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Abstract

Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

by

Owen Dennis Miller

Doctor of Philosophy in Electrical Engineering

University of California, Berkeley

Professor Eli Yablonovitch, Chair

Photonic innovation is becoming ever more important in the modern world. Optical systems
are dominating shorter and shorter communications distances, LED’s are rapidly emerging
for a variety of applications, and solar cells show potential to be a mainstream technology
in the energy space. The need for novel, energy-efficient photonic and optoelectronic devices
will only increase. This work unites fundamental physics and a novel computational inverse
design approach towards such innovation.

The first half of the dissertation is devoted to the physics of high-efficiency solar cells. As
solar cells approach fundamental efficiency limits, their internal physics transforms. Photonic
considerations, instead of electronic ones, are the key to reaching the highest voltages and
efficiencies. Proper photon management led to Alta Device’s recent dramatic increase of the
solar cell efficiency record to 28.3%. Moreover, approaching the Shockley-Queisser limit for
any solar cell technology will require light extraction to become a part of all future designs.

The second half of the dissertation introduces inverse design as a new computational
paradigm in photonics. An assortment of techniques (FDTD, FEM, etc.) have enabled
quick and accurate simulation of the “forward problem” of finding fields for a given geometry.
However, scientists and engineers are typically more interested in the inverse problem: for
a desired functionality, what geometry is needed? Answering this question breaks from the
emphasis on the forward problem and forges a new path in computational photonics. The
framework of shape calculus enables one to quickly find superior, non-intuitive designs. Novel
designs for optical cloaking and sub-wavelength solar cell applications are presented.
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1.1 “Forward” and “inverse” problems. There is an abundance of fast, efficient for-
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2.3 Optical processes in a semiconductor. The absorbed fraction of incoming pho-
tons excites electron-hole pairs. The emission from recombination of these excited
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all radiative recombination contributes to the emission, some is recycled. The
population of the excited electrons establishes the (chemical) potential through-
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2.4 Schematic layout of a slab GaAs solar cell with a metallic gold (Au) back reflector.

Block arrows represent the four possible emission channels: GaAs to air (I
P/S
1 ),

and GaAs to Au substrate (I
P/S
2 ), for S (TE) and P (TM) polarizations. . . . . 24
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2.5 (a) Emission rate (Rout) of the S and P polarizations through GaAs/air and
GaAs/Au interfaces as a function of cell thickness; oscillations, the P -polarization
peak, and other features stem from the unique electromagnetic treatment pre-
sented in this work. Panels (b) and (d) show intensity maps of emission channels
at thicknesses of 40nm and 120nm, respectively. Individual contributions are
labeled. Black lines represent the analytic dispersion of plane waves in air (to the
left) and in GaAs (to the right), while white dashed lines depict the analytical
SPP dispersion at the GaAs/Au interface. Panels (c) and (e) examine the emis-
sion for photons with energies 1.42eV , near the bandgap of GaAs, for the two
thicknesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Open-circuit voltage vs. cell thickness of FDT formalism compared to a ray based
model in blue and red lines, respectively. Oscillations result from both absorption
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efficiency vs. cell thickness. Our result converges to the expectations of the ray-
based models, shown in black dashed line, for very thick cells. Zero efficiency
at extremely small thickness despite the rise in voltage is due to the vanishing
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3.1 The drastic effect of internal luminescence efficiency, ηint, on theoretical solar cell
efficiency. The shortfall is particularly noticeable for smaller bandgaps. A reduc-
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while a reduction from ηint = 90% to ηint = 80% causes little additional damage.
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3.6 GaAs solar cell efficiency as a function of thickness. Random surface texturing
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Chapter 1

Introduction

To myself I am only a child
playing on the beach, while
vast oceans of truth lie
undiscovered before me.

Isaac Newton

Connecting structure to function has a long history of driving scientific progress. Einstein’s
recognition that a four-dimensional spacetime could explain gravity led to general relativity,
revolutionizing modern physics. Heinrich Hertz’s spark-gap radiative structures provided
insights into electromagnetic wave propagation, and are in many ways the foundation of radio
technology. Periodic crystals exhibit the semi-insulating, semi-conducting behavior enabling
the invention of the transistor, the workhorse of computing. Understanding the relationship
between a structure and its functionality can provide deep scientific understanding, generate
new conceptual avenues, and enable breakthrough technologies.

This thesis explores the connections between structure and function in photonic design.
Two approaches are taken. First, within the context of solar cells, we examine the fundamen-
tal physics underlying device operation. The efficiency limits for rather general photovoltaic
technologies have been known for fifty years, and yet the best prototypes have fallen far
short of their ideal performance. This is partly due to practical limitations such as material
quality, but shortcomings in design practices have also played a significant role, as will be dis-
cussed extensively in Part I. Counter-intuitively, solar cells, which convert incident photons
into extracted electricity, should be designed to be ideal light emitters. This has profound
implications on both material selection and device design, and more generally provides a
new lens to examine the future prospects of a variety of next-generation solar technologies.

Part II approaches the more general problem of improving photonic design methods. Un-
til now, the primary method for designing an electromagnetic structure has been heuristic
intuition. For a given application, a researcher familiar with back-of-the-envelope calcu-
lations and a variety of simple textbook examples intuits a structure. He may then test
the structure through simulation, but fundamentally the design space is restricted by the
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engineer’s imagination. We introduce a new framework for computational inverse design:
instead of computing the response of a structure, we instead try to find the structure that
best provides a desired response. Through efficient shape calculus techniques, non-intuitive,
superior structures can be computed quickly and efficiently.

1.1 The Solar Energy Landscape

Solar power is the world’s greatest energy resource. A continuous energy current of approx-
imately 1.7 × 1017W of sunlight is incident upon the earth [1]. A year’s worth of sunlight
thus contains 1.5 × 1018kWh of energy. By comparison, the known reserves of oil, coal,
and gas are 1.75 × 1015kWh, 1.4 × 1015kWh, and 5.5 × 1015kWh, respectively. A year of
sunlight provides more than a hundred times the energy of the world’s entire known fossil
fuel reserves. Harnessing solar power would represent a never-ending energy supply.1

The difficulty has always been converting solar energy in an efficient and cost-effective
way. Photovoltaic cells are the most promising avenue, directly converting the photons to
electricity. Yet the solar cell modules of the largest publicly traded company, First Solar,
convert solar energy at only about 10% efficiency [2, 3]. Even the best crystalline silicon solar
cell modules have efficiencies around 22%, wasting almost 80% of the incident power. New
technologies are needed for solar conversion to compete at cost-parity with fossil fuels.

Efficiency is a primary driver of cost for solar cells. A more efficient module by definition
yields more power per unit area. A significant fraction of a solar cell’s cost scales proportional
to the installation area, including the cost of the glass, inverter costs (actually directly
proportional to the power), and installation costs, among others [4]. Such costs are fixed
relative to the module technology, thereby providing a lower bound on the total costs for a
given efficiency. For example, even if the module cost is zero, a 10% efficient module cannot
produce electricity at cheaper than about $0.06/kWh. By comparison, a 25% efficient module
can cost about 300$/m2 and yet produce electricity for the same cost. The path to cost-parity
is through high-efficiency cells.

Given the focus on high efficiency, it is natural to ask: what is the ultimate limit to a
solar cell’s energy conversion efficiency? Fifty years ago Shockley and Queisser provided a
formulation to answer this question [5]. For a given material and a few basic assumptions,2

they recognized the fundamental losses that occur. First, for all energies smaller than the
material bandgap the incident photons cannot be absorbed. One does not want arbitrarily
small bandgaps, however, as carriers generated by absorption thermalize to the bandgap
energy, providing a second loss mechanism. And, finally, there is a required rate of emission
from the solar cell, set by thermodynamic detailed balancing.3 For a single-junction solar cell

1I am not suggesting it would be free!
2Their analysis can also be generalized to analyze technologies for which their assumptions are violated, as
in e.g. multi-carrier generation cells.

3Note that there are also other small contributors to imperfect conversion efficiency, such as the Carnot
factor.
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under one-sun concentration, these loss mechanisms lead to a limiting efficiency of 33.5%.
For a variety of other configurations, such as concentrator or multi-junction solar cells, a
similar detailed balancing process yields a different limiting efficiency, usually in the 30% to
50% range.

Theoretical efficiency limits are useful primarily because they provide a means for se-
lecting which technologies to pursue, and they are a driving force for further progress. Yet
implicit in such a process is the assumption that the upper limit provides a realistic estimate
of potential performance. Real systems will never be perfect, but small deviations from
perfect should yield only small deviations from ideal efficiencies.

A central theme of Part I of this thesis is that the Shockley-Queisser efficiencies are not
robust to small deviations. Although they provide a simple calculational tool, they sweep
important internal dynamics “under the rug.” We examine these dynamics, resulting in
a surprising conclusion: instead of considering external emission as a loss mechanism, it
should actually be designed for. Maximizing external emission results in maximal voltages
and efficiencies. Viewed through this principle, the sensitivity of the ideal efficiencies to
small imperfections is understandable and predictable. Additionally, it provides a pathway
to approaching the ideal limits. For example: a rear surface mirror reflectivity of 98%
provides double the external emission as a reflectivity of 96%. Similarly small gains in
material quality or geometric configuration can also have substantial impacts. Solar cells are
an exception to the rule of diminishing returns; conversely, incremental enhancements can
generate significantly improved performance.

It turns out that understanding the voltage output of the solar cell explains the in-
sights discussed above. Chap. 2 derives the voltage formula and discusses its determinants.
Although the chapter is primarily occupied with the ray optics regime, Sec. 2.7 introduces
recent work demonstrating voltage calculations in the sub-wavelength and near-field regimes.
Chap. 3 then builds up a formalism for understanding detailed balance efficiency limits with
imperfections. The path to approaching the Shockley-Queisser efficiency limits, through
maximizing luminescent yield, is presented. Finally, Chap. 4 applies the formalism to a vari-
ety of next-generation solar cell technologies, examining the robustness of each and providing
a new prism through which to consider what technology to pursue.

1.2 Inverse Design

Scientific design generally progresses through three stages. When there has been little math-
ematical apparatus built up, scientists make progress through what could be called the Edis-
onian method : hypothesizing new structures or designs, then experimentally testing them.
Once the foundational mathematics is understood, transition to a second phase can occur,
in which new designs are intuited and perhaps tested computationally, but fundamentally
the design space is imposed by the scientist. Finally, once computational design tools have
been created, new designs can arrive from computational problem-solving; at this point,
the division of labor allows the scientist to recognize the important problem to solve and
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Figure 1.1: “Forward” and “inverse” problems. There is an abundance of fast, efficient
forward solvers, capable of computing the electromagnetic response of a given structure.
New tools for the inverse design problem, such that for a given response, the best structure
is found, represent a new paradigm in computational electromagnetics.

the requisite constraints, while the computational tools explore the design space for optimal
performance.

Different fields are at different stages of scientific design. There are still large swaths
of biology for which the Edisonian method is the primary tool. At the opposite end of the
spectrum, circuit designers have created an impressive array of tools for automated circuit
design, to the point where very large, complex system architectures can be computationally
generated and optimized.

Photonic design has been in the second phase for a few decades. Substantial progress
has been made in computing the electromagnetic response of a given structure, such that
several commercial programs provide computational tools for a wide array of problems.
Fig. 1.1 illustrates some of the computational techniques and tools available for computing
the electromagnetic response. We will call such techniques answers to the “forward problem,”
where the structure is given and the response is unknown. But tools for answering the
“inverse problem,” where one specifies a response and computes a structure, are still very
much in their infancy. Advancements in solving the inverse problem will enable photonic
design to reach the final phase of scientific design.

The inverse problem cannot be solved by simply choosing a desired electric field and
numerically computing the dielectric structure. It is generally unknown whether such a
field can exist, and if so, whether the dielectric structure producing it has a simple physical
realization. Instead, the inverse problem needs to be approached through iteration: start
with some initial structure, then iterate until the final structure most closely achieves the
desired functionality.
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As computational power progressively increases, simulation becomes more accurate and
less time-consuming, and computational design takes on more importance in the scientific
process. Part II of this thesis attempts to contribute to this development.

Chap. 5 presents a framework for a new inverse design method, formulated through a
shape calculus mathematical foundation. Chapters 6 and 7 apply this framework to two
photonic design applications. Chap. 6 demonstrates the utility of the computational ap-
proach to optical cloak design, showing its versatility in enabling the designer to decide
what constraints and design space to work in. Chap. 7 applies the optimization method
to a new solar cell design: a thin-film solar cell in the sub-wavelength regime, where the
ray optical laws are not valid. A non-intuitive structure is designed, with an angle- and
polarization-averaged absorption enhancement of 40, far larger than enhancements found for
other proposed structures in the same regime. The inverse design framework presented here
can be applied to a wide variety of applications, potentially discovering new structures and
functionalities. Whereas the current forefront of electromagnetic computation is the quick
solution of the response to a given structure, the inverse problem of computing the structure
for a given response may prove much more powerful in the future.
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Part I

The Physics of High-Efficiency Solar
Cells
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Chapter 2

Luminescent Extraction Determines
the Voltage

How wonderful that we have
met with a paradox. Now we
have some hope of making
progress.

Niels Bohr

The power output of a solar cell is given by its current-voltage product, P = IV , equally
dependent on both the current and the voltage. The current is generally straightforward to
determine: at what rate are incident photons absorbed, and what percentage of generated
carriers are extracted through the contacts? Determining the voltage, in contrast, requires
more subtle understanding. In this chapter we show that the open-circuit voltage, and
therefore also the operating point voltage, is primarily determined by how efficiently the
solar cell luminesces.

2.1 The Relevance of the Open-Circuit Condition

A key simplification for understanding the voltage derives from using the open-circuit voltage
as a proxy for the operating point voltage. We will justify that simplification here.

Analyzing a solar cell at its optimal power point requires complex dynamics balancing
absorption, emission, and charge extraction. However, instead of directly solving for the
operating point current, IOP , and voltage, VOP , the output power can also be determined
by simpler short-circuit and open-circuit conditions. The power output can be equivalently
written

P = IOPVOP = ISCVOCFF (2.1)
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where ISC , VOC , and FF are the short-circuit current, open-circuit voltage, and fill factor,
respectively [1]. With a simple derivation one can show that the fill factor is itself a function
of the open-circuit voltage, reducing the independent parameters to only the short-circuit
current and open-circuit voltage.

Consider a solar cell which can be described by the typical diode equation:

J = JSC − J0e
qV/kT (2.2)

The derivation of the JSC and J0 terms will be completed in Sec. 2.2, but for now they can
be left simply in variable form.1 First, the open-circuit voltage requires J = 0, such that
VOC is given by

qVOC = kT ln

(
JSC
J0

)
(2.3)

To find the operating point voltage, we must find the voltage for which the power output is
maximum. By setting the derivative ∂(JV )/∂V = 0, the operating point conditions requires:

JSC − J0e
qVOP /kT

(
1 +

qVOP
kT

)
= 0 (2.4)

where VOP is the operating point voltage. Solving for the voltage and substituting the
open-circuit voltage from Eqn. 2.3

qVOP = qVOC − kT ln

(
1 +

qVOP
kT

)
(2.5)

Eqn. 2.5 is a transcendental equation for VOP , and is not separable. However, one can
recursively substitute for VOP on the right-hand side, yielding

qVOP = qVOC − kT ln

[
1 +

qVOC
kT

− ln

(
1 +

qVOP
kT

)]
(2.6)

Note that the third term in square brackets will generally be much smaller than the second
term, due to the natural log. Moreover, the difference occurs within a second natural log
function, reducing it to a very small correction factor. Thus to a good approximation:

qVOP = qVOC − kT ln

(
1 +

qVOC
kT

)
(2.7)

Eqn. 2.7 says that the operating point voltage is determined by the open-circuit voltage.
Because the operating point current is directly related to the operating-point voltage, through
Eqn. 2.2, this is therefore a proof that the fill factor is determined by the open-circuit voltage.
Note that for real solar cells there will be non-radiative recombination, which contributes

1Note that the dark current is typically multiplied by an extra “−1” factor, which has been omitted for
consistency with later sections, and because it is very small relative to eqV/kT≈e40.
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non-ideality factors to the exponential voltage dependence of Eqn. 2.2; nevertheless, the
open-circuit voltage is still the prime determinant of fill factor and operating point voltage.
Cf. [6] for a variety of more accurate expressions of the fill factor in terms of the open-circuit
voltage. Having shown that the operating point voltage is given by the open-circuit voltage,
the remainder of the chapter will explain what determines the open-circuit voltage.

2.2 Detailed Balancing

Shockley and Queisser were the first to apply the concept of detailed balancing to solar
cells [5]. Detailed balance dictates that at thermal equilibrium, by definition, every photon
absorption event must be countered by a photon emission event, with the balance holding
at every frequency and solid angle. In and of itself, detailed balance is not directly useful
for solar cells, which operate far from thermal equilibrium. However, Shockley and Queisser
recognized that the emission spectrum away from thermal equilibrium is different from the
emission spectrum at equilibrium only by a scaling factor; this recognition was the key step
toward understanding fundamental efficiency limits of solar cells.

The open-circuit voltage of a solar cell can be derived from the above considerations.
A solar cell at thermal equilibrium with its surrounding environment of temperature T has
a constant flux of photons impinging upon it. The surrounding environment radiates at T
according to the tail (E � kT ) of the blackbody formula:

b(E) =
2n2

r

h3c2
E2exp(−E/kT ) (2.8)

where b is given in photons per unit area, per unit time, per unit energy, per steradian. E is
the photon energy, nr is the ambient refractive index, c is the light speed, and h is Plancks
constant. As Lambertian distributed photons enter the solar cells surface at polar angle θ,
with energy E, the probability they will be absorbed is written as the dimensionless ab-
sorbance a(E, θ). The flux per unit solid angle of absorbed photons is therefore a(E, θ)b(E).
In thermal equilibrium there must be an emitted photon for every absorbed photon; the flux
of emitted photons per unit solid angle is then also a(E, θ)b(E).

When the cell is irradiated by the sun, the system will no longer be in thermal equilibrium.
There will be a chemical potential separation, µ, between electron and hole quasi-Fermi
levels. The emission spectrum, which depends on electrons and holes coming together, will
be multiplied by the normalized np product, (np/n2

i ), where n, p, and ni are the excited
electron and hole concentration, and the intrinsic carrier concentration, respectively. The
Law of Mass Action is np = n2

i exp[µ/kT ] for the excited semiconductor in quasi-equilibrium
[7]. Then, the total photon emission rate is:

Rem = eµ/kT
∫∫

a(E, θ)b(E)cosθdEdΩ (2.9)

for external solid angle Ω and polar angle θ. Eqn. 2.9 is normalized to the flat plate area of
the solar cell, meaning that the emission rate Rem is the emissive flux from only the front
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surface of the solar cell. Only non-concentrating solar cells are considered, such that the
solid angle integral is taken over the full hemisphere. There will generally be a much larger
photon flux inside the cell, but most of the photons undergo total internal reflection upon
reaching the semiconductor-air interface. If the rear surface is open to the air, i.e. there
is no mirror, then the rear surface emission rate will equal the front surface emission rate.
Restricting the luminescent emission to the front surface of the solar cell improves voltage,
whereas a faulty rear mirror increases the avoidable losses, significantly reducing the voltage.
Efficient luminescent extraction through the front surface yields high voltages.

At open circuit, there is a simple connection between the external photon emission rate,
Eqn. 2.9, and the internal carrier recombination rate. From the open-circuit condition, ex-
cited carriers cannot be drawn off as current; instead, they must eventually recombine, either
radiatively or non-radiatively. In the situation that every carrier recombines radiatively and
every radiated photon successfully escapes, the net internal recombination rate Rrecomb equals
the external photon emission rate. However, if the number of external photons produced per
excited carrier is reduced to ηext, which we will call the external fluorescence yield, then we
will have

Rrecomb =
1

ηext
Rem (2.10)

If, for example, only half of the excited carriers recombine and emit photons that make it
out of the cell, then the total recombination rate is twice the rate of external emission.

To find the open-circuit voltage we now equate the carrier recombination and generation
rates. Carriers are generated by the incident solar radiation S(E) according to the formula

Rgen =

∫∫
a(E, θ)S(E) cos θdEdΩ (2.11)

Equating the generation and recombination rates, and recognizing that the open-circuit
voltage equals the quasi-Fermi level separation (qVOC = µ), the resulting open-circuit voltage
is

VOC =
kT

q
ln

(∫∫
a(E, θ)S(E) cos θdEdΩ∫∫
a(E, θ)b(E) cos θdEdΩ

)
+
kT

q
ln (ηext) (2.12)

Because ηext is less than or equal to one, the second term in Eqn. 2.12 represents a loss of
voltage due to poor light extraction. This term was first recognized by Ross [8–10].

2.3 Entropic Penalties

With the sun assumed to be a blackbody at TS ≈ 6000K and the absorptivity a step-function
equal to one above the bandgap, Eqn. 2.12 can be simplified for more physical intuition. The
ambient blackbody temperature of 300K, corresponding to kT ≈ 26meV , is sufficiently small
to approximate the Bose-Einstein distribution denominator of eE/kT−1 as eE/kT . In contrast,
the solar temperature kTS ≈ 500meV is too large to approximate the distribution function
through its tail, and therefore cannot be similarly approximated.
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With the absorptivity assumed to be a step-function independent of angle, the angular
integral in the denominator of Eqn. 2.12 simplifies to π:

qVOC = kT ln

(
ΩS

∫
S(E)dE

π
∫
b(E)dE

)
+ kT ln (ηext) (2.13)

where ΩS is the solid angle of the sun. By non-dimensionalizing the numerator of Eqn. 2.13
and approximating the denominator as discussed above, Eqn. 2.13 becomes:

qVOC = kT ln

(
ΩS(kTS)3

∫∞
Eg/kTS

x2

ex−1
dx

π(kT )3
∫∞
Eg/kT

x2e−xdx

)
+ kT ln (ηext) (2.14)

Finally, integration by parts in the denominator yields

qVOC = Eg−kT ln

(
π

ΩS

)
+kT ln (ηext)+kT ln

(
TS
T

)
−2kT ln

(
Eg
kTS

)
+kT ln

(∫ ∞
xg

x2

ex − 1
dx

)
(2.15)

Eqn. 2.15 breaks down the open-circuit voltage into explicit contributions. Before discussing
the contributions, note the similarity of Eqn. 2.15 to the general formula for the Helmholtz
free energy:

F = U − TS (2.16)

where F is the free energy, U is the internal energy, and S is the entropy loss [7]. Although
the voltage is often considered an electrical parameter, the process of absorbing photons,
generating carriers, and emitting photons (many of which ultimately leave the cell) is also a
steady-state process, for which a thermodynamic prescription is appropriate. The entropy
can furthermore be designated as S = k lnW , where k is the Boltzmann factor and W is the
configurational phase space of the system.

The system can be examined through either the carriers generated or the incident and
exiting photons. A thermodynamic treatment of the carriers results in the law of mass action
(qV = np/n2

i ), which is not particularly useful for our analysis, because of the difficulty of
tracking the carriers. Instead, we consider the photon fluxes.

The phase space for optical rays is defined by the optical étendue [11, 12]. Optical rays do
not occupy the typical six-dimensional phase space of particles. One of the spatial dimensions
is redundant, because the same ray traverses infinitely through one dimension. By the same
token, one momentum component is also redundant. The momentum spread is equivalent
to a specification of the angular spread, such that one can write the differential étendue dE
as:

dE = n2
r cos θdAdΩ (2.17)

where dA is a surface differential, dΩ is the solid angle subtended, and θ is the angle between
the surface normal of dA and the ray bundle [11]. The refractive index factor n2

r accounts for
the increased density of states in media. Étendue can never decrease, leading to theoretical
limits for the possible geometric optics concentration factors [13].
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In deriving the voltage penalties of Eqn. 2.15, we will consider entropy generation due
to non-idealities. First, consider that the incident photons occupy only a very small solid
angle ΩS ≈ 6.8 × 10−5sr. Potentially, a solar cell could have an absorptivity of one for
all rays within the sun’s solid angle, and zero outside the sun’s solid angle. By detailed
balance, emission would likewise only occur within ΩS. Indeed, this is what would occur in
an ideal concentrator. Recent proposals have also attempted to restrict the emission without
concentration [14, 15]. In reality, however, concentrator systems can be impractical due to the
significant haze in the sky. A flat-plate solar cell captures all of the sunlight, and therefore
emits back into the entire sky. Integrating the solid angle with the cos θ term in Eqn. 2.17,
the emission occurs into a solid angle of π steradians. For the ideal scenario of no haze and
no emission outside the solar solid angle, the optical phase space is Wideal = AΩS, for a cell
surface area A. For the relevant case of a flat-plate solar cell absorbing and emitting from all
angles, the phase space is Wsolid−angle = Aπ, much larger than the ideal case. The entropy
increase is therefore

Ssolid−angle = k ln

(
Wideal

Wsolid−angle

)
= k ln

(
π

ΩS

)
(2.18)

which when multiplied by the temperature T is exactly the first penalty term in Eqn. 2.15.
The second voltage penalty is due to imperfect radiative efficiency. This term is fairly

straightforward. It can be shown that the optical étendue is equivalent to the number
of rays in a bundle [11]. Given this definition, the relative ratio of Wideal to the phase
space associated with imperfect extraction, Wext, is precisely the inverse of the luminescent
extraction efficiency, 1/ηext. Thus we have

Sext = k ln

(
1

ηext

)
= −k ln ηext (2.19)

Therefore the second penalty in Eqn. 2.15 is entropy generation due to a reduction in number
of the exiting optical rays. Importantly, this explains why the external yield is the relevant
parameter, instead of, e.g., the internal yield. The external yield is far more sensitive to
internal imperfections, placing a higher demand on the solar cell to overcome this entropy
penalty.

Finally, the other penalty terms are smaller in magnitude and will not be individually
derived here. The third penalty term is due to “photon cooling” [16], while the fourth and
fifth are density of states modifications.

The entropic penalty due to mis-match of the solar and emission solid angle is the largest
contribution to Eqn. 2.15, with a value of about −10.7kT . The external yield term is highly
variable, but the later terms contribute slightly less than 1kT to the voltage. A first-order
approximation to the voltage could then be written

qVOC = Eg − 260meV + kT ln(ηext) (2.20)

where the 260meV is almost exact for a 1.4eV bandgap and within ±kT for bandgaps
ranging from 1-1.8eV . More generally, the external luminescence yield is the free parameter
that determines how close the open-circuit voltage is to its ideal limit.
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Figure 2.1: The difficulty of light extraction in a solar cell (or light-emitting diode). Because
of the large refractive index of relevant semiconductors, external extraction requires many
internal re-absorption and re-emission events, and many reflections from the surfaces. Small
non-idealities result in large external extraction penalties.

2.4 The Difficulty of Light Extraction

Sec. 2.3 demonstrated that maximum external light extraction is the key to high open-circuit
voltage. In this section we discuss why that is such a difficult task.

Fig. 2.1 illustrates why 100% light extraction is so difficult. Consider an incident photon
that has been absorbed within the semiconductor. At the open-circuit condition, no carriers
are extracted, and the electron-hole pair must eventually recombine.2 Upon re-emission,
however, the newly emitted photon is not guaranteed to leave the cell. Because of the high
refractive indices for relevant semiconductors, there is a significant likelihood of being outside
the escape cone, such that the ray undergoes total internal reflection. The photon must then
be re-absorbed before it3 can can escape, because in a plane-parallel solar cell a photon
emitted outside the escape cone will remain outside the escape cone. Upon re-absorption,
there is no guarantee a photon will be emitted again, as non-radiative processes such as Auger
or Shockley-Read-Hall recombination compete with radiative recombination. Moreover, the
photons traversing the cell must avoid imperfects such as non-ideal reflectivity in the mirror
or absorbing contacts. As a consequence, achieving a high external yield requires minimal
imperfections of any kind.

The difficulty alluded to above can be made mathematically precise. There are shortcuts
to calculating the external yield through detailed balance at the cell’s external surfaces,
which will be applied in Chap. 3 to handle a variety of geometries. However, they do not
illuminate the photon dynamics particularly well, so an alternate derivation will be provided
here. Assuming a photon has been absorbed, the likelihood of eventual emission will be
calculated by averaging over all possible photon paths.

2In a semiconductor, the electron-hole pair generated would generally separate, unlikely to form an exciton.
A different electron and hole recombines, although the semantic distinction is unimportant for the current
purpose.

3Note that we will speak of a single photon, even though “it” undergoes many re-absorption and re-emission
events, and consists therefore of many different photons.
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For any geometry, the external luminescence yield, ηext can be parameterized by the in-
ternal luminescence yield, ηint, and the average probability of an internally emitted photon
being re-absorbed, aint. The internal luminescence yield is the probability of a single re-
combination event being radiative. This should be contrasted with the external yield, which
tracks the probability from initial absorption, through re-absorption and re-emission events,
to, finally, possible emission from the cell.

Consider a photon that has been absorbed.4 The probability of internal photon emission
is ηint. Given re-emission, if the photon is inside the escape cone and not re-absorbed before
reaching the front surface, the photon will escape. Otherwise, the photon is re-absorbed,
and the process iterates. The probability of eventual escape, ηext, is given by the infinite
sum

ηext = ηint(1− aint) + ηintaintηint(1− aint) + . . .

= ηint(1− aint)
∞∑
n=0

[ηintaint]
n

=
ηint(1− aint)
1− ηintaint

(2.21)

One can calculate the internal absorption probability aint for different geometries. We
will analyze the case of a plane-parallel solar cell with a perfect rear mirror. aint has two
contributions: photons emitted outside the escape cone are absorbed with probability unity;5

photons within the escape cone can also possibly be absorbed, depending on the optical
thickness of the cell. Instead of directly calculating the probability of absorption, it is easier
to calculate the probability of immediate escape, which is 1− aint.6

It can be shown that for the relatively large semiconductor refractive indices in solar cells,
nr ∼ 3–4, the probability of emission into the escape cone is approximately 1/2n2

r [17]. The
probability of immediate escape is thus given by 1/2n2

r times the probability of not being
absorbed before reaching the front surface. Assuming the photons are emitted from carriers
uniformly distributed throughout the geometry, one can calculate the average probabilities.

Photons emitted internally are equally likely to be emitted downwards as upwards. Be-
cause of the perfect rear mirror, it is equivalent to treat every photon as emitted upwards,
but over a distance 2L, where L is the cell thickness. Because of the small escape cone, the
light can be approximated as traveling perpendicular to the surface of the cell, resulting in
a simple expression for the probability of re-absorption: 1 − e−αx, where x is the distance
traveled to the front surface. The average probability of re-absorption within the escape
cone, alc, is then:

alc =
1

2L

∫ 2L

0

(
1− e−αx

)
dx = 1− 1− e−2αL

2αL
(2.22)

4At open-circuit, as always.
5There is no possibility to enter the escape cone and no other loss mechanism.
6Note the distinction between immediate escape, which refers to escape before re-absorption, and overall
escape, which is the external yield that we are eventually driving towards.
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The factor 1−e−2αL is identically the probability of absorbing an externally incident photon,
which we will call aext (previously it has simply been referred to as a). Finally, the probability
of immediate escape can be written

1− aint =
1

2n2
r

(
1− e−2αL

2αL

)
=

aext
4n2

rαL
(2.23)

Inserting Eqn. 2.23 into Eqn. 2.21, the external luminescence yield can be written

ηPPext =
aext

aext + 4n2
rαL

1−ηint
ηint

(2.24)

Eqn. 2.24 is the external yield of a plane-parallel solar cell, uniquely determined by the
material parameters α and ηint, and the geometrical thickness L.7

As a sanity check, for the limiting case ηint = 1, the external yield is one. With no losses,
the photons must eventually escape. However, note the dramatic decrease in ηext when the
internal yield is slightly less than one. For a small deviation from ideal, the internal yield can
be re-written ηint = 1− γ, where γ is small. For the condition ηint < 4n2

rαL/(4n
2
rαL+ aext),

the second term in the denominator is largest. For full absorption, this crossover occurs at
about 99%, such that the external yield is approximately

ηPPext '
aext

4n2
rαL

1− γ
γ
' aext

4n2
rαL

1

γ
(2.25)

For an internal yield less than approximately 99%, the external yield depends on the inverse
of the small parameter γ! As an example of this extreme dependence, for an internal yield
of 99% and an optical thickness αL = 2.5, the external yield of the plane-parallel geometry
is only about 50%.

2.5 Random Surface Texturing for Increased Voltage

One of the primary difficulties of light extraction in the plane-parallel geometry was the
fact the photons emitted outside the escape cone would not have a chance to escape until a
further re-absorption and re-emission event. One way to improve the extraction, therefore, is
to randomly texture the surface of the solar cell. The narrow escape cone does not increase
in size, but a photon emitted outside the escape cone has a chance to be scattered into it by
the random roughness.

The external yield of the randomly textured geometry has been derived through steady-
state dynamics in [18]. Here, we will recognize that in the weakly absorbing limit, where the
randomly textured formulas are derived in any case, the probability of an internally emitted
photon being absorbed, aint, equals the probability of an externally incident photon being

7aext is a function of αL.
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Figure 2.2: The benefits of random surface texturing vs. plane-parallel geometry (without
rear reflector). Assuming a 1.4eV bandgap, the optimal plane-parallel and surface textured
thicknesses were computed for each value of ηint. The (a) efficiency, (b) open-circuit voltage,
and (c) external yield ηext are shown here as a function of internal yield.

absorbed, aext. Once the externally incident photon has been scattered upon entering the
cell, it is equivalent to having been internally emitted. Therefore, one can write

aint = aext =
4n2

rαL

4n2
rαL+ 1

(2.26)

where the external absorptivity is derived in [19]. Inserting Eqn. 2.26 into Eqn. 2.21 yields

ηText =
ηint

1 + 4n2
rαL (1− ηint)

(2.27)

for the external luminescence yield of a solar cell with a randomly textured front surface, and
a perfect rear mirror. Note that again, for ηint = 1 − γ, with γ small, the external yield is
inversely proportional to the small parameter. Texturing does not provide significant benefit
in the almost ideal case, because re-absorption is sufficient to provide randomization.

The regime for which surface texturing provides significant benefits occurs when re-
absorption does not provide sufficient randomization. This occurs if the internal yield is
relatively small, such that re-absorption does not lead to re-emission. A significant boost
also comes from the fact that random surface texturing achieves full absorption at much
smaller thicknesses. Making the cell thinner while maintaining full absorption significantly
increases the external yield. If full absorption is assumed for the plane-parallel geometry,
the ratio of the two external yields can be written

ηText
ηPPext

' 4n2
rαLPP (1− ηint)

ηint + 4n2
rαLT (1− ηint)

(2.28)

which for small ηint can be further approximated by

ηText
ηPPext

' LPP
LT

(2.29)
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which is the ratio of the thicknesses of the two cells. If one were to take, for example,
LPP = 1/2 (because of the double pass), and LT = 1/4n2, then the relative voltage difference
between the two cells ∆V would be

q∆V = qVOC,textured − qVOC,plane−parallel = kT ln

(
ηText
ηPPext

)
' kT ln(2n2) (2.30)

Furthermore, in comparison with a plane-parallel cell without a rear mirror, which would
require LPP = 1, the randomly textured cell would have a voltage boost of

q∆V ' kT ln(4n2) (2.31)

a difference of approximately 100meV .
Fig. 2.2 shows detailed calculations of the benefits from random surface texturing. For a

1.4eV bandgap material, a step-function absorber is assumed. For each value of internal yield
ηint, the optimal optical thicknesses LPP and LT are computed. The efficiencies, open-circuit
voltage, and external yield are shown as a function of internal yield. Note the significant
improvement from surface texturing for ηint < 1. The optimal thicknesses are generally
αLPP ≈ 5 (there is not a rear mirror) and αLT ≈ 0.5. This translates to a superior external
yield for the textured geometry, by the ratio ηText/η

PP
ext ≈ 10, resulting in a voltage boost of

approximately kT ln(10) ≈ 60meV , as seen in Fig. 2.2(c).

2.6 Photon Extraction Versus Light Trapping

There is often confusion about whether enhanced photon extraction is at odds with “light
trapping.” It would seem that increasing light emission out of the solar cell would reduce
the amount of possible light trapping, thereby decreasing the solar cell current. However,
increased absorption and light trapping are actually complementary processes. This is ex-
plained by the asymmetry imposed by the semiconductor’s high refractive index relative to
air.

The intuitive notion of light trapping as a means of increasing the optical path length
will be represented here as an increase in the absorptivity per unit optical thickness. Math-
ematically, improved light trapping represents an increase in the quantity aext/αL, where
aext is the probability of absorbing an externally incident photon. For clarity and simplicity,
a step-function absorber is assumed such that the absorption coefficient is α for all energies
above the bandgap.

There are cases in which enhancing emission does not affect light trapping. It is shown
that the voltage nevertheless increases, demonstrating why photon extraction, rather than
light trapping, is the fundamental determinant of voltage. We derive here a rather general
formula linking external yield and the light-trapping quantity aext/αL.

Before deriving the general formula, it is worth noting the link between light trapping
and external extraction for the previously considered plane-parallel and randomly textured
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geometries. The plane-parallel case effectively has no light trapping; incident light has one
pass through the cell (or two with a rear mirror), but then immediately exits. Similarly, for
an internally emitted photon, there is only a small escape cone through which emission can
occur. A photon emitted outside the escape cone cannot be emitted without a re-absorption
process. Essentially, there a number of modes within the semiconductor that do not couple
to external plane waves, restricting both light-trapping for absorption and light extraction
for emission. Conversely, a random surface texture provides coupling between all of the
semiconductor internal modes and the external plane wave modes.8 Both light trapping
and light extraction are enhanced through this coupling. These two examples demonstrate
the intuition behind the claim that light trapping and light extraction are complementary
processes.

Having demonstrated that light trapping and emission enhancement are complementary
in two extreme cases, the plane-parallel and randomly textured solar cells, we can go further
and prove that in general the two quantities are linked. To do so, we must extend the detailed
balance model of Sec. 2.2. In Sec. 2.2, the detailed balance derivation matched absorption
and emission through the front surface at thermal equilibrium. The open-circuit voltage is
then known as a function of the absorptivity. For clarity, we re-label the absorptivity a(E)
as aext(E), emphasizing that it is the probability of an externally incident photon being
absorbed within the solar cell. Re-writing the equation at the open-circuit condition with
the new notation:∫

aext(E)S(E)dE = Ωexte
qV/kT

∫
aext(E)b(E)dE +RnrL (2.32)

where Ωext is the emissive solid angle and Rnr is the non-radiative recombination rate per
unit volume.

One can also perform detailed balance within the solar cell, normalizing per unit volume
instead of per unit area. As in Sec. 2.2, at thermal equilibrium absorption exactly equals
emission. The absorption rate per unit volume within the solar cell is 4πn2

rα(E)b(E) [20],
where α is the material absorption coefficient, the absorption occurs over 4π solid angle, and
the factor of n2

r accounts for the increased number of optical modes within the semiconductor.
The non-equilibrium rate again is the equilibrium rate scaled by the Boltzmann eqV/kT term.
As with the external surface derivation, the electon-hole generation and recombination rates
are equal at steady-state, and at open-circuit this leads to the equation:

1

L

∫
aext(E)S(E)dE = 4πn2

re
qV/kT

∫
α(E)b(E)dE−4πn2

re
qV/kT

∫
aint(E)α(E)b(E)dE+Rnr

(2.33)
The first term on the left-hand side is the volumetric absorption rate. The first term on the
right-hand side is the internal emission rate. The second term on the right, not necessary in
the external surface derivation, is the internal re-absorption rate, equal to the internal emis-
sion rate multiplied by the probability of absorbing an internally emitted photon, aint(E).

8In the ray optical limit, the internal modes are also plane wave modes.
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Re-arranging and simplifying, one finds∫
aext(E)S(E)dE = πeqV/kT

∫ [
4n2

rα(E)L (1− aint(E))
]
b(E)dE +RnrL (2.34)

The two detailed balance approaches, through balance at either the external surface or the
internal volume, represent the same physical situation. They must, therefore, be equivalent.
In the case of step-function absorbers, we can set the integrands of Eqn. 2.34 and Eqn. 2.32
equal to each other. This results in the relation:

aextΩext = 4πn2
rαL (1− aint) (2.35)

Note that Eqn. 2.35 already indicates that reducing the internal absorption rate (possibly by
increasing emission through the front), will increase the external absorptivity. The quantity
1 − aint is the probability of a photon escaping before re-absorption. However, the photon
could escape through either the front of the solar cell, which has solid angle Ωf , or the rear
of the solar cell, with solid angle Ωr. Nevertheless, re-arranging Eqn. 2.35, we can represent
the total escape probability as

eint =
aext

4n2
rαL

Ωext

π
(2.36)

Generalizing Eqn. 2.21 for general geometries, the external luminescence yield is:

ηext = ηintef + ηintaintηintef + . . .

=
ηintef

1− ηintaint
(2.37)

where ef is the probability of immediate escape through the front. For evenly distributed
carriers and photons throughout the cell, the escape rate through the front will be related
to the total escape right by the ratio of solid angles:

ef =
Ωf

Ωf + Ωr

eint =
aext

4n2
rαL

Ωf

π
(2.38)

By substituting the equations for ef (Eqn. 2.38) and aint (Eqn. 2.35) into Eqn. 2.37, we can
relate the external absorptivity to the external luminescence yield for a general geometry:

ηext =
aext

4n2
rαL

π
Ωf

1−ηint
ηint

+ aext
Ωext
Ωf

(2.39)

Eqn. 2.39 is a monotonically increasing function of the light-trapping factor aext/αL.9 As-
suming the emissive solid angles remain constant, any increase in light trapping will also in-
crease the external yield, mathematically confirming the intuition developed previously. Note

9Technically it is a monotonically non-decreasing function of the light-trapping factor, with the limiting case
ηint = 1 providing an example for which the external yield does not increase as a function of aext/αL.
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that for the plane-parallel and randomly textured geometries with rear mirrors, Eqn. 2.39
reduces to Eqns. 2.24 and 2.27, respectively. Note that there are methods for improving the
external yield without affecting the light-trapping. For example, consider an optically thick
semiconductor without a rear mirror. If a rear mirror is added, all of the photons previously
emitted through the rear surface will now be emitted through the front surface, yielding a
large improvement in the external yield. However, the absorption has not changed, as the
second pass through the semiconductor was not needed. This is one of a variety of examples
where external yield is increased without increasing the light trapping factor.

Therefore light emission and light trapping are not at odds, but are complementary phys-
ical phenomena. For very general geometric structures, the two processes are mathematically
related. Improving the light trapping will automatically increase the external luminescence
yield. However, there are methods for improving the external yield that do not affect the
light trapping, and yet increase the open-circuit voltage. External yield is therefore the
relevant parameter for designing and maximizing the voltage.

2.7 Voltage Calculation in the Sub-Wavelength

Regime

In Sec. 2.2, the conventional Shockley-Queisser detailed balance approach to calculating
voltage was presented. The Shockley-Queisser method, however, is difficult to implement
for solar cells in the sub-wavelength regime. Near-field effects, such as plasmon coupling
or radiative quenching, can have significant effects on the emission (and therefore voltage),
while being difficult to capture the SQ formalism. The simplicity of the SQ method derives
from the fact that by normalizing to surface area, the internal dynamics of the solar cell are
inherently included, without explicit calculation required. However, consider even the simple
case of a planar solar cell with a lossy back mirror. In the Shockley-Queisser approach, one
would need to calculate the absorptivity of blackbody photons radiating from the metal into
the cell, from which the emissivity would be derived. However, how would one normalize
the blackbody radiation from the metal? If the structure were sufficiently complicated as to
require a simulation, how could one inject an angled plane wave from the metal and properly
calculate the absorptivity? The failings of the SQ method in such cases requires an alternate
method for calculating the voltage.

Instead of indirectly calculating the emission through the absorption of external plane
waves, one can alternately calculate the emission from local, internal absorption. There is
still a detailed balance relation, but this time connecting the internal blackbody radiation to
an incoherent sea of fluctuating dipoles. If one can calculate the amplitude of the dipoles and
their respective emission rates, the cell emissivity as a whole will be known. This section will
present such a method, as well as a computational speed-up for faster calculation. Fig. 2.3
depicts the relevant processes inherent to the method.

The rigorous thermodynamic approach makes use of the fluctuation-dissipation theorem
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Figure 2.3: Optical processes in a semiconductor. The absorbed fraction of incoming pho-
tons excites electron-hole pairs. The emission from recombination of these excited states
can be considered as the electromagnetic power leaving the cell surface. Not all radiative
recombination contributes to the emission, some is recycled. The population of the excited
electrons establishes the (chemical) potential throughout the material volume.

[21, 22]. The fluctuation-dissipation theorem has been used to calculate e.g. radiative heat
transfer [23–26] and Casimir forces [27, 28]. For such an approach to calculate solar cell
emission, see [29]. Here we will instead present a heuristic derivation that does not get every
pre-factor correct, but does present an intuitive picture of the underlying science.

In addition to a detailed balance at the surfaces of the solar cell, there is also an internal
detailed balancing at thermal equilibrium. In thermal equilibrium, the photon absorption
rate per unit second must exactly equal the photon emission rate per unit second, at every
frequency. At steady-state there will be a blackbody radiation field of n2

rb(ω) throughout
the solar cell, where b(ω) is the blackbody photon flux per unit solid angle per second
per unit frequency, scaled by the semiconductor refractive index nr. The absorption rate
(equivalently, carrier generation rate) is therefore

Rabs(ω) = 4πn2
rα(ω)b(ω) (2.40)

At thermal equilibrium there is a detailed balance relation equating the emission and the
absorption, such that the emission rate is:

Rem(ω) = 4πn2
rα(ω)b(ω) (2.41)

in units of photons per unit volume, per second, and per unit frequency. The emission arises
from the dipole matrix element of the Hamiltonian [30], indicating that in the bulk the emis-
sion can be thought of as resulting from inconherent, fluctuating dipoles. From knowledge
of the radiative flux of a single dipole, then, one can derive the effective polarization density
at thermal equilibrium.
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The power radiated by a single dipole p is given by [31]

Rdipole =
nrω

4

12πε0c3
|p|2 (2.42)

In a bulk material at thermal equilibrium, a polarization density P will arise. This can be
modeled as N dipoles per unit volume per unit frequency, over some volume V . To solve for
the polarization density, one can first set the total emission rate from the N dipoles equal
to the emission rate of Eqn. 2.41:

NRdipole

h̄ω
= 4πn2

rα(ω)b(ω) (2.43)

Canceling equivalent terms and recognizing the absorption coefficient α(ω) ≈ (ω/c)εI/nr,
results in a formula for N :

N =
12

π
h̄ε0εI(r, ω)

1

eh̄ω/kT − 1

1

|p|2
(2.44)

where εI is the imaginary part of the permittivity. The total polarization density can be
approximated as |P(r)|2 = N |p|2, resulting finally in a formula for the polarization density
of

|P(r)|2 ≈ 12

π
h̄

[
1

eh̄ω/kT − 1

]
ε0εI(r, ω) (2.45)

The numerical pre-factors are not exactly correct, but the form of the equation is. Through a
proper thermodynamic analysis, taking into account the statistical nature of the absorption
and emission processes, one would find a correlation function for the polarization density of〈

Pk(r, ω)Pl(r′, ω′)
〉
S

= h̄

[
1

2
+

1

eh̄ω/kT − 1

]
ε0εI(r, ω)δklδ(r− r′) (2.46)

where the material has been assumed local and isotropic, the overline denotes complex
conjugation, and <>S denotes the symmetrized correlation function [32–34].

Eqn. 2.46 illustrates the primary concept of this section. At thermal equilibrium, the
blackbody radiator has a modal occupation described by Bose-Einstein statistics. Moreover,
the imaginary part of the permittivity, εI , dictates absorption, and therefore also the emission
rate. Given just the material permittivity and the temperature, Eqn. 2.46 gives the local
polarization density at thermal equilibrium, throughout the absorbing layer.

Given the polarization density at equilibrium, one can find the total emission rate. The
emissive flux through all of the surfaces of the solar cell determines the outgoing emission
rate:

Rout =

∫
A

dr

∫ ∞
0

dω

h̄ω
〈S(r, ω)〉 · n̂ (2.47)

where S(r, ω) is the Poynting vector of the fields emanating from the polarization density,
and n̂ is the outward surface normal. Ultimately, the field at a surface point r from the
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polarization density within the volume V at r′ is given by the electric and magnetic Green
dyads GEP

ij (r, r′) and GHP
ij (r, r′), respectively, using the notation of Sec. 5.1. Re-writing

Eqn. 2.47 in Einstein notation and introducing the Green’s functions leads to

Rout =

∫
A

dr

∫ ∞
0

dω

2h̄ω

∫
V

dr′
∫
V

dr′′Re
[
εijk

〈
GEP
jl (r, r′)Pl(r

′)GHP
km (r, r′′)Pm(r′′)

〉
ni

]
(2.48)

where εijk is the Levi-Civita symbol. The polarization sources are known from Eqn. 2.46.
Inserting them into Eqn. 2.48 yields

Rout =

∫
A

dr

∫ ∞
0

dω

2ω

1

eh̄ω/kT − 1

∫
V

dr′ε0εI(r
′, ω) Re

[
niεijkG

EP
jl (r, r′)GHP

kl (r, r′)
]

(2.49)

where the zero-point field does not contribute and has not been included. Eqn. 2.49 is
the outgoing emissive flux at thermal equilibrium for any geometry, where the geometric
dependence comes through the Green’s functions. Once the Green’s functions are known,
the voltage can be determined, as in Sec. 2.2, through the ratio of the solar generation rate
to the thermal equilibrium emission rate:

qVOC = kT ln

(
Rabs

Rout

)
(2.50)

The absorption rate Rabs can be found as usual through the absorptivity of the cell with
respect to incident plane waves. Through Eqn. 2.49, the emission is now known even when
there are near field effects, enabling calculation of the voltage and therefore efficiency of any
arbitrary geometry.

GaAs Solar Cell Calculation

We now implement the developed framework in an analytically tractable example. Given a
geometry for which the Green’s functions are known, Eqn. 2.49 gives the emission. A simple
yet relevant geometry for which the Green’s functions are known is shown in Fig. 2.4, a
multi-layer plane-parallel system. The system consists of a GaAs slab on gold. There are
two surfaces through which the emission can occur, the front and rear, through which the
emission occurs into channels I1 and I2, respectively. In this system the fields can further
be categorized as S (TE) or P (TM), determined by the transverse field component.

The Green’s functions for multi-layer systems are well-known [35]. A plane-wave decom-
position coupled with matrix analysis permits exact calculation of the fields for arbitrarily
many layers. For imaginary wave vectors, evanescent waves and even surface plasmon modes
can emerge. Switching to CGS-EMU units for consistency with [29], the emission rate with
the Green’s functions is

Rout =
1

4π3

∫ ∞
0

dω exp

(
−h̄ω
kT

)∫ ∞
0

kdk
(
IS1 + IP1 + IS2 + IP2

)
(2.51)
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Figure 2.4: Schematic layout of a slab GaAs solar cell with a metallic gold (Au) back reflector.

Block arrows represent the four possible emission channels: GaAs to air (I
P/S
1 ), and GaAs

to Au substrate (I
P/S
2 ), for S (TE) and P (TM) polarizations.

where k is the magnitude of the wavevector tangent to the interface, and the notation is
consistent with Fig. 2.4. The individual emission channels I

P/S
1/2 contain the Green’s function,

and work out to

I
S/P
1/2 = |τS/P1/2 |

2
w

′

1/2

|w3|2
[
w

′

3

(
1− e−2w

′′
3D
)(

1 + |rS/P3,2/1|
2e−2w

′′
3D
)

+ 2w
′′

3g
S/P e−2w

′′
3DIm

{
r
S/P
3,2/1

(
e2iw

′
3D − 1

)}]
(2.52)

where D is the GaAs thickness, wi =
√
εi(ω/c)2 − k2 is the magnitude of the wavevector

projected onto the z-axis, and the Fresnel reflection and transmission coefficients are r
S/P
1/2

and t
S/P
1/2 , respectively. gS/P is a polarization-dependent term

gS/P =

{
1 S-polarized

k2−|w3|2
k2+|w3|2 P -polarized

The Fabry-Perot multiple reflections make up the transmission coefficient τ through the
equation

τ
S/P
1/2 =

t
S/P
3,1/2

1− rS/P3,1 r
S/P
3/2 exp(−w′′

3D)
(2.53)

Fig. 2.5(a) shows the S and P -polarization emission rates out of the top and bottom
interfaces, i.e. individual contributions of the IS1 , IP1 , IS2 , and IP2 channels, as a function of
GaAs slab thickness. The sum of these four comprises the total emission out of the solar cell.
As opposed to a ray optical model, all the electromagnetic aspects of the emission process
are captured by the current formalism. These include the cavity-like resonance between the
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Figure 2.5: (a) Emission rate (Rout) of the S and P polarizations through GaAs/air and
GaAs/Au interfaces as a function of cell thickness; oscillations, the P -polarization peak,
and other features stem from the unique electromagnetic treatment presented in this work.
Panels (b) and (d) show intensity maps of emission channels at thicknesses of 40nm and
120nm, respectively. Individual contributions are labeled. Black lines represent the analytic
dispersion of plane waves in air (to the left) and in GaAs (to the right), while white dashed
lines depict the analytical SPP dispersion at the GaAs/Au interface. Panels (c) and (e)
examine the emission for photons with energies 1.42eV , near the bandgap of GaAs, for the
two thicknesses.
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(partially) reflective interfaces responsible for the oscillations in the emission rates, as well
as more subtle near field optical effects. One clear signature of such effects is the anomalous
peak in the P-polarization emission to the metal at 40nm thickness.

We chose two GaAs thicknesses for detailed study: 120nm and 40nm. Fig. 2.5(b) depicts
the emission rate as a function of both wavenumber (normalized to ωg/c) and photon en-
ergy, for each of the two thicknesses. Each map is divided into three distinctive regions. The
leftmost region depicts waves that can propagate in air, the middle section depicts propa-
gating waves in GaAs with evanescent tail in air, and the right section includes wave that
are evanescent both in air and GaAs. As expected, for both thicknesses the emission into
air (IS1 and IP1 ) is confined to the leftmost region.

For the 120nm thickness, the map divides neatly by modes. The guided modes (in the
middle region) result in emission through the GaAs/Au interface, due to the the loss tangent
of the Au. The map clearly shows coupling into the single-sided surface plasmon polariton
(SPP) mode, matching up exactly with the white line representing the SPP dispersion. There
is not particularly strong coupling into any of the modes, and therefore the total emission is
relatively small.

At 40nm the picture is modified. There is no longer a single-sided SPP mode; the close
proximity of the GaAs/air interface results in the hybrid IP2 -SPP mode that is strongly
coupled into from the fluctuating dipoles. The spectral width over which there is strong
coupling results in the enhancement peak visible in Fig. 2.5(a).

The signatures of the near field optical effects are clearly observed throughout the emis-
sion spectra. Our formalism inherently captures the local density of states effects, and
enables a clear picture to emerge of the underlying physics.

Fig. 2.6 shows the open-circuit voltage as a function of cell thickness for the GaAs device.
For comparison, the red line shows the VOC of the ray-based formalisms [36]. The ray-based
model fails to predict the VOC for small GaAs slab thicknesses as it does not account for
the electromagnetic nature of the emission process, including near field effects. One such
near field effect is the P -polarization emission peak of at 40nm thickness discussed earlier,
which is responsible for the dip in VOC observed at this thickness. The voltage is affected by
the electromagnetic phenomena that govern both emission and absorption processes at each
thickness. Therefore, the oscillations in VOC are somewhat displaced with respect to those
of Fig. 2.5(a). They fade away in thicker cells due to GaAs absorption where our prediction
and the ray based model are in good agreement. Interestingly, below 30nm our approach
predicts higher VOC than the ray based model. This observation shows that optic near field
effects may suppress the emission out of the cell, a significant fact to consider for the design
of future ultra thin devices.

The inset of Fig. 2.6 shows the efficiency of the GaAs slab cell calculated from the I-V
relation. The asymptotic efficiency of 18.4% (and VOC of 1.12V ) for a very thick GaAs slab
is in agreement with ray optics based models [36]. Therefore, while capturing the electro-
magnetic nature of the photo voltage and current production in thin solar cells, our analysis
converges to the known and expected results in the asymptotic limits of thick devices. We
note that in spite of the voltage rise, the efficiency for a very thin slab eventually drops due
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Figure 2.6: Open-circuit voltage vs. cell thickness of FDT formalism compared to a ray
based model in blue and red lines, respectively. Oscillations result from both absorption and
emission, and tend to relax for thick cells due to GaAs absorption. Inset shows efficiency vs.
cell thickness. Our result converges to the expectations of the ray-based models, shown in
black dashed line, for very thick cells. Zero efficiency at extremely small thickness despite
the rise in voltage is due to the vanishing absorption.

to diminishing absorption in this device, and thus vanishing photocurrent.
In conclusion, the fluctuation-dissipation theorem connects the thermodynamic and elec-

tromagnetic aspects of power generation in solar cells. This yields a rigorous electromag-
netic framework for evaluating cell performance under conditions unattainable by previous
approaches, especially the optical near-field regime. This analysis accounts for all optical
aspects of power generation in solar cells, including modified density of states and dispersive
materials. Other non-radiative losses can be incorporated in the usual manner [9, 36]. The
analysis is not principally limited to semiconductors and can be applied to any system that
can be described with the macroscopic Maxwell equations. The example of an ultra-thin
GaAs solar cell demonstrates the power of the method in capturing nano-scale physics.

Computational Implementation

The formalism presented here lends itself easily to a computational implementation for com-
plex geometries. The polarization density calculated in Eqn. 2.46 and used in Eqn. 2.49 can
be simulated by properly normalized dipoles radiating incoherently from every point within
the absorbing material. The primary drawback of the approach is the computational cost;
for a grid with Ni cells along each dimension i, the number of simulations scales as 6NxNyNz.
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However, we will present in this section a means for speeding up the calculation such that
the cost is only 4NxNy, effectively reducing the dimensionality by one (the dimension of the
relevant interfaces is assumed proportional to NxNy.

The straightforward approach to computing the emission rate, and therefore the open-
circuit voltage, for an arbitrary geometry can be gleaned from re-arranging Eqn. 2.49

Rout =

∫
V

dr′
∫
A

dr

∫ ∞
0

dωf(r′, ω) Re
[
niεijkG

EP
jl (r, r′)GHP

kl (r, r′)
]

(2.54)

where the the many pre-factors have been collected into the function f(r′, ω), and the order
of integration has been changed for clarity. The fact that the Green’s functions needed are
for dipoles radiating from r′ to r dictates why the order of integration is shown as above.
The incoherent dipoles have to be placed at all possible r′ locations, comprising the entire
volume NxNyNz of grid cells. Each dipole simulation results in the Green’s function over
the entire surface, collecting the data for all possible r into a single simulation. Algorith-
mically, this procedure is depicted in Alg. 1. Ideally, instead of looping through the many

Algorithm 1 Straightforward computational implementation of Eqn. 2.54. This implemen-
tation requires 6NxNyNz simulations per geometry.

Rout := 0
for k = 1 : NxNyNz do

for j = x, y, z do
Simulate pj = Pj∆j = ∆j,
Store GEP

ij (r, r′) for all i, r
Simulate mj = Mj∆j = ∆j
Store GHP

ij (r, r′) for all i, r

Rout ← Rout + ∆rk
′ ∫
A

dr
∫∞

0
dωf(rk

′, ω) Re
[
niεijkG

EP
jl (r, rk

′)GHP
kl (r, rk ′)

]
end for

end for

points within the absorber volume and calculating all of the surface data at once, it would
be preferable to loop through the surface area and then calculate the volume data at once.
This is in fact possible, using Lorentz reciprocity as derived in Appendix A. The key result is
Eqn. 5.15, which states that the dipole source and location points can be switched, accord-
ing to: GEP

ij (r, r′) = GEP
ji (r′, r) and GHP

ij (r, r′) = −GEM
ji (r′, r). Inserting their symmetric

counterparts into Eqn. 2.54 and changing the order of integration again:

Rout =

∫
A

dr

∫
V

dr′
∫ ∞

0

dωf(r′, ω) Re
[
−niεijkGEP

lj (r′, r)GEM
lk (r′, r)

]
(2.55)

Now the Green’s function represent the fields from r′ to r, meaning the dipole locations are
not limited to the surfaces of the absorber. Moreover, the polarizations of the dipoles are
now indexed by j and k, which are connected to the local normal ni through the Levi-Civita



CHAPTER 2. LUMINESCENT EXTRACTION DETERMINES THE VOLTAGE 29

symbol. For a given local normal ni, there are only two possible combinations of j and k
(e.g. for i = 1 only (j = 2, k = 3) and (j = 3, k = 2) are possible) allowed. This reduces the
number of dipoles per iteration to four rather than six, leaving the total computational cost
to be 4NxNy, rather than 6NxNyNz. Note that the cost could actually be a small multiple
greater than 4NxNy, as the surface area of the absorber could be a small multiple of the
factor NxNy. The faster algorithm is given by Alg. 2. Through algorithm 2, the emission rate

Algorithm 2 Fast computation of VOC in sub-wavelength solar cells. Computational im-
plementation of Eqn. 2.55, taking advantage of Lorentz reciprocity. This implementation
requires only 4NxNy simulations per geometry.

Rout := 0
for k = 1 : NxNy do

for j = k, l ⊥ i do
Simulate pj = Pj∆j = ∆j,
Store GEP

ij (r′, r) for all r′

Simulate mj = Mj∆j = ∆j
Store GEM

ij (r′, r) for all r′

end for
Rout ← Rout + ∆rk

∫
V

dr′
∫∞

0
dωf(r′, ω) Re

[
−niεijkGEP

lj (r′, r)GEM
lk (r′, r)

]
end for

and therefore open-circuit voltage can be computed for any arbitrary geometry. It includes
all near-field effects, providing an indispensable design tool in the search for next-generation
solar technologies.

2.8 Conclusions

This chapter developed the key concepts that determine the output voltage of a solar cell. Of
critical importance is the idea that external luminescence efficiency directly determines the
voltage, such that the solar cell should be designed for maximum emission at open-circuit.
Fundamentally, this arises from the thermodynamic link between absorption and emission
as dictated by detailed balance. The difficulty of extracting photons, discussed in Sec.2.4,
has significant consequences for high-efficiency solar cells. Chap. 3 studies the ramifications
as solar cells approach their Shockley-Queisser efficiency limits.

At the sub-wavelength scale, calculating the emission either analytically or computation-
ally becomes more complex. A vast array of near-field effects must be incorporated, properly
accounting for the modified density of states and localized modes. A new framework, based
on the fluctuation-dissipation theorem, has been presented, along with a computational algo-
rithm applicable to arbitrary geometries. This framework will help characterize and design
next-generation solar cells.
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Chapter 3

Approaching the Shockley-Queisser
Efficiency Limit

Nothing is more practical than
a good theory.

Kurt Lewin

Absorbed sunlight in a solar cell produces electrons and holes. But, at the open circuit
condition, the carriers have no place to go. They build up in density and, ideally, they
emit external luminescence that exactly balances the incoming sunlight. Any additional
non-radiative recombination impairs the carrier density buildup, limiting the open-circuit
voltage. At open-circuit, efficient external luminescence is an indicator of low internal optical
losses. Thus efficient external luminescence is, counter-intuitively, a necessity for approaching
the Shockley-Queisser efficiency limit. A great Solar Cell also needs to be a great Light
Emitting Diode. Owing to the narrow escape cone for light, efficient external emission
requires repeated attempts, and demands an internal luminescence efficiency �90%.

3.1 Introduction

The Shockley-Queisser (SQ) efficiency limit [5] for a single junction solar cell is ∼33.5%
under the standard AM1.5G flat-plate solar spectrum [37]. In fact, detailed calculations in
this chapter show that GaAs is capable of achieving this efficiency. Nonetheless, the record
GaAs solar cell had achieved only 26.4% efficiency [38] in 2010. Previously, the record had
been 26.1% [39] and prior to that stuck [40] at 25.1%, during 1990-2007. Why then the 7%
discrepancy between the theoretical limit 33.5% versus the previously achieved efficiency of
26.4%?

It is usual to blame material quality. But in the case of GaAs double heterostructures,
the material is almost ideal [41] with an internal luminescence yield of >99%. This deepens
the puzzle as to why the full theoretical SQ efficiency is not achieved?
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Figure 3.1: The drastic effect of internal luminescence efficiency, ηint, on theoretical solar cell
efficiency. The shortfall is particularly noticeable for smaller bandgaps. A reduction from
ηint = 100% to ηint = 90% already causes a large drop in performance, while a reduction
from ηint = 90% to ηint = 80% causes little additional damage. Owing to the need for photon
recycling, and the multiple attempts required to escape the solar cell, ηint must be �90%.

3.2 The Physics Required to Approach the

Shockley-Queisser Limit

Solar cell materials are often evaluated on the basis of two properties: how strongly they
absorb light, and whether the created charge carriers reach the electrical contacts, success-
fully. Indeed, the short-circuit current in the solar cell is determined entirely by those two
factors. However, the power output of the cell is determined by the product of the current
and voltage, and it is therefore imperative to understand what material properties (and solar
cell geometries) produce high voltages. We show here that maximizing the external emission
of photons from the front surface of the solar cell proves to be the key to reaching the highest
possible voltages [42]. In the search for optimal solar cell candidates, then, materials that are
good radiators, in addition to being good absorbers, are most likely to reach high efficiencies.

As solar efficiency begins to approach the SQ limit, the internal physics of a solar
cell transforms, such that photonic considerations overtake electronic ones. Shockley and
Queisser showed that high solar efficiency is accompanied by a high concentration of carri-
ers, and by strong luminescent emission of photons. In a good solar cell, the photons that
are emitted internally are likely to be trapped, re-absorbed, and re-emitted at open-circuit.

The SQ limit assumes perfect external luminescence yield at open-circuit. On the other
hand, inefficient external luminescence at open-circuit is an indicator of non-radiative re-
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combination and optical losses. Owing to the narrow escape cone, efficient external emission
requires repeated escape attempts, and demands an internal luminescence efficiency �90%.
We find that the failure to efficiently extract the recycled internal photons is an indicator
of an accumulation of non-radiative losses, which are largely responsible for the failure to
achieve the SQ limit in the best solar cells.

In high efficiency solar cells it is important to engineer the photon dynamics. The SQ
limit requires 100% external luminescence to balance the incoming sunlight at open circuit.
Indeed, the external luminescence is a thermodynamic measure [9, 16] of the available open-
circuit voltage. Owing to the narrow escape cone for internal photons, they find it hard to
escape through the semiconductor surface. Except for the limiting case of a perfect mate-
rial, external luminescence efficiency is always significantly lower than internal luminescence
efficiency. Then the SQ limit is not achieved.

The extraction and escape of internal photons is now recognized as one of the most
pressing problems in light emitting diodes (LEDs) [43–45]. We assert that luminescence
extraction is equally important to solar cells. The Shockley-Queisser limit cannot be
achieved unless light extraction physics is designed into high performance solar
cells, which requires that non-radiative losses be minimized, just as in LEDs.

In some way this is counter-intuitive, since an extracted photon cannot contribute to
performance. Paradoxically, 100% external extraction at open-circuit is exactly what is
needed to achieve the SQ limit. The paradox is resolved by recognizing that high extraction
efficiency at open-circuit is an indicator, or a gauge, of small optical losses. Previous record
solar cells have typically taken no account of light extraction, resulting in the poor radiative
efficiencies calculated in [46]. Nonetheless, approaching the 33.5% SQ limit will require light
extraction to become part of all future designs. The present shortfall below the SQ limit can
be overcome.

A recent paper by Green [46] reinforces the importance of light extraction. The record
solar cells that have reached the highest efficiencies are also the ones with the highest external
luminescence yield.

Although Silicon makes an excellent solar cell [47], Auger recombination fundamentally
limits its internal luminescence yield to <20% [48], which prevents Silicon from approaching
the SQ limit. The physical issues presented here pertain to any material that has the
possibility of approaching the SQ limit, which requires near unity external luminescence as
III-V materials can provide, and that perhaps other material systems can provide as well.

Since light is trapped by total internal reflection, it is likely to be re-absorbed, leading to
a further re-emission event. With each absorption/re-emission event, the solid angle of the
escape cone [17] allows only (1/4n2)∼2% of the internal light to escape. As a result, 1 sun
incident can produce an internal photon density equivalent to up to 50 suns. This puts a very
heavy burden on the parasitic losses in the cell. With only 2% escaping per emission event,
even a 90% internal luminescence yield on each cycle would appear inadequate. Likewise the
rear mirror should have �90% reflectivity. This is illustrated in Fig. 3.1 and 3.2.

A good solar cell should be designed as a good light emitting diode, with good light
extraction. In a way, this is not surprising. Most ideal machines work by reciprocity, equally
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Figure 3.2: The drastic effect of rear mirror reflectivity on cell efficiency and on open-
circuit voltage, VOC , but not on short-circuit current, JSC , for a 3µm thick GaAs solar cell.
Mirror reflectivity�90% makes a big difference, owing to the small escape cone for external
emission, and the multiple attempts needed for escape.

well in reverse. This has important ramifications. For ideal materials the burden of high
open-circuit voltage, and thereby high efficiency, lies with optical design: The solar cell must
be designed for optimal light extraction under open-circuit conditions.

The assumption of perfect internal luminescence yield is a seductive one. The Shockley-
Queisser limit gets a significant boost from the perfect photon recycling that occurs in an
ideal system. Unfortunately, for most materials, their relatively low internal luminescence
yields mean that the upper bounds on their efficiencies are much lower than the Shockley-
Queisser limit. For the few material systems that are nearly ideal, such as GaAs, there is
still a tremendous burden on the optical design of the solar cell. A very good rear mirror, for
example, is of the utmost importance. In addition, it becomes clear that realistic material
radiative efficiencies must be included in a credible assessment of any material’s prospects
as a solar cell technology.

There is a well-known detailed balance equation relating the spontaneous emission rate
of a semiconductor to its absorption coefficient [20]. Nevertheless, it is not true that all
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good absorbers are good emitters. If the non-radiative recombination rate is higher than
the radiative rate then the probability of emission will be very low. Amorphous silicon,
for example, has a very large absorption coefficient of about 105/cm, yet the probability
of emission at open circuit is approximately 10−4 [46]. The probability of internal emission
in high-quality GaAs has been experimentally tested to be 99.7% [41]. GaAs is a unique
material in that it both absorbs and radiates well, enabling the high voltages required to
reach >30% efficiency.

The idea that increasing light emission improves open-circuit voltage seems paradoxical,
as it is tempting to equate light emission with loss. Basic thermodynamics dictates that
materials which absorb sunlight must also emit in proportion to their absorptivity. Thus
electron-hole recombination producing external luminescent emission is a necessity in solar
cells. At open circuit, external photon emission is part of a necessary and unavoidable
equilibration process, which does not represent loss at all.

At open circuit an ideal solar cell would in fact radiate out of the solar cell a photon
for every photon that was absorbed. Any additional non-radiative recombination, or photon
loss, would indeed waste photons and electrons. Thus the external luminescence efficiency
is a gauge or an indicator of whether the additional loss mechanisms are present. In the
case of no additional loss mechanisms, we can look forward to 100% external luminescence,
and maximum open circuit voltage, VOC . At the power-optimized, solar cell operating bias
point [1], the voltage is slightly reduced, and 98% of the open-circuit photons are drawn out
of the cell as real current. Good external extraction comes at no penalty in current at the
operating bias point.

On thermodynamic grounds, it has already been proposed [9, 49, 50] that the open circuit
voltage would be penalized by poor external luminescence efficiency ηext as:

qVOC = qVOC−Ideal − kT | ln ηext| (3.1)

Eqn. 3.1 was derived in Chap. 2; a simpler derivation will be presented here. Under ideal
open-circuit, quasi-equilibrium conditions, the solar pump rate equals the external radiative
rate: Rext = Rpump. If the radiative rate is diminished by a poor external luminescence
efficiency ηext, the remaining photons must have been wasted in non-radiative recombination
or parasitic optical absorption. The effective solar pump is then reduced to Rpump×ηext. The
quasi-equilibrium condition is then Rext = Rpump × ηext at open circuit. Since the radiative
rate Rext depends on the carrier density np product, which is proportional to exp[qVOC/kT ],
then the poor extraction ηext penalizes VOC just as indicated in Eqn. 3.1.

Another way of looking at this is to notice the shorter carrier lifetime in the presence of
the additional non-radiative recombination. We start with a definition

ηext =
Rext

Rext +Rnr

(3.2)

where Rnr is the internal photon and carrier non-radiative loss rate per unit area. Simple
algebraic manipulation shows that the total loss rate Rext + Rnr = Rext/ηext. Thus a poor
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Figure 3.3: Solar performance from three geometries: (a) randomly textured front surface
with a perfectly reflecting mirror on the rear surface, (b) planar front surface with a perfectly
reflecting mirror on the rear surface, and (c) planar front surface with an absorbing mirror
on the rear surface.

ηext < 1 increases the total loss rate in inverse proportion, and the shorter lifetime limits the
build-up of carrier density at open circuit. Then carrier density is connected to exp[qVOC/kT ]
as before.

It is important to emphasize that light emission should occur opposite to the direction of
the incident photons. A maximally concentrating solar cell would emit photons only directly
back to the sun thus achieving even higher voltages [51, 52]. However, concentrators miss the
substantial fraction of diffuse sunlight, so we focus instead on non-concentrating solar cells.
Such cells absorb both direct and diffuse sunlight, from all incident angles. The unavoidable
balancing emission is that of luminescent photons exiting through the front. Consequently,
light emission only from the front surface should be maximized. Having a good mirror on the
rear surface greatly improves the luminescent photon extraction and therefore the voltage.

3.3 Theoretical Efficiency Limits of GaAs Solar Cells

The Shockley-Queisser limit includes a major role for external luminescence from solar cells.
Accordingly, internal luminescence followed by light extraction plays a direct role in deter-
mining theoretical efficiency. To understand these physical effects a specific material system
must be analyzed, replacing the hypothetical step function absorber stipulated by SQ.

GaAs is a good material example, where external luminescence extraction plays an im-
portant role in determining the fundamental efficiency prospects. The quasi-equilibrium
approach developed by SQ [5] is the most rigorous method for calculating such efficiency
limits. Properly adapted, it can account for the precise incoming solar radiation spectrum,
the real material absorption spectrum, the internal luminescence efficiency, as well as the
external extraction efficiency and light trapping [36]. Calculations including such effects for
Silicon solar cells were completed more than 25 years ago [36]. Surprisingly, a calculation
with the same sophistication has not yet been completed for GaAs solar cells.

Previous GaAs calculations have approximated the solar spectrum to be a blackbody at
6000K, and/or the absorption coefficient to be a step function [5, 53, 54]. The efficiency
limits calculated with these assumptions are all less than or equal to 31%.
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In this chapter the theoretical maximum efficiency of a GaAs solar cell is calculated. It
is shown, using the one-sun AM1.5G [37] solar spectrum and the proper absorption curve
of GaAs, that the theoretical maximum efficiency is in fact 33.5%. Allowing for practical
limitations, it should be possible to manufacture flat-plate single-junction GaAs solar cells
with efficiencies above 30% in the near future. As we have already shown, realizing such
efficiencies will require optical design such that the solar cell achieves optimal light extraction
at open circuit.

To explore the physics of light extraction, we consider GaAs solar cells with three possible
geometries, as shown in Fig. 3.3. The first geometry, Fig. 3.3(a), is the most ideal, with
a randomly textured front surface and a perfectly reflecting mirror on the rear surface.
The surface texturing enhances absorption and improves light extraction, while the mirror
ensures that the photons exit from the front surface and not the rear. The second geometry,
Fig. 3.3(b), uses a planar front surface while retaining the perfectly reflecting mirror. Finally,
the third geometry, Fig. 3.3(c), has a planar front surface and an absorbing rear mirror, which
captures most of the internally emitted photons before they can exit the front surface. We
will show that this configuration achieves almost the same short-circuit current as the others,
but suffers greatly in voltage and, consequently, efficiency. Thus the optical design affects the
voltage more than it does the current. Note that the geometry of Fig. 3.3(c) is equivalent to
the common situation in which the active layer is epitaxially grown on top of an electrically
passive substrate, which absorbs without re-emission.

GaAs has a 1.4eV bandgap that is ideally suited for solar cells. It is a direct-bandgap
material, with an absorption coefficient of 8000cm−1 near its (direct) band-edge. By contrast,
the absorption coefficient of Si is ∼104 times weaker at its indirect band-edge. Fig. 3.4 is
a semi-log plot of the GaAs absorption coefficient as a function of energy; the circles are
experimental data from [55] while the solid line is a fit to the data using the piecewise
continuous function:

α =

 α0 exp
(
E−Eg
E0

)
E < Eg

α0

(
1 + E−Eg

E′

)
E > Eg

(3.3)

where α0 = 8000/cm, the Urbach energy is E0 = 6.7meV , and E ′ = 140meV . The expo-
nential dependence of the absorption coefficient below the bandgap is characteristic of the
“Urbach tail” [56].

Efficient external emission can be separated into two steps: first, the semiconductor
should have a substantially higher probability of recombining radiatively, rather than non-
radiatively. We define the internal luminescence yield, ηint, similarly to the external lumines-
cence yield, as the probability of radiative recombination versus non-radiative recombination:

ηint =
Rint

Rint +Rnr

(3.4)

where Rint and Rnr are the radiative and non-radiative recombination rates per unit volume,
respectively. The internal luminescence yield is a measure of intrinsic material quality. The
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Figure 3.4: GaAs absorption coefficient as a function of energy, with the experimental data
from [55] and the theoretical fit according to Eqn. 3.3. GaAs has a direct bandgap at
Eg = 1.42eV , with an “Urbach tail” that falls off exponentially for lower energies.

second factor for efficient emission is proper optical design, to ensure that the internally
radiated photons eventually make their way out to external surface of the cell. Maximizing
both factors is crucial for high open-circuit and operating point voltages.

We now derive the external luminescence yield for the three different geometries. At
open-circuit, Rpump and the recombination rates, Rext +Rnr, are equal, and this allowed the
derivation of Eqn. 3.1 for a general open-circuit voltage. In operation, however, current will
be drawn from the solar cell and the two rates will not be equal. The current will be the
difference between pump and recombination terms:

J = q (Rpump −Rext −Rnr) =

∫ ∞
0

a(E)S(E)dE − 1

ηext
qπeqV/kT

∫ ∞
0

a(E)b(E)dE (3.5)

where the external luminescence from the cell is a Lambertian that integrates to π steradians,
and the absorptivity a(E, θ) has been assumed independent of polar angle θ, which is clearly
valid for the randomly textured surface. It is approximately independent of incident angle
for a planar front surface because the large refractive index of GaAs refracts the incident
light very close to perpendicular inside the solar cell.

Randomly Textured Surface

Randomly texturing the front surface of the solar cell, Fig. 3.3(a), represents an ideal method
for coupling incident light to the full internal phase space of the solar cell. The absorptivity
of the textured cell has been derived in [19]:

a(E) =
4n2αL

4n2αL+ 1
(3.6)

Although only strictly valid in the weakly absorbing limit, the absorptivity is close enough
to one for large αL that Eqn. 3.6 can be used for all energies.
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To derive the external luminescence yield, all of the recombination mechanisms must be
identified. We have assumed a perfectly reflecting rear mirror, so the net radiative recombi-
nation is the emission from the front surface, given by Eqn. 2.9. The only fundamental non-
radiative loss mechanism in GaAs is Auger recombination. The Auger recombination rate per
unit area is CLn3

i exp [3qV/2kT ], where L is the thickness of the cell, C = 7×10−30cm6s−1 is
the Auger coefficient [57], and intrinsic doping is assumed to minimize Auger recombination.
The external luminescence yield can then be written:

ηext (V ) =
πeqV/kT

∫∞
0
a(E)b(E)dE

πeqV/kT
∫∞

0
a(E)b(E)dE + CLn3

i e
3qV/2kT

(3.7)

Planar Front Surface with Perfectly Reflecting Mirror

A second interesting configuration to consider is that of Fig. 3.3(b), which has a planar front
surface and a perfectly reflecting rear mirror. Comparison with the first configuration allows
for explicit determination of the improvement introduced by random surface texturing. Not
surprisingly, surface texturing only helps for very thin cells.

The absorptivity of the planar cell is well-known:

a(E) = 1− e−2αL (3.8)

where the optical path length is doubled because of the rear mirror. Using this absorptivity
formula, Eqn. 2.9 still represents the external emission rate. As a consequence, the external
luminescence yield follows the same formula, Eqn. 3.7, albeit with a different absorptivity,
a(E), for the planar front surface versus the textured solar cell.

Planar Front Surface with Absorbing Mirror

We have emphasized the importance of light extraction at open circuit to achieve a high
voltage. To demonstrate the effects of poor optical design on efficiency, we also consider
the geometry of Fig. 3.3(c). No extra recombination mechanism has been introduced, but
the rear mirror now absorbs light rather than reflecting it internally. (Or equivalently, it
transmits light into a non-radiating, optically lossy, substrate.)

One could explicitly calculate the probability of internally emitted light escaping, tracking
the photons to calculate the external luminescent yield (as in Sec. 2.4). However, a simpler
approach is to realize that the geometry with an absorbing rear-mirror is equivalent to a setup
with an absorbing non-luminescent substrate supporting the active material, as depicted in
Fig. 3.5. Viewed either way, the absorptivity is: a(E) = 1 − e−αL, where the light now has
the opportunity for only one pass through the semiconductor to become absorbed.

To calculate the external luminescence yield, one can use the rate balancing method
described earlier. The recombination terms for emission out of the front surface and Auger
processes are still present. Now there is also a term for emission out of the rear surface. By
the same reasoning as for front surface emission, the emission out of the rear surface balances
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Figure 3.5: Optically equivalent configurations, assuming the substrate does not reflect, nor
re-radiate, absorbed photons. In both cases, almost all of the internally emitted light will
be lost out of the rear surface of the solar cell.

the thermal radiation coming from below: a′(E, θ′) × b′(E) × exp[qV/kT ] which includes a
further boost by the quasi-equilibrium factor exp[qV/kT ]. At the rear surface, the density
of states of the internal blackbody radiation b′(E) ≡ n2

rb(E) is increased by n2
r, where nr is

the refractive index of the semiconductor. The rear absorption a′(E, θ) is also modified as
shown in the following equation for the total number of incident photons absorbed per unit
area:

2πn2
r

∫ ∞
0

b(E)

∫ π/2

0

(
1− e−

f(θ′)αL
cos θ′

)
cos θ′ sin θ′dθ′ (3.9)

where the 2π prefactor arises from the azimuthal integral, and f(θ′) equals one (two) for
photons inside (outside) the escape cone, accounting for the different path lengths traveled by
internal photons at angles greater or less than the critical angle θc, defined by the escape cone
at the top surface. The internal path length by oblique rays is increased by the factor 1/ cos θ′.
A similar expression for the rear absorption is found in [54]. The external luminescence yield
is now the ratio of the emission out of the front surface to the sum of the emission out of
either surface plus Auger recombination:

ηext (V ) =
πeqV/kT

∫∞
0
a(E)b(E)dE

πeqV/kT
∫∞

0
b(E)

[
a(E) + 2n2

r

∫ π/2
0

(
1− e−

f(θ′)αL
cos θ′

)
sin θ′ cos θ′dθ′

]
dE + CLn3

i e
3qV/2kT

(3.10)
which is an explicit function of the quasi-Fermi level separation qV .

Equivalence of Photon and Carrier Equations

The importance of photon management in general, and luminescent extraction in particular,
have been emphasized. Yet in Eqn. 3.7, for example, simple photonic quantities such as
the semiconductor refractive index are not present. The refractive index certainly plays
a major role in photon extraction, through determination of the critical angle for total
internal reflection, so how is it possibly not in the external yield formula? This sub-section
demonstrates that the dependence on refractive index is hidden because the equations are
written in terms of the carriers; formulating the yield by directly accounting for every photon
path yields an equivalent result while also directly illuminating the importance of photonic
quantities.
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A photon-counting derivation of the external yield of a planar geometry with a perfectly
reflecting mirror was already completed in Chap. 2. Eqn. 2.24 is a formula for the yield
that does directly incorporate photonic quantities such as refractive index. It is relatively
straightforward to show that Eqn. 2.24 is equivalent to Eqn. 3.7.

By determination of the internal yield ηint and further manipulation, the equivalence can
be made definite. The internal yield as previously defined is the ratio of radiative recombi-
nation events per unit volume to total recombination events (c.f. Eqn. 3.4). The radiative
recombination rate per unit volume can be determined by internal detailed balancing, in
contrast with the surface-normalized detailed balancing presented in Sec. 2.2. The emission
is again expressed through the absorption process, except this time it is the proportional to
the material absorption coefficient:

Rint = 4παn2
re
qV/kT

∫ ∞
Eg

b(E)dE (3.11)

Eqn. 3.11 is known as the van Rooesbrouck-Shockley relation [20]. The non-radiative recom-
bination rate is assumed to be the Auger recombination rate

Rnr = Cn3
i e

3qV/2kT (3.12)

The quantity (1− ηint)/ηint of Eqn. 2.24 can now be written

1− ηint
ηint

=
Rnr

Rint

=
Cn3

i e
3qV/2kT

4παn2
re
qV/kT

∫∞
Eg
b(E)dE

(3.13)

Inserting Eqn. 3.13 into Eqn. 2.24 and re-arranging

ηext (V ) =
πeqV/kT

∫∞
0
aextb(E)dE

πeqV/kT
∫∞

0
aextb(E)dE + CLn3

i e
3qV/2kT

(3.14)

which is identically Eqn. 3.7 for the step-function absorber considered here.
The equivalence between the photon and carrier equations is important. It is often easier

to derive important quantities such as current, voltage, or luminescence yield through carrier
generation and recombination, resulting in e.g. Eqns. 3.7,3.10. Nevertheless, underlying the
carrier quantities are the photon dynamics discussed in Chap. 2, which ultimately dictate
the voltage and efficiency.

3.4 Discussion

Given the absorptivity and external luminescence yield of each geometry, calculation of
the solar cells I-V curve and power conversion efficiency is straightforward using Eqn. 3.5.
The power output of the cell, P , is simply the current multiplied by the voltage. The
operating point (i.e. the point of maximum efficiency) is the point at which dP/dV = 0.
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Figure 3.6: GaAs solar cell efficiency as a function of thickness. Random surface texturing
does not increase the limiting efficiency of 33.5%, although it enables the high efficiencies
even for cell thicknesses less than one micron. Having an absorbing mirror on the rear surface
incurs a voltage penalty and reduces the theoretical limiting efficiency to 31.1%. There is
still a sizeable gap between the 26.4% cell and the theoretical limit. The cell thickness was
not specified in [38], and has been estimated as 1–2µm.

Substituting the absorption coefficient data and solar spectrum values into Eqn. 3.5, it is
simple to numerically evaluate the bias point where the derivative of the output power equals
zero.

Fig. 3.6 is a plot of the solar cell efficiencies as a function of thickness for the three
solar cell configurations considered. Also included is a horizontal line representing the best
GaAs solar cell fabricated up to 2010, which had an efficiency of 26.4% [38]. The maximum
theoretical efficiency is 33.5%, more than 7% larger in absolute efficiency. An efficiency of
33.5% is theoretically achievable for both planar and textured front surfaces, provided there
is a mirrored rear surface.

Although surface texturing does not increase the maximum efficiency, it does help main-
tain an efficiency greater than 30% even for solar cells that are only a few hundred nanome-
ters thick. The cell with a planar surface and bad mirror on its rear surface reaches an
efficiency limit of only 31.1%, exhibiting the penalty associated with poor light extraction.
To understand more clearly the differences that arise in each of the three configurations, the
short-circuit currents and open-circuit voltages of each are plotted in Fig. 3.7.

Fig. 3.7 and Tab. 3.1 display the differences in performance between a planar solar cell
with a perfect mirror and one with an absorbing mirror. Although the short-circuit currents
are almost identical for both mirror qualities, at thicknesses greater than 2−3µm, the voltage
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Figure 3.7: (a) Open-circuit voltage (VOC), and (b) short-circuit current (JSC), as a function
of thickness for each of the solar cell configurations considered. The planar cell with an ab-
sorbing mirror reaches almost the same short-circuit current as the other two configurations,
but it suffers a severe voltage penalty due to poor light extraction and therefore lost photon
recycling. There is considerable opportunity to increase VOC over the previous record 26.4%
cell. (The textured cell/good mirror has a lower voltage than a planar cell/good mirror
owing to the effective bandgap shift observed in Fig. 3.9. This slight voltage drop is not due
to poor ηext.)

differences are drastic. Instead of reflecting photons back into the cell where they can be
re-absorbed, the absorbing mirror constantly removes photons from the system. The photon
recycling process attendant to a high external luminescence yield is almost halted when the
mirror is highly absorbing.

Fig. 3.8 presents such intuition visually, displaying the internal and external currents of
a 10µm thick GaAs solar cell at its maximum power point, for 0% and 100% reflectivity. In
both cases, the cells absorb very well, and the short-circuit currents are almost identical. The
extracted currents, too, are almost identical. In each case 0.8mA of current is lost (i.e. the
difference between short-circuit and operating currents); but in the case of the good mirror
the current is lost to front surface emission. There is a strong buildup of photon density
when the only loss is emission through the front surface, allowing much higher internal
luminescence and carrier density. A higher operating voltage results.

From Fig. 3.6, it is clear that surface texturing is not helpful in GaAs, except to increase
current in the very thinnest solar cells. In most solar cells, such as Silicon cells, surface
texturing provides a mechanism for exploiting the full internal optical phase space. The
incident sunlight is refracted into a very small solid angle within the cell, and without
randomizing reflections, photons would never couple to other internal modes.
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Figure 3.8: Diagram of currents at the operating point for a planar 10µm thick, 1cm2 solar
cell (a) with a perfectly reflecting mirror and (b) with an absorbing mirror. The two solar
cells produce almost the same amount of current, but the cell with a perfectly reflecting
mirror achieves a higher voltage. The internal luminescence and re-absorption demonstrate
the impact of front surface emission on carrier densities. In GaAs, Auger recombination is
negligible.

GaAs is such an efficient radiator that it can provide the angular randomization by
photon recycling. After absorbing a photon, the photon will likely be re-emitted, and the re-
emission is equally probable into all internal modes. Whereas most materials require surface
roughness to efficiently extract light, the radiative efficiency of GaAs ensures light extraction
based on photon recycling. Such photon dynamics are illustrated in Fig. 3.11.

Marti [54] and Johnson [58] already emphasized the benefits of photon recycling toward
efficiency, but we believe that external luminescence yield is the more comprehensive param-
eter for boosting solar cell efficiency and voltage.

It seems surprising that the planar solar cell would have a higher voltage than the tex-
tured cell. This is due to a second-order effect seen in Fig. 3.9. Textured cells experience
high absorption even below the bandgap, due to the longer optical path length provided.
Texturing effectively reduces the bandgap slightly, as shown in Fig. 3.9, accounting for the
lower open-circuit voltage but larger short-circuit current values seen in Fig. 3.7.

GaAs is an example of one of the very few material systems that can reach internal lumi-
nescence yields close to 1; a value of 99.7% has been experimentally confirmed [41]. However,
it is the external luminescence yield that determines voltage, and that yield depends on both
the quality of material and also the optical design. Absorbing contacts, or a faulty rear mir-
ror, for example, will remove photons from the system that could otherwise be recycled.
Additionally, an optically textured design [17] can provide the possibility for extraction of
luminescent photons, before they could be lost.

Light trapping is normally thought of as a way to absorb more light and increase the
current in a thinner cell. But the concentration of carriers in a thinner cell also provides a
voltage increase, qV ∼ kT ln(4n2), an effect that was implicitly used when light trapping was
first incorporated into the fundamental calculation of Silicon efficiency [36]. Thus texturing
improves the voltage in most solar cells. Nonetheless, one of the main results of this article
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Figure 3.9: Absorptivity of a 10µm thick cell as a function of photon energy near the
bandgap. A textured cell absorbs well even at 1.39eV , effectively reducing the band-gap.
This explains the lower voltages but higher currents of the textured cell, relative to the
plane-parallel cell.

is that the voltage boost can come with OR without surface texturing in GaAs. The reason
is that efficient internal photon recycling provides the angular randomization necessary to
concentrate the light, even in a plane-parallel GaAs cell. Thus, short-circuit current in GaAs
can benefit from texturing, but GaAs voltage accrues the same benefit with, or even without,
texturing.

The distinction between voltage boost by texturing, and voltage boost by photon re-
cycling was already made by Lush and Lundstrom [59] who predicted the higher voltages
and the record efficiencies that have recently been observed [3] in thin film III-V solar cells.
However, the over-arching viewpoint in this article is that voltage is determined by exter-
nal luminescence efficiency. That viewpoint accounts in a single comprehensive manner for
the benefits of nano-texturing, photon re-cycling, parasitic optical reflectivity, and imperfect
luminescence, while being thermodynamically self-consistent.

In the case of perfect photon recycling, there is surprisingly little thickness dependence of
VOC . This is to be contrasted with the textured case, where the voltage boost might require
light concentration and carrier concentration within a thin cell. Under perfect photon re
cycling, photons are lost only at the surface, and the photon density and carrier density are
maintained at the maximum value through the full depth. The solar cell can be permitted
to become thick, with no penalty. In practice a thick cell would carry a burden, and an
optimum thickness would emerge.

3.5 A New Single-Junction Efficiency Record

The prior [38] one-sun, single-junction efficiency record, 26.4%, was set by GaAs cells that
had VOC = 1.03V . Alta Devices has recently made a big improvement in GaAs efficiency to
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Table 3.1: Table of VOC , JSC , and efficiency values for three possible geometries and relevant
cell thicknesses. A good rear mirror is crucial to a high open-circuit voltage, and consequently
to efficiencies above 30%.

Figure 3.10: Single-junction, flat-plate solar cell efficiency records over time [3, 38, 40].
Each is a GaAs solar cell. Alta Devices recently dramatically increased the efficiency record
through open-circuit voltage improvement, due to superior photon management.

28.3% [3, 60]. The improvement was not due to increased short-circuit current; in fact, the
Alta Devices cell had JSC = 29.5mA/cm2, less short-circuit current than the 29.8mA/cm2 of
the previous record cell. However, the Alta Devices cell had a measured open-circuit voltage
VOC = 1.11V , an 80mV improvement over the 1.03V open-circuit voltage of the previous
record cell, showing in part the benefit of light extraction.
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Figure 3.11: Qualitative illustration of the different photon dynamics in plane-parallel solar
cells with (a) low luminescence yield ηext and (b) high ηext, respectively. In (a), the lack of
photon extraction reduces carrier density and thus voltage. Conversely in (b), the internal
photons achieve full angular randomization even without surface texturing, and the high
external emission is indicative of high carrier density build-up.

3.6 Conclusions

We have shown how to include photon recycling and imperfect radiation properties into the
quasi-equilibrium formulation of Shockley and Queisser. High voltages VOC are achieved by
maximizing the external luminescence yield of a system. Using the standard solar spectrum
and the measured absorption curve of GaAs, we have shown that the theoretical efficiency
limit of GaAs is 33.5%, which is more than 4% higher than that of Silicon [61], and achieves
its efficiency in a cell that is 100 times thinner.

Internally trapped radiation is necessary, but not sufficient, for the high external lumines-
cence that allows a cell to reach voltages near the theoretical limits. The optical design must
ensure that the only loss mechanism is photons exiting at the front surface. A slightly faulty
mirror, or equivalently absorbing contacts or some other optical loss mechanism, sharply
reduces the efficiency limit that can be achieved. To realize solar cells with efficiency greater
than 30%, the optical configuration will need to be very carefully designed.

The Shockley-Queisser formulation is still the foundation of solar cell technology. How-
ever, the physics of light extraction and external luminescence yield are clearly relevant for
high performance cells and will prove important in the eventual determination of which solar
cell technology wins out in the end. In the push for high-efficiency solar cells, a combination
of high-quality GaAs and optimal optical design should enable single-junction flat plate solar
cells with greater than 30% efficiency.
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Chapter 4

Analysis of next-generation solar cells

For a successful technology,
reality must take precedence
over public relations, for nature
cannot be fooled.

Richard Feynman

There are three loss mechanisms in single-junction solar cells that result in maximum possible
efficiencies of only 33%, rather than the Carnot efficiency of almost 95% [53, 62]. First,
photons with energies smaller than the semiconductor’s bandgap energy are not absorbed and
therefore not collected. Second, carriers generated from absorption of high energy photons
quickly thermalize to the band-edge, reducing the available free energy. Finally, the solar
cell’s emissivity must match it’s absorptivity, resulting in significant luminescence. Because
this final condition is a result of thermodynamic detailed balancing, it is not a process to be
avoided but rather one to be maximized, as discussed extensively in Chaps. 2, 3. However,
solar cell concepts attempting to circumvent the first two loss mechanisms are abundant.

The Shockley-Queisser method [5] is the canonical technique for understanding efficiency
limits for each different concept, with each limit depending on the specific technology. The
framework developed in Chap. 3 can similarly be applied to a variety of technologies, in an
attempt to understand deviations from the ideal assumptions and the physics required to
approach the efficiency limits. In this chapter, such analysis is applied to third-generation
[62] solar cells dependent on carrier multiplication, up-conversion, and multi-junction tech-
nologies.

A common theme throughout the chapter is the independence of the voltage penalty
due to poor extraction, Eqn. 3.1, relative to bandgap. A luminescence yield of 2%, for
example, results in a voltage penalty of −kT ln(0.02) ≈ 100mV , regardless of the bandgap.
For smaller bandgap solar cells, this is a much greater percentage of the open-circuit voltage,
resulting in a larger efficiency penalty. Large-bandgap cells are relatively robust to imperfect
photon management, whereas small-bandgap cells are susceptible to small imperfections.
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Figure 4.1: Schematic of carrier multiplication techniques for enhancing solar cell efficiency.
Instead of allowing high-energy photons to thermally relax to the band-edge, multiple carriers
are generated through impact ionization or a similar process.

Consequently, technologies dependent on larger bandgap cells, such as multi-junction tandem
cells, have a greater likelihood of approaching their efficiency limits than do technologies
dependent on smaller bandgap cells, such as down-converting or up-converting solar cells.

4.1 Carrier Multiplication

A prime example of the susceptibility of small bandgaps to imperfect luminescent yield occurs
in carrier multiplication schemes. Multiple-carrier solar cells try to enhance the energy
conversion efficiency through generation of more than one carrier per high-energy photon
[63–67]. A photon with energy 2Eg could potentially create two carriers instead of one, if, for
example, impact ionization occurred faster than thermalization through phonon scattering.
A photon with energy 3Eg could potentially create up to three carriers per photon, and
similarly for every multiple of Eg an extra carrier per photon could be generated.

Theoretical calculations of the maximum efficiency possible in a carrier multiplication
scheme were completed in [63, 68, 69]. We develop here a generalized calculation, accounting
for imperfect luminescent yield. To include the effects of carrier multiplication, the absorp-
tivity is modified. We can define a0 to be the default absorptivity near the bandgap, such
that for a plane-parallel solar cell one would have

a0 = 1− e−2α0L (4.1)

where for simplicity the absorption coefficient α has been assumed to be a step-function with



CHAPTER 4. ANALYSIS OF NEXT-GENERATION SOLAR CELLS 49

Figure 4.2: Efficiency of solar cells with a carrier multiplication factor of six for internal
luminescence yields ηint = 100% (black), 90% (blue), and 80% (red). There is a significant
deterioration of the efficiency for imperfect photon management, especially at the smaller
bandgaps that would otherwise have the potential for more carrier multiplication.

height α0 near the band-edge. The absorptivity as a function of energy would then be

a(E) =


0 E < Eg
a0 Eg < E < 2Eg
2a0 2Eg < E < 3Eg
...

=
M∑
m=1

a0H(E −mEg)

(4.2)

where H(·) is the Heaviside step function and M is the maximum carrier multiplication
factor allowed.

Just as the absorption is modified by carrier multiplication, careful consideration of the
emission must also be taken into account. Once it has been assumed that there is an effective
process for converting a high energy photon into two carriers, the reverse process of two
carriers combining into one and emitting a high-energy photon must also be accounted for.
This can be done with a thermodynamic analysis [70] or a more physical description [62]. The
physical intuition is that just as emission near the band-edge occurs through annihilation of
a single electron-hole pair, with the np product proportional to eqV/kT , at a higher multiple
m of the bandgap, the emission will be dominated by processes involving m electron-hole
pairs, scaling therefore as emqV/kT . The current-voltage relation for a multi-carrier generation
solar cell, analogous to Eqn. 3.5 for a single-carrier generation cell, is then

J = a0

M∑
m=1

∫ ∞
0

H(E−mEg)S(E)dE− 1

ηext
qπa0

M∑
m=1

emqV/kT
∫ ∞

0

H(E−mEg)b(E)dE (4.3)
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Figure 4.3: (a) VOC and (b) JSC for solar cells with a carrier multiplication factor of six
and internal luminescence yields ηint = 100% (black), 90% (blue), and 80% (red). There is
approximately a 70mV penalty in VOC for 90% rather than 100% internal yield, whereas the
penalty in JSC is negligible.

The analysis of the external luminescence yield mimics that of Chap. 3. Even though there
are now many quasi-Fermi levels at each multiple of the bandgap, the emission still primarily
occurs at the bandgap, scaling as eqV/kT . The internal yield can thus be approximated as
independent of the voltage, to first order. To model the external yield, some thickness αL
must be chosen, determining both a0 and ηext. In the calculations below, for each bandgap
and each internal yield the optical thickness αL was optimized for maximal efficiency.

The efficiency itself was calculated by finding the operating point, where dP/dV =
d(JV )/dV = 0. The AM1.5G spectrum [37] was used as the solar source. In [63], it was
shown that the ideal carrier multiplication system converts one photon into up to six carriers
at a time. Beyond six, there are not enough high-energy photons in the solar spectrum to
make a difference.

The efficiency as a function of bandgap, for internal luminescent yields of 100%, 90%,
and 80% is given in Fig. 4.2. The open-circuit voltage and short-circuit current as a function
of bandgap for the same systems are shown in Fig. 4.3. Even though the ideal carrier
multiplication solar cell can achieve greater than 44% efficiency at its radiative limit, it is
clearly not a robust maximum. For even a 90% internal yield, the solar cell efficiency drops
more than 7% at the optimal bandgap and about 12% at the smallest bandgap. At 80%
internal yield, the efficiency at 0.7eV bandgap is only 34.9%, scarcely higher than the SQ
limit for a conventional solar cell.

The VOC and JSC plots of Fig. 4.3 reveal the culprit: a significant loss in VOC . In exactly
the same way that single-junction cells were penalized by poor external yield, multi-carrier
generation solar cells are also penalized by the difficulty of light extraction. The VOC penalty
results in a greater efficiency penalty in the multi-carrier generation circumstance, however.
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Figure 4.4: Efficiency of solar cells with a carrier multiplication factor of two for internal
luminescence yields ηint = 100% (black), 90% (blue), and 80% (red).

For an internal yield of 90% (corresponding to an external yield of approximately 6% in
the plane-parallel geometry), the open-circuit voltage is penalized by kT ln 0.06 ≈ 70mV , as
seen in Fig. 4.3(a). Note that a 90% internal yield would be extraordinarily high, considering
that Auger recombination will likely be a prominent factor due to the relative frequency of
impact ionization.

The open-circuit voltage penalty, due to entropy production, is independent of bandgap.
Carrier multiplication schemes, because they use photons at higher multiples of the bandgaps
to create extra carriers, thrive in the ideal limit at smaller bandgaps. A bandgap-independent
voltage penalty it therefore be a much greater relative penalty at small bandgaps, leading
to the significant degradation of efficiency seen in Fig. 4.2.

The story is similar in the more realistic case of a carrier multiplication factor of two, as
seen in Fig. 4.4. If one were to choose a 0.7eV bandgap, based on the optimum of the 6x case,
and achieve 80% internal yield, the limiting efficiency would still only be 29.4%. Relying on
the theoretical efficiencies calculated in the radiative limit to guide design decisions, such as
which bandgap to choose, can be dangerous without a proper understanding of the internal
physics required to achieve that limit. In the case of multi-carrier generation solar cells, the
small bandgaps needed to justify such a scheme are not robust to small deviations from ideal
conditions.

4.2 Up-conversion

Up-converting solar cells attempt to increase the photovoltaic efficiency by capturing sub-
bandgap photons without decreasing the bandgap [71–74]. Although there are a variety of
potential up-converting structures, a common one is shown in Figure 4.5. An up-converting
layer, electrically insulated from a single-junction solar cell, sits below the junction. A mirror
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Figure 4.5: (a) Schematic of up-converting solar cells. The up-converter absorbs photons
with energies less than the bandgap of the solar cell, through an intermediate level as shown
in the band diagram in (b). See [71] for the exact assumptions.

below the up-converting layer prevents any photons from escaping through the rear surface.
The converter is assumed to have a band diagram as in Fig. 4.5(b). There is an impurity

level that provides absorption of sub-bandgap photons that pass through the solar cell.
Consecutive absorption of sub-bandgap photons, creating a carrier first in the impurity level
and then in the conduction band of the converter, leads to the eventual emission of a photon
with an energy nearly the converter bandgap energy. For maximum efficiency, the converter
bandgap and the solar cell bandgap should be equal. To avoid statistical averaging, photon
selectivity is assumed, requiring converter valence and conduction bands of finite widths.
The widths are set such that sub-bandgap can be absorbed either in the transition from
the valence band to the impurity level or in the transition from the impurity level to the
conduction band, but not both. The bandgap of the solar cell is Eg, and the energy differences
from EV to EIL and from EIL to EC will be denoted E1 and E2, respectively.

The up-converting system can be analyzed through the Shockley-Queisser limit by again
employing detailed balance at thermal equilibrium, and scaling up the luminescence at the
non-equilibrium condition. Completed in detail in [71], the basic steps are developed here
to demonstrate how to include imperfect luminescence efficiency as a generalization of the
Shockley-Queisser method.

Consider the up-converting system at steady-state. By definition, the number of carriers
at every level in the system (i.e. the conduction/valence bands of the solar cell and the con-
duction/valence bands and impurity level of the up-converter) must be constant. Therefore,
the generation and recombination rates for each level must be equal. With this knowledge a
system of equations can be derived containing all of the unknown system quantities.

There are a number of non-idealities that could be included. Any of the bands within
either the solar cell or the up-converter could have additional loss mechanisms associated
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Figure 4.6: Escape cone for sub-bandgap photons emitted from the up-converter. The escape
cone is determined by the refractive index of the air, regardless of the refractive index of the
solar cell. Photon extraction is therefore very difficult and susceptible to small imperfections.

with them. Only the simplest loss mechanism is considered here, in which sub-bandgap
photons emitted from the up-converter have a less than unity escape efficiency. Fig. 4.6
demonstrates the difficulty of extraction from the up-converter due to its large refractive
index. Imperfect extraction could occur due to imperfect rear mirror reflectance, non-ideal
up-converter materials, absorption of photons in the contacts, etc. All other processes in the
solar cell are assumed to be ideal, as in [71].

First, the steady-state condition within the up-converter can be determined. There is no
current being drawn from the up-converter; it simply acts as an LED driven by absorption
of sub-bandgap photons. There is a constant exchange of photons between the up-converter
and the solar cell, with the luminescence dictated by detailed balancing as in Sec. 2.2. In
the up-converter, steady-state carrier populations can be determined by quasi-Fermi levels
within each of the three bands. The chemical potential difference between the conduction
and valence band will be denoted µCV , while the difference between the conduction band and
impurity level will be µCI . Given these definitions, steady-state conditions at the conduction
band and impurity level, respectively, require:

Ωsun

∫ Eg
E2

aUC(E)S(E)dE +
∫ Eg+E2

Eg
aUC(E)ΩintaSC(E)b(E)eµ/kTdE

= Ωeme
µCI/kT

∫ Eg
E2

aUC(E)b(E)dE + Ωinte
µCV /kT

∫ Eg+E2

Eg
aUC(E)b(E)dE

(4.4a)

Ωsun

∫ E2

E1
aUC(E)S(E)dE + Ωexte

µCV /kT
∫ Eg
E2

aUC(E)b(E)dE

= Ωsun

∫ Eg
E2

aUC(E)S(E)dE + 1
ηext

Ωexte
(µCV −µCI)/kT

∫ E2

E1
aUC(E)b(E)dE

(4.4b)

where Ωsun, Ωint, and Ωem are the solid angles subtended by the sun, by internal radiative
transfer between the up-converter and solar solar, and for emissive radiation from the solar
cell, respectively; µ is the chemical potential of the solar cell. In each equation the terms
on the left-hand side represent carrier generation processes (through either absorption or
emission) at the relevant level or band, while the right-hand side represents carrier removal
processes. Given the solar cell chemical potential, Eqns. 4.4 can be solved for the quantities
µCV and µCI , resulting in the emission from the up-converter. The solar cell can then be
analyzed through typical detailed balance, but with the extra luminescence from the up-
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converter also contributing. Consequently, the current-voltage J-V relationship is

J/q = Ωsun

∫∞
Eg
aSC(E)S(E)dE + Ωinte

µCV /kT
∫ Eg+E2

Eg
aSC(E)aUC(E)b(E)dE

−Ωeme
µ/kT

∫∞
Eg
aSCb(E)dE − Ωinte

µ/kT
∫ Eg+E2

Eg
aSCb(E)dE

(4.5)

The solid angles of the system are dependent on the desired circumstance. For a non-
concentrated system without any emission restriction, one would have Ωsun = 6.8 × 10−5sr
and Ωem = π. For a concentrator system with concentration C, there are effectively C suns
in the system, resulting in Ωsun = C×6.8×10−5sr. Note that this sets an upper limit on the
concentration factor of Cmax = π/6.8× 10−5 ≈ 46, 200. For a non-concentrated system with
emission restricted to only the solar solid angle, one would have Ωsun = Ωem = 6.8× 10−5sr.
In all cases, the internal radiative transfer between the up-converter and the solar cell implies
a solid angle of Ωint = πn2

r, where the extra factor including the solar cell refractive index
nr accounts for the increased blackbody density of states at thermal equilibrium.

Although the solar cell and up-converter were treated as perfect absorbers in [71], un-
derstanding the effects of imperfect luminescence efficiency require a model of the internal
dynamics. Consequently, a step-function absorber will be assumed, with both plane-parallel
and textured geometries considered. The external luminescence yield is given by Eqn. 2.24.

Eqns. 4.4, 4.5 are solved simultaneously to generate the J-V curve for the up-converting
system. Three system configurations are considered: the maximum concentration case
(Ωsun = π), the minimum emission case (Ωem = 8.5 × 10−5), and a non-concentrating case
in which a small impurity band is allowed instead of a single level. For each configuration,
efficiencies as a function of bandgap are calculated for three different material/structure
combinations: perfect 100% internal luminescence yield, 90% internal luminescence yield (in
the up-converter) in a plane-parallel geometry, and 90% in a randomly textured geometry.

The calculated efficiency limits are shown in Fig. 4.7. To achieve full absorption, the
absorption coefficient was defined such that αL = 2.5 in the plane-parallel case, and αL = 1
in the randomly textured case, where L is the thickness of the up-converting layer. The
efficiencies for ηint = 100% corroborate the values in [71]. The severe penalty for small
deviations from ηint = 100% are immediately apparent, for both plane-parallel and randomly
textured configurations. The penalty from imperfect luminescence yield within the solar
cell is not even included, as only non-ideal up-converter yield was modeled. Whereas the
theoretical efficiency limits for the maximum concentration and minimum emission cases at
ηint = 100% are 58.5% and 62.8%, their maximum efficiencies fall to less than 40% and 30%,
respectively, for an internal luminescence yield of ηint = 90%. A similar decrease is seen
for a system in which an impurity band exists in the up-converter, allowing for carriers to
thermalize and loosening the restrictions on E1 and E2 to achieve photon selectivity.

The extraordinary loss of efficiency fundamentally results from the use of the up-converter
as a light-emitting diode, driven by the sun. Fig. 4.8 shows the relevant currents at operating
point for the non-concentrating, impurity band up-converter system, at both ηint = 100% and
ηint = 90%. The bandgap is taken to be 2eV , the optimal bandgap under ideal conditions.
Under ideal conditions, the up-converter provides significant benefit to both the current
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Figure 4.7: Calculated efficiencies for three up-converting system configurations: (a) min-
imum emission (Ωem = 6.8 × 10−5), (b) maximum concentration (Ωsun = π), (c), non-
concentrating, but with an impurity band over which carriers can thermalize, instead of a
single impurity level.
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Figure 4.8: Operating electronic and photonic currents for a non-concentrating up-converting
system, for a solar cell with bandgap Eg = 2eV , and an impurity level in the up-converter.

and the voltage, through luminescent exchange with the solar cell. Whereas a stand-alone
2eV solar cell would typically miss the substantial current available from photons below
the bandgap, the up-converter successfully sends almost 30mA/cm2 back to the solar cell,
while also emitting sub-bandgap photons as thermodynamically required. However, this
luminescent emission is extremely susceptible to loss.

As emphasized in Chap. 3, there is a voltage penalty of kT ln ηext for poor luminescent
extraction in conventional single-junction solar cells, resulting in a sharp voltage reduction
for relatively small imperfections. The penalty for the up-converter system is actually even
more severe. The luminescence of the up-converter depends linearly on the extraction effi-
ciency (by definition), such that imperfect light extraction results in a penalty of ηext in the
emission. This luminescence contributes directly to both the current and voltage of the solar
cell. Therefore the penalty in efficiency is proportional to ηextkT ln ηext, quickly eroding the
advantage of the up-converter. In the example of Fig. 4.8, even at 90% internal luminescent
yield, the external luminescence (in the plane-parallel case) is only about 6%, implying a
decrease in the luminescence of more than a factor of 15. For a 6000K blackbody, there are
more than 80mA/cm2 of incident photons with energy less than 2eV , yet even this small
degradation of the system results in a photon current of only 1.42mA/cm2 generated from
the up-converter.

Through understanding the luminescence of the up-converter one can also understand
the trends in Fig. 4.7. At ηint = 90%, internal re-emission still provides a mechanism for
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Figure 4.9: Multi-junction solar cells more efficiently convert solar energy, by extracting
higher voltage from the high-energy photons with energy E > Eg2.

exploring the internal phase space without any random reflections. For αL = 1, the external
yield of a textured cell is ≈ 15%, compared to the 6% described previously for the plane-
parallel geometry. Texturing helps, but only to a small extent in this scenario.

The bandgap dependence of the efficiency penalty is also explainable. In contrast to the
single-junction solar cells of Chap. 3 or the multiple exciton solar cells of Sec. 4.1, the penalty
associated with imperfect luminescent yield actually increases with bandgap. This is because
the high-bandgap solar cells depend critically on receiving up-converted light, representing
the photons missed because they were smaller than the bandgap. As the external extraction
diminishes rapidly to ' 1%, the up-converting system reverts essentially to a single-junction
solar cell, with little benefit at small bandgaps and the attendant penalty at higher bandgaps.

4.3 Multi-junction

Multi-junction solar cells are a third technology that can overcome the 33.5% single-junction
efficiency limit. One of the fundamental loss mechanisms of the single-junction solar cell is the
energy that goes to thermalization after a high-energy photon has been absorbed. Counter-
balancing the pressure to increase the bandgap is the loss that occurs to not absorbing
photons below the bandgap, leading to an ideal intermediate bandgap in the infrared (1.1-
1.4eV range) as seen in Fig. 3.1.

Alternatively, one can imagine splitting the solar spectrum and sending it to multiple
separate cells, as in Fig. 4.9. In Fig. 4.9, photons with energy E less than the small bandgap,



CHAPTER 4. ANALYSIS OF NEXT-GENERATION SOLAR CELLS 58

Eg1 still are not absorbed. However, photons with energy Eg1 < E < Eg2 are absorbed by
the bottom cell and thermalize to the Eg1 band-edge, while photons with energy E > Eg2
are absorbed by the top cell and thermalize to the Eg2 band-edge. In this arrangement, less
energy is lost to thermalization, due to the two band-edges in the system. Out of the great
variety of solar cell techniques, the highest-efficiency photovoltaic systems are three-junction
solar cells with concentration factors of ≈ 400, reaching efficiencies of 43.5% [3].

Here we will focus our analysis on two-junction solar cells, again attempting to understand
the robustness of detailed balance efficiency calculations. The two-junction analysis proceeds
similar to that of the previous configurations. There are many possible spectrum splitting
configurations, which can yield very different efficiency calculations [75–77]. We will assume
the larger bandgap material is sitting directly on the smaller bandgap material, and that
each has a refractive index nr = 3.5. The two junctions are in series and current-matched,
as the majority of experimental systems are. A perfect rear mirror completes the system.
The sun is treated as a blackbody at 5780K.

The currents through the two junctions are the differences between the carrier generation
and recombination rates:

J1 =

∫ Eg2

Eg1

a1(E)S(E)dE − π

η
(1)
ext

eqV1/kT
∫ ∞
Eg1

a1(E)b(E)dE + πn2
re
qV2/kT

∫ ∞
Eg2

a1(E)a2(E)b(E)dE

(4.6)

J2 =

∫ ∞
Eg2

a2(E)S(E)dE − π

η
(2)
ext

eqV2/kT
∫ ∞
Eg2

a2(E)b(E)dE (4.7)

where J1 is the current through the smaller bandgap junction and J2 is the current through
the larger bandgap junction. In Eqns. 4.6, 4.7, the first term represents absorption of the
incident sunlight, while the second term represents total recombination (radiative and non-
radiative). The current J1 also has a third term, representing the radiative transfer from the
larger bandgap solar cell to the smaller one.

This radiative transfer not only leads to extra current for the smaller bandgap solar cell, it
also leads to different external yields η

(1)
ext and η

(2)
ext. The internal yield for the smaller bandgap

cell, η
(1)
ext, is exactly the same as the external yield from a typical plane-parallel solar cell with

perfect rear mirror, given by Eqn. 2.24. The external yield of the larger bandgap solar cell
is smaller, because photons escape through the rear of the junction and are absorbed in the
other cell, instead of being re-directed back into the cell by a mirror. To calculate the yield,
we can use Eqn. 2.39, with Ωext = π(1 + n2

r) and Ωf = π, giving:

η
(2)
ext =

a2

a2(1 + n2
r) + 4n2

rαL2
1−ηint
ηint

(4.8)

where αL2 is the optical thickness of the cell. The internal yield ηint is taken to be the same
for each cell. The refractive index factor in the denominator of Eqn. 4.8 accounts for the
extra density of states leading to enhanced emission through the rear rather than the top of
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Figure 4.10: Two-junction solar cell efficiencies as a function of the two bandgaps, Eg1 and
Eg2., for internal yield ηint = 100%, 90%, 1%. The optimal bandgap increases as the internal
yield decreases. At larger bandgaps, the efficiency is relatively robust to imperfect light
extraction.

the higher bandgap cell. To achieve full absorption, the optical thicknesses of the two cells
are taken to be αL1 = 2.5 and αL2 = 5, respectively.

To calculate the efficiency as a function of the two bandgaps, a system of equations must
be solved simultaneously. First, the currents through the two cells must be equal, for the
current-matching requirement. Second, at the operating point the power through the cell
should be maximized. This can be represented mathematically as an optimization problem:

maximize
V1,V2

P (V1, V2) = J2(V2)(V1 + V2)

subject to J1(V1, V2) = J2(V2)
(4.9)

where the power P to be maximized could have also been written J1(V1 + V2), because J =
J1 = J2. We can convert Eqn. 4.9 into an unconstrained optimization through Lagrangian
calculus

maximize
V1,V2,λ

F (V1, V2, λ) = J2(V2)(V1 + V2) + λ [J1(V1, V2)− J2(V2)] (4.10)

resulting in three equations by setting ∂F/∂V1, ∂F/∂V2, and ∂F/∂λ = 0. Solving for λ
results in the final two-equation system enabling calculation of the operating point for each
possible pair of bandgaps

J1(V1, V2) = J2(V2) (4.11a)

∂P (V1, V2)

∂V2

∂J1(V1, V2)

∂V1

=
∂P (V1, V2)

∂V1

[
∂J1(V1, V2)

∂V2

− ∂J2(V2)

∂V2

]
(4.11b)

The calculated efficiency as a function of the two junction bandgaps is shown in Fig. 4.10,
for three different values of the internal yield: ηint = 100%, 90%, and 1%. The efficiency
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Table 4.1: Table of optimal bandgap and maximum efficiency for two-junction solar cells
with varying ηint. Whereas the ideal bandgaps in the Shockley-Queisser radiative limit are
1.64eV and 0.97eV , at e.g. ηint = 1% the ideal bandgaps are 1.81eV and 1.17eV .

Figure 4.11: Two-junction solar cell efficiencies as a function of the Eg2, for Eg1 fixed at
0.7eV and for internal yield ηint = 100%, 90%, 80%, and 1%. The difference in robustness to
internal yield for larger bandgaps versus smaller bandgaps is clear.

for ηint = 100% is relatively large over a broad range of bandgaps for each junction. Per
Table 4.1, the optimal bandgaps at 100% internal yield are Eg1 = 0.97eV and Eg2 = 1.64eV .
Moving to ηint = 90%, the optimal bandgaps shift higher to 1.01eV and 1.68eV , respectively.
At 1% internal yield, the optimal bandgaps move all the way to 1.17eV and 1.81eV , where
the solar cell is able to achieve almost 32% efficiency.

As with single-junction solar cells, multi-junction solar cells with larger bandgaps are
more robust to imperfect light extraction. A penalty of kT ln ηext is relatively greater for
a small bandgap junction, resulting in the significant penalty as seen in Fig. 4.11. For
Eg1 = 0.7eV , one can see that for ηint = 100%, Eg2 = 1eV and Eg2 = 2eV produce almost
exactly the same efficiency, close to 30%. Hover, at ηint = 1%, Eg2 = 2eV generates almost
15% greater absolute efficiency than Eg2 = 1eV , a drastic difference that illustrates the
relative robustness of larger bandgaps.
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Part II

Photonic Inverse Design
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Chapter 5

A New Photonic Inverse Design
Method

God does not care about our
mathematical difficulties. He
integrates empirically.

Albert Einstein

Maxwell’s equations are the fabric of electromagnetism. Once formulated, they were the
basis for predicting that light is an electromagnetic phenomena, and they have enabled
every photonic technology since. For a scientist or engineer working with photons (of any
frequency), proficiency with Maxwell’s equations is a requirement.

Consequently, there has been considerable research into fast and efficient computational
solutions of Maxwell’s equations. An assortment of methods, from finite-difference time-
domain (FDTD) to boundary element method (BEM), have emerged as viable techniques.
They are all meant to solve the forward problem: for a given geometry, what are the resulting
fields and/or eigen-frequencies?

However, scientists and engineers are typically more interested in the inverse problem:
for a desired electromagnetic response, what geometry is needed? Answering this question
breaks from the emphasis on the forward problem and forges a new path in computational
electromagnetics.

The inverse problem is more difficult than the forward problem. For the forward problem,
with a given geometry and set of sources, physical reality demands that there must be one
and only one solution. However, one cannot specify a set of fields and expect for a geometry
to exist or, if it exists, to be unique. To overcome these issues, it is common to attempt a
slightly modified version of the inverse problem: what geometry most closely achieves the
desired electromagnetic response?

From this viewpoint, inverse design problems become optimization problems, with the
desired functionality subject to the constraint that all fields and frequencies must be solutions
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of Maxwell’s equations. Mathematically, the general electromagnetic inverse design problem
can be written:

maximize
ε,µ

F (E,H, ω)

subject to ∇ · εE = ρ

∇ · µH = 0

∇× E = −jωµH

∇×H = J + jωεE

(5.1)

in which the objective is to find the permittivity tensor ε and the permeability tensor µ that
maximize the function F (E,H, ω), subject to the four Maxwell partial differential equations
(PDEs). This approach to inverse design is referred to as PDE-constrained optimization. We
will concentrate on time-harmonic problems (with time-dependence ejωt), but inverse design
for time-dependent problems is discussed in Appendix B.1

There are many possible approaches to the photonic inverse design problem, Eqn. 5.1.
The measure of any approach is its efficiency and effectiveness in arriving at a design. For
photonic design problems, the most time-consuming part of the inverse design is the solution
of the forward problem, which is generally repeated for many different designs. The number
of simulations required by an approach is therefore a good measure of its efficiency.

Because the number of simulations is a primary constraint, stochastic algorithms (i.e.
genetic algorithms, simulated annealing) are generally unfeasible approaches. Genetic al-
gorithms have been applied to optimization of two-dimensional problems [78–81] and com-
putationally small three-dimensional problems [82]. However, the technique usually requires
tens of thousands of simulations, rendering it unrealistic for three-dimensional optimizations
with a sizeable parameter space.

In contrast, shape calculus provides a framework for efficient optimization with many
fewer simulations. Shape calculus is the analogue of the usual differential calculus of finite-
dimensional spaces, expanded to the infinite-dimensional space of shape and topology. It
turns out that only two simulations are required to compute the derivative of an objective
function with respect to the entire infinite-dimensional space; moreover, typically fewer than
a hundred iterations are required to converge to an optimal design. Shape calculus often
enables a 100- or 1000-fold decrease in the number of simulations required, compared with
stochastic methods.

This chapter describes our new method for photonic inverse design. Shape calculus, the
mathematical basis of the design methodology, comprises Sec. 5.1. An intuitive physical
description of the method is presented, demonstrating how shape calculus computes deriva-
tives in the most efficient way possible. Sec. 5.2 is a brief discussion of how the efficiency is
possible, through an informatic lens. The final two sections discuss practical implementation
considerations, with Sec. 5.3 demonstrating the utility of level set geometric representations,

1An even more general function would also include a dependence on the geometry itself, through ε and µ.
This would be particularly appropriate if a regularization term is included, to impose constraints on the
geometry. The derivatives, however, are straightforward and therefore not explicitly included.
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Figure 5.1: Setup for a simple example demonstrating the intuition behind shape calculus.
In this example a wave is assumed incident from the top. There is a region over which the
permittivity is to be designed, to maximize a “merit function” F . F is taken to be the field
concentration at x0.

and Sec. 5.4 discussing the computational algorithm. Symmetries of the Maxwell’s equations
turn out to be a crucial aspect of the method, and are derived and discussed in Appendix A.

5.1 Shape Calculus

Shape calculus can be derived in abstract form for rather general linear differential operators
[83–89]. However, in this thesis we will take the opposite approach. We will focus explicitly on
electromagnetic applications governed by Maxwell’s equations, which will enable an intuitive
physical understanding of shape calculus to emerge.

We will start with a simple two-dimensional example, removing the vector nature of the
problem to clarify the underlying optimization mechanism. We will then show how this
extends to the more general and useful class of three-dimensional inverse design problems,
with small but important modifications to the picture.

Simple example

It is useful to consider first a simple example that demonstrates the essence of shape calculus-
based optimization. Fig. 5.1 illustrates the setup. Translational symmetry is assumed in the
out-of-plane dimension, reducing it to a two-dimensional problem. A wave is incident from
the top, with a transverse electric (TE) polarization such that the electric field is a scalar
everywhere. The permittivity and permeability are also assumed scalars. The objective
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is to maximize the electric field intensity at some point x0, so that a “merit function”
F = 1

2
|E(x0)|2 is suitable (the factor of 1/2 is for normalization purposes).

Consider now the effect of introducing a small dielectric inclusion, with radius r and
dielectric constant ε2, at some x′. Is this a smart placement? To decide, we must consider
its effect on the merit function. We try to calculate the change in the merit function; if the
change is positive, the inclusion is a good choice, whereas if it is negative then the inclusion
is a poor choice. The change in the merit function δF , also called the variation in F , is
simply the difference between the merit function of the new geometry and the merit function
of the old geometry:

δF =
1

2
|Enew(x0)|2 − 1

2
|Eold(x0)|2 (5.2)

The new electric field can be written as the sum of the electric electric field and the differ-
ence between the two: Enew(x0) = Eold(x0) + δE(x0). Because the dielectric inclusion has
been assumed small, one can expand Eqn. 5.2 and ignore terms that are second order (and
potentially higher-order for other F ) in δE:

δF =
1

2

[
Eold(x0) + δE(x0)

]
[Eold(x0) + δE(x0)]− 1

2
Eold(x0)Eold(x0) (5.3a)

=
1

2

[
Eold(x0)δE(x0) + Eold(x0)δE(x0) + |δE(x0)|2

]
(5.3b)

≈ Re
[
Eold(x0)δE(x0)

]
(5.3c)

where the overline denotes complex conjugation. The step from Eqn. 5.3(b) to Eqn. 5.3(c) is
called linearization: the higher-order terms are ignored, which is valid for small geometrical
changes. This process enables optimization even for non-linear electromagnetics problems,
by linearizing around the local geometry (and the local field solution) and iteratively making
small changes.

Although linearization simplifies the form of δF , there is still not a clear optimization
method. Fig. 5.2 depicts the obvious candidate, a brute force optimization. A brute force
optimization would proceed as follows: from an initial geometry, test a separate inclusion
at every possible x′. Calculate δF for each separate inclusion, and update the geometry
with the inclusion that had the largest δF (i.e. maximally increased the merit function).
Upon updating the geometry, iterate this process, again checking every possible inclusion
but with the new geometry. This somewhat exhaustive search, however, requires far too
many simulations to be possible. Instead, shape calculus gathers as much information as
the brute force method, while requiring only two simulations per iteration. The key to the
reduction in simulation time is exploitation of symmetry.

The change in the electric field at x0 between the two geometries, δE(x0), arises from the
interaction of the dielectric inclusion inserted at x′. The original geometry had some field
Eold(x′) at x′. When a cylindrical dielectric inclusion in inserted, the effect is the addition
of an induced dipole moment pind at x′, with amplitude [31]

pind ' πr2(ε2 − ε1)Eold(x′) (5.4)
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Figure 5.2: Brute force optimization method. Starting from an area with background per-
mittivity ε1, new inclusions with permittivity ε2 are tested one-by-one. The best inclusion is
kept, and the process iterates many times until a final solution is found. The shape calculus
optimization method yields the same information with only two simulations.
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To find δE(x0), one must know the field at x0 from the induced dipole at x′. The field at x0

from a dipole of unit amplitude at x′ is given by the Green’s function G(x′,x0).2 The full
δE is then given by the product of the Green’s function with the induced dipole moment,
i.e. δE(x0) = G(x0,x

′)pind(x′).
The formula for the change in merit function from introducing a dielectric inclusion at

x′ is now
δF = Re

[
Eold(x0)G(x0,x

′)pind(x′)
]

(5.5)

Eold(x0) and pind(x′) can be calculated in a single simulation.3 The difficulty with using
Eqn. 5.5 for the brute force optimization method is that a different simulation must be
completed for every possible x′, in order to calculate the Green’s function G(x0,x

′).
This is where symmetry enters. The Green’s function for the Maxwell operator (as well

as any linear differential operator) is symmetric: G(x0,x
′) = G(x′,x0). Substituting the

new form of the Green’s function into Eqn. 5.5 and re-arranging:

δF = Re
[
Eold(x0)G(x′,x0)pind(x′)

]
(5.6a)

= Re
[
G(x′,x0)Eold(x0)pind(x′)

]
(5.6b)

Notice now that the first two terms in Eqn. 5.6(b), G(x′,x0)Eold(x0), are exactly the fields of
a dipole driven with amplitude Eold(x0). Importantly, this dipole is driven at x0, radiating
(or providing a local near field) to x′. If we define the adjoint electric field

EA(x′) = G(x′,x0)Eold(x0) (5.7)

then we now have the simple formula

δF = EA(x′)pind(x′) (5.8)

Eqn. 5.8 is the equation we have been driving for. In Fig. 5.1, consider starting with a
geometry of vacuum only. First, simulate the electric field of that structure. This gives the
potential induced polarization (pind) for all possible inclusion locations x′, from Eqn. 5.4.
Moreover, Eold(x0) is now known. Therefore, in a second simulation, drive an electric dipole
at x0 with amplitude Eold(x0), as dictated by the equation for the adjoint field (Eqn. 5.7).
The single dipole simulation provides EA(x′) for all x′ as well. Thus, δF is now known for
every possible x′, with only two simulations. Fig. 5.3 is a pictorial representation of the
reduction in number of simulations.

The path to a gradient-based optimization method is clear. Starting from an initial
structure, two simulations (what we will call the “direct” and the “adjoint”) are needed

2Note that this normalization is different from the standard Green’s function normalization, for which the
source is p = 1/µ0ω

2 instead of p = 1, and is chosen for its notational simplicity in optimization applications.
3Eqn. 5.4 dictates that pind, to first order, only depends on Eold(x′), which is calculated in the same
simulation as Eold(x0).
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Figure 5.3: Reduction from the N + 1 simulations per iteration of the brute force method to
the 2 simulations per iteration of the shape calculus approach. As long as the inclusions are
small, they can be represented by their electric dipole moments. Symmetry then enables the
dipole source and measurement points to be switched, reducing the number of simulations
to two, regardless of the size N of the parameter space.
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to understand the shape gradient. The shape gradient is a map over the entire designable
domain, dictating how promising every possible dielectric inclusion is. Once the optimal
inclusion has been chosen, the process iterates until an optimal design is reached.

Note that in this section the derivative of the continuous design problem, rather than of
the discretized problem, was calculated. In the limit of infinite resolution the two derivatives
are equivalent, but otherwise there are slight differences. For electromagnetic inverse design
problems, cf. [90–92] for the discretize-then-differentiate formulation. For a discussion of
the discretize-then-differentiate versus the differentiate-then-discretize formulations within
the context of aerodynamic inverse design problems, cf. [93].

The example chosen for this section was an unrealistically simple optimization problem.
While the next section will cover in depth the more general case, it is worth discussing some
of the generalizations briefly here.

First, it seems fortuitous to have chosen to optimize the field intensity at only a single
point, x0. If the field intensity over a large region is to be optimized, won’t many adjoint
dipole simulations be required? In fact, still only one adjoint simulation is needed. Because
the equation for δF , by construction, is linear in the term G(x′,x0)Eold(x0), each dipole
should be included in the same simulation.

The persistent use of inclusions may seem irrelevant as well, as one typically is not
optimizing for a cluster of cylindrical objects, but rather more general shapes. However,
the purposeful use of the inclusion captures the essence of the method, which is reducing
geometric changes to their induced dipole moments and then exploiting their symmetry. Any
arbitrary boundary movement can also be approximated as a set of induced dipole moments,
seamlessly extending the method of this section to more general optimizations.

Finally, the simplification to scalar fields seems to have played a role in the derivation,
as the re-ordering of fields from Eqn. 5.6(a) to 5.6(b) would not be possible for vector fields.
Indeed, this is not a trivial step and is discussed further in the next section.

General case

In the previous section, the shape calculus method was distilled to its most basic form. For
any given geometry, a change in shape (or topology) introduces a polarization density where
the change occurs. Through symmetry, the Green’s function connecting the dipole moments
to the measurement points (i.e. locations for optimization) can be reversed, resulting in one
extra simulation that captures the necessary information. The resulting map dictates how
the geometry should be changed, and the process iterates until an optimal design is reached.

The formulation is now generalized to a much larger class of three-dimensional photonic
inverse design problems. The electromagnetic fields are treated as vector fields, while tensor
permittivity and permeability are allowed. The merit function can be any function of the
fields F (E,H), instead of the electric field intensity at a single point. Note that merit
functions of the eigen-frequencies can also be optimized, but have substantially different
derivations. Their treatment can be found in, e.g., [94–96]. The time-dependent inverse
design formalism is derived in Appendix B. The permeability µ will be considered fixed
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and non-designable, although the derivation proceeds along very similar lines; moreover, the
derivatives could be obtained without any extra work through the duality relations [97].

The geometric constraints are also loosened. In the previous example only dielectric
inclusions were discussed, as their induced dipole moment was simple and well-known. In
the applied mathematics literature, finding the change in a merit function due to a new
inclusion is known as taking the topological derivative [85, 98], as the new inclusion changes
the topology of the structure. An equally important geometric change arises from a shape
derivative, in which the boundaries of the current structure are moved, without a change in
topology. We will consider equally shape and topological derivatives in this section.

The general derivation proceeds from the same starting point as the simple example.
Given the merit function F (E,H), the key is to understand the variation δF arising under
small changes in geometry. The merit function may depend on the field values at many
points or regions within the domain (as opposed to a single point x0), so it is helpful to
re-write the merit function

F (E,H) =

∫
χ

f (E(x),H(x)) d3x (5.9)

where χ is the region over which the fields are to be optimized.
The variation in F depends directly on the variations δE and δH. However, care must

be taken with E and H, as they are complex-valued. One approach would be to distinguish
between the variation in the real and imaginary parts of the fields, as they are independent
variables. A simpler, and equivalent, approach is to distinguish between E and E (and
equivalently for H). Consequently, the variation in F can be written.4

δF =

∫
χ

[
∂f

∂E
(x) · δE(x) +

∂f

∂E
(x) · δE(x) +

∂f

∂H
(x) · δH(x) +

∂f

∂H
(x) · δH(x)

]
d3x (5.10)

For a real-valued function (as F must be), δF/δE is the complex conjugate of δF/δE [99].
The first term in Eqn. 5.10 is therefore the complex conjugate of the second term, and the
third is the complex conjugate of the fourth. The equation for the variation in F simplifies:

δF = 2 Re

∫
χ

[
∂f

∂E
(x) · δE(x) +

∂f

∂H
(x) · δH(x)

]
d3x (5.11)

Eqn. 5.11 for the general inverse design problem is the analogue of Eqn. 5.3(c) for the simpler
example.

The derivatives ∂f/∂E and ∂f/∂H are known from the merit function definition, leaving
the variations δE and δH to be determined. Instead of considering inclusions only, we
now consider more general structural changes, as shown in Fig. 5.4. For both shape and
topological derivatives, there is a confined region ψ over which the permittivity ε changes.
The effect of the change in permittivity is to induce a polarization density Pind on ψ.

4All gradients with respect to vector fields will be denoted ∂/∂V, for a vector field V. This could equivalently
be written ∇V, and simply means (∂/∂Vx, ∂/∂Vy, ∂/∂Vz).
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Figure 5.4: (a) Shape and (b) topological variations, respectively. In each case there is a
region ψ over which the geometry changes. There is an induced polarization density Pind on
ψ resulting from the change in geometry. The ability to model Pind and thus exploit dipole
reciprocity relations is central to the shape calculus algorithm.

The variations in the electric and magnetic fields, δE and δH respectively, are the elec-
tric and magnetic fields arising from the induced polarization density. Again, the Green’s

function connects the dipole moments to the fields. We define GEP(x0,x
′) to be the tensor

containing the electric field at x0 from a unit electric dipole at x′. Similarly, GHP(x0,x
′) is

the magnetic field at x0 from a unit electric dipole at x′. Green’s functions for fields from a
magnetic dipole will be superscripted with an M instead of a P , but it should be emphasized
that for small changes in geometry, only the electric dipole moment is significant enough to
be retained. Magnetic dipole moments will be needed only for symmetry reasons.

Given the Green’s functions, the variations in the fields are straightforward:

δE(x) =

∫
ψ

GEP(x,x′)Pind(x′)d3x′ (5.12)

δH(x) =

∫
ψ

GHP(x,x′)Pind(x′)d3x′ (5.13)

Eqns. 5.12,5.13 can be directly substituted into Eqn. 5.11:

δF = 2 Re

∫
χ

d3x

∫
ψ

d3x′
[
∂f

∂Ei
(x)GEP

ij (x,x′)P ind
j (x′) +

∂f

∂Hi

(x)GHP
ij (x,x′)P ind

j (x′)

]
(5.14)

where the fields have temporarily been written in Einstein notation for easier manipulation,
and summation over repeated indices is assumed. Eqn. 5.14 is the generalization of Eqn. 5.5.

Again, symmetry is the key step to finding a simple equation for the variation δF . The
symmetry relations are derived in Appendix A, but they can be stated here:

GEP
ij (x,x′) = GEP

ji (x′,x) (5.15a)

GHP
ij (x,x′) = −GEM

ji (x′,x) (5.15b)
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The first relation states that the source and observation point of an electric dipole can
be exchanged, as long as the polarization components are exchanged as well. The second
relation is slightly more complex, stating that the i-component of the magnetic field at x,
from the j-component of an electric dipole at x′, is equal to the negative of the j-component
of the electric field at x′ from a magnetic dipole at x. Eqns. 5.15 are reciprocity relations,
and it should be noted that they are consequences of the Maxwell operator being a linear
operator, not time-reversal invariance. In fact, time-reversal invariance is not required, as
Eqns. 5.15 apply even for lossy materials.

With the new forms for the Green’s functions, as well as an interchange of the integration
limits, the variation in F becomes

δF = 2 Re

∫
ψ

d3x′ P ind
j (x′)

∫
χ

d3x

[
GEP
ji (x′,x)

∂f

∂Ei
(x)−GEM

ji (x′,x)
∂f

∂Hi

(x)

]
(5.16)

Newly re-written, the meaning of the terms in the brackets is clear. The first term represents
the electric field at x′ due to an electric dipole at x, with amplitude ∂f/∂Ei(x). The second
term represents the electric field at x′, from a magnetic dipole at x and with amplitude
−(1/µ0)∂f/∂Hi(x).5 The entire integration over χ is then the field at a given x′, from
all of the electric and magnetic dipoles throughout χ. We again call this the adjoint field,
denoted EA(x′). With this substitution, and returning to vector notation, the equation for
the variation in F simplifies:

δF = 2 Re

∫
ψ

Pind(x′) · EA(x′) d3x′ (5.17)

Eqn. 5.17, the analogue of Eqn. 5.8 of the simpler case, indicates that again only two sim-
ulations are required to understand the variation in F . For all possible x′ in the domain,
the induced polarization P(x′) is known from a single simulation, as it is a function of the
steady-state electric field at x′. Given the electric and magnetic fields over all space, the
sources for the adjoint simulation (∂f/∂E, −(1/µ0)∂f/∂H) are also known. The adjoint
simulation then gives EA(x′), and δF is understood for any possible geometric deformation.

Eqn. 5.17 is not the ideal form for use with an inverse design algorithm. For a given
deformation ψ, it does tell you how much the merit function will change. It does not,
however, indicate which deformation maximally changes the merit function (as a gradient
usually does). It is therefore helpful to further manipulate Eqn. 5.17, for easier use in
inverse design. Deformations split nicely into two categories: topological deformations (i.e.
new inclusions) and shape deformations (i.e. boundary movements). We consider the two
types of deformations separately.

Topological Derivative

The creation of a dielectric inclusion (of arbitrary permittivity) is considered a change in
topology. For an inclusion of permittivity ε2 embedded in a region with permittivity ε1, the
5The extra factor of 1/µ0 comes from the normalization of the magnetic Green’s function, see App. A.
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induced polarization is:

Pind(x) = αE(x) (5.18)

where α is the shape-dependent polarizability and is related to the Claussiu-Mossotti factor
[31]. For a spherical inclusion of isotropic permittivity, for example, one would have

αsphere = 3ε0

(
ε2 − ε1
2ε2 + ε1

)
(5.19)

Eqn. 5.17 can then be written

δF = 2 Re

∫
inclusion

αE(x) · EA(x) d3x (5.20)

The center of mass of the inclusion is taken to be x′. The derivative is defined in the limit
as the size of the inclusion goes to zero, so the fields in the integrand can be approximated
by their values at the center, leaving:

δF = 2V Re
[
αE(x′) · EA(x′)

]
(5.21)

where V is the volume of the inclusion. Eqn. 5.21 yields a clear inverse design algorithm.
Simulate E and EA, then evaluate Eqn. 5.21 over the entire designable domain. Create a
new inclusion at the point for which the change in F is maximum, and iterate.

Shape Derivative

Extending Eqn. 5.17 for a boundary deformation is trickier than the topological deformation.
For a rigorous derivation of boundary deformations using the calculus of variations, see [100].
Instead, we take a less formal but more intuitive approach.

In Eqn. 5.17, χ is the region over which a polarization is induced. In Fig. 5.4, for
example, an initial boundary (solid line) and updated boundary (dashed line) are drawn,
with the region between the two shaded in. The shaded region is χ, for a given deformation.
The figure should be considered a two-dimensional cross-section from a three-dimensional
shape and deformation. Integrating over χ requires integrating along the boundary of the
initial shape, and over the variation in the normal direction. We will call the differential
element along the surface to be dA, and the differential element in the normal direction to
be dxn. Eqn. 5.17 can be re-written:

δF = 2 Re

∫
dA

∫
dxn

[
Pind(x′) · EA(x′)

]
(5.22)

In the limit as the size of the deformation goes to zero, the integrand can be evaluated
exactly at the surface, and we can make the substitution∫

dxn → δxn(x′) (5.23)
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where δxn is the size of the deformation, in the normal direction, at each point along the
boundary. The equation for the variation in F becomes

δF = 2 Re

∫
δxn(x′)Pind(x′) · EA(x′)dA (5.24)

A subtle problem with Eqn. 5.24, which arises only for shape derivatives, is that the elec-
tric fields at the boundary are not continuous. The boundary conditions from Maxwell’s
equations specify that the tangential component of E be continuous, and that the normal
component of D be continuous. In order to turn Eqn. 5.24 into a meaningful equation, it
must be expressed in terms of only continuous fields.

The first step is to recognize that the polarization should be written:

Pind(x′) = (ε2 − ε1)Enew(x′) (5.25)

where Enew is the steady-state electric field of the deformed shape, not the original shape,
and the outward normal directs from the material with permittivity ε2 to the material with
permittivity ε1. In this section the permittivity is assumed to be a scalar; for the tensor case,
see [101]. Because small deformations are assumed, we can relate Enew to Eold. However, it
is NOT true that Enew ' Eold, because the components of E that are not continuous can
change drastically even for small changes in the boundary.6 Instead, one has to write:

Enew = Eold
‖ + δE‖ +

Dold
⊥ + δD⊥

ε2
(5.26a)

' Eold
‖ +

Dold
⊥
ε2

(5.26b)

where the continuous fields, rather than the electric field components, are assumed to undergo
small changes. The adjoint field can be similarly split, without approximation:

EA = EA
‖ +

DA
⊥
ε1

(5.27)

With the new expression for Pind and EA, in terms of only continuous fields, the variation
in F becomes

δF = 2 Re

∫
δxn(x′)

[
(ε2 − ε1)E‖(x

′) · EA
‖ (x′) +

(
1

ε1
− 1

ε2

)
D⊥(x′) ·DA

⊥(x′)

]
dA (5.28)

6Think of a boundary at which the electric field is perpendicular to the boundary. The electric field on, e.g.,
the inside of the boundary will be much larger than the field on the outside. If the boundary is deformed
outward, a point which was outside the boundary will now be inside. The field, which was large, will now
be drastically reduced by the continuity condition, far more than linearization permits.
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where the “old” superscript has been dropped. For a derivation of Eqn. 5.28 in the context
of perturbation theory for roughness losses, see [102, 103]. Note the similarity of Eqn. 5.28
to the variational equation of ordinary calculus

δF =
∑
i

∂F

∂xi
δxi (5.29)

for a finite number of variables xi. A typical gradient-based optimization algorithm would
operate by setting

δxi =
∂F

∂xi
(5.30)

ensuring that to first order the merit function increases every iteration. Exactly the same
reasoning leads in our case to the choice (up to a normalization constant) of

δxn(x′) = 2 Re

[
(ε2 − ε1)E‖(x

′) · EA
‖ (x′) +

(
1

ε1
− 1

ε2

)
D⊥(x′) ·DA

⊥(x′)

]
(5.31)

for all x′ on the boundary surface. Thus, the right-hand side can be considered the infinite-
dimensional shape derivative, and we have a procedure for updating a boundary with only
two simulations.

5.2 Information Loss?

It would seem that a sleight of hand has occurred. It has been claimed that two simulations
are equivalent, to first order, the brute force N + 1 simulations, where N is arbitrarily large.
But how is it possible that so few simulations could could capture that much information?

To understand the answer, we re-examine the simple example of section 5.1. Figure 5.5
compares a single iteration of the brute force method and the shape calculus method side-
by-side. In each method, the first simulation is of the initial structure. This provides a lot
of information: not only is the field at x0 relevant, but the field at each of the N possible
inclusion points is relevant, as their dipole moments would be proportional to the fields there.
N + 1 “bits” of information have been learned, where “bit” is not used in a rigorous sense.

Then consider one of the N dielectric simulations in the brute force method. For these
simulations, the fields at x0 are relevant. However, the fields at all of the other x′ do
not matter ; they provide no useful information. Because the fields must be simulated over
the whole region, there was a substantial computational cost to this irrelevant information.
The entire simulation results in only 1 extra bit of information, the field at x′. The total
information content of the N + 1 brute force simulations is only 2N , whereas approximately
N2 data points had to be simulated.

In contrast, the adjoint simulation does not waste information. In the second simulation,
the fields at every of the N points within the designable region provide useful information.
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Figure 5.5: Information content of brute force and shape calculus approaches to optimization.
The test simulations (i.e. simulations 2 through N) of the brute force method are particularly
wasteful. Even though the entire domain must be simulated, ultimately only the field at x0

matters. The shape calculus method exploits symmetry to avoid computation of irrelevant
data. With only two simulations, it gleans the same amount of information as the N + 1
simulations of the brute force method, to first order.

For each point, the fields are the relevant dipole fields that would have been radiated from
a local dipole to the measurement point. With the shape calculus approach, the 2N bits of
information require simulations of only about 2N data points, representing the most efficient
way of acquiring the information.

5.3 Level Set Geometric Representation

For arbitrarily-shaped boundaries, level set methods [104] provide a natural, flexible repre-
sentation. The basic framework will be discussed here; for a detailed presentation see [105,
106].

For two-phase material structures, the permittivity and permeability are known every-
where once the boundary is specified. The boundary, therefore, contains all the necessary
information. However, implementing computational schemes in which the boundary is com-
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Figure 5.6: Illustration of signed distance function for a simple circular boundary. The
boundary distinguishes between the volume with ε = ε1 and the volume with ε = ε2. The
signed distance function φ = r −R equals 0 at the boundary. The magnitude of φ(x) is the
distance from x to the closest point on the boundary, and the sign of φ distinguishes the
interior and exterior of the boundary.

posed of little particles moving independently is a cumbersome process. Functions like
merging or pulling apart objects are exceptionally difficult. Instead, embedding the bound-
ary into a function defined across the entire domain turns out to be a far easier and more
natural representation. The boundary is defined as the zero level set of a level set function
φ, such that φ = 0 at points on the boundary. Away from the boundary, it is numerically
convenient to set φ equal to a signed distance function; that is, at every point φ equals the
distance to the closest boundary point. Moreover, points inside the boundary are taken to
be the negative of the distance, enabling one to keep track of which material is where.

As an example, consider a boundary consisting of a circle of radius R centered at (0, 0),
as shown in Fig. 5.6. The level set function describing the circle would be:

φcircle =
√
x2 + y2 −R (5.32)

On the boundary, φ = 0. At a point interior to the circle, at say a radius R1 < R, φ =
−|R1 − R|. At a point exterior to the circle, at R2 > R, φ = |R2 − R|. Thus φ is a proper
signed distance function over all space.

The utility of such a function is that it enables easy tracking and merging. Instead of
trying to maintain a set of boundary particles through many deformations, one simply has
to continually update the level set function, then find the φ = 0 level set. To update the
level set function, start with the equation

φ(x(t), t) = 0 (5.33)

where x(t) is the set of points along the boundary. The geometry can be deformed continu-
ously through the artificial time parameter t, and time t = 0 represents the initial geometry.
Taking the total time derivative of Eqn. 5.33 results in the equation

∂φ

∂t
+
dx

dt
· ∇φ = 0 (5.34)
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The term dx/dt is referred to as the velocity, representing the speed at which a point along
the boundary is moving, and in which direction. Only movement normal to the boundary
is relevant; movement along the boundary is simply a re-parametrization. Reducing the
velocity to a scalar field Vn in the normal direction:

∂φ

∂t
+ Vn |∇φ| = 0 (5.35)

Eqn. 5.35, a Hamilton-Jacobi partial differential equation, governs the deformation of level
set functions. An initial structure defines the level set function for t = 0. Starting from
that initial condition, and given a velocity Vn(x), the PDE is solved through time, until the
boundary has deformed as much as desired.

The shape calculus of Chap. 5 can be extended to the level set framework [96, 107–110].
The primary result of the shape calculus derivation was Eqn. 5.28, denoting the variation in
a merit function F for deviations in points along the boundary δxn. Now, we would like to
write the variation in terms of a deformation in φ. The first step is to recognize that

δxn =
dx

dt
· n̂δt = Vnδt (5.36)

where n̂ is the normal vector to the boundary. Thus one can re-write Eqn. 5.28 as

δF = 2δtRe

∫
Vn(x′)

[
(ε2 − ε1)E‖(x

′) · EA
‖ (x′) +

(
1

ε1
− 1

ε2

)
D⊥(x′) ·DA

⊥(x′)

]
dA (5.37)

Within the level set framework, the optimization would proceed as follows. After completing
the two required simulations, one would set the velocity Vn equal to the term in brackets.
One would then solve the Hamilton-Jacobi equation, Eqn. 5.35, given Vn and over some
artificial time δt. This would give an updated shape and update φ, and the process iterates.

In addition to providing a flexible framework for dealing with arbitrary shapes, level set
methods also enable simpler derivations of the shape derivative for many highly constrained
shapes. Directly using Eqn. 5.28 is difficult, as the normal vector is needed to construct δxn.
Instead, we can indirectly use level set calculus. Instead of Eqn. 5.37, one could also write
the shape derivative directly in terms of the change in φ by making the replacement

Vnδt = − δφ

|∇φ|
(5.38)

where δφ is the variation in the signed distance function from one geometry to the next. For
a geometry consisting of a finite collection of objects, the variation in φ would decompose
into the sums over the variations in φi, where φi is the level set function corresponding to the
ith individual shape. If the level set function φ is known in terms of the shape parameters,
the variation in φi can then be written

δφi =
∂φi
∂pi
· δpi (5.39)



CHAPTER 5. A NEW PHOTONIC INVERSE DESIGN METHOD 79

where pi represents the shape parameters for each distinct shape. Finally, Eqn. 5.37 can be
re-written as

δF = −2 Re
∑
i

∫
δpi ·

∂φi
∂pi

1

|∇φi|

[
(ε2 − ε1)E‖(x

′) · EA
‖ (x′) +

(
1

ε1
− 1

ε2

)
D⊥(x′) ·DA

⊥(x′)

]
dA

(5.40)

If φi is known, Eqn. 5.40 provides a simple prescription for optimizing the parameters pi.
Consider, for example, a geometry that is constrained to allow only a set of N two-

dimensional ellipses {e1, e2, ..., eN}, where the ith ellipse has center point (xi, yi) and radii
(r1, r2). We can bundle the shape parameters into the four-vector pi for each ellipse. The
geometry then has 4N parameters for which a shape derivative is needed. Eqn. 5.40 suggests
that as long as a level set representation can be found, the shape derivatives will naturally
follow. One possible level set function would be

φi =

(
x− x(i)

0

r
(i)
1

)2

+

(
y − y(i)

0

r
(i)
2

)2

− 1 (5.41)

Although Eqn. 5.41 is not a signed distance function, it is a level set function, as φi = 0 on
the boundary, φi > 0 outside the boundary, and φi < 0 inside the boundary. The derivative
∂φi/∂pi is straightforward, with individual components

∂φi

∂x
(i)
0

= − 2

r
(i)
1

(
x− x(i)

0

r
(i)
1

)
(5.42a)

∂φi

∂y
(i)
0

= − 2

r
(i)
2

(
y − y(i)

0

r
(i)
2

)
(5.42b)

∂φi

∂r
(i)
1

= − 2

r
(i)
1

(
x− x(i)

0

r
(i)
1

)2

(5.42c)

∂φi

∂r
(i)
2

= − 2

r
(i)
2

(
y − y(i)

0

r
(i)
2

)2

(5.42d)

The magnitude of the gradient |∇φ| is also straightforward, directly yielding the shape
derivatives through Eqn. 5.40.

Thus level set methods are a natural setting for shape calculus. For some applications,
they provide a flexible and efficient shape representation for complex geometries. In others,
they simplify the mathematical framework for rapid calculation of the shape derivatives.
They will be used in both forms in the upcoming chapters.
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Figure 5.7: Schematic implementation of shape calculus optimization algorithm. The full-
wave simulations are completed in solvers such as Lumerical FDTD Solutions [111], Comsol
Multiphysics [112], and Meep [113]. The geometric representation and shape/topological
derivatives are computed in Matlab [114].

5.4 Computational Implementation

Fig. 5.7 schematically illustrates the computational implementation of the shape calculus
algorithm presented in this chapter. The over-arching inverse design is performed in Matlab
[114], which couples to full-wave electromagnetics solvers such as Lumerical FDTD Solu-
tions [111], Comsol Multiphysics [112], and Meep [113]. The full algorithm in pseudocode
is presented in Alg. 3. The geometry is represented in a data structure in Matlab, with a
solver-specific code that ports the geometry into the electromagnetic solver. The solver per-
forms the two simulations, returning all of the field data. The shape derivatives and updates
are performed in Matlab, at which point the algorithm iterates.

There are many possible geometric representations. There are level set functions, as
presented in Sec. 5.3, for a general class of smooth shapes. One could also imagine a set of
parameterized shapes, including ellipses, rectangles, and other simple structures that could
be used to build up more complex geometries. There are also splines, gridded boundaries,
and many other types of geometries. Once one has built up a set of functions for initial-
ization, calculation of shape derivatives, and updates for a large class of shapes, the inverse
design approach presented here is very generic, applicable to any optimization problem with
Maxwell’s equations as constraints. Ostensibly, future commercial electromagnetics solvers
will have an optimization functionality in the same way they currently have a simulation
functionality. Shape calculus will almost certainly play a major role.
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Algorithm 3 Inverse Design Algorithm.

Initialize geometry
while stopping condition not met do

Direct simulation: compute E,H
Remove all sources
Add electric and magnetic dipole sources such that

P(x) = ∂f
∂E

∀x ∈ χ
M(x) = − 1

µ0

∂f
∂H

∀x ∈ χ
Dipole simulation: compute adjoint fields EA,HA

Calculate shape/topological derivatives according to Eqns. 5.28,5.21
Update geometry

end while
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Chapter 6

Optical Cloak Optimization

With four parameters I can fit
an elephant, and with five I can
make him wiggle his trunk.

John von Neumann

Optical cloaking has received considerable interest in the past five years. Clever material de-
sign for optical cloaking has been desired since the seminal papers of Pendry [115] and Leon-
hardt [116]. Conceptually, optical cloaking occurs when incident light rays are re-directed
around an object, such that to an observer the rays appear unperturbed. This effect has been
demonstrated experimentally at various frequencies and with varying degrees of generality
(i.e. angular bandwidth, frequency bandwidth, etc.) many times in the subsequent years
[117–121].

6.1 Transformation Optics

Transformation optics is the key idea driving optical cloaking schemes [122–124]. The basic
idea is as follows. Consider a Euclidean coordinate system xα through which light rays pass
unperturbed. Now imagine transforming the coordinate system by a transformation matrix
Tα

′
α . The new coordinate system xα

′
is related to the original coordinate system by the

relation
xα

′
= Tα

′

α x
α (6.1)

Maxwell’s equations are form-invariant under coordinate transformations, such that in the
new coordinate system Maxwell’s equations still hold. Moreover, the coordinate transfor-
mation is equivalent to transformations of the permittivity εij and the permeability µij:
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εi
′j′ =

[
det
(
T i

′

i

)]−1

T i
′

i T
j′

j ε
ij (6.2a)

µi
′j′ =

[
det
(
T i

′

i

)]−1

T i
′

i T
j′

j µ
ij (6.2b)

Thus, if one can find a coordinate transformation that redirects every light ray as desired,
then there will be a transformation of the material parameters given by Eqn. 6.2 that pro-
duces the same effect.

The inherent simplicity of transformation optics can also provide significant practical
difficulties. First, for a given transformation both ε and µ must be transformed - one cannot
choose, for example, to use non-magnetic materials (with the limited exception of quasi-
conformal mappings [125]). Worse, the permittivity and permeability are generally fully
nine-component matrices, with the local coordinate systems for diagonalization differing
throughout the space. The values are also exotic, often less than zero or tending to infinity.
Fundamentally, for a given coordinate transformation there is only a single transformation
of ε and µ, and there is no straightforward way to impose simple material constraints.

In this chapter we apply inverse design techniques to optical cloaking design. Instead
of taking a coordinate transformation-based design approach, we use the shape calculus
of Chap. 5 to design a material with cloaking functionality. We show that inverse design
enables simple reduced-material design for reduced functionality, with the exact tradeoffs
determined by the designer. Real materials, such as imperfect conductors, can also be
seamlessly incorporated.

The first cloak to be optimized has translational symmetry in one dimension (say, z).
To compare and contrast the advantages of the inverse design technique, comparisons with
the work of Cummer et. al. [126] will be drawn. In [126], full-wave simulations of a two-
dimensional cylindrical cloak were performed. Cloaking was achieved by a coordinate trans-
formation that stretched a single point out to some radius R1, resulting in a transformation
of the material parameters for TE-polarized waves of

εz =

(
R2

R2 −R1

)2
r −R1

r
(6.3a)

µr =
r −R1

r
(6.3b)

µφ =
r

r −R1

(6.3c)

where R1 and R2 are the inner and outer radii of the cloak, respectively. Fig. 6.1 plots the
material parameters in the cloaking region for R2 = 2R1. Note that the material parameters
are exotic: εz tends to infinity approaching the inner radius. The material is magnetic;
moreover, it is anisotropic in a radial basis. And finally, the permeability values are less
than 1 over a sizeable distance, significantly increasing the difficulty of fabricating the cloak.
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Figure 6.1: Values of the permittivity ε and permeability µ for a cylindrical cloak of TE-
polarized waves, from Eqn. 6.3, designed in [126]. Note that εz tends to infinity approaching
the inner radius, the material is magnetic and anisotropic in its permeability, and the per-
meability values are less than 1 over a significant radius.

The advantages of the transformation-optics design lie in its analytical nature; once the
coordinate transformation was known, finding the values of ε and µ was simply a matter
of multiplying matrices. Also, the design works for all incidence angles and frequencies,
although in practice having permeability values less than one generally restricts the frequency
bandwidth. The disadvantage, as mentioned previously, is the exotic nature of the materials
required through the coordinate transformations.

6.2 Shape Calculus

Fig. 6.2 shows the inverse design approach to achieving optical cloaking. With the wavelength
as a free parameter (the Maxwell equations are scale-invariant), an object with diameter of
(2/3)λ is inside a perfectly conducting ring, surrounded by a dielectric cloaking region. The
incident plane wave is TM -polarized (i.e. scalar H-field). The merit function is the negative
of the scattering width σ, which is taken to be the power in the scattered fields divided by
the power incident on the diameter of the perfect conductor:

F (E,H) = −
1
2

∫
S

Re
(
Es ×Hs

)
· n̂ds

Pinc
(6.4)

where S is the bounding region in Fig. 6.2, n̂ is the outward surface normal, and the s
subscript denotes a scattered field. The negative is taken for consistency with Chap. 5,
where the merit functions were to be maximized, not minimized (the two formulations are
equivalent up to a sign). Comparing with the notation of Eqn. 5.9, for this application the
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Figure 6.2: Setup for cloaking optimization for a single frequency and single incidence angle.
The arbitrary material to cloak sits within the perfectly conducting ring with diameter
(2/3)λ. A TM -polarized (i.e. scaler H-field) is incident from the left. Varying degrees of
symmetry can be imposed on the cloaking region to increase the angular acceptance of the
design. The merit function to be minimized is the power scattered through a bounding
region S.

cloaking region is χ and the function f is the integrand of Eqn. 6.4, including the factors
1/2 and 1/Pinc. The variation δf is

δf = − 1

2Pinc
Re
(
δEs ×Hs · n̂ + Es × δHs · n̂

)
(6.5)

which can be re-arranged as

δf = − 1

2Pinc
Re
(
δEs ·Hs × n̂ + δHs · n̂× Es

)
(6.6)

through vector identities and taking the complex conjugate within the Re operator for the
δHs term. The optimization proceeds as generally described in Sec. 5.4, with the sources for
the adjoint simulation set as

P =
∂f

∂E
=

n̂×Hs

2Pinc
(6.7a)

M = − 1

µ0

∂f

∂H
= − n̂× Es

2µ0Pinc
(6.7b)

throughout the surface S through which the scattered power is measured. The total field E
is the sum of the incident field Einc and the scattered field Es. Because the incident field is
constant throughout the optimization, it was justified in Eqn. 6.7 to set ∂f/∂E = ∂f/∂Es,
and likewise for H.
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Figure 6.3: Magnetic field for cloaking setup, with (a) metal only and (b) metal plus sur-
rounding dielectric, for ε = 3 in the cloaking region. Adding the constant dielectric severely
penalizes the scattering width, increasing it to more six times the power incident upon the
metallic cylinder.

The optimization starts with ε = 3 and µ = 1. Throughout the optimization, the
material is constrained to have µ = 1, isotropic ε, and ε > 1. The permittivity can take
on any value between 1 and 12; this is the only example of this dissertation for which two-
phase materials are not used. As such, the shape derivative formula is actually simpler.
Now, for small perturbations, the electric fields will approximately be continuous. Because
there is no sharp boundary, there is no need to separate the fields into their normal and
tangential components. Consequently, the induced polarization from a small perturbation
can be modeled as Pind ≈ δεE. In this case, instead of Eqn. 5.28, the shape derivative is
given by

δF = 2 Re

∫
χ

δε (x′) E(x′) · EA(x′)dV (6.8)

and the choice of update consequently given by δε(x′) = cRe
[
E(x′) · EA(x′)

]
, with c nor-

malized to ensure a small step size.
The magnetic fields of the uncloaked object are shown in Fig. 6.3. For the perfect

conductor alone, the phase fronts are clearly distorted and the scattering width is slightly
larger than one. Upon adding the dielectric material to be optimized, the scattering worsens
and there is now significant scattering throughout the volume. For this optimization, all
simulations were completed in Lumerical’s FDTD Solutions [111].
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Figure 6.4: Fifth iteration of the optimization. The scattering width has decreased, the
shape derivative dictates how to change ε, and the fields appear closer to the desired plane
wave.

6.3 Optimization Results

Fig. 6.4 illustrates the inverse design procedure as applied to the optical cloak design. At
the fifth iteration, the permittivity has started to deviate from the constant value of three
everywhere. The shape derivative dictates how it should change from iteration to iteration,
and the scattering width is decreasing rapidly. The magnetic field looks more like a plane
wave, compared to the starting field of Fig. 6.3(b).

Fig. 6.5 shows the results of the optimization from start to finish. Within thirty iterations,
the scattering width has reached a value of about 10−2, almost three orders of magnitude
smaller than the initial value. The final design is a complex pattern of varying permittivity,
practically impossible to intuit and in such a large parameter space that it would be difficult
to optimize through a stochastic approach. The relatively low contrast of the permittivity
has been maintained.

While the optimization of Fig. 6.5 was interesting, the design reduces scattering for only
a limited angular bandwidth. However, the strength of the inverse design method is its
flexibility - the designer can choose the tradeoffs desired. Fig. 6.6 shows optimization results
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Figure 6.5: Results of two-dimensional optimization at a single frequency and incidence
angle. The initial design transforms from a constant permittivity to a complex structure,
re-directing the waves around the internal perfect conductor. By the 30th iteration, the
scattering width has decreased by three orders of magnitude. The contrast of the final
design remains relatively small, reducing potential experimental complexity.

for a variety of desired functionalities, and the resulting permittivities. In each case, the
permeability was fixed at µ = 1. To achieve enhanced directionality, in this case four-fold
symmetry, a slightly higher contrast permittivity was needed. For perfect rotational sym-
metry, optimizing with isotropic ε was not sufficient. However, performing the optimization
with an anistropic ε achieved a sufficiently small scattering width to be considered a cloak,
this time with complete angular independence. The anisotropic permittivity simulations
were performed in Comsol Multiphysics [112], with the radial and angular components of
the permittivity converted to Cartesian coordinates by the transformation(

εxx εxy
εyx εyy

)
=

(
cos θ − sin θ
sin θ cos θ

)(
εrr 0
0 εθθ

)(
cos θ sin θ
− sin θ cos θ

)
(6.9)

which can be found by ensuring the both D and E transform properly under the coordinate
transformation.

Fig. 6.7 shows the scattering width as a function of the frequency (for θinc = 0) and of the
incidence angle (for ω = ω0) for the design with four-fold symmetry. For a scattering width
σ < 0.1, the relative bandwidth ∆ω/ω0 is approximately 1/20. The relative bandwidth over
which σ < 1 is ∆ω/ω0 ≈ 1/6. For the angular response, σ < 0.1 is achieved for |θinc| < 2◦,
while σ < 1 is achieved for |θinc| < 8◦.

Similar to the third example of Fig. 6.6, an anistropic permittivity can also be designed for
three-dimensional structures. The inverse design method scales seamlessly to three dimen-
sions, with the increased computational cost coming only as a result of the larger simulations.
A three-dimensional optimization was completed with the same setup as the two-dimensional
optimization, but extended to a sphere instead of a cylinder. All simulations were performed
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Figure 6.6: Portfolio of designs and tradeoffs for varying degrees of cloaking functionality.
For the simplest functionality of operation over small frequency and angular bandwidths,
the permittivity can remain isotropic and with maximum value less than five. For enhanced
directionaliry, imposed through symmetry constraints, the same general material param-
eters suffice, albeit with slightly stronger contrast. To achieve full angular independence
through rotational symmetry, the permittivity restriction must be loosened, allowing for an
anisotropic ε (still with µ = 1).

in Lumerical’s FDTD Solutions [111]. Consequently, the permittivity could not be optimized
in the (r, θ, φ) basis; instead, the (x, y, z) basis had to be used, and the cloak therefore does
not have rotational symmetry. Nevertheless, for a small angular bandwidth the cloak does
achieve a small scattering width, as seen by the field profile in Fig. 6.8(b).

An important property of the inverse design method is its intelligence with regard to the
Maxwell equations. Because it depends on full-wave simulations each iteration, it can di-
rectly take into account real material properties. For example, the coordinate transformation
method of transformation optics often works for the case of a perfect electrical conductor
(PEC), subject to the boundary condition n̂×E = 0. However, especially at optical frequen-
cies, the assumption of perfect conductors is unrealistic. At 1.8eV (∼700nm), for example,
gold has a permittivity εAu(700nm) = −14.4 + 0.9i [127], very different from a perfect con-
ductor. Fig. 6.9(a) shows the optimal design for a cloak assuming a PEC interior boundary.
When the boundary is a perfect conductor, the magnetic field passes essentially unperturbed.
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Figure 6.7: (a) Frequency dependence and (b) angular dependence for cloaking design with
four-fold symmetry (second example in Fig. 6.6). The object has a scattering width σ < 1
for ∆ω/ω0 ≈ 1/6, or for a variation in incidence angle of less than 8◦.

Figure 6.8: (a) Optimal design and (b) two-dimensional cross section of electric field for a
three-dimensional cloak optimization. The structure is simulated with concentric spheres
with varying values of εx, εy, and εz.

However, if the real Au parameters are used with the design, the phase fronts are distorted
and the cloaking behavior is severely diminished. With the inverse design approach, however,
this can be easily remedied: simply re-run the optimization, with the real Au parameters
included. Fig. 6.9(b) shows the resulting design from such an optimization. Notice the sharp
distinction with the design assuming a PEC. In the optimization with real gold, there is a
build-up of dielectric directly in front of the gold, ostensibly to re-direct waves around it
without strongly interacting with the gold itself. In spite of the lossiness of the gold, the
optimal design is still able to achieve a significantly reduced scattering width and recover
the cloaking functionality.

This chapter demonstrated the flexibility of inverse design through shape calculus. The
example of optical cloaking proved fertile ground for exploration of designs with varying
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Figure 6.9: The inverse design method can incorporate real material parameters directly into
the optimization. The performance of the design optimized with a PEC interior boundary,
shown in (a), degrades significantly if a real material such as gold is used instead. (b) By
including the gold directly into the optimization, a new design can be found that minimizes
the effect of the gold. For this example, the permittivity of Au at 700nm wavelength was
used.

degrees of functionality. Structures achieving cloaking over only a limited angular and fre-
quency bandwidths could be achieved with remarkably simple materials; for more complete
functionality, more complex materials could also be optimized. The method scales seam-
lessly to three dimensions, and inherently incorporates the real material parameters that
would be needed experimentally or commercially. Even for a single application, the possible
merit functions are often manifold, requiring an optimization method flexible and extensible
enough to accommodate every possible circumstance. Inverse design through shape calculus
is such a method.
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Chapter 7

Surface Textures for Sub-Wavelength
Solar Cells

God made the bulk; surfaces
were invented by the devil.

Wolfgang Pauli

Light trapping is a concept of fundamental importance to solar cells. Light trapping by
surface texturing can provide significant absorption enhancement; equally as important is
the significant voltage boost that is also provided (cf. Sec. 2.5). In the ray optics regime,
there is a well-known 4n2 absorption enhancement limit for a randomly textured surface
that cannot be surpassed [19]. The limit does not apply in the wave optics regime, however,
and it is an open question as to what enhancement is possible. There have been suggestions
that plasmonic effects could enable significant enhancement [128, 129], but specific struc-
tures with significant enhancements have not yet been proposed. Large enhancements have
been theoretically demonstrated for periodic structures in the sub-wavelength regime [130,
131], but the proposed designs utilize specialized modal enhancement that occurs only for
low-index materials. For the high-index semiconductors relevant for solar cells, a different
structure will be needed.

Actually beating the 4n2 limit in the sub-wavelength regime may not be necessary. Re-
alistic solar materials are either such poor absorbers that they cannot feasibly reach the
sub-wavelength regime, or they are sufficiently strong absorbers that even for, e.g., 2n2

enhancement they can reach thicknesses �100nm. The optical absorption depth in bulk
crystalline Silicon, for example, is ∼1000µm, requiring a broadband enhancement factor of
greater than 1000 to even reach sub-micron thicknesses. Conversely, the optical absorption
depth in GaAs is approximately 1µm. Even just 4n2 enhancement would imply thicknesses
of 20nm, beyond which smaller thickness may not be commercially relevant. The situation
with organic materials is similar, as their large absorption cross-sections also also require
less than 4n2 enhancement to reach nanometer thicknesses. The goal, therefore, is not nec-
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essarily to beat the 4n2 limit, but rather to understand how to achieve large enhancements
in thin-film, high-index structures pertinent to future photovoltaic technology.

7.1 Problem Formulation

There are two factors determining the absorptivity of photovoltaic cell: the material absorp-
tion coefficient, and the geometry coupling incident plane waves to internal modes. To tease
out the effects of the geometry, we consider here the enhancement factor EF of a cell, which
can be written

EF =
1

ω2−ω1

∫ ω2

ω1
aavg(ω) dω

αL
(7.1)

where (ω1, ω2) is the frequency range considered, αL is the absorption depth, and a(ω) is
the absorptivity of the cell (i.e. probability of absorbing an incident photon).

The enhancement factor must apply for all possible incidence angles (there is significant
haze in the sky), meaning the absorptivity aavg(ω) must be angle-averaged. However, com-
pleting three-dimensional absorption simulations over many angles requires extraordinary
computational power. Instead, we chose the following merit function

F = min
(ω1,ω2)

a0(ω)

αL
(7.2)

which is the minimum enhancement over the frequency range (ω1, ω2), where a0 is the absorp-
tivity at normal incidence. The idea is that if the minimum enhancement factor is increased
over a large bandwidth, the device operation will not depend on highly resonant behavior.
The device, although optimized for normal incidence, will then likely perform well even at
skew angles. A numerical example bearing this out is given later in the chapter.

Fig. 7.1 shows the setup for the inverse design of a thin-film absorber. A plane wave
is incident upon the device, which consists of a textured thin-film surrounded by an anti-
reflection coating and a low-index material (for fabrication purposes). A perfect reflector
ensures photons are not lost through the rear. The textured surface is given by h(x, y),
and is the geometry to be optimized. Instead of directly measuring absorption, which would
require recording three-dimensional field data, the transmission T (ω) through a front monitor
is measured, and because there is no transmission through the rear surface, a(ω) = T (ω). A
weak absorber is chosen for the thin-film in an attempt to understand the limits of absorption
enhancement; the basic understanding gleaned from the optimization should also be of help
for more strongly absorbing, material-specific systems.

The transmission through the front monitor is the power flowing through the monitor
divided by the total incident power. Given the equivalence between absorptivity and trans-
mission, the merit function can be written

F = min
(ω1,ω2)

[
− 1

2Pinc

Re
∫
S

E×H · ẑ dA

αL

]
(7.3)
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Figure 7.1: Inverse design setup for thin-film solar cell. An initial anti-reflection coating
reduces the index mismatch at the front surface. The rear surface of the weak absorber
is textured, above a low-index material. A perfect reflector is assumed to ensure maximal
absorption enhancement. A simple computational method of calculating the absorption is to
calculate the transmission through the transmission monitor, shown above the anti-reflection
coating.

where ẑ is the surface normal to the transmission monitor S and is opposite the direction of
the plane wave. Pinc is the incident power. As derived in Chap. 5, the function f(x) is the
integrand of Eqn. 7.3. Similar to Eqn. 6.7, the electric and magnetic dipoles are set by the
derivatives ∂f/∂E and −(1/µ0)∂f/∂H, respectively, resulting in:

P =
ẑ×H

2αLPinc
(7.4a)

M = − ẑ× E

2αLµ0Pinc
(7.4b)

The dipoles are located throughout the plane defined by the transmission monitor.
The surface h(x, y) is the design variable for this structure, with x and y the in-plane

axes. To ensure smoothness, the surface constructed from a Fourier basis of sines and cosines,

h(x, y) = h0+
N∑
i=1

N∑
j=1

{
cij1 sin(

2πix

Lx
) sin(

2πjy

Ly
) + cij2 sin(

2πix

Lx
) cos(

2πjy

Ly
)

+cij3 cos(
2πix

Lx
) sin(

2πjy

Ly
) + cij4 cos(

2πix

Lx
) cos(

2πjy

Ly
)

}
(7.5)

written as a discrete sum because the surface is assumed to have periodicity Lx in the x-
direction and Ly in the y-direction. The coefficients cij (in addition to the constant thickness
h0) determine the surface profile.
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The topological derivative, corresponding to generation of new holes, is not required for
this design, because a single interface between the absorber and rear dielectric is required.
Therefore only the shape derivative must be calculated. Eqn. 5.28 is a simple starting point.
For simplicity it will be re-written here

δF =

∫
δxn(x′)Λ(x′) dA (7.6)

where Λ(x′) is two times the real part of the term in square brackets in Eqn. 5.28, containing
the direct and adjoint fields. Instead of parameterizing the integral by the surface element
dA and the variation normal to the surface δxn, it is simpler to integrate over the change in
height δh over the x-y plane

δF =

∫
δh(x, y)Λ(x, y) dxdy (7.7)

Simplifying the height function into a sum over generalized basis functions:

h(x, y) =
∑
i

cifi(x, y) (7.8)

the variation in height can be replaced by the variation in coefficients through

δh(x, y) =
∑
i

δcifi(x, y) (7.9)

Inserting Eqn. 7.9 into Eqn. 7.7 finally yields the shape derive of F with respect to the height
coefficients ci:

δF =
∑
i

δci

∫
fi(x, y)Λ(x, y) dxdy (7.10)

Each iteration, the height coefficients are updated by the equation (properly normalized)

δci =

∫
fi(x, y)Λ(x, y) dxdy (7.11)

7.2 Surface Texture Optimization

Fig. 7.2 shows the specific geometry optimized. A quarter-wave anti-reflection coating (with
index nARC ≈

√
nairnsemi) reduces reflection due simply to the impedance mismatch of

air and the absorber. Nominally1 the energy range is taken to be 1.45-1.65eV , very close
to the band-edge of GaAs. More importantly, the energy bandwidth ∆ω/ω0 ≈ 1/8, a
sizeable bandwidth. The corresponding wavelength range is 750-850nm. The sub-wavelength
absorber is taken be 150nm thick, with the absorption coefficient chosen such that αL ≈ 0.02.
The rear surface is textured to avoid influencing the effect of the anti-reflection coating on
strongly absorbed photons.2 The rear dielectric is chosen to have an index n = 1, for
1Nominal values because scale-invariance permits re-scaling.
2i.e. photons that require less than a single pass through the cell to be absorbed, which may be outside the
frequency range of the optimization.
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Figure 7.2: Dimensions and materials for surface texture optimization. A generic weak
absorber requires significant enhancement to even approach full absorption. The average
thickness h0 is taken to be 150nm. The rear dielectric has n = 1 for simplicity, and the
period of 710nm in the x and y-directions

Figure 7.3: (a) Initial surface for optimization, with small random roughness to break the
symmetry of the device. (b) Shape derivative of the initial shape. Red areas indicate that the
height should increase, whereas blue indicates the the height should decrease. (c) Absorp-
tion enhancement as a function of energy. Aside from the resonant peaks, the background
enhancement is roughly 2, consistent with the anti-reflection coating and perfect rear mirror.

simplicity and to understand optimal texturing effects.
The initial surface for the optimization is shown in Fig. 7.3(a). The exact structure

is not important; for roughly random initial structures, the final result tends to be very
similar. A small perturbation (on the order of 5nm in the Fourier coefficients) is used to
break the symmetry and enable the optimization to proceed. Given the direct and adjoint
simulations for the given structure,3 the shape derivative Λ(x, y), from Eqn. 7.7, is shown
in Fig. 7.3(b). Red (blue) areas indicate that the height should increase (decrease). This

3All three-dimensional simulations were completed in Lumerical [111], on an 80-core cluster.
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Figure 7.4: (a) Minimum absorption enhancement as a function of iteration. By the 104th

iteration, the enhancement had improved sufficiently such that it was no longer a weak
absorber. The absorption coefficient was reduced by a factor of ten, such that the structure
was again a weak absorber. (b) Comparison of initial and final structure enhancement factors
as a function of energy. Whereas there is a large bandwidth over which the initial structure
has an enhancement of roughly 2, the final structure has an enhancement greater than 50
over the entire bandwidth.

derivative is projected onto the Fourier basis by Eqn. 7.11.
Fig. 7.3(c) shows the absorption enhancement, a(ω)/αL, for the initial structure as a

function of energy. Resonant peaks indicating resonant coupling are seen, but the background
enhancement is roughly two, as expected from the double-pass permitted by the rear mirror.

The optimization proceeds by attempting to increase the worst-performing frequency at
each iteration. The direct simulation injects a plane wave across all frequencies within the
relevant range, and the enhancement is measured as a function of frequency. The frequency
at which the minimum enhancement occurs is selected for the adjoint simulation, and sets
the frequencies of the dipoles given by Eqn. 7.4. Note that this simplification of the “mini-
max” problem formulation likely works well only because of the broad bandwidth and many
resonances of the problem; for more general approaches to the minimax problem cf. [132–
134].

The evolution of the merit function, the minimum enhancement over the 1.45-1.65eV
range, is shown in Fig. 7.4(a). The minimum enhancement increases substantially. At the
104th iteration, once the minimum merit function stabilized, the absorption coefficient was
reduced by a factor of ten. There was such improvement that the structure was no longer in
the weakly absorbing regime; reducing the absorption coefficient by ten restored the weakly
absorbing nature and consequently increased the enhancement factors. By the end of the
optimization, the minimum enhancement factor was 54.5.

The absorption enhancement as a function of energy is shown in Fig. 7.4(b). The en-
hancement for the initial structure is shown in green, while the enhancement for the final
structure is shown in blue. Note that because of the choice of the min merit function, the
enhancement across the entire energy range has improved, such that even at non-resonant
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Figure 7.5: (a) Real space and (b) Fourier space representations of the optimal surface. The
size of the dots in the Fourier space representation corresponds to the magnitude, while the
phase is written adjacent.

energies the enhancement is greater than 50. The average enhancement of the final structure
is 78.

The spatial variation of the surface is shown in Fig. 7.5(a). The peak-to-valley distance
of the surface is ≈160nm, centered around the 150nm thickness. The coefficients cij of the
optimal structure are shown in Fig. 7.5(b). They have been converted to an exponential
basis, with basis functions of the form exp [2πi(mx/Lx + ny/Ly)]. The size of the circles in
the figure is proportional to the magnitude of the coefficients, while the phase is displayed
in the adjacent text. Note that there have been no symmetry conditions imposed, but
because the surface height is real-valued the relation γm,n = γ−m,−n must hold, where γ is
the coefficient in the exponential basis.

An average enhancement of 78, as mentioned previously and seen in Fig. 7.4(b), is far
greater than the 4n2 limit of ray optics. However, it is only for normal incidence and a
single polarization. As mentioned in the previous section, the optimization was performed
at normal incidence and one polarization to reduce the computational complexity. By virtue
of the non-resonant improvement over a large frequency range, it is expected that even
at skew angles or different polarizations the behavior of the structure should not be that
different.

Fig. 7.6(a) shows the two quantities on the same plot: the enhancement versus energy for
the optimization incidence angle and polarization, and the angle- and polarization-averaged
enhancement. The energy- and polarization-averaged enhancement, as a function of incident
angle, is displayed in Fig. 7.6(b). One can see that although there is a penalty at off-angles,
the enhancement factor remains above 20 for any orientation, and the overall angle- and
polarization-averaged enhancement is 40. The angle-averaging is performed by partitioning
the hemisphere into equal solid angles, and averaging according to

∫
EF cos θ dΩ, assuming

the Lambertian cos θ weighting factor.
The angle- and polarization-averaging results justify the approach of optimizing at normal
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Figure 7.6: (a) Absorption enhancement as a function of energy for the optimized struc-
ture at normal incidence and for a single polarization (blue) and averaged over angles and
polarization (red).

Figure 7.7: Frequency-averaged absorptivity at normal incidence as a function of varying
the optical thickness, αL. The structure performs well in the strongly-absorbing regime,
surpassing 90% absorption even at αL = 0.1.

incidence. Performing the optimization over the full angular and polarization space would
have increased the computational time of the optimization by a factor of about 25, increasing
the time to optimize from 3 days to 75, which is clearly unfeasible.

An important question to investigate is how the structure performs in the strongly ab-
sorbing regime. While the weakly absorbing regime illuminates the underlying physics, it
is not relevant for commercial technology, as realistic solar cells must absorb close to 100%
of the available incident spectrum. Fig. 7.7 shows the frequency-averaged, normal-incidence
enhancement factor and total absorption as a function of the optical thickness, αL. Because
the structure was designed for the specific thickness Lavg = 150nm, the optical thicknesses
are simulated through varying the absorption coefficient α. Note that the structure performs
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Figure 7.8: Comparison of published enhancement methods and the inverse design texture
presented in this work. The non-intuitive, shape calculus-determined design presented here
shows far superior performance than the heuristic structures designed elsewhere.

very well as the optical thickness increases, asymptotically approaching 100% absorption as
the optical thickness increases. Even for αL = 0.1, the absorption surpasses 90% on average
across the entire bandwidth. As an example of the relevance of this calculation, this sug-
gests a 1.5µm thick, high-efficiency GaAs solar cell could be reduced to 150nm thick with
little degradation of efficiency, assuming the surface can be manufactured. Such an improve-
ment would greatly reduce the associated material costs and enable cheaper electricity going
forward.

An average enhancement factor of 40 is close to the ray optics limit of 4n2 ≈ 50. Although
it does not surpass the ray optics limit, as discussed in the introduction to this chapter,
surpassing the ray optics limit is not necessarily important for relevant solar cell technologies.
Indeed, a factor of 40 enhancement would enable a currently 1µm thick cell to be scaled down
to 25nm, far enough to greatly reduce costs.

Fig. 7.8 compares the surface texture optimized here with published results from the
literature. Although there have been only a few papers proposing methods for enhancing
absorption with sub-wavelength, high-index materials, the improvement provided by inverse
design is decisive. The next highest enhancement factor, calculated for a randomly rough
surface, is only about 10 [135]. Even though [135] approaches the Lambertian limit, it occurs
in a highly-absorbing structure, leaving open the question of how a randomly roughened
structure would perform in the weakly absorbing limit. The two other proposals, dielectric
nanospheres [136] and nanometallic gratings [137], have even smaller enhancement factors
and re-illustrate the point that symmetric or intuitive structures will tend to have far sub-
optimal performance.
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Stuart and Hall [138] calculated the thermodynamic limit to light trapping in thin planar
structures. They use the real modal structure of a planar thin-film, while assuming perfect
coupling into and out of the modes. For a thickness of 150nm and the relevant refractive
indices, their calculated enhancement factor limit is 31 [139]. The fact that the inverse design
structure as presented here surpasses this limit signifies that not only is the texture acting as
a coupler, but it is also important shaping the bandstructure and modal properties directly,
increasing the density of states and reducing the group velocity as needed.
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Appendix A

Symmetries of the Maxwell Equations

The shape calculus of Part II of this thesis is predicated on understanding how the solutions to
Maxwell’s equations change under small perturbations to the geometry. Being able to capture
that information with only two simulations is possible because of two simplifications. First,
the response to the perturbation can be understood through only the lowest-order multipole
moment, that of the electric dipole. Second, a reciprocity relation is needed, as an answer
to the following question:

Can the fields at a point x′, from a dipole at x0, be recovered by placing a dipole
at x′ and measuring at x0 instead?

This question is represented pictorially in Fig. A.1.
The equations answering the previous question are known as the Rayleigh-Carson reci-

procity relations. Although they have been derived elsewhere [97, 140–142], we will provide
an alternate derivation here, as they are crucial components of the inverse design procedure.

The two divergence relations in Maxwell’s equations can be produced from the two curl
equations (for ω 6= 0), and initial conditions can be specified in place of the divergence
equations [97]. We focus then on the curl equations. It is simpler to work with one second-

Figure A.1: The focus of Appendix A: can the source and measurement points be exchanged
for a dipole (electric or magnetic) at x, radiating to x′ (E or H)?



APPENDIX A. SYMMETRIES OF THE MAXWELL EQUATIONS 115

order differential equation than two first-order differential equations, for both the electric
and magnetic fields: [

∇× µ−1∇×−ω2ε
]

E = ω2P− jωµ0∇× µ
−1

M (A.1a)[
∇× ε−1∇×−ω2µ

]
H = jω∇× ε−1

P + µ0ω
2M (A.1b)

Each equation is of the form Ax = b, where A is a linear differential operator, x is the desired
field, and b is the set of specified sources. Motivated to understand symmetries with respect
to dipole moments, the sources have been explicitly written in terms of a polarization density
P and a magnetization density M, using the relations D = εE + P and B = µH + µ0M.

It will be useful to take one more step, tranforming the differential equations A.1 into
their weak forms. Commonly used in finite element methods, weak forms have less strict
differentiability requirements and more naturally employ symmetry. If we consider a domain
D over which equations A.1 are to be solved, the weak forms can be derived as follows: take
the dot product of the equation with a test function V , and integrate over D. This results
in the equations:∫

D

[
µ
−1∇× E · ∇ ×V − ω2εE ·V

]
d3x =

∫
D

[
ω2P ·V − jωµ0∇× µ

−1
M ·V

]
d3x

(A.2a)∫
D

[
ε
−1∇×H · ∇ ×V − ω2µH ·V

]
d3x =

∫
D

[
jω∇× ε−1

P ·V + µ0ω
2M ·V

]
d3x (A.2b)

for all V ∈ H0(curl;D), where H0(curl;D) is the space of allowable electric and magnetic
fields.1 Integration by parts enabled the first term on the left-hand side of each equation to
be written as a single curl operator in each of the fields. The boundary conditions n×E = 0
and n×H = 0 on the boundary of D have been assumed, but this is merely for clarity and
intuition, and more general boundary conditions do not impair any of the upcoming steps.
It should be clear that Eqns. A.2 are equivalent to A.1, as A.2 must be valid for all possible
V. One could therefore choose V to approach in the limit a delta function at any point in
space, recovering Eqns. A.1 explicitly.

There are in general four cases to consider: the electric and magnetic fields from an
electric dipole, and the electric and magnetic fields from a magnetic dipole. It turns out that
the magnetic fields from an electric dipole and the electric fields from a magnetic dipole are
related, reducing the number of unique cases to three.

Case I: The electric field from an electric dipole

For this case, we will only need Eqn. A.2(a). Two separate situations are considered. In the
first, a dipole with amplitude 1 C ·m and polarization ε̂1 is placed at the point x1. In the

1The requirements on E and H are that they be Lebesgue-integrable; consequently, H0(curl;D) is the space
of vector fields that are Lebesgue-integrable and for which the curl of the field is Lebesgue-integrable.
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second, a dipole with amplitude 1 C ·m and polarization ε̂2 is placed at the point x2:

P1 = ε̂1(1 C·m)δ3(x− x1) (A.3)

P2 = ε̂2(1 C·m)δ3(x− x2) (A.4)

The fields resulting from P1 and P2 are E1 and E2, respectively. The background ε and µ
are kept fixed. We re-write Eqn. A.2(a) for each of the two scenarios:∫

D

[
µ
−1∇× E1 · ∇ ×V − ω2εE1 ·V

]
d3x = ω2ε̂1 ·V(x1) (A.5)∫

D

[
µ
−1∇× E2 · ∇ ×V − ω2εE2 ·V

]
d3x = ω2ε̂2 ·V(x2) (A.6)

We now employ the power of the weak forms. Eqns. A.5,A.6 must be true for all possible
V; we can therefore choose a particular V as needed. In Eqn. A.5, we take V = E2, and in
Eqn. A.6, we take V = E1. The previous equations now read:∫

D

[
µ
−1∇× E1 · ∇ × E2 − ω2εE1 · E2

]
d3x = ω2ε̂1 · E2(x1) (A.7)∫

D

[
µ
−1∇× E2 · ∇ × E1 − ω2εE2 · E1

]
d3x = ω2ε̂2 · E1(x2) (A.8)

We want to take advantage of the fact that the left-hand sides of Eqns. A.7,A.8 are identical;
however, for the most general case they actually are not. The tensors ε and µ prevent such
equivalence (because, for example, (εE1) ·E2 6= E1 ·(εE2)). In what scenario do we have such

equivalence? In Einstein notation, the previous relation becomes εijE
(1)
j E

(2)
i

?
= E

(1)
j εjiE

(2)
i .

The equality holds only if εij = εji, or in other words ε = ε
>

. Additionally, we must also

have µ = µ
>

. A scalar permittivity and permeability will always work, but even anisotropic,
non-diagonal permittivities and permeabilities are permissible as long as they are symmetric.
Hereafter, symmetric permittivities and permeabilities will be assumed.2

As discussed in Sec. 5.1, the electric field from a unit dipole is the Green’s function.

GEP(x0,x
′) is the electric field at x0 from an unit electric dipole at x′. Given a symmetric

permittivity and permeability, the left-hand sides of Eqns. A.7,A.8 are identical, and the
right-hand sides must also be equal: ε̂1 · E2(x1) = ε̂2 · E1(x2). In Green function notation,
this relation is:

GEP
ij (x2,x1) = GEP

ji (x1,x2) (A.9)

This is one of the crucial symmetry relations needed for inverse design. In words, it says

2Even symmetric permittivities and permeabilities are not actually necessary, for the purpose of adjoint-based

optimization. For example, if the permittivity for the second dipole, P2, had been given by ε
>

instead of ε,
the left-hand sides of Eqns. A.7,A.8 would be equivalent without any assumptions on ε. Likewise for µ. For
non-symmetric permittivities and permeabilities, the adjoint simulation would simply require transposed
material properties relative to the direct simulation.
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The i-component of the electric field at x2, from a j-oriented electric dipole at
x1, exactly equals the j-component of the electric field at x1 from an i-oriented
electric dipole at x2.

The relation confirms the equivalence of the exchanged dipole and measurement points in
Fig. A.1, for the case of electric fields from electric dipoles.

Case II: The magnetic field from a magnetic dipole

In this case only Eqn. A.2(b) is needed. We again consider two situations; this time, two
magnetic dipoles:

M1 = ε̂1
1

µ0

(1 Wb·m)δ3(x− x1) (A.10)

M2 = ε̂2
1

µ0

(1 Wb·m)δ3(x− x2) (A.11)

We now employ V = H2 in Eqn. A.2(b) for the first scenario, and V = H1 in Eqn. A.2(b)
for the second scenario:∫

D

[
ε
−1∇×H1 · ∇ ×H2 − ω2µH1 ·H2

]
d3x = ω2ε̂1 ·H2(x1) (A.12)∫

D

[
ε
−1∇×H2 · ∇ ×H1 − ω2µH2 ·H1

]
d3x = ω2ε̂2 ·H1(x2) (A.13)

Assuming symmetric permittivity and permeability tensors, we arrive at the reciprocity
relation for the magnetic field from a magnetic dipole: ε̂1 ·H2(x1) = ε̂2 ·H1(x2). In Green’s
function notation:

GHM
ij (x2,x1) = GHM

ji (x1,x2) (A.14)

This is very similar to the relation for the electric field from an electric dipole, and can be
written in words:

The i-component of the magnetic field at x2, from a j-oriented magnetic dipole at
x1, exactly equals the j-component of the magnetic field at x1 from an i-oriented
magnetic dipole at x2.

Case III: The electric field from a magnetic dipole (and vice versa)

For the third case we want to understand the behavior of the magnetic field radiated from
an electric dipole. It is not true that one can simply switch the location of the dipole and
the measurement point. To see this, we again consider two scenarios, but this time we place
an electric dipole at x1 and a magnetic dipole at x2:

P1 = ε̂1(1 C·m)δ3(x− x1) (A.15)

M2 = ε̂2
1

µ0

(1 Wb·m)δ3(x− x2) (A.16)
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We use Eqn. A.2(a) for both scenarios. Care must be taken with the magnetic dipole term

in Eqn. (8.4). Through integration by parts, one can make the substitution ∇×µ−1
M ·V =

µ
−1

M · ∇ × V, where it is implicitly assumed there are no magnetic dipoles on the outer
boundary of the domain. The two equations are then,∫

D

[
µ
−1∇× E1 · ∇ ×V − ω2εE1 ·V

]
d3x = ω2ε̂1 ·V(x1) (A.17)∫

D

[
µ
−1∇× E2 · ∇ ×V − ω2εE2 ·V

]
d3x = −jωµ−1

ε̂2 · ∇ ×V(x2) (A.18)

Now one can make the substitutions V = E2 in Eqn. A.17 and V = E1 in Eqn. A.18.
Eqn. A.18 is further simplified through the relation ∇ × E1 = −jωµH1. The right-hand
side then reads −ω2µ

−1
ε̂2 · µH1. In proper matrix notation, the previous expression would

be written −ω2
(
µ
−1
ε̂2

)>
µH1 = −ω2ε̂2

>(µ
−1

)>µH1 = −ω2ε̂2 ·H1, where the assumption of

symmetric µ also implied µ
−1

was symmetric. This results in the final reciprocity relation:
ε̂1 · E2(x1) = −ε̂2 ·H1(x2). In terms of the Green’s functions:

GEM
ij (x2,x1) = −GHP

ji (x1,x2) (A.19)

The reciprocity relation for the magnetic field from an electric dipole can be stated

The i-component of the magnetic field at x2, from a j-oriented electric dipole at
x1, exactly equals the negative of the j-component of the electric field at x1 from
an i-oriented magnetic dipole at x2.
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Appendix B

Time-Dependent Merit Functions

The formulation of Chap. 5 focused on optimal design for steady-state, continuous-wave
signals. Here, we generalize to time-dependent signals. For derivations of the discretized
time-dependent inverse problem, cf. [143, 144].

Analogous to Eqn. 5.9 of Chap. 5, a time-dependent merit function can be written as
an arbitrary function over the fields not only over a spatial domain χ, but also over a time
domain T :

F (E,H) =

∫
T

∫
χ

f (E(x, t),H(x, t)) d3x dt (B.1)

For example, if one wanted to maximize absorption with the first 100ns, one could set f
equal to the time-dependent absorption over the time-domain T = [0, 100ns].

The derivation of the shape derivative proceeds along the same lines as in Sec. 5.1. First,
the variation of F is specified with respect to the variation in the fields:1

δF =

∫
T

∫
χ

[
∂f

∂E
· δE(x, t) +

∂f

∂H
· δH(x, t)

]
d3x dt (B.2)

where the fields are now real-valued, and there is not an imaginary component to consider.
The variation in the fields is related to the induced polarization from a change in geometry
through the Green’s function, which is now time-dependent:

δE(x) =

∫
T

∫
ψ

GEP(x, t,x′, t′)Pind(x′, t′)d3x′ dt′ (B.3a)

δH(x) =

∫
T

∫
ψ

GHP(x, t,x′, t′)Pind(x′, t′)d3x′ dt′ (B.3b)

where ψ is again the region over which the permittivity changes. T is the region over which
a polarization is induced, and causality requires that it contain only times before t, such
that one generally has T = (−∞, t). Eqn. B.3 can be inserted into Eqn. B.2. The crucial
simplification arises from the symmetry of the Green’s functions, which for time-dependent
fields becomes
1for an underlying variation in the geometry.
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Figure B.1: Symmetry implications for time-dependent merit functions. Instead of multi-
plying the fields at a current time t, the fields are multiplied at a past time t′, requiring the
adjoint simulation to be run backwards in time.

GEP
ij (x, t,x′, t′) = GEP

ji (x′, t′,x, t) (B.4a)

GHP
ij (x, t,x′, t′) = −GEM

ji (x′, t′,x, t) (B.4b)

Eqns. B.4 have the same physical picture as in Chap. 5, except that the symmetrized version
of the Green’s function has a source radiating at time t to a measurement at t′, where t′ < t.
This can only be true if Maxwell’s equations run backwards in time, from the present time
t to some previous time t′. This result is actually quite intuitive. Consider the case of
scalar fields for simplicity. If there is a unit electric dipole source at (x′, t′) that creates
an electric field G at (x, t), then one could imagine winding the clock backwards from t
to t′, with a unit electric dipole source at (x, t) thus causing the same electric field G at
(x′, t′). It was emphasized in Sec. 5.1 that the Green’s function symmetry does not require
time-reversal invariance; nevertheless, the physical intuition provided by time-reversal aids
in understanding the mechanism.

Insertion of Eqn. B.3 into Eqn. B.2 along with taking the symmetric counterpart of the
Green’s functions results in the equation

δF =

∫
T

dt′
∫
ψ

d3x′ P ind
j (x′, t′)

∫
T

dt

∫
χ

d3x

[
GEP
ji (x′, t′,x, t)

∂f

∂Ei
(x, t)−GEM

ji (x′, t′,x, t)
∂f

∂Hi

(x, t)

]
(B.5)

The term in brackets represents the fields at (x′, t′) from sources (P,M) = (∂f/∂E,−∂f/∂H)
at (x, t). Integrating over all possible x and t (i.e. over χ and T ) results in the adjoint field
EA(x′, t′). Such a replacement yields the final, time-dependent derivative:

δF =

∫
T

∫
ψ

Pind(x′, t′) · EA(x′, t′)d3x′dt′ (B.6)

Eqn. B.6 is the shape/topological derivative for time-dependent merit functions. It is the
logical extension of Eqn. 5.17, with the caveat that the sources for the adjoint simulation are
driven by the time-dependent electric and magnetic fields, and the adjoint simulation must
be run backwards in time.
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