jointly authored a paper. Node features are keywords for each

author’s papers, and node class labels are given by the authors’ most active study fields. In two

Amazon graphs, nodes represent goods and two nodes are connected if consumers frequently

buy them together. Node features are bag-of-words encoded product reviews, and class labels

indicate the product category.

B.1.2 More experiments results

Besides Ollivier Ricci curvature, we also make experiments by taking Jaccard index as the

weight function for graphs and construct subgraphs by picking 1-hop and 2-hop neighbourhoods

around each node. Denote them PEGN-JI-1 and PEGN-JI-2, respectively. The results are

reported in Table B.1.
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Table B.1. Classification Accuracies on Benchmark Datasets

Method Cora Citeseer PubMed Coauthor Coauthor Amazon Amazon
CS Physics Computer Photo

PEGN-JI-2 82.5±0.5 71.7±0.6 78.7±0.6 92.7±0.3 94.1±0.3 84.0±1.0 92.2±0.5
PEGN-JI-1 82.4±0.5 71.7±0.5 78.5±0.6 92.7±0.3 94.1±0.2 86.1±0.6 92.7±0.4

Algorithm 2. δ -Net clustering

Input: A set of points P = {p1, p2, ..., pn}, radius δ > 0
Output: A δ -net Q of P, and a set of clusters Π where each point q ∈ Q corresponding to a

cluster in Π

1: P′ = {}, Π = {}
2: while P′ ̸= do
3: Randomly pick point pi ∈ P\P′

4: Obtain a cluster C = {p j : ||pi − p j||2 ≤ δ |p j ∈ P}
5: P′ = P′∪C, Π = Π∪{C}
6: end while
7: Set a node set V = {} and an edge set E = {}
8: for Ci ∈ Π do
9: Create a node vi, add it to V

10: end for
11: for (vi,v j) ∈V ×V do
12: if i ̸= j and Ci,C j have overlapping points in P then
13: Add edge {vi,v j} to E
14: end if
15: end for
16: Construct net Q with node set V and edge set E

B.2 More details for HS-GNN

δ -Net Clustering

See Algorithm 2 for the detailed δ -Net clustering algorithm used to find hierarchies in

CNT bundles for HS-GNN.
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Appendix C

Chapter 5: Appendix

C.1 Missing proofs

C.1.1 Proof of Theorem 5.2.1

In what follows, we use the notation [k] to denote the set of integers 1,2, . . . ,k. Recall

that each cell of our axis-parallel hyper-grid Γ has side-length 2d
ε

. Also recall that we put on a

second-level more refined lattice (grid) which gives us pixels of side-length δ ′ = δ/
√

d. For

simplicity of argument, we assume that 1
δ ′ (i.e, the reciprocal of the pixel side-length) is an

integer. This condition can be removed by slightly more careful analysis. In what follows, we

will show that the output of Baker’s paradigm, Y , is a (1+2ε,1+6δ )-bi-criteria approximation

in expectation for d-MIS for 0 < ε,δ < 1/3, with the desired time complexity.

Now fix some optimal solution Y ∗ ⊆ X for d-MIS over X . Let Y ′ ⊆ Y ∗ be the subset of

points in Y ∗ such that the unit balls centered at them intersect the shifted grid Γ+ τ; that is

Y ′ = {p ∈ Y ∗ : ball(p,1)∩ (Γ+ τ) ̸= /0}.

Note that Y ′ ⊆ X ′ as constructed in (Step 2) of Chapter 5. For any point p ∈ X , for any

i ∈ [d], let Ep,i be the event that ball(p,1) intersects some (d − 1)-dimensional hyperplane of

the shifted grid Γ+ τ , that is orthogonal to ei. The event Ep,i occurs precisely when the i-th

coordinate of τ falls within an interval of length 2 out of the side-length 2d
ε

of a cell: This is
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because it is equivalent to that we have a segment of length 2d/ε (along the i-th axis in direction

ei), and a point is within distance 1 to either endpoint of this segment. Hence the total probability

is the same as a point to fall within an interval of length 1+1 = 2 out of an interval of length

2d/ε . Since τ is chosen uniformly at random, we get

Pr[Ep,i] =
2

2d/ε
= ε/d.

Let Ep be the event p ∈ Y ′. By the union bound, we have

Pr[Ep] = Pr[
⋃

i∈[d]
Ep,i]≤ ∑

i∈[d]
Pr[Ep,i] = ε.

Using linearity of expectation, the above implies

E[|Y ′|] = ∑
p∈Y ∗

Pr[Ep]≤ |Y ∗| · ε = OPT(X) · ε. (C.1)

In other words, if we only consider points in X \X ′, then the size of the optimal solution of d-MIS

for X \X ′ can only be at most OPT(X) ·ε less than OPT(X), that is, it is at least (1−ε)OPT(X).

Recall that X̂ is the “snapping” of of points in X \X ′ to the second-level lattice points:

in particular, a point p = (p1, . . . , pd) ∈ X \X ′ is mapped to the point p̂ = (δ ′⌊ p1
δ ′ ⌋, . . . ,δ ′⌊ pd

δ ′ ⌋)

which intuitively is the (d-dimensional analog of the) left-bottom of the pixel (of side length δ ′) in

the second-level lattice containing p. Let GX̂ be the intersection graph spanned by balls centered

points in X̂ but with radius 1− δ . First, note that as all points within 1 from cell-boundaries

are removed1, we have that each connected component of GX̂ has to be contained inside some

cell C of Γ+ τ . Hence to compute MIS (maximum independent set) for GX̂ , we can do so by

computing an optimal MIS for GX̂C
, the restriction of GX̂ within every cell C of Γ+ τ , and then

the union of them over all cells is necessarily an MIS for GX̂ . In (Step 2), we compute ŶC, which

1We removed all points in X within distance 1 from the cell boundaries. But since we assume that the 1/δ ′, the
reciprocal of the pixel side-length, is an integer, this statement about points in X̂ still holds.
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is an MIS for GX̂C
. If we take the union of this for all cells, namely Ŷ =

⋃
C ŶC, then it is clear

that Ŷ is an MIS for GX̂ .

Furthermore, for any cell C, as it is a d-dimensional hypercube of side-length 2d/ε , we

have that its volume is (2d/ε)d . As any independent set in the cell necessarily has pairwise

distance > 2, it follows that the maximum cardinality of any independent set in C is at most

s = (2d/ε)d/Vd =V−1
d (2d/ε)d , where Vd stands for the volume of a radiue (1−δ ) ball in Rd .

Furthermore, there are only M := ( 2d
εδ ′ )

d = (2d
√

d
εδ

)d number of pixels inside cell C, we can thus

enumerate all possible independent sets for X̂C in time Ms = ( 1
εδ
)(d/ε)O(d)

time. Since there are

at most n cells of Γ+ τ that contains non-empty X̂C, the total time to construct an MIS for GX̂ is

thus ( 1
εδ
)(d/ε)O(d)

n as claimed in Theorem 5.2.1.

Note that in (Step 2) of Baker’s paradigm, after computing ŶC, we need to transfer it to

a subset YC ⊆ XC ⊆ X of original input points. In particular, we achieve this by mapping each

point p̂ ∈ ŶC to an arbitrary point p = π(p̂) ∈ XC contained in the pixel that p̂ is the bottom-left

corner of (this is a consequence of the construction of set X̂C, where we snap each point q in XC

to the left-bottom vertex of the pixel q lies in). Obviously, this map π : ŶC → YC is a bijection,

and the distance ∥p̂−π(p̂)∥2 ≤ δ . (Note that the diameter of a pixel in the cell C is δ as the

side-length of this pixel is δ ′ = δ/
√

d.)

What remains is to prove that Y =
⋃
CYC as computed in (Step 3) of Baker’s paradigm is

indeed a bi-criteria approximation in expectation for the MIS of GX , the unit-ball intersection

graph spanned by input points X .

To this end, first, note that Ŷ =
⋃
C ŶC is a maximum independent set for GX̂ as argued

earlier. We claim that |Ŷ | ≥ |Y ∗ \Y ′|. This is because that since Y ∗ \Y ′ is an independent set

for the unit-ball graph spanned by points in X \X ′, we have that for any points y,y′ ∈ Y ∗ \Y ′,

∥y− y′∥2 > 2. Now map y and y′ to ŷ and ŷ′, the respective left-bottom corner of the pixels they

are contained in; note that ŷ, ŷ′ ∈ X̂ . By the triangle inequality, we have that ∥ŷ− ŷ′∥2 ≥ 2−2δ

as the diameter of each pixel is δ . This means that snapping all points in Y ∗ \Y ′ as such to points

in X̂ gives rise to an independent set of GX̂ . This in turn implies that a maximum independent
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set of GX̂ , namely Ŷ , is at least as large as the set Y ∗ \Y ′; that is, |Ŷ | ≥ |Y ∗ \Y ′|. Combining this

with Eqn (C.1), we then have that

E[|Y |] = E[|Ŷ |]≥ |Y ∗|−E[|Y ′|]≥ (1− ε)|Y ∗|= (1− ε)OPT(X)≥ OPT/(1+2ε), (C.2)

where the last inequality holds for any positive ε < 1. This establishes one side (lower-bound

side) of the bi-criteria approximation.

We now consider the upper-bound in the bi-criteria approximation. Note that we have a

bijection π : Ŷ → Y which sends a point p̂ ∈ Ŷ to a point π(p) within δ distance. Combining

this with the fact that Ŷ itself is an independent set for GX̂ (i.e, any two points inside are at least

distance 2−2δ apart), we have that Y is an (1+6δ )-independent set: This is because any two

points in Y are at least 2−4δ ≥ 2/(1+6δ ) apart, as 1−2δ ≥ 1/(1+6δ ) holds for any positive

δ < 1/3. It then follows that |Y | ≤ OPT1+Θ(δ )(X).

Putting both sides (upper and lower bounds) together, we have that the set Y computed

by our proposed Baker’s paradigm is a (1+Θ(ε),1+Θ(δ ))-bicriteria approximation of d-MIS

for input point set X in expectation. Together with the time complexity bound computed earlier,

this concludes the proof of Theorem 5.2.1.

C.1.2 Removing the bi-criteria condition and Theorem 5.2.2

We note that one can easily modify our algorithm Baker-MIS to obtain a (1+Θ(ε))-

approximation for MIS (instead of a bi-criteria approximation), by trading off a slower running

time, similarly to [HM85]. We include the details here for completeness. The algorithm proceeds

exactly as Baker-MIS, with the only difference being that Step 2 is replaced by the following:

Step 2”: Solving the problem exactly locally on each cell. For each cell C of Γ+ τ , let XC

be the restriction of X \X ′ to cell C. Now in this modified step 2′′, we will work with

XC instead of working with the set X̂C, which is the snapping of set XC to pixels in the

cell. Let GXC
be the intersection graph of unit balls centered at the points in XC; that is
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V (GXC
) = XC, and

E(GXC
) =

{
{p,q} ∈

(
XC

2

)
: ∥p−q∥2 ≤ 2

}
.

We compute the maximum independent set YC in GXC
which we know has size at most

s =V−1
d (2d/ε)d , where Vd denotes the volume of the d-dimensional unit ball. This can be

done by enumerating all possible subsets of XC =V (GXC
) of size at most s, and taking the

maximum cardinality such subset that is independent in GC.

In (Step 3), we will return Y =
⋃
CYC as before. As seen in Theorem 2.2, the price

to pay to obtain a standard (1+ ε)-approximation is that the dependency of time complexity

on n increases from previous n (i.e, linear) to n(1/ε)O(d)
. This is because during the exhaustive

enumeration to solve MIS for GXC
, we have to take all subsets of XC of size at most s. Since

the cardinality of XC could be n (say when all points in X happen to be inside a single cell C

of the randomly shifted grid Γ+ τ), we thus needs n(1/ε)O(d)
time for this enumeration. The

approximation guarantee follows the proof of Theorem 5.2.1, but as Y constructed is now a valid

independent set for X , we do not have the relaxation of (1+Θ(δ ))-independent set. Theorem

5.2.2 thus follows.

C.1.3 Proof of Theorem 5.3.2

By Theorem 5.3.1 stated in the main text, we can obtain a neural network N ∗ with a

single hidden layer that computes a function gN ∗ : [0,1]k → [0,1]k, such that

sup
x∈[0,1]k

|gN ∗(x)− fMIS(x)|< 1/2,

where the hidden layer has size N = N(ε,δ ,d). By rounding the output of gN ∗ , we obtain the

indicator vector of a maximum-independent set ŶC for X̂C. The same holds for the greedy strategy

to choose an output as described in (Step 2′) of NN-Baker. The proof of Theorme 5.2.1 states
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that Eqn (C.2) holds for Ŷ =
⋃
C ŶC.

Next, we map ŶC to YC as before by mapping each p̂ ∈ ŶC to π(p) on XC within δ distance

to p̂. Following the same argument as in the proof of Theorem 5.3.2, we know that the resulting

Y =
⋃
CYC is a (1+Θ(ε),1+Θ(δ ))-bicriteria approximation in expectation of d-MIS for the

input points X . Finally, since there will be at most n cells containing at least one point from X ,

we know that we only need to call this neural network N ∗ at most n times. This completes the

proof of Theorem 5.3.2.

C.2 More details for experiments

Hardware information

All baselines and NN-Baker models are trained and test on an AMD-EPYC-7452 CPU

and a RTX-A6000 GPU.

Additional dataset information

2D-Gaussian dataset is a collection of geometric graphs generated from 40k - 50k points

sampled from a 2D mixture of 5 Gaussian distribution. The centers of this 5 Gaussian distribution

are [(64, 64), (32, 32), (32, 96), (96, 32), (96, 96)] and their standard deviance is 20.0. The

input domain is partitioned into cells of side-length 12.8, and each cell is further partitioned into

128×128 pixels. 3D dataset is a collection of geometric graphs generated by points uniformly

sampled from a 3D cube region with around 40k - 50k points. Each cell in the domain has

side-length 5, and is partitioned into 50 × 50 × 50 pixels. Torus-4D dataset is a collection of

geometric graphs generated by points sampled from a 4D surface with around 40k - 50k points.

The 4D surface is generated by two functions f ,g : [0,1]2 → R4 that:

f (α) = (r sinα,r cosα,0,0)

g(β ) = (0,0,r sinβ ,r cosβ )

(C.3)
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where r > 0 is a constant, and we set r = 20 in experiments. Given a point set X uniformly

sampled from [0,1]2, we have a resulting point set ( f +g)(X)⊂ R4. Each cell in the 4D surface

is mapped from a cell with side-length 0.1 in [0,1]2 which is partitioned into 100×100 pixels.

More experimental statistics

As a baseline comparison, we compared our CNN and GNN approaches to a standard

feed forward NN. Both models were trained on the image segmentation problem of converting

128x128 images with the points as inputs to 128x128 images of points which should be in the

independent set. This was combined with the Baker technique to produce the figures in Table

C.1. For the “Small” neural network, this model contained two hidden layers and a total number

of parameters equal to our UNet-Baker approach (76 million). The “Large” model also contains

two hidden layers and a total number of parameters roughly equal to double that value (147

million). For this data, models were trained and tested on data from the same distribution.

Table C.1. Performance on MIS by fully connected models

Small Large

2D-dense 0.714 0.788
2D-sparse 0.789 0.898

2DGaussian 0.724 0.852

To report the variance of the architectures proposed, we trained ten models for each

architecture from different random start weights. We report the standard deviations (×10−3) of

the ratios of MIS results from our models to ground truth in Table C.2.

Table C.2. The standard deviations of MIS results from different models (×10−3).

UNetBaker Erdős ErdősBaker TGS TGSBaker LwD LwDBaker

2D-dense 3.06 2.70 5.83 1.15 3.72 3.58 6.75
2D-sparse 2.93 2.73 8.25 1.12 3.49 3.61 8.53

2DGaussian 3.10 10.62 14.36 2.35 4.28 8.57 7.82
3D - 3.53 5.85 1.82 2.95 5.42 8.63

Torus-4D - 5.64 5.24 2.10 3.87 5.35 8.30

121



Post-processing is an important part of our implementations. After each of the cells are

solved by the NN-Baker framework, we then add in points close to the boundaries that do not

intersect any of the points already in the set. The percentage of points added for all methods is

given in Table C.3.

Table C.3. Proportion of points added in post processing

UNetBaker ErdősBaker TGSBaker LwDBaker

2D-dense 0.085 0.080 0.025 0.032
2D-sparse 0.086 0.043 0.005 0.006

2DGaussian 0.082 0.042 0.025 0.016
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Appendix D

Chapter 6: Appendix

D.1 Proof of Theorem 6.2.3

Theorem D.1.1. Structure Theorem. If the size of the bounding box is L, let shifts 0 ≤ a,b < L

be picked randomly, then with probability at least 1/2, the dissection with shift (a,b) has an

associated Steiner tree of cost at most (1+ 8
r +O(4logL

m ))−OPT that is (m,r)−light.

Proof.

Lemma D.1.2 (Patching Lemma). Let ℓ be any line segment of length s and T be a Steiner tree.

The segment ℓ could be crossed by T an arbitrary number of times. We can easily modify T to a

new Steiner tree that crosses the segment ℓ at most once while increasing the cost of the tree by

at most s.

Proof of Patching Lemma. Without loss of generality, assume the segment ℓ in Lemma

A.1 is vertical. Then, the present lemma is shown by removing crossings one by one in a

top-down manner, as follows. Let z1, . . . ,zk be the set of intersection points between T and the

line segment ℓ, sorted by decreasing y-coordinate. Consider z1: Imagine “cutting” the tree T

at z1, which will break T into two connected components; one containing a “left copy” z−1 of

z1 and the other containing a “right copy” z+1 of z1. One of these two components, say the one

connecting z−1 , is disconnected to the components containing z2: we thus simply connect z−1 to

the “left copy” z−2 by a vertical edge. The resulting tree T (1) is still a valid Steiner tree. We
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repeat this until we finish processing all crossing points other than the last one, zk. Overall, the

total length of extra (vertical) edges we add is at most s. In the end only one crossing point (i.e,

zk) remains.

Lemma D.1.3. Let us grid the bounding box by putting a sequence of vertical and horizontal

lines at unit distance from one another. If l is one of these lines and T is a Steiner tree, denote

the number of times that T crosses l as t(T, l).

∑
l:vertical

t(T, l)+ ∑
l:horizontal

t(T, l)≤ 2cost(T ) (D.1)

This lemma is obvious as an edge of T that has length s contributes at most O(s) to the

left hand side.

Let T be the optimum Steiner tree and suppose (a,b) is picked randomly. Whenever the

Steiner tree has intersections with a square side ’too many’ times, we use Patching Lemma to

reduce the number of crossings. This increases cost, and we upperbound it as as follows.

Suppose l has level i. It is touched by 2i+1 level i+1 squares, which partition it into 2i+1

segments of length L/2i+1. For each j > i, line l is also touched by 2 j level j squares. We refer

to the portion of l that lies in a level j square as a level j segment. Our goal is to reduce the

number of crossings in each level i segment to r or less.

An overloaded segment of l is one which the Steiner tree crosses at least r+1 times. For

every segment at level logL−1 that is overloaded, we apply Patching Lemma and reduce the

crossings to 1. Then we proceed to level logL−2 and apply Pathcing Lemma to each overloaded

segment. We continue this procedure until no segments are overloaded at level i. In the end, we

move all crossings to portals.

Next let’s compute the cost increase in this Steiner tree transformation. Imagine a

procedure in which the tree transformation on vertical grid line l proceeds to level 0 until the
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entire is not overloaded. Let Xl, j(b) be a random variable denoting the number of overloaded

level j segments encountered in this procedure. Note that Xl, j(b) is determined by vertical shift

b, which determines the location of the crossings on l. We claim for every b,

∑
j≥0

Xl, j(b)≤
t(T, l)

r
(D.2)

Because the optimum Steiner tree crossed grid line l only t(T, l) times, and each application of

Patching Lemma counted on the left hand side of Equation (D.2) replaces at least r+1 crossings

by 1, thus eliminating r crossings each time.

Since a level j segment has length L/2 j, the cost of this transformation procedure is at

most

∑
j≥1

Xl, j(b)
L

2 j−1 (D.3)

by applying Pathcing Lemma. The actual cost increase in the tree transformation at l depends on

the level of l, which is determined by horizontal shift a. When the level is i, the cost increase

upperbounded by the terms of Equation D.3 corresponding to j ≥ i+1: ∑ j≥i+1 Xl, j(b) L
2 j−1 . Line

l is at the level i with probability at most 2i+1/L. Thus we can compute the expectation of Yl,a,

the cost increase to l when the horizontal shift is a. For every vertical shift b:

Ea[Yl,a]≤ ∑
i≥1

2i+1

L
· ∑

j≥i+1
Xl, j(b)

L
2 j−1

= ∑
j≥1

Xl, j(b)
2 j−1 ∑

i≤ j−1
2i

= ∑
j≥1

Xl, j(b)

2 j−1 (2 j −1)

≤ ∑
j≥1

2Xl, j(b)≤
2t(T, l)

r

(D.4)

The expectation of cost increase for all lines is Ea[∑l Yl,a] = ∑l
2t(T,l)

r . According to Lemma

D.1.3, Ea[∑l Yl,a]≤ 4cost(T )
r .
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Finally we need to compute the cost increase in moving crossings to their nearest portals.

If line l has maximal level i, the distance between each of the t(T, l) crossings and its nearest

portal is at most L
2i+1m . Instead of actually moving a crossing to a portal, we break the edge at

the crossing and add two line segments (on each side of l) to it. Thus the expected increase for

moving every crossing in l to its nearest portals is upper bounded

logL

∑
i=1

2i

L
t(T, l) · L

2i+1m
·2 =

t(T, l)logL
m

(D.5)

According to Lemma D.1.3, the total expected cost increase for all crossings in all lines

are upper bounded

∑
l

t(T, l)logL
m

≤ 2logL
m

cost(T ) (D.6)

Denote the Steiner tree obtained from T by (a,b)−shift, transformation and moving

crossings as Ta,b,m,r, we have

E[cost(Ta,b,m,r)]≤ (1+
4
r
+

2logL
m

)cost(T ) (D.7)

According to Markov’s inequality, with probability at least 1/2, the cost of the best (m,r)−light

Steiner tree for the shifted dissection is at most (1+ 8
r +O(4logL

m ))−OPT.

D.2 More details for experiments

Points generation

Point set with different sizes are generated by Algorithm 3.
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Algorithm 3. Point Generation
Input:

(Low, High): The range of number of points in one point set;
Width: Sample points from space {1,2, ...,Width}2;
Num: The number of point sets
σ : Parameter on points distribution

Output:
L: List of point sets
L = []
for k = 1 to Num do

Randomly sample n ∈ [Low,High]
for i = 1 to n do

S = /0
Randomly pick p ∈ {0,1}
if p = 0 then

Sample (x,y) from {1,2, ...,Width}2 under uniform distribution
Add (x,y) to S

else
Sample (x,y) from [1,Width]2 under Gaussian distribution N ((M,M),σ2I) where
M = ⌊Width/2⌋ and I is the identity matrix
Take (x̄, ȳ) as the integer point nearest to (x,y)
Add (x̄, ȳ) to S

end if
end for
Append S to L

end for
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