
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Modeling the Future of Archival Storage Systems

Permalink
https://escholarship.org/uc/item/5q839953

Author
Byron, James Lewis

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5q839953
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

SANTA CRUZ

MODELING THE FUTURE OF ARCHIVAL STORAGE SYSTEMS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

James Lewis Byron

September 2022

The Dissertation of James Lewis Byron
is approved:

Prof. Ethan L. Miller, Chair

Prof. Darrell D. E. Long

Prof. Erez Zadok

Peter Biehl
Vice Provost and Dean of Graduate Studies



Copyright © by

James Lewis Byron

2022



Table of Contents

List of Figures vi

List of Tables xii

Abstract xiii

Dedication xiv

Acknowledgments xv

1 Introduction 1

2 Background 5
2.1 Definition of Archival Storage . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Archival Storage Technologies . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Traditional and Non-Traditional Technologies . . . . . . . . . . . 9
2.2.2 Archival Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Solid State Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Hard Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.5 Optical Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.6 Archival Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.7 Synthetic DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Workload Characterization . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Archival Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Methodology 39
3.1 Simulator Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 The Simulation Model in Action . . . . . . . . . . . . . . . . . . . 45
3.1.3 Compound Annual Growth Rates . . . . . . . . . . . . . . . . . . 48

3.2 Simulator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Events and Event Driver . . . . . . . . . . . . . . . . . . . . . . . . 49

iii



3.2.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.3 Archival System and Devices . . . . . . . . . . . . . . . . . . . . . 50
3.2.4 Configuration and Parameters . . . . . . . . . . . . . . . . . . . . 50

3.3 Archival Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 The Cost of Electricity . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Device Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 The Cost of Reliability 61
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Blast Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Archival Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Hard Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Solid State Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4 Optical Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.5 Archival Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.6 Archival DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 Reliability Cost Inflation . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Cost and Reliability of Tape . . . . . . . . . . . . . . . . . . . . . . 85
4.4.3 Hard Disk Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.4 Hard Disks With Removable Media . . . . . . . . . . . . . . . . . 88
4.4.5 SSDs for Reliable Archival Storage . . . . . . . . . . . . . . . . . . 89
4.4.6 Archival Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.7 Synthetic DNA for Reliable Archival Storage . . . . . . . . . . . . 93
4.4.8 Cost of Preserving Fixed Amount of Data . . . . . . . . . . . . . . 94

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 The Cost of Workloads 97
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Simulator Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 Workload and Total Cost . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.2 Workloads and Cost Scaling . . . . . . . . . . . . . . . . . . . . . 112

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Validation of Simulation Model 118
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Validation Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Archive Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

iv



6.2.2 Storage Device Parameters . . . . . . . . . . . . . . . . . . . . . . 121
6.2.3 Device Numbers and Cost . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Comparison and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Conclusion 130

Bibliography 132

v



List of Figures

2.1 Each new generation of optical disc delivers more capacity than the

one that came before. Here we show the capacity of each generation

of optical disc normalized by the capacity of compact discs, the first

generation of optical disc technology. We also show an normalized

example of capacity demand for archival storage that grows 30% each

year. The capacity of optical disc has grown only slowly over time,

increasingly falling behind the scale of current capacity demand [14,

15, 19, 100, 124]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 We model the growth of device capacity as a step function of time.

We present here the baseline growth trajectories for each technology,

normalized to the starting capacity for each medium. The rates of

capacity growth slow once each technology reaches the end of its de-

velopmental roadmap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



3.2 The ratio of 95% confidence interval to average cost decreases as we

increase the number of separate simulations for a given set of param-

eters. Tape and glass present the highest ratio of confidence inter-

val to their total cost due to the cost and infrequency of each fail-

ure event. Rare and expensive events can have a noticeable effect

on the size of the confidence interval within our simulations. Glass

sometimes has a low confidence interval for small numbers of sim-

ulation runs because glass drive failures occur with such infrequency

that they may not happen during each simulation, and the confidence

interval with such simulations is smaller than for groups of repeated

simulations that capture at least one glass drive failure among them. . 59

4.1 We compare the standard reliability model with our simplified ap-

proximation. We show the absolute AFR values as calculated using

each technique in the y-axis on the left. On the right we show the per-

cent error that separates our approximation from the standard model. 66

4.2 The first day on the x-axis begins for each drive when it was added to

the Backblaze storage system. Failure and retirement rates are shown

in percentages. The number of drives over time shows the number

that survived in the data center as drive age increased. . . . . . . . . . 72

4.3 Figures on the left show data for all drives that were added to the

Backblaze data center within the specified calendar year. Figures on

the right show the first 1,000 days and top 20% of the data. The x-axis

corresponds to the lifespan for each drive. . . . . . . . . . . . . . . . . . 75

vii



4.4 The minimum cost of achieving different levels of reliability varies by

the type of storage used in an archival system. The cost values are

expressed as cumulative total for the archive after 25 years of oper-

ation. Most lines look flat on this graph due to the scale set by the

high cost of optical disc. The stepped nature of optical disc reflects

the significant cost of adding more drives to read and write data over

the entire simulation time. Optical disc in particular has high costs

for both library systems and drives, and the jumps in cost correspond

to the need to add both libraries and drives to spread parity over more

devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 The total blast radius for an archival system depends on the reliabil-

ity of the storage devices, the amount of parity in each RAID group,

and the capacity of each device. The lower left quadrant of the figure

represents the ideal outcome of both low cost and a low risk of catas-

trophic data loss. The upper right quadrant of the graph represents

the higher costs and higher risk of data loss, which is an undesirable

configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 The cost of reliability for tape increases marginally with the AFR of

tape media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Hard disks with exponentially growing failure rates cost more to use

than drives with uniform and unchanging failure rates. Lines that do

not extend across the entire x-axis indicate that we found no RAID

configuration to reach those higher levels of reliability. . . . . . . . . . 87

4.8 The cost of hard disks with separable platters in archival systems de-

pends on how often the technology is updated with increased capac-

ity and performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 SSD capacity and development dramatically affect the cost of reliabil-

ity in archival systems using SSDs. . . . . . . . . . . . . . . . . . . . . . . 90

4.10 Higher AFR values have a marginal impact on the cost of reliability in

SSD-based archival storage. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



4.11 The cost of storing data in glass increases marginally with the cost of

a reader drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.12 The cost of reliability in DNA-based archival storage depends upon

the capacity and cost of each DNA molecule as well as the forward

compatibility of DNA sequencers and synthesizers. . . . . . . . . . . . 93

4.13 The cost of reliably storing 1 PB of data favors devices that offer high

reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 In this hypothetical example, we present a comparison of two device

types Device A and Device B. The y-axis represents the intensity of

the archival workload in the total number of read operations per year

from the archival workload. The x-axis represents the time in the sim-

ulation, where time 0 is the beginning of the simulation, and the end

of the axis is the end of the simulation. Each area on the plot shows

which device, A or B, has the lowest total cost of ownership for any

given workload intensity and time during the simulation. . . . . . . . . 99

5.2 We show here a hypothetical example of the transitional space be-

tween the two device types as their total costs may prove very similar

for such workloads during the simulation. . . . . . . . . . . . . . . . . . 100

5.3 The cost of archival storage depends upon both the storage technol-

ogy in use and the workload of the archival system. As different tech-

nologies feature their own levels of scalability, the effects of increased

workload differ between storage technologies. Here, we show the cost

of archival storage from the beginning of the simulation. We plot the

annual workload of the archival system in terms of annual read oper-

ations on the x-axis and total cost of ownership on the y-axis. . . . . . 106

ix



5.4 The first $500,000 of simulated cost on the y-axis reveals in greater

detail the relationships between existing and prospective technolo-

gies for a variety of archival workloads. The cost of glass is lower than

other technologies for workloads with fewer annual read operations,

but hard disk becomes more economical as the workload’s intensity

increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 The cost of archival systems for a range of workloads changes after

25 years of simulation time. The competitiveness of SSD and HDD

decrease relative to other technologies, while the competitive advan-

tages of prospective technologies glass and synthetic DNA continue

to strengthen. Tape continues to be a viable option for archival stor-

age systems well into the future, but its scaling limitations leaves an

opportunity for other technologies to serve high-intensity workloads

more economically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 We compare hard disk and tape over the 25 years of simulated time

by searching for the lowest-cost device type over a range of workload

intensities and as time passes. Here, we show workload in the y-axis

and time in the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 We normalize the cost of archival workload data by dividing each stor-

age device with its own cost to serve a workload of zero reads. Device

types that can serve larger workloads at little or no additional cost

relative to their base case present flat lines without. Device types for

which demanding workloads require additional costs present positive-

sloped lines as their cost grows with workload relative to the base case

of zero reads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.8 The normalized workload at the end of our simulation time, 25 years,

shows the effects of read workloads upon different storage technolo-

gies in the long-term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

x



6.1 We compare the growth of the total cost of an archival system with

that from the LANL data set. The models differ in their approaches,

and our model includes factors such as electricity cost, device failure

and replacement, as well as a different cadence by which generations

of new technology become available. The combined effect of the dif-

ferences between the two models explains their differences. . . . . . . 127

xi



List of Tables

2.1 Endurance of Multi-Bit Flash . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Expected Retention Time vs. Storage Temperature for SSDs . . . . . . 23

3.1 Summary of Functions to Calculate Cost . . . . . . . . . . . . . . . . . . 43

3.2 Cost of Commercial Electricity in the US [38] . . . . . . . . . . . . . . . 52

3.3 Storage Media Capacity and Reliability . . . . . . . . . . . . . . . . . . . 53

3.4 Parameters for Baseline Storage Device Cost . . . . . . . . . . . . . . . . 54

4.1 Number of Operational Days Before Reaching HDD Failure Rates . . . 73

6.1 Requirements for Archival System . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Tape Device Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Total Number of Tape Media and Drives By Year . . . . . . . . . . . . . 126

6.4 Number of Tape Media in Simulation . . . . . . . . . . . . . . . . . . . . 129

xii



Abstract

Modeling the Future of Archival Storage Systems

by

James Lewis Byron

The importance of archival storage has increased with the growing demand for

cost-effective long term data storage. Existing storage technologies like tape, hard

disk drives, and solid state disks can meet today’s demand for archival capacity

and performance, but recently their pace of development has decelerated below

their historical norms. In order to meet the ever-growing demand for archival stor-

age, novel storage technologies are in development that will contend for their own

place in archival storage systems.

The long-term viability of existing and novel storage technologies depends on

how well suited they are for the demands of archival systems in the long term. We

have created a simulation model to examine the relationships between different

candidate storage technologies for archival systems and to define each technol-

ogy’s role within the competitive archival storage market over the long term. We

enumerate the economic advantages of each storage technology relative to capac-

ity, reliability, and workload for archival storage systems, and we describe how each

technology can preserve its advantages and defend is position relative to other can-

didate archival storage technologies. We argue that novel storage technologies like

synthetic DNA and glass will deliver decisive advantages in terms of cost, reliabil-

ity, and scalability. Novel technologies will therefore dominate existing and tradi-

tional storage technologies for archival storage systems. Nevertheless, existing stor-

age technologies will each retain a niche role for archival storage systems that suits

their design.
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Chapter 1

Introduction

The information age has yielded many advancements for the benefit of hu-

manity across numerous domains. The discovery of medicines to cure or mitigate

ailments that would, until recently, have shortened many lives emerges from the

availability of information—particularly digital information—to process and yield

novel insights. Advancements in banking and finance, communications, gover-

nance, natural resource management, and environmental sustainability all derive

their innovation and progress in part from the computing resources of the infor-

mation age.

The information age has emerged as one of the brightest in all of human history

for its ability to solve important problems, and as its name implies, information is

the fundamental element that unlocks so many important innovations. But the

longevity of our advancements from the age of digital information must depend

upon how long these advancements can last. Whereas the invention of the print-

ing press supported progress through centuries by helping to record and preserve

information for the long term, the innovations that rely on digital information de-

pend upon much less durable and long-lived storage media than ink and paper.

Without proper care for the longevity and durability of the information from our
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digital civilization, the information age could, with the loss of data, fall from one of

the brightest times in history to one of the darkest.

The preservation of digital information over the long term remains one of the

great challenges within computer science. Data archiving is then one of the most

crucial, albeit less glamorous, of projects for the digital age. Already today there

exist numerous technologies that are candidates to help us solve the challenges

of long-term data preservation. Such technologies have been in development for

many decades, but as each of these technologies has only a limited lifespan, it re-

mains essential to proactively guard, maintain, and upgrade the archival storage

systems that store our digital treasures.

The long-term maintenance of archival storage systems depends upon the will-

ingness of its stewards to continue their work, and the cost of maintaining an archive

will undoubtedly affect how willing and able are the stewards to continue their

work. Storage engineers and the stewards of archival systems must not only pre-

serve data over the long term, but they must also preserve the software and other

tools that were needed to read the data in the archival system. Moreover, as tech-

nology continues to progress, the growing demand for archival storage has moti-

vated engineers to propose new storage technologies that can minimize the long-

term cost of maintenance while meeting the ever-growing demand for archival stor-

age capacity.

The demand for copious and economical archival storage has driven storage

engineers to continuously improve existing storage technologies, helping them to

meet the archival storage demand with ever-increasing capacity and performance.

As new storage technologies are under development to meet and exceed the de-

mands of tomorrow’s archival systems, existing storage technologies must either

adapt to compete with emerging technologies or, alternatively, relegate themselves
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to niches within the archival storage market. I hypothesize that device reliability

will not limit the viability of storage technologies for long-term archival storage

since other aspects of storage devices like capacity and performance are more sig-

nificant factors in the cost of archival systems. Furthermore, I hypothesize that

emerging storage technologies will outclass their legacy peers in terms of cost, ca-

pacity, reliability, and performance to dominate the archival storage market, and

existing storage technologies will struggle to compete with each other for a dimin-

ishing role within the archival storage market.

In order to evaluate each candidate storage technology, we have designed a

simulation model for archival storage systems that incorporates both existing and

novel storage technologies. We explore a variety of possibilities, both in terms of

features for each storage technology and design requirements for the simulated

archival storage system, to quantify the differences between each technology and

demonstrate its long-term viability relative to other storage technologies. We eval-

uate each storage technology in a monolithic archival storage system, using only

one type of storage during each simulation, and we do so in order to measure the

differences between storage technologies rather than their proportional represen-

tation within a hybrid storage system. Finally, we compile and present our results

in terms of their support for long-term reliability and workloads in archival storage

systems.

The following chapters include the background to our work, including a defini-

tion of terms, a description of each storage technology, and related work. Next we

describe the operation of our simulation model and the parameters that we use to

characterize each storage technology. We present results on the cost of reliability in

archival storage systems using each candidate storage technology. Then we present

the results of evaluating the cost of using each storage technology within archival

3



systems to serve various archival workloads, and finally we conclude with a chapter

that compares the predictions of our simulator with those from another model that

compared two technologies using a simpler and static model.

4



Chapter 2

Background

The demand for long-term archival storage has given rise to numerous tech-

nologies and previous work relating to its development. Here we present relevant

details about the technologies and state of related research on archival storage.

2.1 Definition of Archival Storage

Our discussion of technologies for future archival storage must begin with a def-

inition of how we define archival storage. Simply put, we define an archive to be a

data storage system that preserves data which may or may not be accessed over an

extended period of time, typically measured in years or decades. Archival data may

survive longer than the lifetime of the devices on which it is stored, and future gen-

erations of storage engineers will migrate archival data from older storage devices

to new ones in order to preserve archival data for posterity. Our definition implies

that archival storage systems must write all of their stored data at least once, but

they may read only part of the data that they store over the lifetime of the storage

system. Additionally, archival storage systems tend to last a long time, and as such,

they benefit from reliable storage technologies that require minimal maintenance
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over time. Archival systems also tend to be capacious to store vast amounts of data

in a cost-efficient manner. Thus, our working definition for archival storage high-

lights three important attributes: how often its users access the archived data, the

length of time over which the archive stores data, and what data the archive stores.

We do not consider performance to be a central aspect of our definition of

archival storage systems. Performance can be an important aspect of archival stor-

age systems if, for instance, the users of the archival storage system must access the

archived data with high throughput, however infrequently they may do so [92]. Pri-

mary storage systems designed around solid state disks or hard disk drives may also

deliver high performance to their users [130]. Performance in terms of throughput,

then, may relate to both primary and archival storage systems, and we do not con-

sider throughput to be an essential aspect of our definition of archival storage.

Archival systems, like all storage systems, naturally require all data to be writ-

ten to them at least once; however, archived data may seldom or never be read once

written into the archival storage system [5,90]. The relationship between writes and

reads in archival storage has been called Write-Once-Read-Maybe, which suggests

that users read data in the archival system with some probability that is less than

a certainty. The write-once description also suggests that archived data is written

exactly once; however, previous work has shown that the write-once description

should constitute a lower bound for write operations per data object rather than

a strict proscription since users may sometimes update data within an archival

storage system [5]. We summarize the relationship of write and read operations

in an archival storage system as that of a storage system workload with write op-

erations proportional to the data added to the archival storage system and read

operations matching the behavior of the archive’s users. The workload for a stor-

age system, that is, the combined read and write operations over its lifespan, help
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to identify it as an archival storage system if some data in the storage system is

read rarely or never. However, such a description of archival systems in terms of

their workload does not preclude the possibility that primary or other non-archival

storage systems may match our description; nevertheless, data that matches the

workload characteristic Write-Once-Read-Many may indeed become good candi-

dates for data eligible to transfer into an archival storage system. We also further

enhance our definition for archival storage with description of the duration of time

over which the storage system preserves its data.

Archival data storage systems tend to preserve their data over long periods of

time. Prior work analyzing archival storage systems has often utilized archival work-

load traces or records that cover only a relatively short period of time [4, 62], an

unfortunate side effect of the limited availability of archival storage traces from

sources that have operated archival storage systems over long periods of time. Archival

data may persist for decades, centuries, or longer as the technology and external

factors allow [53, 75]. Storage technology, as it ages, becomes obsolete or disused,

sometimes falling into disrepair, and sometimes being forgotten altogether. Dis-

used, obsolete, and faulty storage devices present the predictable challenge of prov-

ing to be difficult or impossible to recover their data as the technologies used to

encode and write the data have long since retired from active use [130]. Such chal-

lenges are incidental to the nature of long-term archival storage because they are

side effects of the infrequent access patterns of archival data as discussed above,

the unrealized economic value of archived data, and the cost and potential diffi-

culty of preserving the data. Archival storage systems therefore must survive not

only technical challenges like long-term reliability, capacity, and performance re-

quirements, but also provide a stable and usable platform that future generations

of storage engineers will find tractable and economically sustainable to preserve in
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perpetuity. The latter reemphasizes our motivation for this work as we seek to ex-

plore possible trends of future archival technology and support the preservation of

archival data.

Beside characteristics of our definition for archival storage relating to its work-

load and duration, the large capacity of archival storage is an important and typi-

cal characteristic. As with previous features that distinguish archival storage from

other storage systems, having a large capacity is not necessarily indicative of an

archival storage system. Nevertheless, capacity—in particular, capacity for a mini-

mal total system cost—is an important design feature for archival storage systems.

We take this assumption because, as argued in previous work, the ongoing main-

tenance cost of an archival storage system significantly affects its long-term via-

bility [20, 110]. Archival storage systems may store backups of primary storage,

infrequently-accessed sensory data such as surveillance footage, scientific data, or

other large structured or unstructured data [117]. Typically, archival storage is de-

ployed for such datasets because of its large capacity and relatively low unit cost

for storage, and the datasets that occupy archival storage systems typify the largest

datasets that any storage tier preserves. Large capacity is therefore part of our def-

inition for archival storage, since archival storage systems generally offer large ca-

pacity with lower cost than other storage systems.

With our working definition in place for archival storage and how its charac-

teristics contribute to its definition, we proceed now to our discussion of different

storage technologies that may construct archival storage systems.

2.2 Archival Storage Technologies

Archival storage systems utilize any of a variety of technologies that each have

their own unique technical characteristics that affect their practical and economic
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viability within archival storage systems. The technologies that we consider include

archival tape, optical disc, hard disk, solid state disk, archival glass, and synthetic

DNA. Here we present each storage technology and highlight details that affect

their utility within archival storage systems.

2.2.1 Traditional and Non-Traditional Technologies

Traditional archival storage technologies store data by mapping physical posi-

tions on a tape, disc, or platter to memory addresses. Accessing data on such stor-

age technologies involves first spinning a tape cartridge, moving an optical laser,

or actuating a hard disk head over a rotating platter to the physical position that

corresponds to an address where the needed data resides. Each action necessarily

involves a physical action that precedes any electronic retrieval of data. We de-

scribe tape, optical disc, and hard disk as traditional archival storage technologies

because of their long history of availability and frequent adoption in long-term

storage systems, either for personal or enterprise use. The constraints of physi-

cal operations needed to access different memory locations on traditional archival

storage media necessarily limits the speed at which they can access, read, and write

data. Furthermore, the effects of physical actuation in storage devices affects cer-

tain device characteristics more than others.

The need to physically actuate traditional archival storage media affects their

performance and features asymmetrically. Hard disks and tape drives, for instance,

have consistently improved their read and write throughput alongside their storage

capacity over time [22, 37, 79] since throughput for such traditional storage tech-

nologies is a function of each device’s areal bit density and the speed at which the

storage medium moves. Latency, on the other hand, does not improve with areal

bit density since latency varies by the physical size of the medium, the limits of
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the device’s tolerance for acceleration, and the speed at which the device rotates

or moves [141]. Tape devices may deliver longer latency even as their throughput

increases if manufacturers increase the length of the tape within each cartridge to

increase capacity [64]. Hard disk drive latency remains largely unchanged because

the speed of the platters and the speed at which the head moves over the platters

do not improve as other aspects of hard disk technology develop [122]. With the

exception of optical disc media [99], traditional storage technologies also require

climate-controlled environments for storage in order to prevent damage to their

moving parts and minimize degradation of their storage media [105, 129]. Non-

traditional storage technologies for archival systems depart from some aspects of

traditional technologies to overcome their associated limitations.

Traditional archival storage technologies—tape, hard disk, and optical disc—

rely on mechanical operations to access data: move an arm, rotate a disk, or move

a tape over a physical head in order to seek, record, or read data. The relationship

between memory locations and data need not involve a physical operation. DRAM,

for instance, stores data in a volatile solid-state medium with much faster perfor-

mance than physically-actuated technologies. Solid state devices are those which

have no moving parts; instead, they rely on transistors to electronically access dif-

ferent memory locations. The electronic basis of their operation gives the key to

the better performance characteristics of solid-state devices in general, since elec-

tronic rather than physical operations dominate the device’s performance. Solid

State Disks, like DRAM, have no moving parts within them, but SSDs offer the im-

portant benefit over DRAM of non-volatility or persistence after power failures. SSD

storage has infrequently been applied to archival storage because of its higher cost

relative to traditional archival technologies. We describe SSDs as non-traditional

for archival systems due to their relatively recent emergence as a high-capacity
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storage option and their reputation for higher acquisition cost compared with tra-

ditional archival technologies. For the purposes of this work, we consider SSDs that

use block-addressable interfaces such as those commonly found in consumer SSDs

or in servers. The design and characteristics of Solid State Drives also highlights

their benefits and constraints for long-term archival storage.

2.2.2 Archival Tape

Tape is perhaps the most dominant technology option for archival storage sys-

tems. Tape storage for digital information resembles those used for analog audio

and video with cassette tapes, VHS tapes, and other similar technologies. Tape for

audio and video purposes is today regarded as obsolete compared to their digi-

tal successors in optical disc, DVD, and digital downloads. Audio and video tech-

nologies for consumer-oriented consumption have become obsolete because, un-

like other technologies that remain viable today, they have received no significant

upgrades once they were released to the public. Thus, obsolete technologies iden-

tified themselves through their lack of regular upgrades and consequent technical

stagnation. Archival tape for digital data, on the other hand, has received upgrades

and improvements on a regular basis, including changes that require the replace-

ment of tape cartridges and drives to remain up-to-date with new technology ad-

vancements [22].

The Linear Tape-Open (LTO) Consortium publishes the specification and roadmap

for current and future generations of archival tape technology [76]. The LTO for-

mat is the product of a joint effort between International Business Machines (IBM),

Hewlett-Packard Enterprise (HPE), and Quantum, among others. As such, the LTO

tape standard and its contributing technologies draw on the efforts and resources

of developers and engineers throughout the world, and with its distributed devel-
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opment and manufacturing model comes the benefits of having many manufactur-

ers and interested parties for tape technology. Other storage technologies like hard

disk drives and optical disc have suffered from a consolidation in their markets due

to the rising capital costs of continued development, and although the same cost

inflation applies to tape development, cooperation between vendors through the

LTO Consortium may mitigate such risks.

Although the LTO Consortium has been organized to minimize the risks of con-

solidation that other competing technologies have endured, there remain risks to

tape’s development that even the cooperative framework has not solved. A legal

dispute that began in 2016 between Sony and Fujifilm—the only two manufactur-

ers for critical components in the latest generation of tape cartridges—delayed the

availability of the needed capacity and performance upgrade of LTO-8 by nearly

two years [83, 84]. The LTO-8 legal dispute demonstrates risks to archival storage

systems that exist outside the scope of technical developments and economic con-

siderations. Such risks are beyond the scope of our work, but they are nevertheless

critical to consider when evaluating the potential for disruptions that may affect

the viability of any given storage technology.

An archival storage system that utilizes tape for storage includes numerous com-

ponents to read, write, store, and deliver data. The tape cartridge, which stores the

archival data, can last for long periods of time without losing data, assuming that

the surrounding environment remains temperature and humidity-controlled over

time [3,51]. The need for constant environmental controls is one constraint for tape

which some—bot not all—storage technologies also demand [7, 10, 59, 88]. Each

archival tape cartridge contains a length of tape film that has a magnetic material

bonded to its surface. The magnetic material can degrade over time if the storage

environment becomes too hot or humid for long periods of time, but in most cases,
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manufacturers of archival tape promise a 30 year lifespan for cartridges [51]. The

tape inside each cartridge can be hundreds or thousands of meters in length, and

since the data on the tape is stored magnetically along the length of the tape, ran-

dom access operations that require seeking for data can take a minute on average

to perform [51, 64]. Decreasing the latency of tape would require either reducing

the length of the tape or increasing the speed at which tape moves through a tape

drive, but the physical constraints of tape drives and the demand for high capacity

cartridges inhibits improvements to the latency of archival tape [49, 64, 132]. Nev-

ertheless, what tape lacks in terms of latency it makes up to some extent in the

throughput it offers during read and write operations. Tape drives today can read

and write data at 300 MB per second, and each generation of tape drive promises

to increase its throughput [21, 78].

Archival tape develops by way of discrete generations that feature incrementally

more capacity and throughput than the last generation [78]. The plan for future

generations—the roadmap—signals to storage engineers and planners alike that

archival tape will offer predictable capacity and throughput increases with which

they can plan for future demand growth. Each generation of tape drive also offers

reverse compatibility with one or two older generations of tape cartridge media.

Reverse compatibility helps to ensure that data stored on older generations of tape

remain accessible for years after its respective generation of tape drive has become

obsolete. The length of time between each generation of tape technology is typ-

ically two or three years, so reverse compatibility can offer four to six additional

years of accessibility for older tape generations [22, 77].

The pattern of development for tape drives and media offers flexibility for de-

signers of archival storage systems that use tape-based storage; however, each gen-

eration of tape cartridge will eventually become unreadable by new generations
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of tape drive. For this reason, storage system engineers must plan for the obso-

lescence and retirement of older tape technology by migrating the data stored on

older generations to newer, higher capacity, and more performant generations of

tape. Doing so will also help to prevent a scenario where older tape drives that fail

mechanically over time will not result in a situation where data stored on old tape

cartridges have no working tape drive that can read them, a condition that would

result in the loss of data from the archive. Storage engineers therefore plan migra-

tions between generations, and they benefit from the increasing capacity and per-

formance of newer generations of tape as time passes. Migration between genera-

tions of tape, as with all storage technologies, requires ongoing management and

capital investment [20]. In addition to their need for periodic migration, tape-based

archival storage systems also require regular verification or scrubbing to identify

any failing cartridges before they become unreadable [3, 95]. Scrubbing requires

reading all the drives in the archive, a process that can sometimes require continu-

ous operation by the drives in the archive.

Maintenance activities in tape-based archives like migration and scrubbing can

sometimes demand constant operation by the tape drives in an archive. Tape-

based archives, as with optical disc, scale capacity by adding more tape cartridges.

While they add more tape media for capacity, tape-based archives do not neces-

sarily require more tape drives that would have the effect of increasing the ag-

gregate throughput of the archive as a whole. Tape-based archives therefore fea-

ture a many-to-one relationship between their storage media—tape cartridges—

and their read and write mechanisms—tape drives. Incidentally, tape drives are

much more expensive than tape media, so increasing the ratio between tape me-

dia and drives has the effect of reducing the per-byte cost of the archival system

overall. The many-to-one structure of tape-based archival technology imposes per-
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formance constraints that technologies like hard disk drives and solid state disks

do not suffer because, unlike tape media, each hard disk and solid state disk con-

tains its own mechanism to read and write the data it stores [22, 49, 64]. Inso-

far as archival storage systems demand large capacity with minimal performance

demands, tape can prove to be a viable technology; however, as the demand for

archival throughput grows, the cost for archival tape increases rapidly with the re-

quired number of tape drives. Such design constraints are precisely why tape stor-

age has proven to be so resilient as an archival storage technology. Considering our

definition for archival systems based on capacity and workload from Section 2.1,

the one-to-many design of tape archives has proven conducive for low-intensity

workloads common to archival storage systems.

2.2.3 Solid State Disk

Solid State Disks (SSDs) have become increasingly popular in recent years as

they have demonstrated their performance and reliability advantages relative to

Hard Disk Drives [13]; however, their adoption in archival storage systems has been

limited since their higher acquisition cost impairs their economic advantages over

other storage media like Tape or HDD. Although SSD storage presents a higher

acquisition cost than other storage media, some of its features may nevertheless

prove to offer important advantages that could, under some use conditions, render

it competitive with other storage technologies for archival systems.

The acquisition cost of SSD storage is a function of its cost of manufacturing

and the areal bit density that each manufactured component delivers. Since NAND

flash is the dominant technology within SSDs available today, we limit the scope

of our discussion to the most prevalent existing SSD technology. There are three

factors that contribute to the density of NAND flash SSDs: the feature size of in-
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dividual cells of flash [16, 119], dimensional scaling by adding more layers to each

wafer of flash [43, 48, 106, 119], and the number of bits per flash cell [43, 89]. Ad-

vancements such as charge-trap flash have helped to facilitate the continuation of

each of the three modes for SSD scaling to further decrease the cost per byte of

storage on SSDs [47]. Reducing the size of each cell is one possible mechanism for

increasing the density of flash that involves neither adding more bits per cell nor

adding additional layers of NAND flash.

NAND flash, like other types of solid-state electronics, relies on a lithographic

process for manufacturing. Lithographic manufacturing requires appropriate ma-

chinery and supporting infrastructure that cost many millions or billions of dol-

lars [2, 40, 135]. The lithographic manufacturing process also requires a template

or mask that allows the machinery to project an image for the pattern of tran-

sistors, conductors, and other structures onto a silicon wafer. The lithographic

mask can also cost many millions of dollars, depending on how many features and

layers that the component requires [9, 135]. Each new generation of manufactur-

ing technology and masks costs more than the last due to the greater complexity

of the lithographic process technology, and the increasing capital costs must be

passed on to customers through the manufactured products, thereby increasing

the cost of the most advanced semiconductors. Over time, however, the cost for

lithographic masks decreases for each lithographic node as the node ages [9], and

other capital costs like machinery and factories become increasingly diluted with

time through cost amortization. Solid-state electronics like NAND flash that are

manufactured on older fabrication processes therefore become more economical

with time while those utilizing the most advanced fabrication nodes become more

expensive. NAND flash also suffers from additional constraints on the extent to

which its fabrication processes scale to smaller lithographic nodes.
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Reductions in the feature size of each flash cell has yielded enormous improve-

ments to the economics of flash storage [16, 119]; however, just as the challenges

grow for reducing the feature size of transistors in logic components like CPUs, so

do the challenges and unwanted side effects for continued decreases in the feature

size of flash [40]. Each flash cell consists of a capacitive layer and a semi-permeable

gate layer of silicon that allows the capacitive layer to retain a charge [40]. The

physical size of the capacitive and gate layers must shrink with each new down-

scaling of the lithographic feature size for flash [40, 135]. With each feature now

only a few nanometers in size, the capacitive layer can hold only a handful of elec-

trons to represent different binary values. The decreasing number of electrons in

the capacitive layer of each flash cell causes different bit-values to become closer

together and to increase the risk of them overlapping [16, 40, 89]. The problem

of overlapping and confused bit values in flash, which results in erroneous data,

grows with the shrinking size of the lithography used. The semi-permeable gate

layer, similarly, becomes less capable of isolating the charge within each cell as its

size decreases on each lithographic down-scaling. The combined challenges of the

capacitive and insulating layers becoming less effective as their sizes decrease ef-

fectively imposes a lower bound of size for flash lithography, and further improve-

ments beyond such a boundary result in unreliable and short-lived flash mem-

ory [40]. Reliability and longevity, which are two aspects of storage that are vital

to long-term archival storage, remain as essential attributes for SSD storage. In-

creasing the capacity of NAND flash must therefore arise from some other scaling

mechanism.

Over the last decade, NAND flash has enjoyed large improvements to its areal

bit density and economic viability through the introduction of three-dimensional

scaling [40, 41]. 3D NAND flash expands on the two-dimensional size of tradi-
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tional planer NAND flash by constructing multiple layers of flash, one on top of

another. Three-dimensional NAND flash began with a handful of layers and has

grown to 200 at the present time, and future generations of flash may introduce

even more layers to allow capacity to grow [82, 93]. Adding more layers to flash is

not analogous to adding more platters to hard disk drives as we discuss in Chap-

ter 2.2.4 because, unlike hard disk drive platters, it requires no additional cost to

add more layers to each flash wafer [82, 93]. Furthermore, unlike the miniatur-

ization of features as described above, three-dimensional flash offers the advan-

tage of utilizing older generations of lithographic technology, which helps to re-

duce capital costs [119]. Furthermore, 3D flash requires little additional fabrication

time within the most expensive components of a semiconductor manufacturing

facility compared with planer flash [119], and thus the improvements to capacity

wrought by 3D flash come at little additional manufacturing costs. The ability of

flash manufacturers will, to a large extent, control the costs of SSD-based storage

in the long run, particularly given the practical limits of further lithographic scaling

as described above. Beyond the addition of more layers within a three-dimensional

flash memory, multi-bit storage within each cell may yet amplify the gains made in

other aspects of NAND flash memory at the expense of durability.

The scaling of flash storage capacity through lithographic shrinking and three-

dimensional designs have both increased capacity and decreased the cost-per-byte

of storage on flash, but these require significant capital investment or improve-

ments to fabrication techniques to maintain the pace of development for SSD ca-

pacity and cost. Multi-bit NAND flash, on the other hand, can utilize existing and

relatively old fabrication technologies to scale the cost and capacity for flash [43,

89]. Multi-bit flash scales capacity at the expense of device performance and dura-

bility, depending on the number of bits that share each flash cell [24, 25, 36, 41, 80,
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Table 2.1: Endurance of Multi-Bit Flash

Name Bits/cell Charges Capacity Endurance [36, 80]

Single-level (SLC) 1 2 – 100000
Multi-level (MLC) 2 4 2.0× 10000
Triple-level (TLC) 3 8 1.5× 3000
Quad-level (QLC) 4 16 1.33× 1000
Penta-level (PLC) 5 32 1.25× NA
Hexa-level (HLC) 6 64 1.2× NA

127]. Different storage applications therefore favor different types of multi-bit flash.

In order to help distinguish between different flash technologies and their ap-

propriate uses, we rely on the common nomenclature that identifies how many bits

share each cell of flash. We present the names, bits-per-cell, and required number

of charge states in Table 2.1.

Increases in the number of bits-per-cell of flash improves the areal density and

decreases the cost-per-byte of storage on flash; however, numerous adverse effects

diminish the advantages of flash over other technologies as the number of bits in

each cell increases. Increasing the bits per cell causes the flash to become slower

at writing and reading data. As noted in Table 2.1, each increase to the number of

bits per cell results in a doubling of charge states that the NAND flash controller

must distinguish during program and erase operations, and the greater number of

charge states effects a narrowing of each voltage level that corresponds to the bit

values in a given flash cell [89]. The exponential growth of change states requires

the NAND controller and its supporting firmware to become ever-more sensitive to

minute differences in cell voltage, since a small voltage change that would be in-

significant for SLC or MLC flash can indeed change the value stored within a TLC

or QLC flash cell. QLC flash and its descendants also suffer from potential read dis-

turbance effects, where reading data in one block can incidentally change values

stored in an adjacent block and result in unexpected data loss. For these reasons,
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adding more bits per cell of flash imposes both a small additional cost for more ad-

vanced controller circuitry and more sophisticated firmware that can manage the

complex effects of storing more bits in each cell [89]. Increasing the number of bits

per cell also reduces the overall endurance of the flash memory since, given the

exponential growth of charge levels needed to store each additional bit, any degra-

dation in the ability of the flash to retain a certain voltage in each cell increases

the likelihood of data loss; adding more bits per cell narrows the differences be-

tween the voltages corresponding to each bit value [31, 81, 121]. The undesirable

side effects of increasing the number of bits per cell impose a practical limit on the

ability of SSD memory to reliably store data over the long term in an archival set-

ting. SSDs, though less sensitive to temperature changes than other technologies

like tape or hard disk, presents its own constraints to environmental factors that

can impact its reliability over time.

SSDs, though less sensitive to temperature than other technologies like HDD

or Tape, still remains sensitive to operating and storage temperatures; however,

the characteristics of NAND flash offer certain advantages and disadvantages com-

pared with other technologies with respect to temperature. Temperature can have

unique effects on the operation of SSDs. Elevated operating temperature positively

affects write performance and, in the case of multi-bit NAND, reduces read disturbs

between adjacent blocks [32]. Elevated temperature reduces the effectiveness of

the insulating layer within each cell of flash, and the lower barrier to changing the

charge of each flash cell enables write operations to complete more quickly. Read

operations complete with a lower probability of changing the charge states of other

adjacent cells. However, while elevated temperature has certain positive effects by

temporarily changing the properties of the flash memory, these same properties

have undesirable effects in the context of archival storage.
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Technologies for archival storage systems must be evaluated with respect to

their characteristics that relate to the definition of archival storage as described in

Section 2.1. Any benefits for short-term performance due to high operating tem-

perature prove unimportant for archival storage if those benefits come at the ex-

pense of reliable long-term data preservation. As the workload of archival stor-

age systems fits a write-once-read-maybe profile, the marginal performance im-

provement of the already-fast SSD technology from high operating temperatures

improves the candidacy of SSDs for archival storage only slightly, yet since the pri-

mary effect of high temperatures on SSDs is to increase the possibility of electron

leakage from each flash cell, we contend that high temperatures exhibit a deleteri-

ous overall effect on the long-term preservation of data in SSD-based archival sys-

tems.

While high temperatures have some positive effects on the performance of SSDs,

the viability of SSDs for long-term data preservation declines as temperature in-

creases due to the physical effects of temperatures on data retention in NAND flash

memory [32, 106]. The relationship between temperature and data retention in-

forms how SSDs perform in archival systems and what environmental constraints

must apply to archival systems that employ NAND flash-based storage technol-

ogy [32, 106]. Environmental constraints like temperature can directly affect the

ability of storage technologies like flash to preserve data over long periods of time,

and the relationship between temperature and data retention depends on the re-

action rate of the storage medium within SSDs [32, 69, 106]. The Arrhenius equa-

tion defines a generalized model of the temperature dependence of reaction rates

for a given material relative to a known baseline temperature for that material [69,

96]. The Arrhenius equation is used to calculate the acceleration factor (AF) for

temperature-dependent reactions such as those within SSDs that cause charge leak-
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age and data loss over time [69, 96]. We use the Arrhenius equation to extrapolate

the reaction rate of NAND flash relative to its known baseline reaction rate at a cer-

tain temperature. The reaction rate of NAND flash indicates how quickly the charge

state of each flash cell leaks toward zero volts, which constitutes data loss in SSD

technology [69, 96]. The Arrhenius equation is defined as:

AF = e
−Ea

k ×(1/T2−1/T1), (2.1)

where AF is the acceleration factor for the reaction rate, Ea is the activation

energy intrinsic to the specific material, k is Boltzmann’s constant, and T1 and T2

are the baseline temperature and long-term storage temperature in degrees Kelvin,

respectively [96]. The activation energy for SSDs, which expresses the amount of

energy needed to leak change out of a flash cell, is given as 1.1Ev, and Boltzmann’s

constant is 8.623× 10−5eV/◦K [96]. The acceleration factor allows us to compare

the expected longevity of data on an inactive SSD in storage under different tem-

perature conditions, relative to the device’s baseline data retention and tempera-

ture values as given by the manufacturer. Most SSDs promise to preserve data for 1

year at a storage temperature of 40◦C or 313◦K [96]. We use the acceleration factor,

as calculated from the Arrhenius equation for a certain temperature, to scale up or

down the length of time that we can expect the storage devices to preserve data by

dividing the baseline duration of data on the storage medium by the calculated ac-

celeration factor [96]. For some baseline retention period L, measured in years, we

can use Equation 2.1 to calculate the expected data retention using the equation:

RT = L

AFT
, (2.2)

where RT is the expected time for data preservation at a certain storage tem-

perature [96]. To further illustrate the effect of storage temperature on SSD data
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Table 2.2: Expected Retention Time vs. Storage Temperature for SSDs

◦C ◦K AF Exp. Retention Time

70 343 35.327 10 days
60 333 11.563 32 days
50 323 3.532 103 days
40 [96] 313 1.000 365 days
30 303 0.261 3.8 years
20 293 0.062 16.2 years
10 283 0.013 75.2 years
0 273 0.003 392.1 years

retention, we use Formula 2.1 to calculate and present various storage tempera-

ture values and their associated acceleration factors and expected retention times

for data on SSDs in Table 2.2. The expected retention times show that higher tem-

peratures can have a dramatic effect on retention times for data on SSDs. On the

other hand, lower storage temperatures have an effect on SSDs that would be ad-

vantageous for long-term data preservation. We show the reference temperature of

40◦C in bold, and the reference temperature has an acceleration factor of 1 with an

expected data retention time of 1 year [96].

Table 2.2 shows that relatively small increases in temperature can have a large

and undesirable effect on data preservation for SSDs. Conversely, even modest de-

creases in ambient air temperature can significantly improve the data retention

time for SSD technology, and a long data retention time can help to ensure that

archival storage systems that utilize SSD technology avoid unwanted data loss [96].

2.2.4 Hard Disk

Hard Disk Drives (HDDs) trace their origins back decades [58] with the ever-

present demand for capacious and reliable data storage at an economical total cost.

Hard disk drives improve upon certain performance limitations of tape-based stor-
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age while preserving some of the cost and scalability advantages of tape. Hard disk

thus delivers a compromise between tape with its cost and capacity advantages

and DRAM or SSD with their speed advantage, albeit with numerous technologi-

cal caveats that constrain the use and development of hard disk technology. HDDs

consist of a group of platters attached to a high-speed electric spindle motor. One

or more mechanically-operated arms, each with one head on the top and bottom

for each platter surface, move over the spinning platters to read or write data [39].

The magnetic areas used for each bit of data are comprised of grains of magneti-

cally reactive material that can be non-destructively read or written by the head as

it moves over. The size and number of the magnetic grains, along with how closely

they are packed together, determine the areal bit density of each platter. The plat-

ters are prepared during manufacturing to store data within logical blocks. As with

tape media, hard disk drive platters are coated with a material that allows the head

to read and write data onto the platters while minimizing the risk that data, once

written to the platters, will change accidentally [112]. The magnetic coercivity of

the material determines the strength of the magnetic field required to change one

bit on the platter surface [70, 94], a factor that affects both the stability of data on

the drive and limits the continued growth of areal bit density.

Hard disk capacity derives from the areal bit density of the hard disk platters

and the number of platters within each drive. Adding more platters to each drive

offers a straightforward and certain method for increasing drive capacity; however,

adding additional platters to drives proves untenable in the long term. First, as

each platter takes up some space within the hard drive, the physical size of the

drive limit the number of platters that can be placed inside. The physical size

of each drive must not change as its physical dimensions must exactly match the

space made available to it within other hardware components. The fixed amount
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of space available for platters means that the number of platters cannot grow with

enough consistency to meet the exponential demand for storage capacity. Further-

more, each additional platter incurs its own manufacturing costs and need for two

additional heads. Each additional component and platter also presents a non-zero

probability of failure, which, however small, increases the possibility that a small

component defect will cause the entire drive to fail. Increasing the capacity of hard

drives by adding more platters is thus an inferior approach for adding capacity

compared with increasing the areal bit density of each platter.

The areal bit density of hard disk drive platters has grown consistently over

time, allowing manufacturers to provide vastly improved capacity without increas-

ing HDD prices [112]. Furthermore, and unlike the alternative of adding more plat-

ters, increasing the areal density of each platter delivers the added benefit of in-

creasing the throughput of the drive. Areal bit density, measured as bits per mm2,

has grown consistently over time to deliver ever-greater throughput and capacity

for hard disks at little to no additional unit cost per drive. In general, throughput

of hard disk drives and optical discs increases with the square root of areal den-

sity since device throughput derives from the number of bits that can pass under

the drive head each second [108, 114]. Tape media store data linearly rather than

radialy, and therefore throughput on tape follows its own rules within each partic-

ular generation of tape technology [78]. Areal density includes the size of each bit

on the hard disk platters and also how closely together are the tracks on the plat-

ters [108,114]. Improvements in sensors and signal processing have long facilitated

growth of areal density through the miniaturization of each bit on the hard drive

platter. Looking into the future, further improvements to hard disk capacity and

throughput encounter physical limitations that may limit further developments.

The areal bit density of hard disk drives has traditionally grown by reducing the
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size of each magnetic bit on the hard disk drive platter [114]. Today, the bits are

of such a size that they increasingly encounter the physical constraints known col-

lectively as the magnetic recording trilemma [70, 94, 98, 112]. As its name suggests,

the magnetic recording trilemma consists of three components that are at odds

with each other [70, 94, 98, 112]. To improve any one of them necessarily compro-

mises at least one of the other two factors. The trilemma consists of readability,

writability, and stability [70, 94, 98, 112]. Readability benefits from strong magnetic

fields within the magnetic grains, but such strong magnetic fields are increasingly

difficult to produce as the number of grains per bit decreases [94, 98]. Writability,

on the other hand, becomes more challenging as the magnetic field needed within

the grains, and by extension, the magnetic field needed to produce it, must grow

stronger [94, 98]. Furthermore, the ever-decreasing size of each bit on the platter

also proves more challenging for write operations because such small features re-

quire weaker magnetic fields and more finely targeted write operations that may

not overcome the magnetic coercivity of the material [94, 98]. Magnetic coercivity

therefore positively correlates with the ease and speed of read operations but neg-

atively correlates with the ease and speed of write operations [94, 98]. Efforts to in-

crease areal density by decreasing the size of each magnetic grain compromise the

stability of the drive also by reducing its magnetic coercivity and its tolerance to

temperature fluctuations [70, 112]. A hard disk drive platter with a high magnetic

coercivity threshold may prove magnetically and thermally stable, but the drive’s

head will be unable to write data to the drive because its small size and the close

proximity of magnetic grains will both limit the strength of the magnetic field that

it can produce without creating excess heat or disturbing nearby bits [70, 112]. Sig-

nificant research and development efforts have explored solutions to the trilemma

with the promise of unlocking further areal bit density increases over the coming
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years [114].

Hard drive manufacturers have worked to increase the areal bit density of hard

disk drives by escaping the magnetic trilemma. The magnetic stability of the grains

on hard disk platters changes drastically with temperature by Formula 2.1. Tech-

nologies such as Heat-Assisted Magnetic Recording (HAMR) achieve both magnetic

stability and writability by selecting an alternative magnetically-reactive material

with a higher threshold of magnetic coercivity and by using a laser or directed en-

ergy to heat the platter before write operations. The action of heating the platter

before write operations has the effect of reducing the threshold of magnetic coer-

civity for the magnetic grains, and then the write head with its small magnetic field

can easily change the magnetic value of the bit. Read operations on heat-assisted

drives occur without heating the platters, and since the magnetic coercivity of the

grains is beyond the ability of the drive’s heads to write data without first heating

the platter, HAMR drives also offer thermal and magnetic stability under typical

operating conditions [70, 94, 98, 112]. As areal density has increased consistently

over time, hard disk drive features and limitations have also remained largely un-

changed since the technology first emerged as an option for digital storage.

Hard disk drives characteristically require stable operating environments, in-

cluding air conditioning in order to function reliably [7]. Hard disk drives also

operate with a nominal power consumption between 5 and 10 watts [17], but as

much as twice to three times this number when spinning up the platters from a

standstill [1]. Storage systems that utilize hard disk drives can reduce power con-

sumption by “spinning down” or powering off the spindle motor, thereby reducing

the heat produced by the drives and potentially extending their lifetimes by reduc-

ing wear-and-tear [12,125]. Drive startup is, however, a more demanding operation

than normal operation due to the physical strain of moving the inert spindle mo-
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tor and platters, and thus the action of powering down the hard drive to conserve

energy and wear-and-tear must be balanced against the high power consumption,

wear-and-tear, and delay of starting up the drive from a powered-off state. In ad-

dition to their power consumption and durability constraints, hard disk drives also

present performance characteristics that distinguish them from other storage tech-

nologies.

The performance of hard disk drives lies between that of solid-state media like

NAND flash and other magnetic storage like tape. Tape drives can require more

than a minute to access data [50, 51], and SSDs using NAND flash can access data

within microseconds [111]. Hard disk drives require several milliseconds to seek

and access data on the platters [52, 115], assuming of course that the drives are

already spinning. Although capacity and throughput of hard disk drives has im-

proved dramatically over time, the latency of hard disk drives and the unit power

consumption have improved only marginally. Reliability has also not improved sig-

nificantly over time as manufacturers prefer to focus their efforts on capacity and

throughput instead of long-term reliability [11]. The interest and investment of

storage device manufacturers, which develop storage technologies to sell into the

storage market, affect the availability and pace of development for storage tech-

nologies.

2.2.5 Optical Disc

Optical disc (ODD) technology consists essentially of a spinning plastic disc im-

pregnated with a reflective material. The plastic disc spins on a spindle motor, and

a mechanically operated arm moves across the surface of the spinning disc much

in the way similar to that of hard disk drives. Also similar to hard disk drives, the

throughput of optical disc varies with how quickly the disc spins and grows with
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the square root of its capacity. Optical discs utilize a laser to read and write in-

formation into the disc, and unlike HDD or SSD, optical disc media support only

read operations once they have been written [118], a feature that finds frequent

use within archival storage systems when data must not change once written into

the archive. The information on the disc, which is stored optically in a chemically-

stable nonvolatile material, can survive at least 50 years in a wide range of envi-

ronmental conditions without experiencing degradation or data loss. Hence, opti-

cal disc technology is considered more resilient to environmental conditions than

hard disk, solid state disk, or even tape technology [123, 124]. Optical disc also has

a long history that has proven its reliability in a variety of applications [123, 124].

Optical disc drives (ODD) for data storage began with the introduction of com-

pact discs (CDs) for digital audio in the early 1980s [107,123,124]. The CD medium

resembles the much larger laser disc format for video media that was introduced

a few years earlier for the home consumer market. Compact disc for audio and

laser disc for video each served an emerging need for cost-effective, easily repro-

ducible, capacious, and durable write-once storage media for the demands of dig-

ital media [107, 118, 123, 124]. At the same time, the increasing power and ubiquity

of personal computers introduced a market for CDs to distribute software. Com-

pact discs gave way to digital versatile disc (DVD) during the 1990s and eventually

the Blu-Ray disc in the 2000s, each with greater capacity than the technology gen-

eration that came before [107, 123, 124]. Optical disc has proven unique among

storage technologies insofar as older generations of the storage technology such

as CDs and DVDs remain available for purchase and widely used notwithstanding

the availability of the more modern and capable generations such as Blu-Ray disc.

ODD technology also benefits from better reverse-compatibility than other tech-

nologies since even 40-year old CDs continue to operate in the latest generations
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of optical disc drives. Reverse-compatibility, the ability for new drives like optical

disc drives and tape drives to read or write older optical disc or tape media, relates

to technologies that feature a many-to-one relationship between recordable media

and the drives used to read or write them. Optical disc and tape, each with separa-

ble media, each benefit from reverse-compatibility to some extent [77,107,123,124],

but tape drives limit their reverse-compatibility to two or three generations of tape

media as the technology continues to evolve. In the case of optical disc, the long

lifetime of optical media—50 years—may deliver important benefits for archival

storage applications as successive generations of drives continue to access even

old media from decades earlier. Optical disc storage may then require less main-

tenance than other competing storage technologies as its reliability and reverse-

compatibility minimize the need for data migration from older to new generations

of disc technology. Although its reverse-compatibility may prove to be one of its

principal advantages, optical disc may present challenges that impair its relevance

within archival storage systems.

Other competing storage technologies have grown their capacity and through-

put even faster than optical disc. Some have therefore questioned the relevance of

optical disc as its industrial base narrows and its mind space within the storage in-

dustry shrinks [107]. As optical disc has become less common in personal comput-

ers in recent years, the pace of its development has, to a large extent, fallen behind

that of other technologies and in particular behind the ever-growing demand for

capacity from long-term storage systems [22]. Figure 2.1 illustrates the capacity of

optical disc technology available over time compared with an example of capacity

demand that grows with a 30% compound annual growth rate (CAGR).

Figure 2.1 shows the growing difference between the capacity of optical disc

and that of an example demand for archival storage. The slower pace of ODD ca-
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Figure 2.1: Each new generation of optical disc delivers more capacity than the
one that came before. Here we show the capacity of each generation of optical
disc normalized by the capacity of compact discs, the first generation of optical
disc technology. We also show an normalized example of capacity demand for
archival storage that grows 30% each year. The capacity of optical disc has grown
only slowly over time, increasingly falling behind the scale of current capacity de-
mand [14, 15, 19, 100, 124].
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pacity growth, combined with decreasing interest in the technology from manufac-

turers, original equipment manufacturers, and consumers may lead optical disc to

a marginal role in the storage market. Nevertheless, even as optical disc struggles

to keep up with the inexorable growth of demand for archival storage capacity, the

future of optical storage may yet provide an economical refuge for virtually lim-

itless data. Recent attempts to increase the capacity of optical disc [85] could, if

successful, help to reinstate optical disc technology as a leading contender to meet

the demands of long-term archival storage. Optical disc also shares in common

with archival glass the optical nature of its data storage.

2.2.6 Archival Glass

Archival glass improves upon the features of optical disc while significantly re-

laxing its constraints for capacity and cost. Archival glass bears numerous features

in common with holographic data storage [54] as both technologies can function

by repositioning a laser rather than moving the physical medium. Archival glass

and holographic data storage also both utilize glass as a storage medium, but glass

is a write-once medium by design, making it more suitable for archival storage sys-

tems [54]. Archival glass, like optical disc, stores data optically within a transparent

medium, but unlike ODD, archival glass storage uses a stationary plate of glass and

a movable laser to read and write data. Glass-based storage also reduces the cost

of the medium compared with optical disc because data is stored within the glass

crystal itself rather than in a chemically-stable medium impregnated within a plas-

tic disc. Although its technical advantages over optical disc may prove significant,

archival glass must also compete with other technologies for its place within the

archival storage market, and since it remains today a prospective technology for

archival storage systems, its viability for archival storage remains an open question.
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Archival glass is a proprietary storage technology under development at Mi-

crosoft [8]. The glass storage medium resembles optical disc insofar as it minimizes

the risk of bit rot and the attendant need for media scrubbing. Unlike optical disc,

the active development of glass as a storage technology will produce growing inter-

est from storage engineers, investment from companies like Microsoft, and eventu-

ally the technologies and products that are necessary to deliver archival glass as an

economical storage medium. Microsoft expects its glass-based storage technology

to become available for cloud deployments within the next decade [31].

The development of archival glass as a storage technology includes several com-

ponents, each of which relate to other technologies that have, to some extent, pre-

viously proven themselves within other scientific applications. The storage medium—

glass—exists abundantly in other forms within the earth’s crust. For this reason, we

expect the storage medium itself to remain the least expensive component of the

archival glass storage medium. For the purposes of the storage system, the glass is

stored in small rectangular plates. Each plate of glass may hold several dozen to

hundreds of terabytes of data within an area of approximately 100 square centime-

ters. As with other storage technologies with removable media like optical disc and

tape, a robot can mechanically transport the glass media between a collection or

library of glass plates and the read or write drives in order to read or write data.

The final component of the storage system must be the read and write drives that

record and read data within the glass media. Archival glass may utilize an inexpen-

sive laser paired with machine learning and computer vision algorithms to read

data from the glass plates [8], but a more powerful laser must be used to write data

into the glass material. For this reason, archival glass, unlike existing archival stor-

age technologies, utilizes separate drives to read and write data onto the storage

media [8]. The drives for reading and writing may also have different capital costs,
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power consumption, and throughput [8]. The exact costs of materials and com-

ponents are presently unknown because, as noted earlier, archival glass remains

today a prospective archival storage technology. Nevertheless, we project the costs

of archival glass technology based on that of similar technologies.

2.2.7 Synthetic DNA

DNA has stored and communicated data since before the invention of the com-

puter as even biological systems rely on DNA to represent the vast quantity of in-

formation that constitutes their genomes. Synthetic DNA has been investigated

for long-term data storage for similar reasons [60], although today it remains a

prospective archival storage technology for the somewhat distant future [31]. DNA

is different from all other storage technologies—even archival glass—in that it could

cost-effectively preserve orders of magnitude of information for far longer periods

of time—a promise that other storage technologies strive endlessly to achieve. In-

stead of reacting to the storage demand of today and yesterday, synthetic DNA as a

storage technology could provide enough capacity to suit the data needs of the dis-

tant future. Nevertheless, synthetic DNA as it exists today remains in its nascency.

Synthetic DNA, although it promises vast amounts of storage capacity, provides

an undesirable performance profile for use as a storage technology. Any storage

system must write all of its data at least once, but it may or may not read all of

its data over time. Today, synthetic DNA technology provides much faster perfor-

mance reading data than it does writing data [30,60]. For the purposes of DNA stor-

age, read operations are called sequencing, and write operations are synthesis. DNA

sequencing operations can take hours or days to complete [30], depending on how

much data must be read. Synthesis operations can require one second per byte

of data, which could require years or decades to complete a synthesis operation
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of a size commensurate with the capacity of DNA [30, 60]. Thus, in order to meet

the demands of any conceivable archival storage system with its write-once-read-

maybe workload profile, DNA storage must improve sequencing speeds by orders

of magnitude and synthesis speed by many orders of magnitude. Still, development

continues on DNA-based digital storage that may eventually render it a viable stor-

age technology for archival storage.

Microsoft has demonstrated a end-to-end archival storage system which, al-

though used to write only a small amount of data, demonstrated that DNA syn-

thesis, preservation, and sequencers can be combined into a unified and coherent

storage system [97, 126]. The demonstrated end-to-end storage system had a to-

tal cost of roughly $10,000. The costs of nucleic acids, the materials that must be

synthesized to create DNA molecules, may also change over time as demand for

storage induces supplies at an economical scale. Today, the costs of synthesizing

DNA, equal to approximately $1 per million bits of data written, elevates the cost

of synthetic DNA storage [143].

2.3 Related Work

Storage systems have been analyzed in other research in order to gather insights

on their performance [5, 26, 27] and in order to predict their cost over time [22, 23,

45, 57].

2.3.1 Workload Characterization

A workload has been defined as “the set of all inputs that the system receives

from its environment during any given period of time” [87]. A workload model

therefore characterizes a real workload without repeating the the exact operations
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on the original data objects, and a workload model must stand in for real work-

loads for the purposes of system selection, performance tuning, or capacity plan-

ning [87]. Workload models can resemble real workloads in two ways: functional

characterization and resource characterization [87]. Functional characterization

models those aspects of the workload relating to programs, commands, and re-

quests that constitute the workload while resource characterization models a work-

load’s resource utilization such as CPU time, memory consumption, and total sys-

tem accesses [87].

Several studies have analyzed workloads in cloud service provider and high-

performance computing (HPC) systems [26, 27, 91, 103, 120]. HPC workloads can

be generated from either real applications that utilize the HPC system or from syn-

thetic workload generators [120]. Synthetic workload generators recreate a work-

load that mimics a real workload using either an empirical or analytical approach [87,

120]. Empirical synthetic workload generators replay the traces of a real workload

to repeat operations that were previously executed on the target system [87, 120].

Alternatively, synthetic workload generators can analyze real workloads to create

a mathematical model that can be replayed on a target system [87, 120]. The goal

of creating an analytical model that accurately models a real workload can prove

challenging yet essential for certain applications such as modeling and simula-

tion [120].

Most recent research for workload analysis has focused on primary or high-

performance storage systems [27,46,63,138,140,142] since, at least to some extent,

researchers may prefer to work on projects relating to high-performance primary

storage. The analysis of workloads in primary storage systems has informed their

design and implementation, and the same importance of workload modeling ap-

plies to the design and implementation of archival storage systems [87].
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Recognizing the need for empirical analysis of archival workloads, several stud-

ies have introduced techniques or results from analyzing workloads in archival sys-

tems. Wildani, et al. argued that the task of designing archival systems would bene-

fit from more frequent and varied analysis of archival workloads akin to that which

has been published for primary storage systems [136]. Furthermore, they showed

that certain assumptions about archival workloads have remained true over time

while others have not. In particular, assumptions about the frequency of data ac-

cesses vary from archive to archive, and this, in turn, has implications for archival

system design.

Early work on archival workload analysis showed that recently archived data

may be frequently accessed [61], thereby blurring the distinction between archival

and primary storage. Later work compared traces from multiple archival systems,

finding that the frequency of accesses far archival storage depends upon both inter-

nal factors such as user needs and maintenance and external factors such as search

engine indexing [5]. The frequency of data updates also varies between different

archival workloads. Archival workload analysis has also highlighted the possibility

that storage technologies traditionally reserved for archival storage systems can, in

some cases, better serve the needs for long-term archival storage [45, 68].

2.3.2 Archival Modeling

Several previous studies have offered modeling and simulation of archival stor-

age systems to evaluate their characteristics over time. A comparison of hard disks

and solid state disks for long-term archival storage concluded that SSDs may offer

certain long-term advantages for archival storage due to their low power consump-

tion, good reliability, and favorable capacity growth rate [45]. Other studies show

that tape offers the lowest cost per byte of long-term storage [22, 23], but the lim-
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ited performance of tape compared with other storage technologies leaves open

the question of how different archival workloads may affect the total cost of owner-

ship for an archive. Tape offers good reliability compared with hard disks; however,

previous works have not considered prospective storage technologies like glass and

synthetic DNA and how they may offer better features in terms of their capacity, re-

liability, or performance should they become available in the future.

38



Chapter 3

Methodology

We simulate archival storage systems that use either existing or prospective stor-

age technologies, and we evaluate each storage technology by comparing it with

others within the simulator. We compare existing storage technologies including

tape, optical disc, hard disk drives, and solid state disks, and we extend our sim-

ulations to include the prospective storage technologies of archival glass and syn-

thetic DNA that are currently in development. We base our models for existing

storage technologies on the published data sheets from device manufacturers, and

we infer parameters for prospective storage technologies from the publications that

describe their design and performance. We use our simulation model and param-

eters for storage technologies to answer questions about each technology’s place

in the future of archival storage. The simulator uses parameters to perform each

simulation for a period of 25 years, and each simulation returns a spreadsheet of

information about the devices in the simulation, their performance, and the total

cost of ownership for the simulated archival system.
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3.1 Simulator Overview

The simulator takes as input parameters to describe storage technologies, envi-

ronmental parameters, workload parameters, and general archive parameters. The

parameters of the storage technologies include values such as device performance,

capacity, power consumption, endurance, lifespan, and rates of development. En-

vironmental parameters include the cost of electricity and its rate of annual in-

crease. Workload parameters include the data storage of the archival system, the

number of annual read and write operations, and the total throughput needed for

the archival system. The archival parameters include values for the number of years

to simulate, the resolution of the simulator, and the number of times to repeat each

simulation. Each simulation uses the parameters together to conduct experiments

and measure the cost, performance, or reliability of each storage technology.

3.1.1 Simulation Model

We evaluate archival storage systems on a range of metrics in order to conduct

experiments and draw conclusions about the economic value of each storage tech-

nology. We utilize input parameters for the archival system, its workload, operating

environment, and storage devices to calculate the total cost of ownership (TCO)

over the time of the simulation. We design our simulation model to utilize several

functions that each calculate the cost of one aspect maintaining an archival system

over a known quantity of time. The functions for cost that we utilize include the

cost of upgrading, maintaining, and powering the archival system. We summarize

each cost function in Table 3.1.

The function for determining the cost of upgrading the archival system eval-

uates the current state of the simulated archival system in comparison with the

requirements of the system. Upgrading the archival system becomes necessary as
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the demand upon the archival system in terms of storage capacity grows over time

such that d increases for time t compared with time t −1, where d is the data de-

mand for the archival system at time t . Thus, the function calculating the cost of

upgrading the archival system returns a cost value that is proportional to the rate

at which the archive’s data grows and the amount of time elapsed between t and

t −1.

We also consider the cost of the workload within the simulation model as part of

the upgrade function. The workload of the simulated archival system controls the

minimum performance needed by the storage system. Some storage technologies

like tape feature separable media, effectively allowing archival systems with such

technologies to scale capacity without necessarily increasing their performance ca-

pabilities. The workload of the simulation model ensures that the archival storage

system can serve the demands of the workload as described in the workload pa-

rameters. The cost of the workload in the simulation model grows as the demands

of the archive’s workload increase for data d at time t relative to time t −1. We dis-

cuss the relationship between cost and archival workload in Chapter 5. Beside the

cost of upgrading the the archival system, we also measure the cost of maintaining

the archival system throughout the simulation time.

Maintenance costs on the archival system relate to the cost of maintaining the

archival storage system to store data d with the reliability required of the archival

system as defined in the archive’s parameters. The failure of any individual device

triggers maintenance of the archival system to recover data and replace the failed

device with a new one. Storage devices that deliver high levels of reliability require

less maintenance than devices with lower levels of reliability because fewer device

failures result in fewer maintenance events. The cost of maintenance in the simula-

tor is thus proportional to the quantity and reliability of the storage devices within
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the archival system. The reliability of storage devices, in turn, is proportional to

their baseline reliability and also to each device’s age since, as we discuss in Chap-

ter 4, storage devices often become less reliable as they age. The reliability of in-

dividual storage devices can change as they age, particularly for device types like

hard disk drives that have a limited lifetime after which their reliability decreases

dramatically.

We also consider power cost as part of our simulation model. The cost of elec-

tricity in our simulation model depends upon both the amount of electricity con-

sumed by the storage devices in the archival system and the cost of electricity at

any point during the simulation. We discuss the cost of electricity in Chapter 3.3.1.

We measure power consumption in kilowatt hours, and we evaluate power cost

in terms of dollars per kilowatt hour. Power consumption for each device in our

model depends on how long each device spends in each of three possible power

states: active, idle, and standby. Active mode is when each device is actively read-

ing or writing data into the storage medium. The idle mode is when the storage

device is powered on, but it is not actively reading or writing data. Devices in

the idle state may still have mechanical components like spindle motors powered

on. Standby mode is when the device rests in its low power mode such that any

mechanical components are turned off and only the device’s minimal electronic

components remain powered on. Each cost function—upgrade, maintenance, and

power—takes as an input a time t which we evaluate discretely over a fixed slice

of time called an epoch in the simulation. We calculate the total power cost of the

archival system using the formula:

Pd ,t =Ct ×
(

Ad ,t +Sd ,t + Id ,t
)

, (3.1)

where Pd,t is the calculated total power cost for data d at time t , Ad,t is the amount
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Table 3.1: Summary of Functions to Calculate Cost

Cost Function Summary

Upgrade Calculate the current demand for the archival system in
terms of data capacity demand and throughput. Calcu-
late the current performance of storage devices available
for the current epoch in the simulation. Purchase new de-
vices as needed to increase the capacity or performance
of the archival system while also maintaining the neces-
sary parity for the simulation as defined in the configura-
tion. Calculate the total cost of adding all devices to the
archive. New devices will need to write data as they enter
the archive, and their time spent writing data will increase
the active power consumption of the system.

Maintain Search for devices within the archival system that have ex-
perienced a failure during the current simulation epoch.
Replace the failed devices with new devices, and compute
the total cost of replacing them. New devices will also
need to write data into them once they are installed into
the archive, and the write operation will consume addi-
tional electricity.

Power Compute the power utilization of all components within
the archival system, including power consumption during
active, idle, and standby modes. Calculate the current cost
of electricity, and multiply the cost of electricity per kilo-
watt hour by the total kilowatt hours used by all compo-
nents during the current simulation epoch.

of power consumed during active read and write operations in the archive over

time t , Sd,t is the amount of power used during standby for devices in the archival

system, and Id,t is the amount of electricity used by idle devices within the archival

system. Ct is the cost of electricity per kilowatt hour for the time t within the sim-

ulation.

We include as one of our goals the accuracy of our simulation model relative to

real-world operations; however, each of the functions for calculating cost as part

of our calculation for TCO requires some nonzero quantity of time over which to
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evaluate the archival system. Maintenance events, the purpose of which is to re-

place failed devices within the simulated archive, must evaluate the reliability of

the archival system over some period of time, and each device within the archival

system has some probability that it will fail over a certain amount of time. There-

fore, in order to balance the goal of precision with the requirements of our cost

functions, we allow the users of the simulator to configure the desired resolution

of the simulator over which each separate action and cost function should evalu-

ate time t . Our simulator supports values ranging from one second to one year of

resolution, and for each of the experiments in the following chapters, we use one

hour of resolution for the epoch of time t .

The ability of our simulation model to evaluate time with various degrees of

granularity emerges from our goal to measure the effects of time and change on

archival systems continuously. For this reason, we integrate for the total cost of

ownership (TCO) with the continuous sum of all three cost functions over the du-

ration of each simulation. We calculate the TCO of an archival storage system using

the formula:

TCOd ,t =
∫ T

t=1

( F∑
f =1

(
f (d , t )

))
d t , (3.2)

where TCOd,t is the total cost of ownership for the simulation up to time t and

for the amount of data d , T is the total time of the simulation from beginning

to end, and F is the set of functions f that return the cost of the archival system

as described in Table 3.1. The upgrade and maintain cost functions calculate the

number of devices needed to meet both the capacity requirement of d and also the

number of devices required to serve the archival workload over the quantity of data

d at time t .
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3.1.2 The Simulation Model in Action

In this section we describe the operation of the simulator step-by-step. The

simulator begins first by reading all of the configuration files that the user created

for the particular simulation. The configuration files are simple text-based files

that list parameters or features and assign a value to them. The value can be a

simple number, a number followed by a floating point number that represents the

compound annual growth rate for the number, or a function that expresses a more

complex operation. Complex operations can include lambda functions that allow

the user to express complex changes over the duration of the simulation. A com-

plex operation may also be a value called a Range value. We use Range values to

describe parameters over which the simulator should permute and repeat multiple

operations of the simulator, each with different values from the permutation. Once

the simulator reads the configuration files, it checks for any Range values that call

for permutation, and the simulator enqueues the permutations so that they can be

run in parallel with each other as distinct simulations.

Once the simulator has a list of permutations with which to run each distinct

simulation, the simulator spawns new copies of itself to run each simulation sep-

arately. We run simulations in parallel in order to take advantage of the paral-

lelism offered within modern computers. As each new simulation starts, if reads

its own configuration file that has been created for it by the simulation instance

that spawned it. The ability to permute over different values defined in the con-

figuration allows the user of the simulator to explore a large number of possible

configurations for the simulations. For example, we used the Range values to ex-

plore many possibilities of RAID parity and workload demands. We can also assign

Range values to most parameters in the configuration files, but we keep in mind

that the number of simulations grows geometrically with the number of parame-
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ters assigned to Range values. Each simulation starts, reads its own configuration

file, and proceeds to build its simulated archival storage system.

Each archival storage system contains a group of devices. The simulator first

calculates how much storage capacity and throughput it will need at the start of

the simulation. With these numbers, the simulator calculates how many storage

media are needed to meet the capacity demand and how many storage drives are

needed to meet the throughput demand of the archival system. If the media and

drives are on the same device, we use the larger of the capacity and throughput

numbers to proceed to the next step of execution.

The simulator next attempts to install the storage drives and media into the

archival system. As it does so, it checks the configuration parameters for each

device to find a list of what other devices are needed to utilize the device or me-

dia. Devices and media both require libraries, network attached storage systems,

or robots. The simulator gathers the necessary hardware and adds those devices to

the archival system. Once the devices have been added to the archival system, one

new Event is created for each new device. We describe Events in greater detail in

Chapter 3.2.1. The simulator adds each new event to a priority queue, and the pri-

ority queue ensures that each new device is installed within the simulated archival

storage system in the correct order. Tape media can be installed at the same time as

tape drives, for instance, but both media and drives must be installed after robotic

systems. Each event in the simulator begins and ends at a specific time in the sim-

ulation, and the simulator keeps track of time so that it can wake up, resume, and

complete Events that may take a long time to complete.

As events in the simulator become completed, the simulator proceeds through

time by incrementing its internal clock by the simulation’s time slice or epoch. As

each new epoch begins, the simulator checks if any new workload Events should
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be triggered. Workload Events are similar to those when new devices are added to

the archive, but the workload events require multiple components of infrastructure

to be in place before it can proceed. If the simulator reads data, the drives involved

in the operation must be first installed within the archive and also available to use.

The simulator also checks for any failed devices inside the simulation. If there are

failed devices, the simulator removes the old failed devices, installs new devices

by creating an Event to install them, and finally, the simulator creates workload

events to simulate writing data onto the new devices for the first time. Once the

simulator has done everything it can at the current epoch, the simulation continues

by incrementing the current epoch.

When the simulator increments the epoch, it is simulating the passage of time

and keeping track of everything that happens in the simulation. When the simula-

tion reaches the end of the time it was meant to run, the simulator creates a data

file that contains all of the cost, performance, and behavioral data from the simu-

lation. The data file contains the cost of the archival system at each epoch during

the simulation, the total cost of the archive, the amount of power used, the number

and types of each device in the simulation, and numerous other facts. Finally the

simulator saves the data file with the same prefix as the configuration file that was

used to start it. Doing so allows us to return to the data files and determine what

configuration parameters were used to produce the data file.

Due to the complexity of the simulation, each execution of the simulation can

take an hour or more, depending on how many events, devices, and workload events

must be performed during the simulation.
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3.1.3 Compound Annual Growth Rates

Many of the factors that drive the demand for and supply of storage in archival

systems change over time. Factors such as the capacity and throughput demands of

an archival system, the capacity and features of storage devices, and the probability

of failure for individual devices as they age may change with time, and furthermore

their rates of change or growth may also vary as a function of time. We examine

the compound annual growth rate (CAGR) of each parameter to describe the rate

at which it changes over time based on historical data. We calculate the CAGR for

each parameter using the following formula:

CAGR =
(

vali

val0

) 1
ti −t0 −1, (3.3)

where val0 and t0 are the parameter’s initial value and the starting time in years,

and vali and ti are the parameter’s final value and time in years, respectively. We

use the CAGR formula to determine growth rates for parameters used in simula-

tions since it calculates the annual growth rate needed to reach vali , starting with

val0, after ti − t0 years.

CAGR has been used previously to describe changes in storage technology. Kry-

der’s Law, which describes the growth of hard disk areal bit density, predicts that

HDD capacity will double every 18 months, a CAGR of 58% [133]. Hard disk ca-

pacity has increased increased more slowly than the prediction of Kryder’s Law in

recent years [45, 110], so we rely on our observations from historical developments

to derive the CAGR for HDD capacity and other parameters with the formula:

vali = val0 × (CAGR+1)ti−t0 , (3.4)

where val0 and t0 are the starting value and time, and vali is the value after a growth
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rate of CAGR+1 for ti − t0 years.

3.2 Simulator Design

Our simulator consists of several modules that we configure to model the func-

tionality of archival systems. Here we present a summary of each critical compo-

nent.

3.2.1 Events and Event Driver

We use an event-driven model to simulate actions that occur at specified time

intervals or with a certain probability over time. Each action is represented by an

Event object. Events include installing devices, reading and writing data, and re-

placing devices that have failed. Each Event acts upon the devices within the sim-

ulated archival system, and the status of the device changes accordingly to ensure

that no conflicting actions utilize the same resource at the same time.

3.2.2 Time

Time within the simulator affects each of the Events that act upon the archival

system. Time progresses in the simulation when, for any particular epoch in the

simulation, there are no Events that can execute because either all Events have

been completed and closed, all of the Events have a completion time that is later

than the current simulation epoch, or if the queued Events must wait for a resource

like a drive or storage media to become available. Time progresses in the simulator

by incrementing the current time by the length of an epoch. The passage of time

in the simulator triggers new Events and adds them to a queue. The current time

in the simulator also controls the expiration of Events and values that change with
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time. Events to install devices, for instance, require a certain amount of time to be

completed before the affected device can be utilized for another event. The simu-

lation time affects values such as capacity, failure probability, and device features

that change as a function of time.

3.2.3 Archival System and Devices

The Archival System class coordinates actions within the simulator and for-

wards actions to each individual storage device. The Archival System provides func-

tions to calculate the total capacity, read and write throughput, reliability, and cost

of the archival system. The Archival System class also calculates the total cost of

meeting a threshold requirement of capacity and performance.

Devices within the simulator include drives and media, networking infrastruc-

ture, robots, and racks. We implement a class for each device type to model its

unique behavior and features. Devices with removable media such as tape and op-

tical disc use separate Device classes to represent the media and drives. Devices

such as hard disk and solid state disk, which do not have separable media, are rep-

resented as one Device class. Glass and DNA storage, which feature separable me-

dia as well as separate devices to read and write data, are represented with classes

for media, a drive for reading, and a drive for writing.

3.2.4 Configuration and Parameters

We use two types of configuration parameters to control the behavior of the

simulator: archival parameters and device parameters. Archival parameters define

the required capacity of the archive and its rate of growth, the performance and

workload demand on the archive, the cost of electricity, and the number of years to

simulate. The device parameters include the cost of each device, its performance
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and capacity as functions of time, and the device’s probability of failure.

3.3 Archival Parameters

Digital information has grown in scope as the performance of computer sys-

tems has increased over time. The demand for archival storage follows the larger

trends of ever-increasing amounts of data. We configure our simulation model to

start with an initial capacity of 1 PB. Each simulation that we run begins with this

same amount of data, and we extend the capacity each year to simulate the con-

stant growth of data in the simulator. Although we can never be certain exactly how

quickly the demand for archival capacity will grow, we utilize a CAGR of 30% that

has been suggested elsewhere in predictions about the long-term growth of archival

data [20]. Finally, we utilize a nominal workload for our simulations that relate to

other aspects of archival systems. Each of our simulations models a workload of

10,000 read operations annually. The small number of read operations reflects an

archival system that is only infrequently accessed for data retrieval; however, we

vary the number of read operations in our experiments in Chapter 5.

3.3.1 The Cost of Electricity

The cost of electricity can be an important consideration for the location of data

centers and the storage systems within them. We derive the cost of electricity for

our simulation model from the average cost of electricity for commercial customers

in the United States. We take data from the Energy Information Administration’s

monthly report on the cost of electricity to customers [38], and we utilize the re-

port from January in each year. We show in Table 3.2 the average cost of electricity

throughout the US, and we calculate for each year from 2007 to 2020 the compound
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Table 3.2: Cost of Commercial Electricity in the US [38]

Year Price per kWh CAGR to 2021

2021 $0.1133 –
2020 $0.1059 7.0%
2019 $0.1057 3.5%
2018 $0.1056 2.4%
2017 $0.1055 1.8%
2016 $0.1032 1.9%
2015 $0.1030 1.6%
2014 $0.1052 1.1%
2013 $0.1012 1.4%
2012 $0.0989 1.5%
2011 $0.0998 1.3%
2010 $0.0999 1.2%
2009 $0.1026 0.8%
2008 $0.1050 0.6%
2007 $0.0979 1.0%

annual growth rate of electricity cost between that year and 2021. Table 3.2 shows

that the cost of electricity has grown more quickly during the past two or three

years than it has since 2007; however, the overall trend has be a slow and consistent

rise of a little more than 1% annually since 2007. We utilize the cost of electricity

from 2020 and the CAGR growth rate of 1% in our simulation model to calculate

the cost of electricity.

3.4 Device Parameters

We utilize parameters for the simulation model that describe the capacity, per-

formance, reliability, growth rates, and operation of each storage technology. The

device parameters control how each device performs within the simulator and how

each device changes over time. Table 3.3 shows parameters for initial capacity in

the simulator, the capacity of the device at the end of its planned roadmap, and
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Table 3.3: Storage Media Capacity and Reliability

Medium Capacity Roadmap Annual Failure Rate

Tape [3, 95] 12 TB 192 TB 0.000075-0.3%
HDD [11] 10 TB 100 TB 1%
SSD [111] 4 TB 100 TB 0.58%
ODD [124] 0.3 TB 1 TB 0.000075%
Glass [8] 100 TB 360 TB 0.01%
DNA [126] 1 TB – 1%

reliability for each type of storage device.

We assume that the capacity for each storage technology will develop at a rate

consistent with its historical record, and we also assume that capacity growth will

slow once each technology reaches the end of its development roadmap as pub-

lished by its manufacturers. The roadmap for each storage technology offers guid-

ance to the storage industry about what the device’s manufacturers expect to be

possible for any given storage technology, given their current knowledge and un-

derstanding about the practical limits for future developments [8,78,86,97,123,126,

128].

We list the baseline values for each storage technology in Table 3.3 together with

the roadmap capacity for each technology after which subsequent increases in ca-

pacity grow smaller due to the technical difficulties of further development, which

we described in Chapter 2.2. Parameters for glass and DNA storage are estimations

based on published research for each technology.

Figure 3.1 shows the expected growth of each storage technology’s future capac-

ity that we use in our simulations; values are normalized to the baseline capacity

for each technology as given in Table 3.3. The baseline values for existing tech-

nologies in Table 3.3 reflect the state of existing technologies in the year 2020. The

baseline of archival glass approximates the features proposed for its design from

published research [8]. The baseline values for synthetic DNA, however, approxi-
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Figure 3.1: We model the growth of device capacity as a step function of time. We
present here the baseline growth trajectories for each technology, normalized to
the starting capacity for each medium. The rates of capacity growth slow once each
technology reaches the end of its developmental roadmap.

Table 3.4: Parameters for Baseline Storage Device Cost

Type Media Drive (R/W) Library Enclosure

Tape $150 $8,000 $7,000 $1,000
HDD – $200 $10,000 $2,500
SSD – $500 $10,000 $2,500
Disc $10 $10,000 $15,000 $1,000
Glass (est) $1 $1,000 (r) / $10,000 (w) $1,000 $1,000
DNA (est) $100 $1,000 (r) / $9,000 (w) $1,000 –

54



mates values for capacity that could make it competitive with other storage tech-

nologies, but if DNA should fail to achieve similar performance values in the future,

we expect that synthetic DNA could not serve in an archival storage capacity un-

der the constraints that we have envisioned. Nevertheless, synthetic DNA has been

developing in terms of both sequencing and synthesis at rates that exceed that of

Moore’s Law over the past decade [143].

Hard disks and solid state disks frequently increase their capacities as new mod-

els incorporate developments and increases in areal bit density for their storage

media. We model their capacities in our simulator with annual increases. Tape and

optical disc generally offer more infrequent upgrades in part because new gener-

ations of storage media require new and often expensive drives. Tape and optical

disc have 3 and 5-year upgrade cycles in our simulations, respectively. We expect

that archival glass will provide an upgrade trajectory similar to that of optical disc

since both optical disc and glass store information optically within a nonvolatile

medium. We model the capacity growth of DNA without the constraints of other

storage technologies that are constrained by their manufacturing and scalability

limitations. Archival DNA’s capacity may grow with the developments of the tech-

nologies used to sequence and synthesize DNA molecules, and therefore, we model

a 2-year upgrade cycle for DNA without tapering the pace at which its capacity

grows.

Synthetic DNA has been proposed for archival data storage primarily for the

capacity that it could potentially deliver. The performance of DNA-based storage

remains today far lower than needed for any realistic storage system [139]; however,

DNA is estimated to have a theoretical maximum capacity of 215 PB per gram [55],

which is far higher than any other technology that we have considered. Attempts

to utilize part of its large theoretical capacity in practical storage systems have so
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far yielded incremental developments [30,34,97]. Recent efforts to develop DNA as

a data storage technology have proposed schemes to translate between binary and

nucleic acid encoding mechanisms [139]. Other work has proposed methods for

isolating and identifying specific DNA molecules that store data in order to facili-

tate the addressing and retrieval of data that are commonplace with other storage

technologies [34, 97]. The capacity of DNA reported in DNA storage research that

implement an encoding scheme and addressing and retrieval mechanisms range

widely from 83 kB [34] to 1 TB [97]. In any case, DNA storage technology must make

large improvements before it can compete with other storage technologies.

Synthetic DNA has been developing at a rapid pace over recent years thanks in

large part to the efforts of the medical industry [139]. The cost of DNA sequencing

and synthesizing have both declined over time [139], but the current cost of both

sequencing and synthesizing strongly disfavors DNA for today’s archival storage

systems. As recently as 2017, the cost of synthesizing a single base pair for DNA-

based storage was estimated at approximately $0.0001, with generous assumptions

for input costs and the availability of synthesis equipment [28]. If we take a base

pair to encode a single bit, then the cost per gigabyte of data storage would be

$0.0001×8×109 = $800,000 per gigabyte. SSD is the most expensive existing stor-

age technology that we consider in terms of cost-per-byte, and we can therefore

compare DNA with SSD in order to underscore the position of DNA relative to ev-

ery other storage technology. If we assume, as we do in our simulations, that SSDs

offer a capacity of 4 TB at a cost of $500, then SSDs have a cost-per-gigabyte of

$500÷ 4000 = $0.125 per gigabyte. Comparing the two costs, we see that DNA is

800,000÷0.125 = 6.4×106 times more expensive than SSD. Of course this difference

does not take into account the dramatically slower performance that DNA delivers

or the cost of machines to sequence DNA data. Thus, the difference of 6.4×106 is a

56



lower bound on the cost disparity between DNA and the most expensive of all ex-

isting storage technologies. In order for DNA to compete with other technologies, it

will need to improve by at least this much, plus any additional improvements that

competing storage technologies deliver over the time that it takes DNA to close the

cost and performance gap.

Since we are most interested in considering how and not when DNA could be

used for archival storage, we assume for the purposes of our experiments that DNA

overcomes its large performance and cost deficits to deliver 100 MB per second of

synthesis throughput, 300 MB per second of sequencing throughput, and a latency

of one hour. Each throughput value increases by 50% annually in our simulations,

a high rate of development that we base on the history of rapid improvements in

DNA technology [55, 139]. We also utilize an initial DNA capacity per DNA media

of 1 TB with a 50% CAGR. We further assume that the combined cost of synthe-

sizer and sequencer machines will be no more than $10,000, as stated in Microsoft’s

demonstration of an end-to-end storage system using DNA [126]. Our results for

DNA must be regarded in the light of the constraints that the technology imposes

on its use: namely, its high latency, separate sequencer and synthesizer machines,

and potential for high capacity.

Beyond glass and synthetic DNA, we have envisioned that existing storage tech-

nologies will compete with each other for share in the archival storage market.

Tape, hard disk, solid state disk, and optical disc each deliver their own features and

compromises. Until now, we have not mentioned storage class memories (SCM)

insofar as candidates for archival storage systems. SCM relates closely with NAND

flash, since both technologies are solid state in their design because they have no

moving parts. 3D Xpoint [46,63,140,142] in one such SCM technology that delivers

performance and endurance beyond that of NAND flash, but the challenge with
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SCM technologies for archival storage systems is not their performance. Rather,

SCM technologies are more expensive than even NAND flash [46, 63, 140, 142]. We

therefore treat SCM devices alongside NAND flash within the SSD category of de-

vices. Nevertheless, should SCM-based devices become viable for archival storage

in the future, their cost and performance could deliver the first universal mem-

ory that would be equally suited for CPU caching or system memory as long-term

archival storage.

3.5 Confidence Intervals

The archival simulator that we have designed for our experiments utilizes pseu-

dorandom numbers to simulate device failures and workload activity. For this rea-

son, each separate execution of the simulator produces unique results. In order to

measure the confidence that we have in the results of our simulator, we executed

the simulator 100 times using each storage technology and our baseline parame-

ters. Next, we select a subset of those results ranging from three unique simula-

tions to 100 simulations to calculate the size of the confidence interval with as a

function of the number of repeated simulations. Finally, we divide the confidence

interval by the average total cost of ownership for the archival system after 25 years

of operation to determine the size of the confidence interval relative to the cost of

each storage technology. We present our results in Figure 3.2.

Figure 3.2 shows that each storage technology follows its own pattern for the

size of its confidence interval relative to its total cost. For any storage technology,

repeating the simulation 10 times approaches a stable confidence interval. Tape

and archival glass present the highest ratio of confidence interval to the total cost

of ownership because, for both tape and glass, the reliability of the storage tech-

nology is such that drive failures happen only rarely. Nevertheless, the cost of a
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Figure 3.2: The ratio of 95% confidence interval to average cost decreases as we
increase the number of separate simulations for a given set of parameters. Tape
and glass present the highest ratio of confidence interval to their total cost due to
the cost and infrequency of each failure event. Rare and expensive events can have
a noticeable effect on the size of the confidence interval within our simulations.
Glass sometimes has a low confidence interval for small numbers of simulation
runs because glass drive failures occur with such infrequency that they may not
happen during each simulation, and the confidence interval with such simulations
is smaller than for groups of repeated simulations that capture at least one glass
drive failure among them.
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failed tape drive or glass write drive is much higher than the cost of a single hard

disk or SSD. Thus, each failure event for tape and glass drives causes more infla-

tion to the total cost of the archival system, and because such failures are rare, they

do not occur in the same numbers during each simulation. We therefore see more

variance between separate simulations using tape and glass than we do for other

technologies, particularly those with combined media and drive mechanisms.

Most of the figures in the following chapters do not show confidence intervals.

We omit showing confidence intervals in order to make each figure more readable.

Nevertheless, we expect that the values for each simulation to fall within 5% of what

is shown for each experiment.
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Chapter 4

The Cost of Reliability

4.1 Overview

The need for reliable data storage often guides the design and deployment of

archival storage systems. As archival systems grow to store an ever-increasing amount

of data, so does the importance of reliability as an essential design feature. The

risk of losing data within an archival storage system increases with the size of the

system and the length of time over which it operates. For this reason, numerous

techniques exist to reduce the probability of data loss.

Replication, RAID, erasure coding, and the use of intrinsically reliable storage

technologies can serve to increase the reliability of a storage system overall. Archival

systems, which typically serve low-intensity workloads over a long period of time,

must also integrate available storage technologies and organize them into a design

that offers the needed storage capacity and reliability while minimizing the acqui-

sition and operating costs of the archive. Balancing such requirements presents a

significant challenge for archival system designers due to the myriad options avail-

able for archival storage technologies and configurations, changes to device perfor-

mance and reliability over time, and the different possibilities for device develop-
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ment in the future. Seemingly simple choices between different storage technolo-

gies to use in an archive inevitably yield complex and possibly unforeseen trade-

offs that may result in unfavorable outcomes in terms of insufficient storage reli-

ability or money wasted while achieving a given threshold for archival reliability.

Furthermore, predicting the long-term cost of an archive that meets its designers’

needs for reliability further complicates the design and implementation of archival

systems.

In this chapter, we simulate and measure the cost of acquiring and operating

an archival storage system, comparing the cost of using different storage technolo-

gies to achieve various levels of storage reliability over time. We include existing

storage technologies—tape, optical disc (ODD), hard disk (HDD), and solid state

disk (SSD)—as well as prospective storage technologies that are currently under de-

velopment for archival storage systems—glass and synthetic DNA. We also slightly

modify the simulator to support our experiments on archival reliability.

4.2 Approach

Chapter 2.2 described the unique features, limitations, and rates of develop-

ment for each storage technology within the scope of our simulations, and Chap-

ter 4.3 enumerates parameters of reliability over time for each storage technology.

We utilize each device’s parameters and enable features within the simulator to

measure an archival system’s predicted statistical reliability.

The reliability of a storage system depends upon that of the devices in the stor-

age system, the organization of the system, and other events and conditions out-

side of the system. Events and conditions outside the storage system include soft-

ware errors, user errors, natural disasters that affect a data center, and electrical

faults or surges. While external events are important to storage system reliabil-
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ity [75], their occurrence is not intrinsic to the design or implementation of any

storage system since virtually any storage system can be affected by such events.

We therefore focus on modeling the reliability of storage devices used in an archival

system as well as the design of the archival storage system that can optimize it for

reliable long-term operation.

In an archival storage system with many storage devices, each device presents

its own probability of failure that typically changes over its lifetime [3, 6, 10, 11, 13,

95]. We define a device failure to be the condition of a device that either can-

not reliably write or read data or that has diminished performance relative to its

manufacturer’s specification. The failure of a storage media device may—but not

necessarily—lead to data loss, particularly if the device fails with a degradation of

its performance shortly before it ceases to function completely. For the purposes

of this work, we compare the reliability of storage devices within RAID groups in

terms of their probability of failure resulting in data loss and in terms of the amount

of data lost with a failure.

RAID-based storage systems may be configured to replicate data across some

number of devices to decrease the probability that any combination of device fail-

ures will result in data loss [104]. Various RAID levels combine Reed-Solomon codes

with data distribution across multiple devices to offer configurable levels of perfor-

mance and data reliability [104]. The probability of data loss in RAID systems de-

pends on the probability that multiple devices within a RAID group will fail during

the time required to recover from a failure [71–74, 102, 104]. RAID levels with ex-

tra redundancy or parity can tolerate more near-simultaneous device failures, but

they require more storage devices to store a given amount of data than RAID lev-

els with less redundancy or parity. Archival system designers balance performance

and reliability versus cost to suit their particular needs.
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Patterson, et al. derived a method for calculating the reliability of a storage sys-

tem based on RAID parity [104]. The Patterson model finds the mean time to fail-

ure for RAID groups based on the uniform mean time to failure of devices similar

to those in each group [104], thereby assuming that each device presents an identi-

cal probability of failure to every other at any given moment in time. We observe in

Chapter 4.3 that not all devices that operate within any storage system present the

same probability of failure at all times. In particular, hard disk drives—the stor-

age technology for which RAID was originally designed—prove more reliable at

some times during their lifetimes than at others. Hard disk failure rate has been

described as a bathtub curve to represent the higher probability of failure at early

and late stages of its life [33]. Storage devices fail with probabilities that are unique

and independent for each device, and we calculate the overall reliability of each

storage system based on the unique life cycle of each individual storage device.

Our goal for evaluating the reliability of a storage system must be to first establish

the probability that one or more device failures will result in the loss of data.

We calculate the probability that two independent events occur together with

the formula:

P (A∩B) = P (A)×P (B), (4.1)

where A and B are independent events, and P (A) and P (B) are the probabilities of

each event occurring on its own [67, 134]. We can generalize Formula 4.1 for an ar-

bitrary number of independent events by adding more independent variables and

multiplying them with the others. As we will observe in Chapter 4.3, storage de-

vice reliability changes over time as each device ages. Therefore we consider each

device failure as its own independent event, allowing us to deploy Formula 4.1 in

our calculations of storage system reliability. Although batch failures can increase

the probability of data loss in practice [101, 102], we limit the scope of our model

64



to rare and uncorrelated failures.

The reliability for a storage system with k parity devices has been derived and

provided in other work as:

R(Tk ) = 1−
k∏

i=1

(
1−e−λi×Tk

)
, (4.2)

where λ is the failure rate for device i and Tk is a time interval over which to eval-

uate the reliability of the storage system [71–74, 102]. Formula 4.2 is a generaliza-

tion whereby many probabilities can be combined using Formula 4.1 to generate a

composite overall reliability.

Duritg the simulations relating to reliability, we utilize a simplified model for

calculating the failure probability for each device, and we utilize a simplified calcu-

lation in order to expedite the complex operation of our simulation model. When

considering the reliability of each device, our simulation model evaluates each de-

vice individually at each time interval in the simulation. Our simulation model

supports time intervals ranging from one second up to one year, and our simplified

approximation of Formula 4.2 helps to improve the performance of the simulation

model while preserving a close approximation for the calculation in Formula 4.2.

For each device in the simulation model, we calculate its failure status using the

inequality:

Random <λ× t , (4.3)

where Random is a pseudorandom number in the range from 0 to 1, λ is the annual

failure rate (AFR) for the device, and t is the length of each simulation epoch. For

smaller values of t , the probability of failure during each epoch decreases; however,

shorter epochs also ocurr in greater numbers within the simulator. We present in

Figure 4.1 a comparison of the standard failure model as given in Formula 4.2 with
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Figure 4.1: We compare the standard reliability model with our simplified approx-
imation. We show the absolute AFR values as calculated using each technique in
the y-axis on the left. On the right we show the percent error that separates our
approximation from the standard model.

the simplified model given in Formula 4.3. In this example, we use a device annual

failure rate of 1%, which is similar to the AFR values for the devices that we have

modeled with our simulator.

Figure 4.1 demonstrates that our approximation for the failure probability of

each device closely follows the standard reliability model as shown in Formula 4.2.

Furthermore, as we use an epoch length of one day in our simulations, the error

that we would encounter will also be the smallest as shown in the left of Figure 4.1.

66



4.2.1 Blast Radius

Ideally, the probability of failure for any storage system would decrease as the

amount of data that would be lost from a failure increases; however, such a trade-

off proves difficult to achieve with many storage technologies. The potential amount

of data lost depends on the amount of data in a RAID group, which itself depends

upon how many data drives are used in the group as well as the capacity of those

drives.

As the capacity of each storage device increases with time and development,

so too does the capacity and rebuild time of each RAID group, assuming a fixed

number of drives in each group. Using high capacity storage devices in a small

number of large-capacity RAID groups introduces a greater risk for catastrophic

data loss than many smaller RAID groups would. Large storage devices and RAID

groups necessarily increase the amount of data that would be lost during any fail-

ure. By Formula 4.2, a small number of RAID groups may present a lower total

probability of data loss due to a RAID group failure than a larger number of RAID

groups would; however, reducing the number of RAID groups requires increasing

each group’s capacity to store a given amount of data. Rebuild times for larger-

capacity groups are also longer, which offsets the reliability advantages of reducing

the number of groups by using larger drives. Maximizing reliability in a storage

system therefore requires balancing the use of many small RAID groups with fast

rebuild times and larger RAID groups with lengthy rebuild times. Formula 4.2 also

disguises the amount of data that would be lost as a result of any single failure,

however rarely that may happen.

Storage systems and RAID groups should become more reliable as they store

more data. Existing storage technologies continue to develop apace, yet the relia-

bility of each device has not increased as quickly as its capacity. Prospective storage
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technologies like glass and synthetic DNA also promise large capacities, and their

exact reliability remains uncertain. High capacity storage technologies allow in-

creasing amounts of data to be concentrated within each RAID group; however, as

the total probability of failure R(Tk ) decreases with fewer RAID groups that each

have greater capacity, the probability of failure relative to capacity may increase if

capacity grows in each group more quickly than reliability increases. In order to

model the relationship between group capacity and reliability, we must utilize a

metric that incorporates group capacity alongside reliability. We define the proba-

bility of failure relative to capacity with the formula:

F (s, t ) = Ps ×Cs , (4.4)

where F (s, t ) is the probability of failure relative to capacity, Ps is the probability of

a storage device or RAID group s failing over time t , and Cs is the storage capacity

of device or group s. Formula 4.4 quantifies in F (s, t ) the relationship between ca-

pacity and reliability such that storage groups with relatively low reliability and low

capacity can deliver a lower value for F (s, t ) than storage groups with much higher

capacity. By Formula 4.4, a RAID group that stores 1.000 TB should offer a lower

probability of failure p by a factor of at least 100 than a RAID group with a capacity

of 10 TB in order to compensate for its larger capacity. The value of F (s, t ) conveys a

numerical representation of how much risk lingers within the storage system that a

failure will result in a catastrophic loss of data. We describe the risk of catastrophic

data loss as the blast radius of a storage group or a storage system. The blast radius

of a RAID group is equal to its failure probability relative to its capacity as given in

Formula 4.4.
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4.3 Simulation Parameters

We simulate the reliability, performance, and cost of archival storage systems

using parameter values that describe candidate archival storage technologies. Our

simulator uses configuration parameters to define the performance, capacity, reli-

ability, and cost of storage devices that may be used within a storage system. The

output of our simulator therefore depends upon the parameters that we use for

each type of archival storage device. In this section, we present details of each stor-

age technology’s reliability and prospect for future development.

4.3.1 Archival Tape

Tape is a popular archival storage medium due to its high capacity, reliability,

stability when stored for long periods of time, and good performance on sequential

workloads. Its weaknesses are its poor random access performance, the high cost

of tape drives compared with tape media, and the length of time it can require to

access information—the time retrieve to the first byte.

Tape Reliability

One of the main advantages of tape as an archival medium is its ability to cost-

effectively store large amounts of data reliably and with minimal need for ongoing

maintenance. A 2012 study of the tape archive at the National Energy Research Sci-

entific Computing Center (NERSC), which consisted of 40,000 tape cartridges that

were between two and 12 years old, showed a reliability rate of 99.9991% when

reading data [3]. NERSC relied upon a single copy of data within its archive, a

choice facilitated by tape’s high sequential read and write speeds as well as its high

reliability as observed in the NERSC archive. The workload on the NERSC archive

included a 30% daily read rate, which is much greater than many other archival
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workloads. While such a workload requires a tape archive to perform as though it

were primary storage, it also serves the purpose of quickly discovering any prob-

lems that arise in the archive by continuously scrubbing or verifying the archive’s

data during each read operation, and continuous scrubbing preserves the archive’s

reliability by verifying that data is readable and not corrupted. We use the NERSC

study for our optimistic tape experiments with a failure rate of 0.0009% over 12

years or 0.000075% annually.

Another study of over 1 million tape cartridges shows that nearly 5% have at

least one unrecoverable bit error during their lifetimes while 0.3% have at least 10

unrecoverable bit errors [95]. In our experiments, we set the pessimistic tape relia-

bility to have a 0.3% annualized failure rate. The study finds that removing the least

reliable 3% of tape cartridges could significantly improve the reliability of the tape-

based archive as a whole. Tape as a storage medium is particularly sensitive to the

environment in which it is stored and used; work continues on studying the im-

pact of environmental pressures on the reliability of tape and how environmental

conditions should inform the design of tape-based archival systems [6].

Tape Development

Tape has been developing consistently since its first introduction as a storage

medium. The popular LTO-8 format of tape cartridges features 12 TB of storage

capacity and approximately 300 MB per second of read and write throughput [50].

New generations of tape become available every two to three years with each gen-

eration of tape drive being able to read tape cartridges that are one or two gen-

erations older than it. The LTO Ultrium consortium has published a roadmap for

increasing tape cartridge capacity to 192 TB [21] within 10 to 15 years.
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4.3.2 Hard Disk

Hard disk drives (HDDs) are a popular medium for long-term archival storage

due to their high capacity, widespread availability, and adaptability to sequential

and random-access workloads. The difficulty of using them within archival systems

includes their lower reliability compared with tape and recently their lower rates of

development for capacity and performance.

HDD Reliability

We examined the reliability of hard disk drives using the Backblaze hard drive

data set [11]. We analyzed six years of the dataset to measure the observed reliabil-

ity and life cycle of hard drives in an online backup setting. Our goal for analyzing

the Backblaze data is to gather insight on how hard disk reliability may be chang-

ing over time. We also observe the way in which trends in hard drive developments

affect decisions about device retirement and replacement within Backblaze’s server

infrastructure. We apply these insights to our simulation model.

We began our data analysis by importing the hard drive statistics available from

Backblaze. Next, we removed from the dataset of all of the drives that were ac-

tive within the Backblaze data center on the first day for which data is available:

April 10, 2013. We removed all of these drives from our analysis because we do

not know from the information available how many drives failed or were removed

before that first day in the dataset, and including them would introduce a bias to

our observations. We measured all drives by the date that they were added into the

Backblaze storage system, and we counted how many days each drive was active in

the system until it either failed or was retired for another reason. A drive was said

to have failed when the dataset’s marker for failure became true. A drive was said

to have been retired after the last day it appeared in the dataset and if the drive was
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Figure 4.2: The first day on the x-axis begins for each drive when it was added to
the Backblaze storage system. Failure and retirement rates are shown in percent-
ages. The number of drives over time shows the number that survived in the data
center as drive age increased.

not already marked as failed. Next, we determined how many drives survived for a

given number of days. We also calculated how many drives failed or were removed

from Backblaze’s system after a given number of days. Finally, we determined the

daily failure and retirement rates for all hard drives as shown in Figure 4.2. We also

show in Figure 4.3 the cumulative portion of hard drives that were active, retired,

or failed over their lifetimes and based on the calendar year in which the drive was

first added to the storage system.

Figure 4.2 shows the 30-day trailing moving average of the daily hard drive fail-

ure and retirement rates. We observe that the failure rate for all drives combined

remains stable until after the drives have reached approximately 5 years of age.

The failure rate begins to increase after five years as the drives reach the end of

their warranty periods. In Figure 4.3, we observe that hard disk failures grew more
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Table 4.1: Number of Operational Days Before Reaching HDD Failure Rates

Drives Added During Year
% 2013 2014 2015 2016 2017 2018

1% 67 143 168 268 332 252
2% 208 332 357 565 589 440
3% 394 503 554 948 745 582
4% 491 684 721 1349 1104 –
5% 618 816 941 – – –
10% 1195 – – – – –
15% 1793 – – – – –

quickly in 2013 and 2014 than they did in 2017 and 2018. Table 4.1 shows the

number of days taken to reach different failure rates and separated by the year in

which the drive was added to the Backblaze data center. Drives added in 2013 took

slightly over two months to reach a 1% failure rate, but drives added in 2018 took

approximately eight months to reach the same 1% failure rate. We attribute this

observation to the improving reliability of hard disk drives in recent years. We also

observe that failure rates remain mostly consistent with time up to five years for

drives added within each calendar year. Nevertheless, retirements rather than fail-

ures are the dominant reason for the removal of hard disks from the Backblaze data

center.

We considered three possible reasons why a hard drive would be removed with-

out failing. First, the hard drive may be part of a model or batch of drives that are

likely to fail in the near future. In order to preempt multiple simultaneous drive

failures that could result in data loss, system administrators may choose to replace

the faulty drives with a more reliable model; however, as shown in Figure 4.2, we

did not observe a high rate of premature drive failures, nor did the pattern of drive

retirements follow any sudden increases in drive failures. A second possible reason

for drive retirement is the increasing likelihood of failure as each drive ages, par-
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ticularly after approximately five years of operation as shown in Figure 4.2. Even

though Backblaze’s storage system may have enough redundancy to survive a high

rate of drive failures, system administrators may prefer to control the timing of data

migration between new and old drives rather than repairing drive failures as they

occur. A third possible reason for early drive retirement is the availability of higher

capacity drives which, if used to replace older drives, offer much greater capacity

while using the same or less power.

HDD Development

The ever-increasing capacity and performance of hard drives helps to acceler-

ate the replacement cycle of old drives; however, a reduction in the pace of hard

drive development will also reduce the benefits of replacing older drives with new

ones. Figure 4.3 shows a comparison of the portion of active, retired, and failed

drives throughout their lifetimes and separated by the year in which each drive was

added to the Backblaze data center. The portion of active, retired, and failed drives

varies over time depending upon which year the drive was added to the storage

system. Drives that were added in 2013 and 2014 began to be removed rapidly as

they reached 1500 and 1200 active days, respectively; however, the cumulative to-

tal of drive failures did not increase dramatically during that time. Drives added in

2015, on the other hand, have been retired much more slowly as they age through

1500 active days compared with those added in 2013 and 2014. Hard drives avail-

able in 2018 and 2019 do not offer as compelling of a reason to replace drives from

2015 due to the slow pace at which hard drives have developed between 2015 and

2019; furthermore, the improvement in hard drive reliability supports their contin-

ued use as they approach five years of age. We conclude that a slowing growth rate

of hard disk capacity will lead to fewer hard disk retirements. Instead, the reliabil-
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Figure 4.3: Figures on the left show data for all drives that were added to the Back-
blaze data center within the specified calendar year. Figures on the right show the
first 1,000 days and top 20% of the data. The x-axis corresponds to the lifespan for
each drive.

75



ity of hard disks at and beyond five years of age will become increasingly important

for disk-based storage systems.

When describing their choices for removing older model hard drives, Backblaze

confirmed that 8 TB drives replaced 2 TB drives [65] and 12 TB drives replaced 3 TB

drives [66] that were more common in 2013 and 2014 than in 2015. The availability

of higher capacity drives and the need for more data capacity within the same data

center motivate decisions to upgrade hard drives from older, lower capacity models

to newer, higher capacity models. For this reason, the pace of hard disk drive de-

velopment will, to a large extent, determine the demand for drives within backups

and other cold storage systems such as archives.

The International Disk Drive Equipment and Materials Association published a

roadmap in 2016 indicating that hard disk drive capacity will continue to scale for

years to come. Capacity will increase as manufacturing techniques improve and as

existing technologies for increasing density mature [128]. New technologies like

Heat-Assisted Magnetic Recording (HAMR) and Heated-Dot Magnetic Recording

(HDMR) will improve HDD capacity when they become available; however, since

new technologies can be challenging to manufacture reliably at scale, their emer-

gence and the capacity they promise may prove to be uneven and prolonged. As we

observe in the Backblaze dataset, significant increases in hard drive capacity moti-

vate the adoption of newer drives. If the availability of higher capacity hard drives

becomes increasingly terraced in years to come, we can expect the adoption of new

generations of hard drives also to follow an increasingly uneven pattern following

the availability of new technologies that increase hard drive capacity.
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4.3.3 Solid State Disk

SSDs are ideal for demanding workloads due to their low latency and high through-

put. SSDs have become prominent for primary data storage where performance is

critical and where cost per gigabyte is not a primary concern. SSDs have also bene-

fited from advances in manufacturing and design that lead to ever greater capacity,

improving performance, and excellent reliability.

SSD Reliability

The reliability of SSDs has been studied within the context of demanding data

centers. Meza et al. show that SSD failure rate increases non-monotonically with

time and with the amount of data written to the device due to multiple different

failure modes that dominate at different times during the lifetime of an SSD [88].

Reliability also varies widely with SSD model and the workload on the drive. Schroeder

et al. found that the rate of unrecoverable errors grows linearly with the number of

program-erase (PE) cycles across multiple SSD models. Furthermore, newer SSD

drives offer similar or better reliability compared with older SSD models notwith-

standing the smaller lithographies and additional bits per cell in newer drives [113].

SSDs can trade PE endurance for capacity by increasing the number of bits stored

per cell of flash. We assume in our simulations that SSDs have an annual failure

rate of 0.58% based on figures published in SSD data sheets [111].

SSD Development

SSDs are increasing in capacity over time as their development continues. Over

time, declines in the cost of manufacturing each byte of storage dominate the total

cost of data storage. SSDs have increased in capacity due to smaller lithographies,

by stacking multiple layers of flash cells to form a three-dimensional flash chip,
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and by increasing the number of bits stored in each cell of flash. Recent additions

to the number of bits per cell [81] and the number of layers in each flash chip [82]

promise to extend the development of flash-based SSDs into the future.

4.3.4 Optical Disc

Optical disc (ODD) is a mature technology that promises durable and scalable

archival storage. Optical disc is less sensitive to its long-term storage environment

than other archival technologies such as tape [123]. Disc offers a 50 year lifetime for

write-once archival storage media [124], and each new generation of optical drives

remains compatible with every previous generation of optical media. Future gen-

erations of optical disc will triple capacity from 300 GB to 1 TB per disc [107]. Still,

the slow rate of development, limited number of vendors, and the shortage of de-

tailed information about long-term cost and reliability present ongoing challenges

to optical disc as an archival storage technology. We assume for the purposes of

our simulations that optical disc has a reliability equal to that of optimistic tape.

4.3.5 Archival Glass

Glass has been proposed as a novel long-term storage technology for use in data

centers and archival systems [8]. Glass-based storage utilizes femtosecond lasers to

encode data into a multi-dimensional pattern within a small plate of glass. Glass

could offer good potential as a storage technology due to the low cost of manu-

facturing the storage medium, high data density, and excellent reliability. Ongoing

work is refining the technology by increasing density and throughput for both read

and write operations. Unlike tape and optical disc that have separate storage me-

dia and drives, glass-based storage requires separate media, drives for reading, and

drives for writing.
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4.3.6 Archival DNA

DNA has been envisioned as a high-capacity medium for long-term archival

data storage [126]. DNA promises storage density that is orders of magnitude greater

than existing storage technologies [97]; however, there remain many challenges to

implementing a functional storage system that uses DNA as the storage medium [30].

Synthetic DNA requires a synthesizer to encode data within DNA molecules, a repos-

itory to store the DNA over a long period of time, and a sequencer to read data from

the DNA molecules. Takahashi et al. recently demonstrated an end-to-end storage

system with an approximate total cost of $10,000 that synthesizes, stores, and re-

trieves data using DNA molecules [126]. The principal challenges of utilizing DNA

for archival storage remain a high latency for read and especially write operations,

the difficulty of encoding data into the language of DNA, the reliability of the stor-

age system, and the cost of materials and equipment.

DNA could potentially store up to exabytes of data per mm3 [30], potentially

over thousands of years [34] if the storage system uses enough redundancy and ef-

fective protection from contamination and degradation. Unlike other storage tech-

nologies, DNA has been used by biologic organisms to store and transmit infor-

mation throughout history. DNA does not require migration of data from older

to new generations of storage media as time passes because the underlying stor-

age medium remains the same, assuming that the encoding scheme for binary

information stored in DNA remains accessible into the future. Erasure encoding

schemes have been proposed to protect DNA storage from the possibility that the

DNA molecules will degrade over time [30,34,139]. Given some assumptions about

its performance and cost, DNA can be compared with other storage technologies

on the basis of its cost to store data over time while achieving a needed amount of

reliability.
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We expect that DNA-based storage systems will remain in development for years

before they become commercially viable; however, we begin our simulations for

DNA at the current year in order to easily compare it with other technologies while

demonstrating how DNA’s cost changes with the target reliability of the storage sys-

tem.

4.4 Experimental Results

We design our reliability experiments to measure the total cost of using each

archival storage technology in a variety of RAID configurations over 25 years of op-

eration. We vary the number of data drives in each RAID group, the number of

parity drives, and the maximum age of the storage devices before they retire from

the storage system. The values for data drives and parity drives in the RAID con-

figuration, retirement age, and the type of storage technology remain unchanged

during each simulation. Separate simulations test different combinations of values

and storage technologies. We quantify the total expected reliability of each storage

system by first calculating the system’s reliability against failure during one year of

operation. We use the reliability value to determine the number of nines of relia-

bility for each storage technology and RAID configuration. We calculate the nines

of reliability as the number of consecutive significant digits that are equal to nine

above a total storage system reliability of 99%.

We use the minimum reliability and maximum blast radius found during each

simulation to represent that simulation’s RAID configuration, and the cost of each

configuration, measured in US dollars, is the cumulative acquisition and energy

cost after 25 years. For each storage technology, we plot the minimum cost to

reach zero through 16 nines of reliability. Each simulation begins with an initial

minimum capacity of 1 PB that grows by 30% each year.
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4.4.1 Reliability Cost Inflation

Our baseline experiments as shown in Figure 4.4 were based on the values in

Tables 3.3 and 3.4. We ran our simulations to describe the outcome of various con-

figurations of parity, and as we considered various combinations of parity and data

drives, we do not always find a configuration that matches each of the points of the

figure. We assume that, for any particular data point, more reliability is better than

less reliability, and for each quantity of “nites” of reliability for which we do not find

a configuration, we search for configurations that deliver more nines of reliability

to fill in and represent the points where we found no configuration. Flat lines be-

tween different nines of reliability for each technology indicate that more reliable

RAID configurations stand in for lower levels of reliability for which we found no

configuration.

We also include separate simulations for hard disks with uniform failure rates

and exponential failure rates. A uniform failure rate for hard disks is an unchanging

annual failure rate (AFR) of 1%. We abbreviate uniform failure rates as “const. fail”.

Experiments for hard disks with exponentially-growing failure rates have a uniform

AFR of 1% until five years of operation within the archival system, and the failure

rate doubles each year thereafter. We label such simulations with “exp. fail”. As we

discussed in Section 4.3.1, experiments for optimistic tape use an AFR of 0.000075%

that does not grow over time while our pessimistic experiments for tape use a 0.3%

AFR that grows 10% each year.

We observe that optical disc (ODD) costs the most of all storage technologies

due to its limited road map of future developments. We study ODD further in Sec-

tion 4.4.8. SSDs also have a high cost across the entire range of reliability values

because of their high cost per byte of storage relative to other technologies. We

explore the cost and reliability of SSDs further in Section 4.4.5.
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add both libraries and drives to spread parity over more devices.
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Our pessimistic experiments for tape and hard disk both return similar results

for the highest levels of reliability. We conclude from this that hard disk and tape

are competitive in terms of cost for reliability in archival storage. The low AFR

of optimistic tape requires less RAID parity and therefore fewer tape cartridges to

reach 16 nines of reliability than pessimistic tape, and the fewer number of tape

cartridges and other hardware like tape drives needed to support them results in a

total cost that is 43% lower for our optimistic tape results. If the actual reliability of

future tape media is better than our pessimistic AFR of 0.3%, we expect that tape

will cost less than hard disk at every level of reliability.

Our experiments for archival glass show that it could become a highly cost-

effective storage medium, granted that our assumptions about the cost of glass

media and drives prove accurate. We explore other possibilities for glass in Sec-

tion 4.4.6. Synthetic DNA, on the other hand, struggles to compete with existing

technologies due in large part to the high cost of materials for each DNA molecule.

We further explore DNA in Section 4.4.7.

We use Formula 4.4 from Section 4.2 to calculate the blast radius for each stor-

age device. We defined the blast radius to be a function of the failure probability of

a RAID group relative to its capacity. A large blast radius indicates a high average

probability of losing data when a RAID group fails. As shown in Figure 4.5, the blast

radius varies widely by storage technology and cost. In this experiment, we present

the blast radius for devices with a maximum age of 10 years. Each storage technol-

ogy has multiple data points since different RAID configurations result in different

values for cost, RAID group capacity, and RAID group failure probability.

We observe that archival glass has a relatively large blast radius due to the high

capacity of each storage device. For many of the storage technologies like DNA,

HDD, and tape, blast radius can be minimized without much additional cost. DNA
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Figure 4.5: The total blast radius for an archival system depends on the reliability
of the storage devices, the amount of parity in each RAID group, and the capacity
of each device. The lower left quadrant of the figure represents the ideal outcome
of both low cost and a low risk of catastrophic data loss. The upper right quadrant
of the graph represents the higher costs and higher risk of data loss, which is an
undesirable configuration.
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and optimistic HDD offer both moderate costs and a low blast radius. Increas-

ing the capacity of either HDD or DNA would necessarily increase the blast radius;

however, we propose changes to their designs in Section 4.4.4 and Section 4.4.7 that

could further reduce their costs while preserving their low blast radius.

4.4.2 Cost and Reliability of Tape

We showed in Section 4.4.1 that reducing the AFR of tape media can have a large

effect on the total cost of an archival system across a range of reliability values. If,

however, the AFR of tape storage media increases as its capacity continues to grow

with time, how much more will tape archival systems cost while meeting the same

reliability goals? We ran simulations with increased AFR values for tape media from

0.5% to 5%. Figure 4.6 shows that the total cost of tape-based archival storage grows

with higher AFR values for tape media at each level of reliability; however, a tenfold

increase in AFR results in less than a doubling of total cost for 16 nines of relia-

bility. We see an 81% higher total cost with a 5% AFR compared with a 0.5% AFR.

We therefore observe that the cost of a highly reliable archive using tape increases

more slowly than the AFR of tape media. The large difference between our opti-

mistic and pessimistic experiments for tape in Section 4.4.1 reflect the impact on

cost of an increasing AFR as devices age. With all other tape experiments using

an AFR that grows 10% annually with device age, the optimistic experiments show

that a stable storage medium significantly reduces the cost of highly reliable storage

because stable old storage devices can remain in the archive without dramatically

increasing the probability of data loss. We conclude that the stability of the AFR for

tape can have a large impact on the cost of reliably storing data over the long term.
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Figure 4.6: The cost of reliability for tape increases marginally with the AFR of tape
media.

4.4.3 Hard Disk Reliability

Figure 4.7 shows results of simulations using two models for hard disk reliability.

We compare the uniform failure rate with the exponential failure rate for hard disks

as described in Section 4.4.1 while also comparing different maximum ages for the

drives in the archive. The max age is the age at which drives are retired from the

storage system and replaced with new drives.

We observe as expected that growing failure rates result in higher costs over-

all compared with the optimistic case of hard disks that fail with an unchanging

AFR of 1%. The most economical option for all levels of reliability with drives that

have uniform AFRs is to keep the drives for as many years as possible because such

old drives would not fail with any greater probability than new drives. For drives

with failure rates that increase after five years of operation, keeping the drives for

11 years proves to be the most expensive option. Instead, it is best to keep drives
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Figure 4.7: Hard disks with exponentially growing failure rates cost more to use
than drives with uniform and unchanging failure rates. Lines that do not extend
across the entire x-axis indicate that we found no RAID configuration to reach
those higher levels of reliability.
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for approximately seven to nine years in order to minimize the cost of the archive

across a range of reliability values while simultaneously extracting as much useful

lifetime from each drive as feasible. Keeping the drives for longer reduces the stor-

age system’s total reliability so that additional parity must be used to compensate

for the increasing failure rate of old drives, and adding more parity drives causes

the cost of the system to increase. Uniform failure rates for hard drives reduce the

cost of an archive with 16 nines of reliability by 10%. We conclude that if hard disks

could be made to last at least 10 years instead of five, the cost of constructing a

reliable archive using hard disks would decrease accordingly.

4.4.4 Hard Disks With Removable Media

Hard disk drives currently have physically combined platters and recording de-

vices. We designed experiments to explore the possible benefits to the cost of relia-

bility in archival storage of separating platters from the HDD recording mechanism.

In these experiments, we use the same capacity and failure rate as our other exper-

iments with hard disks. We assume that the platters of the drive by themselves

will cost 75% of what a typical hard disk costs and that the archive will use similar

mounting infrastructure to a tape library system. Finally, we assume that the read

and write mechanism for the removable platters will cost more than a traditional

hard drive but less than a tape drive. We use the estimate that the read and write

mechanism will cost 10% of what a tape drive costs.

Figure 4.8 compares the cost of reliability as we vary the time between succes-

sive generations of hard disks with removable platters. We also compare traditional

hard disks as described in Section 4.4.1. We observe that separating hard disk plat-

ters from their read and write mechanism could cost significantly less than tradi-

tional hard disks in highly reliable archival systems, but the amount of the sav-
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Figure 4.8: The cost of hard disks with separable platters in archival systems de-
pends on how often the technology is updated with increased capacity and perfor-
mance.

ings depends on how frequently the hard disk technology is updated. Updating the

technology every one to three years could save between 42% and 20% compared

with the cost for traditional hard disks. We conclude that exploring alternative de-

sign possibilities for established technologies like hard disk drives could result in

meaningful savings for demanding and reliable archival systems.

4.4.5 SSDs for Reliable Archival Storage

Results in Section 4.4.1 showed that SSDs cost more than most other technolo-

gies for archival data storage. We explore the effects of increasing SSD capacity by

considering the possibility that the current pace of SSD developments will continue

further into the future and by examining the effects of increased AFR on the cost

of reliable archival storage using SSDs. Figure 4.9 compares the cost for reliabil-
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Figure 4.9: SSD capacity and development dramatically affect the cost of reliability
in archival systems using SSDs.
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Figure 4.10: Higher AFR values have a marginal impact on the cost of reliability in
SSD-based archival storage.
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ity in archival storage if the development of SSDs continues apace for seven to 25

years. We observe that, as expected, a longer development roadmap, which would

result in a lower cost per byte of SSD storage, reduces costs for SSD-based archival

storage relative to a shorter development roadmap. We also observe that relatively

short extensions of the SSD development roadmap can dramatically decrease the

cost of SSD-based archival storage. Extending the development of SSDs apace for

10 to 15 years can reduce the cost of archival storage with 16 nines of reliability by

52% and 75%, respectively.

The emergence of QLC flash along with continued scaling and stacking of flash

layers have increased capacity and reduced the cost of data storage in SSDs, yet

such changes may come at the expense of SSD reliability. Some have argued that

the lower endurance of novel SSD technology such as QLC outweighs its cost ad-

vantage and renders it unsuitable for archival storage [121], but the emergence of

denser SSD technology may prove to offer cost advantages over less dense and, by

extension, more reliable SSD technologies if the increased density does not prevent

archival systems from offering a similar level of reliability at a lower total cost.

What effect would lower SSD device reliability have on the cost of archival sys-

tem reliability over the long term? Figure 4.10 shows that large increases in AFR

have a relatively small impact on the overall cost of reliability for archival storage

with SSDs. Doubling the AFR from 0.5% to 1% increases the cost of archival stor-

age by 8% over 25 years. Even if future developments to SSDs come at the expense

of some device reliability, we predict that the increased capacity of such SSDs will

notwithstanding make them ever more suitable for archival storage.
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Figure 4.11: The cost of storing data in glass increases marginally with the cost of
a reader drive.

4.4.6 Archival Glass

Archival glass promises to be a highly reliable storage medium, yet the exact

cost of the hardware needed to read and write data into glass remains unknown.

We designed experiments to measure the effect of increasing the cost of a drive

to read glass from our baseline of $1,000 to $10,000, which is also the cost of the

drive to write data in our experiments. We set the cost of media to $1 and its

AFR at 0.01%. We choose a $1 cost for media to reflect the simplicity of the glass

medium [8].

As shown in Figure 4.11, increasing the cost tenfold of a drive for reading data

from glass increases the total cost of archiving data in glass by 78% for 16 nines of

reliability. The total cost of reliability in glass storage thus increases only modestly

with the price of its drive for reading because the intrinsic reliability of the glass

medium requires only minimal parity to achieve high levels of reliability. We con-
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Figure 4.12: The cost of reliability in DNA-based archival storage depends upon
the capacity and cost of each DNA molecule as well as the forward compatibility of
DNA sequencers and synthesizers.

clude that glass has an advantage over other technologies due to its low cost and

high reliability as a storage medium.

4.4.7 Synthetic DNA for Reliable Archival Storage

Synthetic DNA is currently in development, and we do not yet know how its

development will proceed or if it is likely to provide the features that we have mod-

eled. Although it is not our goal to predict the cost of individual DNA components

and storage devices, we present these results to provide a baseline of performance

and cost against which DNA-based archival storage systems can be compared and

developed as time passes. We also leave it to continuing work to assess the real per-

formance, cost, and reliability characteristics of DNA-based archival storage sys-

tems should they become commercially available.
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Our previous experiment in Section 4.4.1 calculated the cost of DNA storage

using a baseline of 1 TB per DNA molecule. We explore the effect on cost for reli-

ability of increasing the capacity per molecule and, alternatively, envisioning DNA

sequencers and synthesizers that can read and write any molecule of DNA pro-

duced in the future. We assume that each DNA molecule costs $100 in materials

with an AFR of 1%, the sequencer costs $1,000, and the synthesizer costs $9,000.

Figure 4.12 shows that cost for each level of reliability decreases as the capac-

ity of DNA increases. Cost for 16 nines of reliability decreases by 39% as capacity

increases from 1 to 5 TB and by 68% with a capacity of 100 TB; however, enabling

sequencers and synthesizers to read and write DNA molecules created with future

generations of DNA technology reduces the total cost by 60% compared with our

baseline that does not support forward compatibility. We conclude that flexibility

in the design of DNA storage systems can help to dramatically reduce their cost for

reliable archival storage.

4.4.8 Cost of Preserving Fixed Amount of Data

The demand for new advancements in hardware reflects the presumption that

the demand for data storage is growing. If an archival system stores a fixed amount

of data over a long period of time, then the controlling factor in the cost of the

archival system becomes the initial acquisition cost of the system and the reliabil-

ity of the storage devices within it. Figure 4.13 shows the total cost of an archival

system implemented with each storage technology to preserve the same data over

25 years without adding to or modifying the data.

In this experiment, optical disc proves to be competitive with both tape and

hard disk, particularly if we assume that hard disks exhibit an increasing probability

of failure as they age. The stability and reliability of optical media also offsets its

94



0 2 4 6 8 10 12 14 16
Nines of Reliability

0

50000

100000

150000

200000

250000

300000

350000

Co
st

 ($
)

Cost of Reliability for 1 PB of Storage
dna
glass
hdd, const. fail
hdd, exp. fail
odd
ssd
tape, optimistic
tape, pessimistic

Figure 4.13: The cost of reliably storing 1 PB of data favors devices that offer high
reliability.

limited prospects for development. Synthetic DNA and glass differ dramatically in

terms of cost because of the disparity in our assumptions about the costs of their

storage media, and our assumptions about the higher AFR of DNA compared with

glass cause DNA to increase in cost more than glass as the storage system provides

more nines of reliability.

4.5 Summary

Reliability is an important consideration for selecting and designing an archival

storage system. Existing storage technologies are each capable of achieving many

levels of reliability by incorporating the necessary amount of parity and redun-

dancy, given the reliability of each storage technology; however, each existing stor-

age technology has limitations that reflect the compromises inherited from its de-
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sign. Novel storage technologies like glass and synthetic DNA may, if they become

available in the future, outclass existing storage technologies over a range of pos-

sible use scenarios. In particular, the low cost and stability of archival glass me-

dia will allow glass to compete with tape for the lowest-cost technology for archival

storage systems in the long term. Synthetic DNA may prove cost effective for highly

reliable archival storage systems if, for instance, its design can relax the constraints

of compatibility between different generations of technology. With such possibil-

ities in mind, we expect that novel storage devices will outperform existing tech-

nologies for highly reliable archival systems in the future.
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Chapter 5

The Cost of Workloads

Archival storage systems, although not often considered for their performance

as much as for their cost, capacity, and reliability, meet the vital need for long-

term storage that may nonetheless have significant performance requirements. We

present empirical observations that confirm the intuition that archival workloads

are both varied and often exigent. We present simulation data with a range of dif-

ferent workloads to explore the effect of workload on the cost of acquiring and op-

erating an archival storage system. We evaluate our results to describe preferred

workloads characteristics for each storage technology.

5.1 Introduction

Archival storage systems have long served the role of preserving information at

a minimal cost over an extended time. As the amount of data in digital archives

continues to grow, so must the capacity and performance of the devices and sys-

tems that store it.

Storage technologies that contend for applications in archival systems must keep

pace with the ever-growing demands for capacity, performance, and reliability. Each
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storage technology offers unique features, limitations, and path to future devel-

opment, and their unique capabilities may make them more or less suitable for a

given archival system.

The suitability of each technology for archival storage depends upon how the

technology’s features and development roadmap align with the particular demands

of an archival storage system. Existing storage technologies may suit some work-

load scenarios more than others since no single storage technology dominates all

others in terms of cost per byte of storage, performance, and development roadmap.

The design of archival systems using different storage technologies can greatly af-

fect the cost, performance, reliability, and scalability of archival systems, and the

variability of archival demands and storage technology developments further com-

plicates the implementation of archival systems that both meet their users’ needs

and minimize long-term costs.

The relationship between archival workload and total cost of ownership has

been defined only in the abstract. Intense workloads, it is reasoned, lead to greater

total costs of ownership. Yet the reality of the relationship between workload and

cost must be more complex than such cursory assumptions. Figure 5.1 illustrates

a hypothetical relationship between two imaginary storage technologies, Device A

and Device B. The figure maps the minimum cost to maintain an archival system

over time with various workload conditions. The workload conditions, expressed

here as annual read operations, affects how many storage devices must be used to

serve the required workload. The storage technology with the lowest cost at a given

simulation time and workload covers the corresponding location on the map. The

map as shown illustrates an example of the transition between two technologies,

and notably because different technologies develop at different rates over time, the

line between the two device types may be non-linear. We can further complicate
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Figure 5.1: In this hypothetical example, we present a comparison of two device
types Device A and Device B. The y-axis represents the intensity of the archival
workload in the total number of read operations per year from the archival work-
load. The x-axis represents the time in the simulation, where time 0 is the begin-
ning of the simulation, and the end of the axis is the end of the simulation. Each
area on the plot shows which device, A or B, has the lowest total cost of ownership
for any given workload intensity and time during the simulation.
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Figure 5.2: We show here a hypothetical example of the transitional space between
the two device types as their total costs may prove very similar for such workloads
during the simulation.

our picture of the relationship between cost and workload.

Figure 5.2 shows a similar map to that described above; however, here we show

a transitional zone between the two devices. The transitional zone blurs the bound-

ary between the two technologies in order to recognize the fact that our simulations

return data that may vary between separate runs with identical information, and

furthermore, the difference between two types of storage may be negligible within

the transitional zone, falling within the bounds of a 95% confidence interval, for

example.

The need to predict the viability of different storage technologies for archival

storage systems emerges from the novel opportunity to define the boundaries of
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the relationship between candidate storage technologies for archival storage sys-

tem and the workload that it must serve. In the following sections, we present de-

tails of our measurements and findings.

5.2 Simulator Setup

Our simulation model calculates the cost, performance, and reliability of an

archival system by first taking as input a set of parameters for each simulation

experiment. The parameters include the type of storage that is available for the

simulation, the storage device cost, performance, reliability, power consumption,

and other related features. The simulation parameters also include values for the

amount of data that the archival system must store and the rate at which the data

storage must grow to meet increasing demands.

We calculate the performance of the archival system in terms of both through-

put and latency. Latency does not directly affect throughput as devices spanning

several orders of magnitude from microseconds in the case of SSDs to minutes in

the case of Tape may deliver similar levels of throughput; however, latency can re-

duce the effective throughput of any storage technology by increasing the amount

of time required by each storage device before it can begin to operate at its design

throughput. Latency then can affect the total throughput that a storage system may

achieve by limiting the amount of data that it can access over any given length of

time.

We calculate total throughput as the maximum combined throughput of stor-

age devices available for reading or writing data within an archival system. The

total throughput available to read a single piece of data depends upon the perfor-

mance of the individual device or devices where that data is stored. Throughput in

the context of our simulations is thus a measure for performance that scales with

101



the number of storage devices in the storage system, and the total system through-

put can grow by adding more drives to read or write data. At the same time, the

growth of total throughput does not necessarily increase the throughput available

to read any singular data object, as that throughput depends on individual devices.

Storage technologies with removable storage media such as tape, glass, and syn-

thetic DNA can still scale the combined throughput of multiple tape drives so long

as the necessary infrastructure exists for writing data to multiple devices simulta-

neously.

In addition to total throughput, we also calculate the latency for reading and

writing data into the archival system. Unlike throughput, the performance measure

of latency does not scale as more drives are added to the storage system. A tape-

based archival system, for instance, requires a fixed amount of time to load a tape

cartridge into a drive, and the latency of accessing a tape does not decrease as the

total system throughput increases; however, alternative storage technologies have

the potential to offer better performance than others in terms of throughput or

latency. Taking the technological features of each storage device and the simulation

parameters together, the simulator searches for a configuration of storage devices

that meets the requirements for capacity, reliability, and performance at the each

time during the simulation.

5.3 Experimental Setup

We set up the simulator to measure the effects of different workloads upon

archival systems using any one of the storage technologies that we consider. We

measure workloads in terms of the total number of read operations per year since,

as noted in Chapter 2.1, archival storage systems follow a write-once-read-maybe

pattern. The total number of write operations for archival data must meet the de-
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mands to write the data into the archival system, but once written, the variable

number of reads can prove to be either small and possibly insignificant or large

and possibly decisive.

We configure the workload parameters of the simulator to run simulations with

read workloads between 0 and 10 million read operations annually, or approxi-

mately equal to between 0 and 0.3 operations per second in the archival system.

Since some storage technologies like SSD can respond quickly to random-access

workload requests while other devices like tape respond more slowly with higher

latency, the simulator must scale the archival system appropriately by adding a suf-

ficient number of drives to meet the demand of a the archival workload. For this

reason, we modified the simulator to add more drives when needed to meet the

demands for additional throughput and read operations.

Each device type characterized in our simulation model includes as part of its

parameters, values that describe its throughput on read and write operations and

also its latency. We compare these values with the workload parameters for each

simulation, and we vary the workload parameters between 0 and 10 million read

operations annually to explore a wide range of workload demands. The simulator

calculates how many drives of a particular type will be required to achieve the per-

formance threshold from the workload parameters. We can calculate the number

of drives needed for a particular workload as

Td = Size

Rd
+Ld + Ad +Ud , (5.1)

where Td is the time on average used by the drive to read each data object,

Size is the average size of data objects in the workload, Rd is the read throughput

of the storage device, Ld is the time to load or spin up a drive from idle, Ad is

the average latency off the average latency of the device when seeking for data,
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and Ud is the time to unload a drive if necessary. We use a similar formula with

appropriate parameters for write operations. We can then calculate the number of

drives needed for a particular workload as

Nd =
⌈

Td ×Ops

Len

⌉
, (5.2)

where Nd is the number of drives needed, Ops is the number of read opera-

tions in the workload measured annually, and Len is the length of a year measured

in seconds. We measure the length of a year in seconds because the throughput of

each drive is measured also in seconds. We also take the ceiling in Formula 5.2

because the performance of the storage system must meet or exceed the work-

load specification. After calculating Nd , we proceed to add drives to the simulated

archival system to meet the workload demand. Although Formula 5.2 affords us the

ability to estimate the number of drives required to meet a given workload, there

remain relevant albeit peripheral factors that may affect the performance of the

storage system.

In calculating the number of drives needed to serve a given workload, we have

included the principal factors that affect the total performance of a storage system;

nevertheless, there are other factors that can impact the performance of the stor-

age system. Foremost among these is that the passage of time often leaves older

devices with somewhat slower performance over their lifetimes while new devices

have higher performance. The total throughput of the storage system will also be

affected by external events like power outages, device failures, and maintenance.

Our simulator as described in Chapter 3 tracks delays caused by device failures

and the performance of new drives; however, we limit the scope of our work to

those factors that derive their importance from the design of the storage devices

themselves, including throughput, latency, and reliability, and we rely on the sim-
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ulator to expose the relationships between each factor through the results that it

produces.

5.4 Experimental Results

The definition of archival storage allows for the possibility of a wide range of

workloads that vary in intensity. We measure the intensity of an archival workload

in terms of its annual read operations, and we configure our experiments relating

to the cost of archival workloads by varying the number of read operations that the

archival systems serve. Our experiments vary the annual read operations between

zero and 10 million to explore the effects of various workload intensities upon dif-

ferent storage technologies.

5.4.1 Workload and Total Cost

Figure 5.3 shows the results of simulations for the total cost of archival sys-

tems constructed with different storage technologies, including both existing and

prospective. As before, we consider the prospective technology of archival glass in

lieu of the optical disc to evaluate the potential for optical storage technologies.

Synthetic DNA as a storage technology proves to be competitive with other stor-

age technologies for workloads with the lowest intensity, but the cost of DNA rises

linearly with the demands of the workload it serves. The growth of cost for DNA-

based archival storage suggests that synthetic DNA can best serve those archival

systems that require large capacity on the one hand and small workload of read

operations. Nevertheless, as time passes, there may prove to be more opportunities

for synthetic DNA relative to other storage technologies. The cost of other storage

technologies as shown in Figure 5.3 cluster in the lowest part of our simulation ex-
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Figure 5.3: The cost of archival storage depends upon both the storage technology
in use and the workload of the archival system. As different technologies feature
their own levels of scalability, the effects of increased workload differ between stor-
age technologies. Here, we show the cost of archival storage from the beginning
of the simulation. We plot the annual workload of the archival system in terms of
annual read operations on the x-axis and total cost of ownership on the y-axis.

periments, and we plot the same data again with only the first $500,000 of cost on

the y-axis in Figure 5.4.

Figure 5.3 and Figure 5.4 show the state of storage technologies for archival stor-

age relative to workload roughly as they exist at the current time, but in the case

of prospective storage technologies, we rely upon expectations for cost and per-

formance derived from published literature. Figure 5.4 in particular presents the

relative cost of each storage technology for a wide range of archival workloads. We

expect that, although traditional archival storage technologies like tape and hard
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disk provide sufficient capacity to meet current demands, the effects of increasing

workloads causes certain technologies to become uneconomical relative to others.

Hard disk drives and solid state disks, for instance, do not cost significantly more

to operate with even the most intense archival workloads that we evaluate. Tape,

on the other hand, becomes less economical as the workload’s intensity increases.

Tape is the most economical of existing and traditional storage technologies for

workloads up to 1 million annual read operations, but hard disk drives prove to

be more economical than tape for all workloads over 1 million annual operations.

Additionally, it becomes more economical to use solid state disks instead of tape

for archival storage systems that demand over four million annual read operations.

The performance of SSDs can therefore accommodate both a high-performance

and intense workloads as well as a moderate workloads while still costing less than

tape for the near-term at least. Solid state disks today have greater flexibility than

does tape for workloads that straddle the definition of archival and primary work-

loads.

Considering our definition of archival storage from Chapter 2.1, archival stor-

age systems imply association with low-intensity workloads, but there is no clear

boundary between archival and non-archival workloads. With such a definition

in mind, we may consider workloads to be more characteristic of archival as their

read intensity approaches zero. Similarly, we may also consider a workload to be

less characteristically archival as its intensity of annual read operations increases.

The lack of clear boundaries between archival and non-archival workloads reflects

the possibility that some archival storage systems may be used nearly as intensely

as primary storage systems [3, 129, 141]. Such archival systems would, at least hy-

pothetically, benefit from the use of storage technologies that can easily support

high-intensity workloads with a minimum of cost inflation over their use with only
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Figure 5.4: The first $500,000 of simulated cost on the y-axis reveals in greater de-
tail the relationships between existing and prospective technologies for a variety of
archival workloads. The cost of glass is lower than other technologies for workloads
with fewer annual read operations, but hard disk becomes more economical as the
workload’s intensity increases.

a small number of annual read operations. Figure 5.4 shows that tape becomes

less economical as the workload becomes less characteristically archival with grow-

ing intensity. Archival glass, which glass, which also employs separable media and

drives, suffers comparatively less than tape does with more intense workloads since

the cost of glass-based archival systems will exceed that of hard disk drives above

workloads of approximately 5 million annual read operations. We can extend our

observations to the end of our simulation time of 25 years to explore how our ex-

pectations change with time.

Figure 5.5 shows the total cost of archival storage systems with different storage
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technologies at the end of the simulation time of 25 years, varying only the total

number of annual read operations. As with our findings at the beginning of the

simulation, synthetic DNA proves to be competitive with both tape and archival

glass for the coldest workloads near zero annual read operations; however, its eco-

nomical attractiveness decreases linearly as the workload grows more intense. Syn-

thetic DNA passes the cost of hard disk drives near four million annual read oper-

ations. Tape, although less economical than glass for cold workloads, grows even

less competitive relative to glass as the workload demand increases. Tape and glass

both feature removable media, so we should expect that they would each suffer

a growing disadvantage with intense workloads relative to technologies like that

have combined media with drives, namely hard disk and solid state disk. Yet even

though their cost grows over time, the upper limit of our simulations with 10 mil-

lion annual read operations is not nearly enough to cause either tape or glass to

exceed the cost of hard disk or solid state disk.

We saw earlier that hard disk and solid state disk can be competitive storage

technologies for archival systems, and that they can deliver grater flexibility since

they can easily serve intense workloads for primary storage while still delivering

lover total cost of ownership than tape, glass, or synthetic DNA for certain archival

workloads. Figure 5.5 shows that the role for hard disk drives and solid state disks,

however easily they accommodate workloads ranging from cold to hot, will shrink

as the growth rates for their capacity decreases in the coming years and decades.

The demand for archival storage capacity and throughput will certainly outpace

the growth rate of HDD and SSD capacity, and the performance advantages of

HDD and SSD cannot compensate for their anemic capacity growth rates, partic-

ularly when compared with the potential of prospective storage technologies like

glass and, to a lesser extent, synthetic DNA. The value of HDD and SSD technol-
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Figure 5.5: The cost of archival systems for a range of workloads changes after 25
years of simulation time. The competitiveness of SSD and HDD decrease relative
to other technologies, while the competitive advantages of prospective technolo-
gies glass and synthetic DNA continue to strengthen. Tape continues to be a vi-
able option for archival storage systems well into the future, but its scaling limi-
tations leaves an opportunity for other technologies to serve high-intensity work-
loads more economically.
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Figure 5.6: We compare hard disk and tape over the 25 years of simulated time by
searching for the lowest-cost device type over a range of workload intensities and
as time passes. Here, we show workload in the y-axis and time in the x-axis.

ogy for archival systems may nevertheless remain relevant if, for instance, par-

ticular archival systems require lower latency than either DNA, glass, or tape can

deliver. We expect therefore that the future of HDD and SSD technologies will in-

creasingly relegate them to the niche of high-performance and low-latency archival

workloads.

Hard Disk Drives

Figure 5.6 presents a comparison of hard disk and tape based on their total cost

of ownership. We color areas on the figure for either tape or hard disk depending

on which device type costs the least for the combination of workload intensity and
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simulation time. We observe that tape, as expected, dominates the top of the figure

that corresponds to the more demanding workloads of annual read operations, and

tape dominates the bottom of the figure where the workloads are the coldest. As

time passes, we see that tape takes over more workloads where previously HDD had

dominated. The declining role of hard disk relative to tape over time reflects the

narrowing niche available for HDD in the future due to its likely future of slowing

development.

Although the long-term future of HDD technology for archival storage will be-

come more tenuous over time, it still remains true for now and at least a decade

into the future that hard disk drives will be more economical than tape for many

workloads. After the next decade, new technologies like archival glass and synthetic

DNA may become commercially available for widespread adoption, and the limited

lifetime of HDD-based archives could facilitate a fortuitously anticipated migration

to a new, cheaper, and more scalable storage technology like glass.

5.4.2 Workloads and Cost Scaling

Archival systems must be designed for maximum flexibility as they meet the de-

mands of their designers for capacity, reliability, and performance. Flexibility is im-

portant because it ensures the storage system can perform adequately even when

serving unanticipated needs, including more demanding workloads than that for

which it was designed. Each storage technology that we have considered offers

some baseline of performance, and some technologies can support much more

throughput relative to their capacity than others. Archival storage systems that uti-

lize hard disk or solid state disk, for instance, typically scale their performance at

the same time as they grow their capacity since each drive delivers its own capacity

and throughput. Tape, glass, and synthetic DNA, on the other hand, add storage
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capacity separately from throughput, and glass and DNA even add read and write

throughput separately. For these reasons, some technologies will serve workloads

with many read operations with almost the same cost as they will serve workloads

that have zero read operations.

Figure 5.7 and Figure 5.8 show the scaling of cost for each storage technology,

normalized to the total cost of ownership for the workload of zero annual read op-

erations. Synthetic DNA exhibit by far the greatest degree of cost scaling as we

require of it more annual read operations. Tape and glass also exhibit cost scaling;

however, the scaling of glass remains lower than that of tape both at the begin-

ning and end of the simulation time. Glass enjoys a lower scaling factor for more

demanding workloads than does tape due in large part to the design of the glass

archival storage technology. While tape drives perform both read and write opera-

tions with the same device, glass storage splits its workload between writer drives

and reader drives. Glass drives that read data can do so while writer drives save new

data into the archive, a feature that introduces intrinsic parallelism into the design

of archival glass storage systems. Additionally and most crucially, the cost of glass

reader drives is far lower than the cost of either glass writer drives or tape drives.

Glass can therefore add more reading throughput for less marginal cost than can

tape-based archival systems. Glass shows a large discontinuity in Figure 5.7 where

the scaling of cost jumps dramatically around 5.5 million annual read operations.

The discontinuity is the result of the need to add an additional library for the glass

storage system, and the library has its own costs in addition to the need for match-

ing writer and reader devices. The unique event that causes the discontinuity at

the beginning of the glass simulation disappears in Figure 5.8 for the end of the

simulation time because simulations for each workload level added new libraries

to accommodate the demand for additional capacity, and thus the differences be-
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Figure 5.7: We normalize the cost of archival workload data by dividing each stor-
age device with its own cost to serve a workload of zero reads. Device types that
can serve larger workloads at little or no additional cost relative to their base case
present flat lines without. Device types for which demanding workloads require
additional costs present positive-sloped lines as their cost grows with workload rel-
ative to the base case of zero reads.

tween the separate simulations for glass was how many reader drives each simu-

lated archival system needs to meet its workload read demand. Unlike glass, hard

disk and solid state disk exhibit their own cost scaling pattern that typifies their

design characteristics.

HDD and SSD devices feature designs with combined storage media and reader

mechanisms. The integration of the reading mechanism into the storage device re-

sults in a close relationship between the number of storage devices in any system

and the total throughput available from the drives in that system. Archival storage
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systems with HDD and SSD devices can deliver throughput that scales with capac-

ity, assuming that the drives can be used in parallel with one another and are not

limited by heat or power constraints [12, 18]. Figure 5.7 and Figure 5.8 both show

that HDD and SSD exhibit almost no scaling of cost as the workload increases in

the archival storage system. Indeed, the only cause of scaling in such systems is

from the additional electricity used by the more active storage systems. Although

the cost of using glass and tape for archival storage can prove lower than the cost of

SSD or HDD for archival storage, the flat scaling of these technologies shows that

archival systems using HDD or SSD can easily adapt to the possibility of growing

workload demands without suffering either inadequate performance or the need

to purchase additional hardware. HDD and SSD fill the niche of flexibility which,

however narrow it may prove to be, delivers important value for archival storage

systems.

5.5 Conclusions

We have discussed the role of workload in archival storage systems, and we

have presented data that shows how different storage technologies respond to var-

ious workloads. Existing storage technologies will struggle to adequately serve the

demand for archival storage, particularly if that demand accompanies unplanned

workloads with elevated levels of data accesses. The advantages of each existing

storage technology diminish as their development roadmaps fall behind the de-

mand for archival capacity and throughput, but prospective storage technologies

will deliver solutions for the growing needs of archival storage systems, even for

archival storage systems with demanding workloads. We found that Synthetic DNA

can have a viable role within archival systems when utilized with the coldest archival

data that is rarely if ever accessed. Glass in particular promises to deliver good
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shows the effects of read workloads upon different storage technologies in the long-
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performance, modest cost scaling for demanding workloads, and a long future of

potential improvements to maintain its cost advantage relative to tape and other

storage technologies. Glass in particular will prove emerge as default archival stor-

age technology that will relegate other technologies like hard disk and solid state

disk to their respective niches within the archival storage market.
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Chapter 6

Validation of Simulation Model

We have described the long-term economics of existing and prospective archival

storage technologies with respect to their reliability, workload demands, and their

prospects for further development. We have also explored the ways in which alter-

native scenarios can affect their competitiveness in archival storage systems. We

also described the inner working of the simulation model that we use to generate

our results. In this chapter, we seek to validate our simulation model by comparing

its predictions with those of other models for evaluating the long-term economics

of archival storage.

6.1 Introduction

Our simulation model has allowed us to explore the effects of different hypo-

thetical trends upon the the economics of archival storage. Until now, we have

compared the results of different experiments with each other to gather an under-

stanging of how changes to storage technologies or the way in which they may be

used will affect their relative cost over time. Earlier chapters thus facilitate a rela-

tive comparison between different storage technologies. Validation in the context
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of our simulation model will allow us to compare the results that we generate with

those of other models or findings.

There has been no previous work that has exactly matched what we have achieved

with our archival simulation model. Although this work is unique in its scope,

goals, and approach, we can indeed find other works where some predictions have

been made and justified concerning archival storage, and by comparing the results

of our simulation model with the results from other works, we can at least enumer-

ate how precisely our results match with the results in other works. To do this, we

will also need to match the scope of our validation to the experiments and scope of

other works. We begin validating our simulation model first by introducing other

models that measured the relative economics of archival storage with different ap-

proaches and goals.

6.2 Validation Data Set

Our approach to validation—comparing our results on a given set of inputs with

the results from other research on identical inputs—relies upon the available data

about the exact parameters and results—inputs and outputs—from other work.

The data set that we use for comparison is from the earlier work of Jeff Inman et

al. that compared the cost of tape with that of hard disk drives for an archival stor-

age system at Los Alamos National Laboratory (LANL) [57]. The data set includes

historical information about the requirements and parameters for an archival sys-

tem between 2002 and 2008. It also includes parameter to feed a linear model for

estimating the cost of an archival system between 2012 and 2025 [42]. We examine

each data set in the following sections, comparing them with our own parameters

and results.
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6.2.1 Archive Parameters

We begin first by introducing the parameters from the validation data set. The

validation data set, although narrowly targeting the specific conditions of Los Alamos

National Laboratory, contain some of the features that should by now seem familiar

for modeling archival storage. Table 6.1 records the values that the reference data

set presents for its historical model for years 2002 through 2008. The requirements

for both data capacity and throughput grow much more quickly than the assump-

tions that we have utilized in our simulations. In particular, the growth of archive

data for the historical validation amounts to a 142% CAGR, which is far higher than

the 30% CAGR that we have used in simulations as described in Chapter 3. Ad-

ditionally, the growth rate for the archive’s data grows more quickly during some

years than others. The uneven rate of data growth can have a nonnegligible effect

on the archive’s total cost if, for example, the greatest growth of data must occur

during a time when the capacity of storage devices has not increased. The LANL

data set thus introduces the risk that the demand for storage capacity may increase

at an inconvenient time when the chosen storage technology has not recently de-

livered an increase in capacity. The same risk may also apply for throughput and

other performance metrics, should the demand for throughput grow inconsistently

over time.

The growth of the throughput demand for the validation data as shown in Ta-

ble 6.1 grows less quickly than does the demand for capacity, albeit still more quickly

than the baseline of our experiments from earlier chapters as described in Chap-

ter 6.1. The faster growth of demand for capacity than throughput reinforces the

notion that archival storage systems are characterized by their demand for large

capacity more than they are characterized with their demand for high throughput

as described in Section 2.1. Although the validation data set presents different re-
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quirements for archival systems that do our earlier assumptions, the opportunity to

evaluate the output of our simulator using a novel scenario will demonstrate both

the precision and the adaptability of our simulation model for real-world archival

systems. We therefore use the values in Table 6.1 within the archival parameters for

the validation of our simulation model.

6.2.2 Storage Device Parameters

The validation data set from Los Alamos National Laboratory includes values

for device performance that differ from those that we have used elsewhere in our

simulation model. In particular, the device parameters in the LANL data set model

those from Oracle’s StorageTek tape media, drives, and library systems. We present

the device parameters in Table 6.2. The validation data set utilizes a two-year ca-

dence between generations of StorageTek devices, and each new generation dou-

bles the capacity and throughput of the previous generation, a feat that the LTO Ul-

trium devices from our other experiments have not achieved [21, 50, 51]. We utilize

device parameters from the LANL data set in our simulation model for our valida-

tion simulations.

6.2.3 Device Numbers and Cost

The LANL data set includes values for how many tape drives, tape cartridges,

and tape library systems serve the growing demands of the model archival system.

We show the number of devices for each year in Table 6.3. The tape drives and

media as shown span four generations of technology, with each new generation

roughly doubling the one that came before in terms of performance or capacity.

Each generation lasts two years, with a doubling of capacity and throughput avail-

able from a new generation every other year. The LANL data set begins in the mid-
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dle of the first generation so that second generation tape devices are available on

the second year of the model. The shortening of the first generation of storage tech-

nology and early availability of the second generation many help to reduce costs

in the LANL model. The doubling of capacity and throughput every other year is

somewhat faster than the baseline from other experiments relating to tape since, as

described in Chapter 3, the LTO tape specification delivers a new generation every

third year. We nevertheless utilize the LANL device numbers in simulations for the

purposes of validation.

Table 6.3 presents a mostly predictable pattern of device acquisition for any

growing archival storage system with tape; however, one change in particular sug-

gests the possibility that unexpected changes may lead to almost inexplicable de-

cisions. The growth of data and throughput demand leads to ever-greater numbers

of drives and tape cartridges, always adding the latest generation of tape drives and

media. Generation three of tape technology begins as the other generations do, but

once the fourth generation of tape technology becomes available in 2007, Table 6.3

shows the removal of all third generation drives and media in favor of a relatively

smaller number of generation four devices. Interestingly, however, Table 6.3 records

that no devices in the first or second generation retired from the archive at any time

within the available data. The high cost of libraries in the LANL data set supports

the early retirement of older devices in favor of a smaller number of newer ones,

but we would expect that the oldest generation of technology should retire before

a newer generation. Nevertheless, there are other explanations for why the third

generation of technology would retire from the archival system early. Among these

reasons are the possibility that third generation devices proved to be unreliable in

practice, that their manufacturer withdrew support prematurely, or that all those

devices were damaged or rendered inoperable as the fourth generation of devices
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became available. Any of these reasons exists outside the scope of both the LANL

model and our simulator, but we must acknowledge external and unforseen even-

tualities as potentially disruptive for archival storage systems or leading to unfore-

seen costs.

We use the data from the LANL model to create parameters for our own simu-

lator, and we compare the output of our simulator with the LANL model to gather

insights about how our own simulation model relates to other approaches.

6.3 Comparison and Discussion

We present data comparing the output of our simulation model with the LANL

model in Figure 6.1. We show the LANL results next to three separate simulations.

With the CAGR growth model, we utilize the average CAGR growth rate of 54% for

tape cartridge capacity, taken from Table 6.2. With the Step Growth models, we

use the exact values for device capacity from Table 6.2 since the growth of capacity

between the first and second generations is larger than the growth between other

generations of tape. Finally, we vary the number of annual read operations for the

archival system. The number of annual read operations was not included in the

model data set, but varying the workload affords us the ability to compare its re-

sults with that of the LANL data. We run each simulation ten times and plot the av-

erage cost of each run together with the 95% confidence interval. Figure 6.1 shows

in particular that the cost of the archival system in the LANL data set grows more

slowly than does the data within our simulation model. The simulation model we

use includes factors such as the cost of electricity and device failure and replace-

ment, but the LANL data set does not include such values. The effect of power cost

and device failure remain small due to the short length of time in the simulation—6

years in total rather than 25 years in other simulations from earlier chapters. Most
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of the difference between the simulation model and the LANL data arises from the

greater number of storage media in the simulation compared with the LANL data.

Table 6.4 shows the number of tape cartridges in the simulation for each year. The

data in Table 6.4 was drawn from the results for the CAGR growth of media capacity

with 100,000 read operations annually. The number of storage devices begins the

simulation closely tracking that from the LANL data, but as time passes, the num-

ber of storage media grows more quickly than the LANL data so that the number of

media and their total cost are approximately double that of the LANL model. The

increased number of storage media also increases the demand for tape libraries at

a cost of $100,000 each.

The archival system in the simulation closely tracks the capacity demand from

Table 6.1; however, the number of media devices needed to store the capacity grows

more quickly in in the simulation model than it does in the LANL data. The simula-

tion begins with the first generation of storage media delivering 30 GB as in does in

the LANL model; however, the simulation model begins with the first generation of

storage technology lasting two full years of simulation time. Since the second gen-

eration of tape delivers more than three times the capacity of the first generation,

the result of the delay of the new generation is a greater demand for tape media

and libraries with all their cost. The delay by one year of the second generation

of tape devices within the simulation model also has ripple effects that compound

their effects early in the simulation. The third and fourth generations of tape tech-

nology also arrive one year later in the simulation compared with the LANL model,

and the delay of their added capacity increases the need to purchase more tape

media and libraries.
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Table 6.4: Number of Tape Media in Simulation

Simulation Year Number of Media Total Media Cost

0 16,667 $833,350
1 40,334 $2,021,000
2 57,635 $2,895,752
3 99,349 $5,701,088
4 149,758 $9,101,463
5 269,110 $19,843,206
6 370,119 $28,974,412

6.4 Conclusions

Although the number of tape media in the simulated archival system is greater

than that of the LANL model, we find that the simulator produces results that com-

pare meaningfully and explicably with those of other models. The results from our

simulation model do not match exactly with the results from other works, yet we

would not expect such a match because our simulation model measures differ-

ent and additional factors than other models and approaches have done in other

works. Furthermore, as the difference between our simulation model and the vali-

dation data set from LANL exists as a direct result of the differences between their

approaches and operating variables, we conclude that our simulation model re-

mains a viable tool for uncovering and exploring differences in storage technolo-

gies and the way they are deployed within archival storage systems.
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Chapter 7

Conclusion

The ever-increasing demand for archival storage capacity, throughput, and reli-

ability is creating a growing need for new storage technologies that can lower costs

while preserving data at scale. Existing storage technologies are struggling to keep

pace with demand, and novel storage technologies are needed to meet the future

demands for cost-efficient archival storage.

We have described archival storage and defined it in terms of capacity, work-

load, and duration. We have explained how each storage technology from tradi-

tional to novel and prospective presents its own unique characteristics and atten-

dant advantages and challenges relative to archival storage. We have described the

functioning of our simulator in detail and presented the parameters that we use to

control its operation and generate our results. Next, we presented results on the

reliability of archival systems, the cost of serving different workloads using each

storage technology, and compared our simulator’s output with those of other re-

searchers. Through all our simulations we found that novel and prospective stor-

age technologies like archival glass and synthetic DNA will dominate existing and

traditional technologies in most cases. Furthermore, archival glass will help to en-

sure that the cost of archiving data does not rise to prohibitive levels in the coming
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years. Synthetic DNA may become a dominant technology for cold archival data

storage if it can achieve moderate throughput for writing data. Existing storage

technologies like tape, hard disk drives, and solid state disk will be competitive for

the next few years, but their limited development roadmaps will cause their eco-

nomic viability to diminish over time. Traditional storage technologies may nev-

ertheless remain competitive for archival systems that demand the highest degrees

of workload intensity of when archival systems must be integrated inside a primary

storage system. Each technology that we have considered relies upon the contin-

ued work of developers and engineers to refine its technology and accelerate its

features to meet the constantly growing demands of archival storage systems.
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nology, ICCCT-2017, page 151âĂŞ156. Association for Computing Machinery,
2017.

[121] Hubbert Smith. Using QLC for cold storage is a fool’s errand.
https://blocksandfiles.com/2019/09/27/using-qlc-for-cold-
storage-is-a-fools-errand/, September 2019.

[122] Koji Sonoda. Flying instability due to organic compounds in hard disk drive.
Advances in Tribology, 2012, December 2012.

[123] Sony Corporation. Optical disc archive, generation 2: White paper.
http://assets.pro.sony.eu/Web/ngp/pdf/optical-disc-archive-
generation-two.pdf, April 2016.

[124] Sony Corporation and Panasonic Corporation. White paper: Archival disc
technology. https://panasonic.net/cns/archiver/pdf/E_WhitePaper_
ArchivalDisc_Ver100.pdf, July 2015.

[125] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and Kaladhar Voruganti.
Pergamum: Replacing tape with energy efficient, reliable, disk-based archival
storage. In Proceedings of the 6th USENIX Conference on File and Storage
Technologies, FAST’08. USENIX Association, 2008.

[126] Christopher N. Takahashi, Bichlien Nguyen, Karin Strauss, and Luis Ceze.
Demonstration of end-to-end automation of DNA data storage. Nature Sci-
entific Reports, 9, March 2019. Article number: 4998 (2019).

[127] Yoshiki Takai, Mamoru Fukuchi, Reika Kinoshita, Chihiro Matsui, and Ken
Takeuchi. Analysis on heterogeneous SSD configuration with quadruple-
level cell (QLC) NAND flash memory. In Proceedings of the 11th International
Memory Workshop (IMW), pages 1–4, May 2019.

[128] The International Disk Drive Equipment and Materials Association.
ASTC technology roadmap. http://idema.org/wp-content/plugins/
download-monitor/download.php?id=2456, 2016.

[129] Keri Troutman. NERSC tape archives make the move to Berkeley lab’s
Shyh Wang Hall. https://www.nersc.gov/news-publications/nersc-

143

https://blocksandfiles.com/2019/09/27/using-qlc-for-cold-storage-is-a-fools-errand/
https://blocksandfiles.com/2019/09/27/using-qlc-for-cold-storage-is-a-fools-errand/
http://assets.pro.sony.eu/Web/ngp/pdf/optical-disc-archive-generation-two.pdf
http://assets.pro.sony.eu/Web/ngp/pdf/optical-disc-archive-generation-two.pdf
https://panasonic.net/cns/archiver/pdf/E_WhitePaper_ArchivalDisc_Ver100.pdf
https://panasonic.net/cns/archiver/pdf/E_WhitePaper_ArchivalDisc_Ver100.pdf
http://idema.org/wp-content/plugins/download-monitor/download.php?id=2456
http://idema.org/wp-content/plugins/download-monitor/download.php?id=2456
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2019/nersc-tape-archives-make-the-move-to-berkeley-labs-shyh-wang-hall/
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2019/nersc-tape-archives-make-the-move-to-berkeley-labs-shyh-wang-hall/


news/nersc-center-news/2019/nersc-tape-archives-make-the-
move-to-berkeley-labs-shyh-wang-hall/, feb 2019.

[130] Carmen Valache. Blast from the past: Retrieving your data from old storage
media. https://interestingengineering.com/diy/blast-from-the-
past-retrieving-your-data-from-old-storage-media, October 2019.

[131] V. Venkatesan, I. Iliadis, C. Fragouli, and R. Urbanke. Reliability of clustered
vs. declustered replica placement in data storage systems. In 2011 IEEE 19th
Annual International Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 307–317, July 2011.

[132] Versity Software, Inc. Designing a high performance tape archive. https:
//www.versity.com/designing-a-high-performance-tape-archive/,
July 2018.

[133] Chip Walter. Kryder’s law. https://www.scientificamerican.com/
article/kryders-law/, August 2005.

[134] Joseph C. Watkins. An introduction to the science of statistics: From theory to
implementation. https://www.math.arizona.edu/~jwatkins/statbook.
pdf.

[135] Charles M. Weber, C. Neil Berglund, and Patricia Gabella. Mask cost and prof-
itability in photomask manufacturing: An empirical analysis. IEEE Transac-
tions on Semiconductor Manufacturing, 19(4):465–474, 2006.

[136] A. Wildani and I. F. Adams. A case for rigorous workload classification. In
2015 IEEE 23rd International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems, pages 146–149, 2015.

[137] Wintelguy. RAID reliability calculator. https://wintelguy.com/
raidmttdl.pl.

[138] Gala Yadgar and Moshe Gabel. Avoiding the streetlight effect: I/O workload
analysis with SSDs in mind. In 8th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 16), Denver, CO, June 2016. USENIX Association.

[139] Zihui Yan and Cong Liang. New levenshtein-marker code for DNA-based data
storage capable of correcting multiple edit errors. September 2021.

[140] Jinfeng Yang, Bingzhe Li, and David J. Lilja. Exploring performance char-
acteristics of the optane 3D Xpoint storage technology. ACM Trans. Model.
Perform. Eval. Comput. Syst., 5(1), February 2020.

144

https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2019/nersc-tape-archives-make-the-move-to-berkeley-labs-shyh-wang-hall/
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2019/nersc-tape-archives-make-the-move-to-berkeley-labs-shyh-wang-hall/
https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2019/nersc-tape-archives-make-the-move-to-berkeley-labs-shyh-wang-hall/
https://interestingengineering.com/diy/blast-from-the-past-retrieving-your-data-from-old-storage-media
https://interestingengineering.com/diy/blast-from-the-past-retrieving-your-data-from-old-storage-media
https://www.versity.com/designing-a-high-performance-tape-archive/
https://www.versity.com/designing-a-high-performance-tape-archive/
https://www.scientificamerican.com/article/kryders-law/
https://www.scientificamerican.com/article/kryders-law/
https://www.math.arizona.edu/~jwatkins/statbook.pdf
https://www.math.arizona.edu/~jwatkins/statbook.pdf
https://wintelguy.com/raidmttdl.pl
https://wintelguy.com/raidmttdl.pl


[141] David Yu, Guangwei Che, Tim Chou, and Ognian Novakov. Best practices in
accessing tape-resident data in HPSS. The European Physical Journal Web
Conferences, 214, 2019.

[142] J. Zhang, P. Li, B. Liu, T. G. Marbach, X. Liu, and G. Wang. Performance anal-
ysis of 3D XPoint SSDs in virtualized and non-virtualized environments. In
2018 IEEE 24th International Conference on Parallel and Distributed Systems
(ICPADS), pages 1–10, 2018.

[143] Victor Zhirnov, Reza M. Zadegan, Gurtej S. Sandhu, George M. Church, and
William L. Hughes. Nucleic acid memory. Nature materials, 15, February
2016.

[144] Huijun Zhu, Peng Gu, and Jun Wang. Shifted declustering: a placement-ideal
layout scheme for multi-way replication storage architecture. In Pin Zhou,
editor, Proceedings of the 22nd Annual International Conference on Super-
computing, ICS 2008, Island of Kos, Greece, June 7-12, 2008, pages 134–144.
ACM, June 2008.

145


	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Background
	Definition of Archival Storage
	Archival Storage Technologies
	Traditional and Non-Traditional Technologies
	Archival Tape
	Solid State Disk
	Hard Disk
	Optical Disc
	Archival Glass
	Synthetic DNA

	Related Work
	Workload Characterization
	Archival Modeling


	Methodology
	Simulator Overview
	Simulation Model
	The Simulation Model in Action
	Compound Annual Growth Rates

	Simulator Design
	Events and Event Driver
	Time
	Archival System and Devices
	Configuration and Parameters

	Archival Parameters
	The Cost of Electricity

	Device Parameters
	Confidence Intervals

	The Cost of Reliability
	Overview
	Approach
	Blast Radius

	Simulation Parameters
	Archival Tape
	Hard Disk
	Solid State Disk
	Optical Disc
	Archival Glass
	Archival DNA

	Experimental Results
	Reliability Cost Inflation
	Cost and Reliability of Tape
	Hard Disk Reliability
	Hard Disks With Removable Media
	SSDs for Reliable Archival Storage
	Archival Glass
	Synthetic DNA for Reliable Archival Storage
	Cost of Preserving Fixed Amount of Data

	Summary

	The Cost of Workloads
	Introduction
	Simulator Setup
	Experimental Setup
	Experimental Results
	Workload and Total Cost
	Workloads and Cost Scaling

	Conclusions

	Validation of Simulation Model
	Introduction
	Validation Data Set
	Archive Parameters
	Storage Device Parameters
	Device Numbers and Cost

	Comparison and Discussion
	Conclusions

	Conclusion
	Bibliography



